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Abstract

This thesis aims at developing a methodology for assigning passengers to individ-
ual trains using: (i) fare transaction records from Automatic Fare Collection (AFC)
system and (ii) the train tracking data from Automatic Train Regulation (ATR) sys-
tem. The proposed Passenger-to-Train Assignment Model (PTAM) can provide a
better understanding of capacity utilization and help assess the service quality in
underground rail systems.

PTAM is a probabilistic model that links each fare transaction to one (or multiple)
feasible train itineraries. Key inputs to the model include the passenger walking speed
distribution at stations. The thesis also develops methods to infer the parameters of
the speed distribution using AFC and ATR data, while prior methods used either
manually collected observations or statistically biased estimates.

PTAM is applied in the context of Hong Kong's Mass Transit Railway (MTR)
system and a series of applications are developed using PTAM output to assess the
capacity utilization of the network, including trainload estimation, crowding assess-
ment at stations, and animation of passenger movements in a playback mode.
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Chapter 1

Introduction

Transportation plays an important role in serving a city and its mobility and con-

tributing to its economic and social development. With constantly increasing travel

demand, transit is gaining popularity because of its capacity, efficiency, and ability

to reduce traffic congestion. Many major cities, especially in developing countries,

make large investments in transit to offer alternative means of transportation and

improve the quality of life (Vuchic, 2005). To support efficient management, perfor-

mance measurement, analysis and planning, automated data holds great potential for

analysts with its improved quantity, variety and quality (Furth, 2006).

This thesis develops a model to monitor operations of a rail transportation network

using actual, detailed data based on the characterization of individual trips. By

inferring the train boarded by each passenger, a Passenger-to-Train Assignment Model

(PTAM) is developed in order to simulate the passengers and trains' movements in

the network in detail, providing a convenient tool to evaluate tactical planning and

operating strategies.

A statistical method is proposed as a building block using two automated data

sources: (i) fare transaction records from the Automatic Fare Collection (AFC) sys-

tem and (ii) train tracking data from the Automatic Train Regulation (ATR) system.

By appropriately linking each fare transaction to one (or multiple) feasible train

itineraries, the model is able to establish a quantitative assessment of the system's

current state through a number of applications at the aggregate level.
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The model is applied in the context of Hong Kong's Mass Transit Railway (MTR)

system, which has a heavily used network. The method developed is applicable to

any public transportation system with similar quality and availability of data.

1.1 Motivation

This research is motivated by three needs. First, there is a need to improve the ca-

pacity utilization of transit systems. The process of infrastructure expansion requires

large capital investments and long construction times. Therefore, to cope with in-

creasing travel demand, agencies are seeking approaches to better utilize the current

transportation facilities through better planning and management strategies. With

the emergence of automatic technologies, such as Automatic Fare Collection (AFC)

and the Automatic Train Regulation (ATR) systems, massive amounts of data re-

lated to both demand and service have become available. This data has the potential

to provide valuable insights into the actual operations of a system from both the

operators' and the passenger's points of view. This understanding provides a solid

basis for future investment decisions(e.g. network expansion), rolling stock allocation,

scheduling, and identifying opportunities to improve capacity utilization.

Second, the work is motivated by the desire for tools to systematically measure

and predict service quality and transit performance from the passenger's point of

view. Quality of Service (QoS) has become a central concern for transit users, opera-

tors, and transport authorities (Aguilera et al., 2013). Understanding and measuring

customer experience in the system clearly helps address this concern. Measuring ser-

vice quality from the passenger's point of view and capturing their actual experience

when traveling through the system, can improve indicators currently used by agencies

and also provide better information to customers.

Third, enhanced historical information based on longitudinal analysis can be pro-

vided about how the network performs in the face of unexpected events, delays, and

increasing demand. This information can help operators make better decisions on

how to maintain the transport system. Furthermore, using the model developed in
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this thesis, different scenarios can be tested to examine the effects on passengers of

different interventions, which can assist operators in effectively responding to future

events.

In order to provide efficient and high quality service, Mass Transit Railway (MTR),

the rapid transit railway system in Hong Kong, is constantly making system improve-

ments in terms of passenger communications, facilities and rolling stock, etc. In the

short-term, MTR focuses on the challenge of accommodating the increasing travel

demand, which is already very close to (or even exceeds) capacity during peak hours.

This research is specifically motivated by the need for MTR to a) understand the

system's ability to serve the rapidly growing demand in Hong Kong, b) assess how

close to its limit the system is currently operating, and c) identify opportunities to

further improve capacity utilization without negatively affecting service reliability.

1.2 Objectives

The broad goal of this research is to look at how transit systems operate near capacity

by examining the capacity utilization of the network in detail. Automated data from

various sources, supported by appropriate models, are used to provide insights into

the usage of the system.

An important building block in achieving this objective is a Passenger-to-Train

Assignment Model (PTAM) which aims at identifying passenger boarding events and

inferring the specific train itineraries individuals took. With the advent of auto-

mated data, the tap-in and tap-out times of the passengers at stations and the

arrival/departure times of trains at corresponding stations are recorded. By enu-

merating feasible itineraries, the model attempts to estimate the probabilities of each

passenger boarding each train. Given this assignment, at the individual level, differ-

ent journey time components (in-station access time, waiting time, in-vehicle time,

transfer time and in-station egress time) can be computed for each passenger. The

expected number of passengers left behind can also be inferred.

At the aggregate level, this information allows for accurate examination of the

17



customer experience and the utilization of the network. A number of applications

can result:

e Estimating individual train loads, which helps identify the hot spots in the

network and the peak periods to inform the scheduling process

e Developing service quality metrics from the passenger's point of view, such as

- Crowding on trains and at platforms/stations

- Number of passengers left behind (denied boarding) at key stations

- Travel time variability and overall service reliability

* Improving customer communication to enhance their experience in the system

- Better inform customers with travel information (e.g. route suggestions,

travel times at different times of day, crowding levels, etc.)

- Expand real-time customer information services with predicted level of

service attributes

1.3 Approach

The Passenger-to-Train Assignment Model (PTAM) serves as the most important

building block for this research and has many potential applications.

The model utilizes and integrates two main data sources-AFC and ATR. The AFC

data describes the passenger demand in the network by time of day and the ATR data

provides detailed information about the transit service delivered. The model aims

to capture the interaction between the demand and supply in the transit network

and provide more detailed information on individual trips (e.g. the journey time

components, crowding levels, etc.). It also enables a close examination of passenger

movements in the system. The resulting output supports system monitoring and

performance measurement from the customer's point of view, and assesses capacity

utilization (see Figure 1-1).
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Transit

Network AFAT

Passenger 30Transit Service

Passenger-to-Train Assignment Model (PTAM)

Operation ----- ---------- 2 ---------- ---

Capacity Performance System

Planning Utilization Measurement Monitoring

Figure 1-1: Passenger-to-Train Assignment Model (PTAM)

In the short run, a better understanding of the current system performance can

lead to better operation and demand management strategies with better capacity uti-

lization. More efficient network operation can improve customer experience, reduce

crowding and, more importantly, accommodate increasing demand. In the long run,

the results can support future planning and resources allocation by effectively identi-

fying hot spots in the network and advising on future expansion and investments.

1.4 Introduction to MTR

Hong Kong, formally the Hong Kong Special Administrative Region (SAR) of the

People's Republic of China, is an international metropolis and the world's third largest

financial center after London and New York (Monetary and Economic Department,

2010). Known as one of the most densely populated cities in the world, it is located

in southern China, east of the Pearl River estuary with a population of 7 million

and a total area of 1104 km 2 (GovHK, 2013). Among the public transport modes,
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the Mass Transit Railway (MTR) is one of the busiest and most efficient systems in

the world, serving nearly 5 million daily trips, or about 46% of the total Hong Kong

travel market (MTR Corporation, 2014).

The MTR system is operated by MTR Corporation Limited (MTRCL), a priva-

tized rail and metro company and a major property developer in Hong Kong. With

total assets of HK$ 216 million, MTRCL has over 21,000 employees globally and op-

erates rail service under contract in several cities around the world including London,

Stockholm, Beijing, and Melbourne (MTR Corporation, 2011). The company was

formed as a government-owned statutory corporation in 1975 and was privatized in

2000. The government still owns about 76% of the shares as the majority stakeholder

(MTR Corporation, 2011). In 2007, the company merged with the Kowloon-Canton

Railway Corporation (KCRC), in what is referred to as the MTRCL-KCRC merger,

through a 50-year concession agreement and took over the operation of the KCR

network, which includes the East Rail Line, West Rail Line and Ma On Shan Line

(Hong Kong SAR Government, 2006). Figure 1-2 shows the current rail network of

MTR.

I- [I MTR syte mapfh*fI,~ U~ .k *~
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The construction of the MTR system started in the 1970s. In the early 1960s,

with Hong Kong's rapid economic development and population growth, the demand

for public transportation increased dramatically, resulting in severe road congestion.

In 1964, a study was conducted on the future development of Hong Kong's transporta-

tion by Freeman, Fox, Wilbur Smith & Associates, a British transportation consulting

organization. The results of the study were published in 1967 and indicated that there

was a strong need for a mass transit system to address Hong Kong's traffic problems

(Freeman et al., 1967). In 1970, further studies on the construction of underground

railway systems was completed and the final report was issued, which made a concrete

proposal for the construction of the rail system (Freeman et al., 1970). In 1975, the

government-owned Hong Kong Mass Transit Railway Corporation was established to

oversee the construction project based on the final report with some modifications.

The "Modified Initial System" route map is shown in Figure 1-3.

MTR Modified Initial System
Route Map

Kowloon wong Tai Sin
Diamond Hill

Kowloon Tong
Lok Fu Choi Hung

Shek Kip
Mei

Kowloon Bay
Argyle
(Ope1e9o) Ngau Tau Kok

Waterloo Kwun
(Opened onTong
22/1211979)

Jordan

Tsim

Cha4 Hong Kc
Admiralty

.. Kwun Tong - Shek Kip Mei
-. Shek Kip Mei - Tsim Sha Tsui

-. Tsim Sha Tsui - Chater

Date opened
1 October 1979
16 December 1979
12 February 1980

Figure 1-3: Modified Initial System Route Map
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The initial 15.6-km network was immediately popular followed by several line

extensions shown in Table 1.1.

Line Opening Latest Extension length (kin)

East Rail Line* 1910 2007 41.1

Kwun Tong Line 1979 2002 11.2

Tsuen Wan Line 1982 1982 16.0

Island Line 1985 1986 13.3

Tung Chung Line 1998 2005 31.1

Tseung Kwan 0 Line 2002 2009 11.9

West Rail Line* 2003 2009 35.4

Ma On Shan Line* 2004 2004 11.4

Disneyland Resort Line 2005 2005 3.3

Light Rail (12 Routes) 1988 2003 36.2

Airport Express 1998 2005 35.2

Table 1.1: MTR Line Extensions

* Note that East Rail Line, West Rail Line and Ma On Shan Line were

the merger with MTR.

operated by KCR before

MTR now operates three separate systems: (i) Heavy rail, which consists of 10

lines and 84 stations with total route length of 182 km (Figure 1-2); (ii) Light rail,

which consists of 12 routes and 68 stops with total route length of 36.2 km; and (iii)

Bus, which consists of 14 routes and 143 buses. The system operates 19.5 hours per

day with scheduled headways ranging from 2 min to 12 min. Figure 1-4 shows the

headways of MTR's rail services as a function of time of day.

While MTR operates feeder buses to and from many MTR stations in the New

Territories, five franchised companies also provide bus service across Hong Kong over

more than 700 routes serving more than 3.6 million passengers per day:
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Figure 1-4: Rail Services Headways

Operator Number Fleet Size Daily Ridership

of Routes

City Bus Limited 108 946 621,000

New World First Bus Service Limited 90 715 499,000

(NWFB)

The Kowloon Motor Bus Company 375 3,800* 2.38 million

Limited (KMB)

Long Win Bus Company Limited 19 165 85,400

The New Lantao Bus Company Lim- 23 108 60,900

ited (NLB) I I I

Table 1.2: Bus Service in Hong Kong (Transport Department of HKSAR, 2014)

* As of 31 December, 2012.

Other than the franchised bus companies, the non-franchised bus (NFB) service

provided by different private bus companies operates 7059 registered buses which
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supplement the main carriers during peak hours and in remote areas (Transport De-

partment of HKSAR, 2014).

1.4.1 Fare System

MTR's most widely used ticket types are (i) the single journey ticket, (ii) the stored

value card called Octopus, and (iii) the tourist pass. Fares for journeys involving a

harbor crossing and airport express are usually higher. For single journey tickets,

children and senior citizens enjoy discounts ranging from 40 to 60%.

There are four main types of Octopus card: (i) adult, (ii) child, (iii) student, and

(iv) senior citizen or eligible person with a disability. Fares for seniors and persons

with disabilities are typically lower. The Tourist Pass has 6 types, valid for 1,2 or 3

days and with choices of either a single trip or round trip to/from the airport.

The Octopus card has become the most popular payment method for Hong Kong's

public transport system, and is used for about 96% of all MTR rail transactions.

The card can also be used in convenience stores, fast-food restaurants, and on-street

parking, etc. Hence many people may own more than one card, which can pose

problems for some analyses. The number of cards in circulation is about 20 million,

which is nearly three times the population of Hong Kong (Octopus Cards Limited,

2014).

1.4.2 MTR Operations

In 1990 MTR implemented an Automatic Train Regulation (ATR) system for the

Island Line, aiming at (i) facilitating recovery after disturbance, (ii) reducing inter-

station stops and energy consumption and (iii) improving synchronization of train

arrivals and departures at transfer stations (MTR Corporation, 2012a). It is a fully

automated control system with six regulation modes:

e Automatic Regulation: the normal operating mode under which timetables are

required to determine train departure times.
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" Constant Headway Regulation: when a suitable timetable is not available, trains

are dispatched a scheduled headway after the previous train's departure time.

" Short-line Regulation: when a segment of the line is not available, a short loop

is created and the line is divided into two non-overlapping operating loops with

constant headway.

" Cross-platform Regulation: to minimize the waiting time for transfer passen-

gers, the arrival and departure times of trains at key transfer stations are ad-

justed.

" Disturbance Regulation: when delays occur, this mode is activated automati-

cally to regulate the trains with even headways by increasing the dwell time of

the train(s) ahead of the delayed train and reducing the inter-station run-time

for the delayed trains.

" Manual Regulation: when neither Automatic nor Constant Headway Regula-

tions are appropriate, ATR calculates dispatching times but does not send the

control signals to trains.

The operating performance of the system is monitored through a number of met-

rics. It consistently exceeds the targets which are part of the MTR agreement with

the government. The performance data is published on the MTR website (see Table

1.3).

Train service delivery is calculated based on the scheduled number of trips com-

pared with the services actually delivered. Train punctuality is calculated based on a

5-min threshold at terminal stations (e.g. a train that arrives at the terminal less than

5 min prior to the scheduled time is considered on-time). The passenger journeys on

time metric is estimated based on the 15-min passenger flow estimation and the train

punctuality. All the passengers on any train delayed by 5 min or more are counted.

The statistics show that the service is highly reliable and exceeds customer service

quality of many other system (MTR Corporation, 2010).
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Social Performance 2011 2012

(A) TRAIN SERVICE DELIVERY (%)

Island, Kwun Tong, Tseung Kwan 0, Tsuen Wan, 99.8 99.9

Tung Chung,and Disney Resort lines and Airport

Express

East Rail Line (including Ma On Shan Line) 99.9 99.9

West Rail Line 99.9 99.9

Light Rail 99.9

(B) PASSENGER JOURNEYS ON TIME (%)

Island, Kwun Tong, Tseung Kwan 0, Tsuen Wan, 99.9 99.9

Tung Chung,and Disney Resort lines

Airport Express 99.9 99.9

East Rail Line (including Ma On Shan Line) 99.9 99.9

West Rail Line 99.9 99.9

(C) TRAIN PUNCTUALITY (%)
Island, Kwun Tong, Tseung Kwan 0, Tsuen Wan, 99.7 99.7

Tung Chung,and Disney Resort lines

Airport Express 99.9 99.9

East Rail Line (including Ma On Shan Line) 99.9 99.8

West Rail Line 99.8 99.8

Light Rail 99.9 99.9

(D) TRAIN RELIABILITY (Revenue car-

km/Incident)

Island, Kwun Tong, Tseung Kwan 0, Tsuen Wan, 2,459,083 1,841,882

Tung Chung,and Disney Resort lines and Airport

Express

East Rail Line (including Ma On Shan Line) and 3,813,015 3,292,956

West Rail,line

Table 1.3: MTR Social Performance in 2011 and 2012 (MTR Corporation, 2012c)
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1.4.3 Network Expansion

MTR is constantly making system improvements in terms of passenger communica-

tions, facilities, rolling stock, etc. Substantial service expansion is planned with 5 new

lines by 2018 (see Figure 1-5), aiming at adding capacity and reaching new markets.

The planned expansion includes:

1. West Island Line: an extension of the current Island Line to the western district

of Hong Kong Island.

2. Guangzhou-Shenzhen-Hong Kong Express Rail Link: a 26-km express link from

Hong Kong to Shenzhen that will connect with the National High-speed Railway

Network in mainland China.

3. Shatin to Central Link: a "strategic railway" stretches from Tai Wan, the ter-

minal station of Ma On Shan Line, to Admiralty on the Hong Kong Island. It

mainly serves the eastern district in Kowloon and will pass through Kwun Tong

Line, East Rail Line, West Rail Line, Tung Chung Line, Island Line and the

new South Island Line (East) with convenient interchanges.

4. Kwun Tong Line Extension: a connection between Yau Ma Tei (on the Tsuen

Wan Line), Ho Man Tin (on the Shatin to Central Link), Hung Horn (on the

West Rail Line) and the Whampoa area, which is not yet served by rail.

5. South Island Line (East): a 7-km medium capacity railway with approximate

3 min headway during peak hours serving the southern district of Hong Kong

Island, which is strongly supported by the Southern District Council.

Three potential future extensions are under consideration (see Figure 1-5): the

North Island Link the Northern Link and the South Island Line (West).
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1.5 MTR Challenges

With the rapid expansion of the economy and the population growth in Hong Kong,

MTR travel demand has continued to increase by 3-4% per year in recent years (see

Figure 1-6).

2000

1600

400

200

600

2008 2009 2010 2011 2012 201i

Figure 1-6: Annual MTR Patronage

The red line shows the annual patronage of the entire MTR system including the

bus, Air Express, inter-city railway and light rail systems. The yellow line shows the

patronage of MTR Lines including Tsuen Wan, Island, Kwun Tong, Tung Chung,

Tseung Kwan 0 and Disneyland Resort Lines as well as East Rail, Ma On Shan and

West Rail Lines. The total patronage has increased by 22.7% since 2007 (MTR Cor-

poration, 2014).

The passenger growth has presented a number of challenges for MTR. Foremost is

the crowding on platforms and trains. As a result of the severe crowding, passengers

have difficulty getting on and off trains and many are left on the platforms when a

train departs. Queuing for escalators, customer service counters, and at train doors

can be severe during the peak of the peak period. The overcrowding also results
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in increased dwell times because the train doors can not be closed promptly while

passengers are trying to squeeze in. On the other hand, safety concerns have increased

with more platform-train interface incidents. All of those facts negatively affect the

safety and reliability of the MTR system.

For crowding on trains, MTR sets targets of the crowding level for each car as

shown in Table 1.4.

Line 
Passengers

per car

Peak Off-Peak

ISL, TWL, KTL, TKL, TCL, WRL, EAL & MOL 250 145

AEL 100 64

DRL 180 120

Table 1.4: Car Loading Standard in 2000

A survey was conducted by asking respondents to rate their acceptance level of

different crowding levels of the car. In 2012, the survey shows that with increasing

car loading, the passenger acceptance level decreases (MTR Corporation, 2012b).

To deal with these challenges, an internal committee has been formed to focus

on "Near Capacity Operation" (NCO). The goal of the committee is to review the

current operating strategies and manpower deployment, aiming at exploring future

capacity enhancements.

1.6 Thesis Organization

This thesis is organized into 6 chapters. Chapter 2 reviews previous research on pas-

senger assignment models and related topics. Chapter 3 develops the methodology

for the passenger assignment problem using the available automated data. Chapter 4

discusses the methodology for parameter estimation. Chapter 5 presents an applica-

tion of the model to the MTR's network and examines the capacity utilization of the
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Tsuen Wan Line. Chapter 6 summarizes the research findings and proposes areas for

future research.
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Chapter 2

Literature Review

This chapter is organized into two sections. Section 2.1 discusses the use of automated

data to achieve a better understanding of transit system performance and passenger

behavior. Section 2.2 focuses on the passenger assignment problem especially at the

train/vehicle level to support both, planning of the network and operations.

2.1 Automated Data Sources

Smart cards while serve the fare collection for transit agencies, they also constitute

constitute a significant data source that helps operators to obtain a better under-

standings of passenger behavior. Analysis of the Automatic Fare Collection (AFC)

data can support understandings of the (i) travel pattern of passengers, (ii) transit

service demand and (iii) system performance (Agard et al., 2006; Ortega-Tong, 2013;

Pelletier et al., 2011; Bagchi and White, 2005; Zhao et al., 2007; Chan et al., 2007).

Morency et al. (2007) used data mining approaches to identify transit use vari-

ability to optimize vehicle allocation and improve operational efficiency. Bagchi and

White (2005) used smart card data to analyze users' travel pattern consistency in both

time and space. Furthermore, smart card data with vehicle location information (e.g.,

GPS data) facilitates the inference of activities and travel behavior. Chapleau et al.

(2008) used smart card data to monitor the activity patterns at trip generators (such

as schools) and provided high resolution analysis on both supply and consumption
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of transit service. Based on different travel characteristics, such as activity patterns,

mode choice, temporal and spatial variability and socio-demographic characteristics.

Ortega-Tong (2013) classified public transport users into homogeneous clusters. The

travel profile of each group provides rich information on user behavior to inform

studies about customer experience and transportation planning.

Detailed analysis of passenger behavior can be studied at the (transit) Origin-

Destination level. AFC and AVL data have been used in a number of studies to infer

Origin-Destination pairs at the system level.

For example, Farzin (2008) developed a methodology to integrate AFC data, AVL

data, and station location information to infer the destination zone for each trip.

The results were validated using a household survey. Munizaga and Palma (2012)

proposed a method to estimate the OD matrix from smart card and GPS data. Time

and location of alighting events were inferred for over 80% of the transactions.

Alfred Chu and Chapleau (2008) further enriched the inference process to identify

transfers using spatial-temporal criterion in a bus network.

Gordon (2012) extended previous OD level methods by combining bus and metro

services and analyzed the full multi-modal itineraries in London. Since the AFC

system for the London Underground is a "closed" system, the data records the tap-

in/out times and locations for all rail transactions. For bus transactions, only board-

ings are recorded. Gordon (2012) developed a rigorous process to infer the bus ori-

gin/destination and interchange(s) for each individual to build a full-journey matrix.

Given this information as a seed matrix, control totals from various sources (bus rid-

ership, entry/exit of rail stations) were then used to scale up the demand estimation

to the full population. The model was embedded into a Java program which proved

to be highly efficient. The processing time was less than 30 min to extract one day's

data hence the method is suitable for large scale applications.

At a more detailed level, the problem of inferring details of the passenger journeys,

for example, journey time components, passenger locations, and crowding level, has

also drawn interest.

Sun et al. (2012) developed a regression model based on AFC data and the dis-
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tances between origin and destination stations to decompose the gate-to-gate journey

time. The analysis was based on the assumption that three key parameters were

constant for all users: (i) walking times between gates and platforms, (ii) train speed

between stations and (iii) trains' dwell times at stations. A regression estimation be-

tween the total journey times and the above quantities was estimated. The estimated

parameters were significant and used to identify the approximate locations of individ-

uals and estimate passengers' "spatio-temporal density" in Singapore's metro system.

Their proposed future work focused on more complex train operation scenarios with

heterogeneity among passengers.

Cellular phone networks operating in underground rail systems also provide new

possibilities to model passenger movements. Aguilera et al. (2013) conducted exper-

iments in Paris' underground system to assess the potential of this emerging data

source to infer travel times, train occupancy levels, and OD flows. They used the

records of signaling events (GSM data) triggered by switched-on mobile phones when

they changed locations. This data contained location information at the station level

for each cell phone and were used to track passengers throughout their trips. Even

though the data was sparse, the aggregation of large amounts of this data provided

a way of overcoming limitations of the AFC/AVL data. The train trajectory and

mobile phone trajectory events were linked by partitioning the "density map" (see

Figure 2-1).
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Figure 2-1: Density Map Between Vincennes and Nation for Half-Hour Data
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In the map, each dot represents a cell-phone trajectory with the x-axis indicating

the time stamp at the origin station and y-axis indicating the time at the destination

station. The dots fell in a distinguished, rectangle shaped area that corresponds to

one train itinerary, associating the cell-phone signal with the train. The comparison of

the estimation results with the AFC data analysis showed a good level of consistency,

indicating that the cell-phone data was a promising data source for operators and

transport authorities to monitor system operations.

With the availability of the loadweigh data from the weighing systems installed

in some trains, a new counting technique was developed to facilitate the study of

passenger loads through the calibration of parameters. Frumin (2010) regressed the

loadweigh data on manual passenger counts and estimated the average passenger

weight and vehicle tare weight (which is the weight when it is empty) to infer passenger

load on trains. Nielsen et al. (2013) proposed an "inverse model" and used the weight

as explanatory variable and number of passengers as dependent variable. The analysis

of the passenger distribution in the network based on this research could be used as

a part of a continuous quality control regime for operators to monitor the capacity

utilization of the network (Nielsen et al., 2013).

2.2 Passenger Assignment

Another approach to examine the system operations through the train occupancy

level, or the train load, is through a passenger assignment model. The model aims at

assigning passengers to travel routes (or transit vehicles) to predict (or estimate) how

the passengers utilize the network capacity. With more detailed data as input, the

trainload estimation could shed more light on planning and operations. At the plan-

ning level, the passenger assignment model can serve as a basis for analyzing service

adjustments or network changes by predicting future outcomes. At the operational

level, the model estimates the capacity utilization of the network based on archived

data and provides precise service performance indicators for the transit service.
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2.2.1 Planning-Level Studies

Two main approaches are used for the passenger assignment problem: frequency-

based and schedule-based. The frequency-based approach analyzes the transit system

by line and computes the traffic flow based on the service frequency (Nguyen and

Pallottino, 1988; Spiess and Florian, 1989). Approximations are made to estimate

the passenger waiting times and vehicle load based on service frequency (instead of

the detailed service plan). The schedule-based model explicitly considers individual

trips and their detailed scheduled departure/arrival times to assign passengers to the

vehicles. The models can be used to track the effects of schedule changes (Nuzzolo

et al., 2012). Most of the work discussed in this section uses the second approach.

Nguyen et al. (2001) developed a graph-theoretic framework for the passenger

assignment problem and considered departure times and route choices simultaneously

as a traffic equilibrium problem. The dis-utility of paths were associated with the not

only travel time but also penalty for late or early departures/arrivals. Timetables and

OD demands were the main inputs to the problem and an equilibrium of passenger

flows was obtained using a convergent algorithm for the estimation of the shares of

route segments.

Poon et al. (2004) proposed an optimization formulation for the equilibrium as-

signment problem and explicitly considered the vehicle capacity at each boarding

station. Passengers were assumed to have full information about future network con-

ditions and select paths to minimize the total cost of the trip (a function of the

in-vehicle time, waiting time, walking time, and transfer penalty). The user equi-

librium was achieved by a simulation-based, iterative approach using the method of

successive averages. The paths were generated using time-dependent shortest paths

as in Tong and Richardson (1984). In each simulation run, the queuing delays were

updated based on the passenger profiles in the network and minimum paths were cal-

culated dynamically in each simulation run. The capacity constraints were explicitly

considered for each vehicle by assuming first come first serve (FCFS) queuing dis-

cipline at the boarding stations. The method incorporated route choice while other
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choice dimensions were not considered, such as departure times and entry, transfer

and exit stations. The authors suggested that the model can be used as a tool for

the evaluation of the performance of a transit system with pre-determined schedules

and of the effects of service changes.

Hamdouch and Lawphongpanich (2008) proposed a user equilibrium transit as-

signment model by solving a dynamic program through an iterative process. Service,

demand and access/egress were presented in a "diachronic" graph. As in Ahuja et al.

(1993) and Hamdouch et al. (2004), a time-expanded network was used to represent

the temporal information and the network route choices. The model assumed that

passengers use travel strategies by specifying, at each station and time point, an or-

dered list of transit lines they preferred. This information was incorporated in the

travel costs of the paths, which consisted of in-vehicle time, fares and other costs as-

sociated with the strategy, such as crowding, opportunity costs associated with early

departures and late arrivals. Passengers were allowed to bicycle or drive to transit

stations and transfer at a nearby station by walking. The user equilibrium was for-

mulated as a variational inequality problem and solved by the method of successive

averages.

Kusakabe et al. (2010) introduced choices between express trains, rapid trains,

local trains and multiple transfer stations in a study related to the Japanese Railways.

The approach was to identify all the possible itineraries based on the timetables of

different types of trains. Kusakabe et al. (2010) solved the problem by developing a

time-space network to represent the train trajectories and enumerating all the possible

paths for each individual. Based on AFC data, they assigned all passengers to the

"shortest path" ( the path with minimum access time at entry station, minimum lost

time at arrival station and least number of transfers). Passenger usage patterns were

revealed, which provided useful information for operators to achieve better demand

management and improve the scheduling.
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2.2.2 Operation-Level Studies

Most of the studies on passenger assignment discussed in the previous section focused

on the planning level where different service plans can be tested and evaluated by

predicting future outcomes. In this section, models were reviewed which captures the

system performance based on actual, archived data.

Buneman (1984) used reverse-time simulation to assign passengers to the last

train that arrived at their exit station and "loaded" the transfer passengers onto the

last departing train. The analysis of detailed data from the Bay Area Rapid Transit

(BART), produced operational performance measures, such as delays, and served as

a daily tool for the operators.

Paul (2010) developed a method to assign passengers to trains using actual train

tracking and Oyster data in the London Underground (LU). Instead of assuming a

constant walking time as Sun et al. (2012), the method relied on the distribution of

access and egress times which were derived from two sources:

o London Underground surveys, in which the journey time components were mea-

sured by surveyors following random passengers and recording their walking

times, waiting times, in-vehicle times, etc.

o The subset of passengers (about 10%), from Oyster card transactions, who

had only one possible train itinerary based on their tap-in and tap-out times.

For this subset of passengers, their egress times was derived as the differences

between their tap-out times and the train arrival times.

The ratio between the expected value of access and egress time distributions was

assumed to be the same as the ratio of the average access time and egress time

in the manual survey. Under this assumption, the distribution of egress time was

first estimated based on the 10% passengers with a single itinerary and then "scaled

up" using the ratio based on the manual survey. After examining all the possible

train itineraries, a "same percentile" assumption was made to select the most likely

train itinerary and corresponding route. That is, given egress time calculated for
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each itinerary, the access time and interchange time were assumed to be at the same

percentile of the cumulative distribution as the egress time is in the distribution at

the exit station. If the time intervals related to access and transfer times in an

itinerary were shorter than these percentiles, this itinerary would be eliminated since

no waiting times were included in it. However, during each step of the elimination, if

all the itineraries were deleted, the method would keep all the itineraries and continue

to the next step. For each individual, the selection process followed 6 steps (see Figure

2-2):

1. Generate the set of feasible itineraries for the passenger.

2. If all the itineraries are the same route, go to the next step. If more than one

routes are used, choose the route with fewest itineraries.

3. If the selected route contains only one feasible itinerary, the itinerary is selected

and the process terminates.

4. If multiple itineraries are available, apply the "same percentile" rule on access

time and eliminate the ones with time intervals shorter than the access time

in the same percentile of the distribution as the egress time. If one itinerary

is left, select the itinerary and terminate the process. If no itineraries are left,

revert to the original set, else continue.

5. For the remaining itineraries, for the ones with interchanges, apply the "same

percentile" rule on interchange time and eliminate the ones with time intervals

shorter than the interchange time in the same percentile of the distribution as

the egress time. If one itinerary is left, select the itinerary and terminate the

process. If no itineraries remain, revert to the original set, else continue.

6. For the remaining itineraries, calculate their egress times as the interval between

the tap-out time and train arrival times and choose the one with most probable

egress time based on the egress time distribution.
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Figure 2-2: Itinerary Selection Process of Paul (2010)
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Nonetheless, this method has a number of limitations:

" The distribution of the journey time components may be biased toward lower

access/egress times because of the lack of representativeness of the sample. The

passengers with a single itinerary are likely to be the ones with faster walking

speeds which enable them to catch the first train arriving after they tap-in, and

tap-out before the second train arrives at the destination station. Passengers

with longer access times and egress times generally have more feasible itineraries

and will not be in the sample.

" Due to data limitations, the assumptions used in this TfL study, such as the

"same percentile" assumption could not be fully tested, especially when the

access and egress times are influenced by external factors other than individual

characteristics, such as station configuration, crowding level, etc. In the selec-

tion process, due to this assumption, all itineraries may be eliminated and the

program has to go back to the original itinerary set.

" The method deterministically assigns passengers to trains, which neglects many

other possibilities but with relatively small probabilities. It is hard to simulate

outliers in the system.

" The manual survey data used in this approach is very hard to obtain and ex-

pensive. It is not applicable to systems without similar data availability.

Using a similar methodology for the MTR network is even more challenging be-

cause of a number of unique characteristics, such as the commercial activities in paid

areas (after entering through the fare gates). In this case, the journey times inferred

by tap-in and tap-out times can include the time spent on shopping activities. This

time component cannot be observed directly from the data.

Building on Paul (2010)'s work, a probabilistic methodology is developed that

is more generally applicable and with more detailed analysis on passenger behavior

at stations. The methodology also uses automated data to estimate egress speeds

without relying on manual data.
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Chapter 3

Methodology

A "closed" Automatic Fare Collection (AFC) system is one which requires fare trans-

actions at both entry and exit stations necessary to support distance-based fare struc-

tures. Such AFC systems provide location and time information data at both the start

and end of each trip. However, to infer details of the journey (e.g. the journey time

components, etc.) and capture the movement of each passenger, the train(s) used

in the journey should be inferred. At the aggregate level, this information can be

used to estimate the train-passenger-load, which provides valuable information on

the capacity utilization of the network.

The Passenger-to-Train Assignment Model (PTAM) presented in this chapter aims

at assigning passengers to train itineraries in a closed system. Section 3.1 presents

an overview of the PTAM, describes the problem in detail and develops the method-

ological framework. Section 3.2 presents the model formulation and develops the

first component, the passenger assignment. Section 3.3 discusses the approach to the

second component of the framework, the trainload model. Section 3.4 summarizes

the main contributions of this chapter.
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3.1 Overview of the PTAM

3.1.1 Problem Description

In a closed system such as MTR, the AFC data includes the origin and destination

station, the entry time and exit time of each trip. The total journey time can be

calculated as the difference between the entry time and the exit time. For a trip

without transfers, the total journey time (from tap-in to tap-out) consists of four

components: (in-station) access time, waiting time, in-train time, and (in-station)

egress time (see Figure 3-1).

Tap-in Gate Train Door Train Door Tap-out Gate

Entrance Platform TE1 IraIn1 r4 O Platfform Exit

Access Time =Waiting Time snTri Tirne gMWWW"Obm

Tap-in Time Train Departure Time Train Arrival Time Tap-out Time

Figure 3-1: Passenger Movement in System

The access time is defined as the time it takes to walk from the tap-in gate to the

platform; the waiting time is the time that a passenger waits on the platform; and

the egress time is the time to walk to the tap-out gate after alighting from the train

(see Figure 3-1).

Each passenger, based on the arrival time at the platform, may have several trains

that he/she may have used. These feasible trains (itineraries) can be identified by

combining the AFC transaction and the train movement data. However, to track
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precisely the alternatives and the details of the trip, many questions remain to be

answered:

* how long is the access time and waiting time;

" which train's departure/arrival time is the boarding or alighting time for this

passenger;

* how long is the egress time.

Figure 3-2 illustrates the possible itineraries for a hypothetical passenger who

enters the system at tin and exits at tout.

Time

Tap-out

Access
time

Train 4

---- --
---I

i Train 2

Train 1

Train 0

Tap-in

- I

Egress
time

Spacea Ii

Entry Platform at origin
gate station

Platform at
destination station

Figure 3-2: Time-Space Diagram for A Passenger and Trains
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The passenger taps-in through the entry gate, walks to the platform, waits for

a train, boards it, alights and finally taps-out at the exit gate. Some passengers,

during their waiting at the origin station platform, may try to make their exit time

as early as possible. In that case, if a train is not at the station, they may walk on

the platform at the origin station in order to position themselves closer to their exit

gate when they alight from the train at the destination platform.

Depending on access and egress times, the passenger may have boarded a number

of trains. Under the conservative assumption that the minimum access and egress

time are zero, the passenger in Figure 3-2 has three feasible trains (1,2,3). Train 0

is not feasible because the departure time is too early (before the tap-in time), while

Train 4 is not feasible because it arrived at the destination after the tap-out time.

Under no circumstances, a passenger is able to board a train before he/she taps-in or

taps-out before the train arrives at the destination.

In general, itineraries fulfilling the following criterion are defined as feasible:

1. The train departs from the origin station after the passenger taps-in the system:

tin + Taccess < DT. (3.1)

2. The train arrives at the destination station before the passenger taps-out:

AT < t ou - Tegress (3.2)

Where,

ti": passenger tap-in time.

Taccess: minimum access time, (set conservatively equal to zero).

DT: departure time of train j at the origin station.

AT: arrival time of train j at the destination station.

tout: passenger tap-out time.

Tegress: minimum egress time, (set conservatively equal to zero).

Different assumptions can be made about the minimum access and egress times.
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For large stations, the minimum access/egress time should be larger than for small

stations. With longer minimum access/egress time, fewer itineraries will meet the

above criterion. In this thesis, to be conservative, the minimum access/egress time

is set to 0, which could overestimate the number of the feasible itineraries for a

passenger.

Figure 3-3 illustrates all possible instances as a tree diagram for one passenger

given the set of feasible trains (size M).

Platform
at Origin Station: Before 1st Train Departs Before 2 nd Train Departs Before Mth Train Departs

Trai: Board 1 st train Board 2 nd train Board fth train

Platform
at Destination Station: AT A i2 A Ti ,

e=ut-ATter tie=t out-AT2 te=t att-A T

Passenger itaps out at tiout

Figure 3-3: General Passenger-to-Train Assignment Model Structure

Where,

i: passenger index,

t' the egress time for passenger i,

t? ut the tap-out time for passenger i,

ATj : the arrival time of th train at the destination station of passenger i.

After passenger i taps in, he/she walks to the platform. The passenger has M

feasible trains they may board. In Figure 3-3, the branches with a dashed line

represent the cases of denied boarding. For example, even if the passenger arrives
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before the first train to depart, especially during the peak-hours, he/she can still

be left behind and have to board the second (or third) train due to the capacity

constraints when there is no room for more passengers on the train.

A special case of this general framework is when the capacity constraints are

not binding. This is likely to be the case for example during off-peak hours on

many systems. The model structure without binding capacity constraints is shown in

Figure 3-4. In this case, if the arrival time at the platform for passenger i is before

the departure time of train j but after train j - 1, the passenger will board train j

with certainty.

Platform
a'tf ri cf n:

Train:

Platform
at Destination Station:

Passenger itaps in

Before 151 Train Departs I Before 2 nd Train Departs j Before Mth Train Departs

Board 1 -t train Board 2 nd train Board Mth train

AT., A Ti 2  A TM

Pa r itas t-A Ti,2 ti e=ttt-AtTi

Passenger itaps out at tyOut

Figure 3-4: Passenger-to-Train Assignment Model Structure without Capacity Con-

straints

For a trip with transfer(s), the model structure needs to be modified. First, the

route choice should be incorporated in the first step to develop the feasible itinerary

set for each route. Second, for each itinerary, additional journey time components

will enter the structures, including transfer times and in-vehicle times for all segments

of the route. More layers are added into the tree diagram based on the number of

transfers.
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This thesis focuses on trips without transfers and the off-peak period cases with-

out capacity constraints. Future work will expand the proposed framework to deal

comprehensively with those issues.

Under the assumption of no binding capacity constraints and given the tap-in/out

times, the boarding train for a specific passenger largely depends on the egress and

access times for each itinerary. For example, if we assume that most people's walking

speed is around 1 m/s and the walking distance from the fare gate to the platform

at the origin and destination stations are 100 meters, an itinerary with 100 seconds

of access and 100 seconds egress time is more likely to be the actual one than an

itinerary with 190 seconds of access time and 10 seconds of egress time. Given the

distribution of passengers' walking speed at stations, the probability of choosing each

itinerary can be derived based on the likelihood of different access and egress times.

In this research, building upon the work of Paul (2010), instead of deterministically

assigning a passenger to an itinerary, the probabilities for each passenger to have

boarded different trains is estimated given the distribution of passengers' walking

speed.

3.1.2 Model Framework

The PTAM consists of two parts: the passenger model and the trainload model (see

Figure 3-5). The passenger model uses the ATR and AFC data to generate a feasible

itinerary set for each individual. The distribution of access/egress speed is used to

estimate the probabilities of each itinerary being selected. The probabilities are used

as input to the trainload model along with the ATR data to estimate the trainload for

each train based on the archived records. Given capacity constraints, before assigning

a passenger to a train, the load should be examined to check capacity feasibility. If

the train has no capacity for additional passengers, this information will be returned

to the passenger model to re-estimate the probabilities of boarding other trains. A

detailed description of each step is provided in the following sections. Figure 3-5

provides an initial treatment of capacity. However, further research is required to

incorporate capacity constraints effectively.
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AFC

Passenger Model

Set of Feasible Trains for
Passenger i: T

Probability of Boarding Train j
j e Ti

Trainload Model

Assignment 
of Passenger 

i to
Train j at Station s

Capacity Feasibility

Individual Trainload

Access/Egress
Speed Distribution

Figure 3-5: Model Framework

As mentioned in the previous section, in this research, the model is developed

based on two restrictions as a first step towards a more general model: capacity

constraints and transfers are both excluded. We start from the typical situation in

the off-peak period, when trains are not crowded and so no capacity constraints at the
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station level and the train level are needed. We also focus on trips without transfers,

which means only trips within a specific line are considered. Assuming a route choice

model is available, the proposed methodology can incorporate the route choices as

the first step before assigning passengers to trains. Relaxing these two assumptions

is an important future research direction.

3.2 The Passenger Model

The passenger model is the fundamental element of the methodology and estimates

the probability of passenger i boarding the jth train in its feasible itinerary set based

on the tap-in/out times and the feasible itineraries' arrival/departure times. The

probabilities will vary among individuals. Figure 3-6 provides an example of the

model results for a passenger with three feasible itineraries.

Tap-in at 6:00

Pi(3|tap - out at 6:20) = 0.5

6:08~6:18

Pi(2ltap - out at 6: 20) = 0.3

6:05~6:15

Pi(1tap - out at 6:20) = 0.2

6:01-6:10 Tap-out at 6:20

Figure 3-6: Passenger Model

The passenger tapped-in at 6:00 and tapped-out at 6:20 and had three feasible

itineraries. The first departed the origin station at 6:01 and arrived at the destination

station at 6:10. The second departed at 6:05 and arrived at 6:15. The last feasible

itinerary departed at 6:08 and arrived at 6:18. The passenger model estimates the

probabilities for this passenger to have boarded these itineraries as 0.2, 0.3 and 0.5
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respectively.

3.2.1 Notation

The following notation is used:

i: passenger index.

t|": tap-in time of passenger .

tUt: tap-out time of passenger i.

JTi: journey time of passenger i, where JT t - ti.

t': access time of passenger i.

t': egress time of passenger i.

Mi: the number of feasible itineraries for passenger i.

DTj: the "relative" departure time at the origin station for the j'th train in the fea-

sible itinerary set after setting the tap-in time of passenger i to time zero.

j <Mi.

AT,: the "relative" arrival time at the destination station for the jth train in the

feasible itinerary set after setting the tap-in time of passenger i to time zero.

j < Mi.

fa(t): access time distribution.

fe(t): egress time distribution.

3.2.2 Train Boarding Probability

The probability of a passenger to have boarded train j given that he/she tapped-out

at tout is a conditional probability computed using Bayes' theorem. It equals the

probability of boarding train j and tapping-out at tout divided by the probability of

tapping-out at tout:

th Fti fboard tran tout
Pi(boardjth traint) = P (3.3)

Pi(tout

Using the law of total probability, the denominator of expression 3.3, the proba-

bility for passenger to tap-out at tout, is the sum of the probabilities of boarding any
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train in the feasible itinerary set:

Mi
Pi (ti"' = Pi (board jtwrn G'') (3.4)

j'=1

By substituting equation 3.4 into equation 3.3 we get:

Pi(board jh train, tut)
Pi (board jth trainM G"t = I= (3.5 )

ZA_1 Pi(board j'th train, tout)

Given the set of feasible itineraries, the access time for passenger i should be

shorter than the difference between the departure time of train Mi (last train in the

feasible set), which is DTi,M, and the tap-in time. Hence, the probability of passenger

i arriving at the platform before train 1 departs given the fact that the access time

is shorter than DT,M, is a conditional probability:

fDTj,1 fa(t)dt
P(t < DT,1 |ta < DTi,m,) f , (3.6)

DT " '"i fa (t d

If the access time is longer than DT,1 and shorter than AT, 2 , the passenger will

arrive during the interval between the departure of train 1 and train 2, and so forth.

In general, the probability of passenger i arriving at the platform between trains j - 1

and j departures given the fact that the access time is shorter than DT,M, is:

JD ,j fa(t)dt
P(DTi,j_1 < ta < DTijjjta < DTi,m) = D a T for 2 < j < Mi (3.7)

Given the assumption of no capacity constraints, a passenger can always board

the first train after arriving on the platform. Hence the probability to have boarded

train j depends on the probability of arriving at the platform during the specific time

interval between train j - 1 and train j departing:

P(j)= P(DTiy_ < ta < DT,J) for 1 < j < Mi (3.8)
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Where we define DTi,O = 0.

By substituting equations 3.6 and 3.7 into equation 3.8 we get:

fDT a(t)dt
Pi(j) = 1 forfaj<tMd

fo fami(t) dt
(3.9)

The conditional distribution for the egress time can be derived based on the knowl-

edge on the feasible itinerary set. The possible values of realized egress times are lim-

ited by the number of feasible itineraries, hence the conditional probability density

function of possible egress times is not continuous but discrete:

fe(JT- - AT, 3)P(ti = JT - AT), ) = -- AT,)
Ef 3 fe(JTi - A Ti,j )

for 1 < j < MI,

The probability that passenger i boarded the jth train and tapped-out at to" (had

a journey time equal to JT) involves two independent events: boarding train j and

having the egress time equal to JT - ATij. Hence this probability is the product of

the probabilities of boarding train j and having egress time equal to JT - ATi :

Pi(board trai, tGut ) = Pi(j)P(te = JT - ATj) (3.11)

By substituting equations 3.9 and 3.10 into equation 3.11 we get:

Pi(board jth train, tap - out attout)

fDi a (t)dt fe(JT - AT ,)

fDT iM a (t)dt y ' 1fe (JT - ATi,j 2 )

for 1 < j < M,

Finally, the probability that passenger i boarded train j given the fact that he/she

tapped-out at t'ut is derived by substituting equation 3.13 into equation 3.5:

Pi (board jth train tap - out at tout)

Dl fa(t)dtfe(JTi - ATij)

fDT'j_ fa(t)dtfe(JTi - ATi,)

for 1 < j K MI
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3.3 The Trainload Model

The trainload model aims at measuring the system utilization spatially and tempo-

rally and providing information about how close the system is operating to its limit.

To estimate the trainload, the probabilities for all the passengers who can possibly

board this train will be examined and loaded/unloaded to/from the train on corre-

sponding line segments.

For example, in Figure 3-7, the highlighted passenger who traveled from the first

to the third station has 0.5 probability of boarding this train. In this case, he/she

Terminal AAAAA KAAA AA

Figure 3-7: Trainload Model

Starting from the origin terminal station, the trainload for train k after departing

is the sum of the probabilities for passengers who traveled from the terminal station,

which is denoted as station 1, to have boarded this train:

E1 (k) Pi(board train kItou) (3.14)
f or all i where Oi =1

Where,

EI(k): the trainload for train k after departing terminal station.

Oj: the origin station index for passenger i (e.g., if passenger i traveled from the

terminal station, Oi=1).

Dj: the destination station index for passenger i and Di > O.

The trainload for train k from station m to m + 1 (m > 2) can be derived based

on the load on the previous segment of the line and the probabilities of choosing this
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itinerary for two groups of passengers: (i) passengers boarding at this station and (ii)

passengers alighting at this station.

Em(k) = Em(k - 1) - E Pi(board train kIto')
for all i where Di=m

+ 1 Pi (board train kIto') (3.15)
for all i where Oj=m

Where,

m: the station index.

Em(k): the trainload for train k after departing station m.

Oj: the origin station index for passenger i (e.g., 1 represents the terminal station).

D2 : the destination station index for passenger i and Di > Oi.

In equation 3.15, the first term represents the load on the previous segment, the

second term represents the estimated total number of passengers alighting at station

m, and the third term represents the estimated total number of passengers boarding

at station m. Therefore, the trainload can be calculated from the origin terminal

station to the destination terminal station using equation 3.15.

Since the focus of this thesis is on trips within the same line, the transfer passenger

flow at transfer stations is not included in this expected trainload calculation. With

an appropriate route choice model, transfer passengers can be assigned to different

routes. With the knowledge of their routes and transfer stations, it is possible to use

the passenger model to calculate their probabilities of taking different itineraries at

their transfer station to accommodate the transfer demand.

Similarly, the capacity constraints must be considered if we extend this research

to peak hours. Instead of processing the passenger model before the trainload model,

an iterative process can be used to consider the trainload and the assignment problem

simultaneously. Passengers with one feasible itinerary are loaded on to the trains first

(see Figure 3-8).
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List of train trips List of passengers with one
feasible train

Set j = 1
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Set m = 1
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Yes

Available capacity by
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Figure 3-8: PTAM with Capacity Constraints: Load Passengers with One Feasible

Itinerary
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Where,

j: train index.

J: total number of train itineraries.

m: station index.

M: total number of stations on the line.

Am,j: alighting number of passengers on train j at station m.

C,s: available capacity for train j at station m.

The list of train trips for the day and the list of passengers with one feasible

itinerary (and their boarding trains) are used as input to this process. Since it is

a simulation-based process, to achieve the final convergence, many replications are

needed. The available capacity is calculated from the first train (j = 1) and from the

terminal station (m = 1). For each train and each station, passengers are allowed to

alight first and the available capacity is updated. At each station, the list of passengers

with train j as their only feasible itinerary is generated and all those passengers are

loaded. After all the passengers with one feasible itinerary have been loaded at every

station on every train, this process terminates with the available capacity for each

train and station as out put. This outpur is now input to the next process which

loads the remaining passengers (see Figure 3-9).

The list of train trips and passengers with their initial feasible itineraries and

corresponding probabilities (estimated without capacity constraints) are used as in-

put to this process. By drawing a random variable based on the probabilities of

boarding different trains, a passenger is assigned to a train (temporally). This infor-

mation is input to the trainload model. Based on the same procedure, a passenger is

loaded/unloaded to/from a train. But if the capacity constraint is binding before a

passenger is loaded, this train itinerary will be deleted from this passenger' feasible

set and the passenger model is used to re-calculate the probabilities based on the

new feasible set. Another random variable is then drawn to determine the boarding

train of this passenger. After all the passengers being examined and the trains being

loaded and unloaded at all stations, a completed trainload profile is generated. With

this approach, two issues need to be further discussed.

58



List of passengers with their
feasible itinerary sets

List of train trips Draw random variables t
assgn passengers to train

Set 
j 

1
Train j

Set m =I

SStation m

Alighting passengersA~

SPassenger list with train
j as the boarding train

No Update feasible set
c, > 0 for this passenger

Next and the probabilities
Passenger I Ye s

C,m, = C".m - 1

Update boarding list,

No Passenger

list empty?

Yes

No
-M M+1 M= M?

Yes

No

j= j+ 1 lj=J?

Yes

One Replication

Figure 3-9: PTAM with Capacity Constraints
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First, the order of the passengers in the list is critical, since it determines who

is left behind if the train is full. One alternative is to order all the passengers by

their tap-in times, which assumes a "first-tap-in-first-board" rule. The tap-in gate

information can also be considered as another sorting criterion to let passengers with

shorter walking distances board first. Another alternative is to randomly order the

passengers.

Second, when passengers are denied boarding, there is an easier way to update the

probabilities of boarding trains under the new feasible itinerary set. The passenger

model can be used to recalculate the probabilities but it is easier to update the

probabilities directly based on the results from the original feasible set:

P(t) = CNewSe[PiC (3.16)

Where,

Pi(jlt?"t): the probability of boarding train j under the original feasible set.

Pj'(j tut): the probability of boarding train j under the new feasible set.

The main difference between the two methods is whether deleting the itinerary

with no available capacity will significantly affect the probabilities of boarding the

second train. For example, in the first method, where the passenger model recalculates

the probabilities, the probability of boarding the 2 nd train will increase dramatically

and the probabilities of boarding the 3rd (or later) trains will be little changed. In the

second method, probabilities of boarding all the trains in the new feasible itinerary set

will proportionally increase while the ratio between them stay the same. The results

from recalculating the passenger model can be closer to reality because passengers left

behind by the first train are more likely to board the second one to arrive. Based on

this fact, another extreme is that, given a passenger is denied boarding, the probability

of him/her to board the second train is set to be one. In this case, this passenger will

enter the first process as in Figure 3-8 as a passenger with one feasible itinerary.

This represents as initial approach to incorporate capacity constraints. However,

further research is needed to both test the approach and capture the impact of ca-
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pacity accurately.

3.4 Summary

This chapter developed a methodology to solve the passenger-to-train assignment

problem at the vehicle level. The probabilities of passengers to have boarded differ-

ent trains were estimated for each individual. At the aggregate level, this information

was used to estimate the trainload using the Trainload Model and provided valuable

insight into the capacity utilization of the network. The estimation of input parame-

ters will be discusses in Chapter 4 and the model is then applied to the MTR network,

as discussed in Chapter 5.
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Chapter 4

Parameter Estimation

The distributions of the access and egress times are key inputs to the Passenger-to-

Train Assignment Model (PTAM). This chapter discusses the methodology to esti-

mate the key parameters (mean and variance) for those distributions. The walking

speeds of passengers in stations are estimated and the walking distances are mea-

sured from the station plan. With knowledge of both the speeds and the distances,

the access/egress time distribution can be derived.

Section 4.1 develops the walking speed model and illustrates the underlying as-

sumptions. Section 4.2 provides the walking distance estimation method based on

the station configuration. Section 4.3 describes the maximum likelihood estimation

method using the truncated data sample. Section 4.3.1 provides an estimation ex-

ample using synthetic data and validates the result. Section 4.4 draws conclusions

and proposes future work.

4.1 Walking Speed Model

The access and egress time distributions are a direct input to the PTAM. Therefore,

the distribution of the walking speed in general, as the first step in modeling passenger

behavior at stations, is important.

Passengers' walking speeds at different stations is a function of:

e Individual characteristics, such as age and gender. Familiarity with the system
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and the stations is also a factor.

" Station configuration and characterization, such as ramps, stairs, and escalators.

" The degree of crowding-especially during peak hours, as crowding increases the

interactions between passengers and reduces their walking speeds.

" Trip purpose, commuters, for example, will generally be faster than tourists.

The walking speed is modeled as a random variable following a specific distribution

(for example normal or log-normal). The mean (and variance) of this distribution can

be expressed as a function of many factors.

p- = ao + aX. (4.1)

Where,

pi : the mean of the distribution.

a : vector of parameters.

X: set of explanatory variables.

Example of explanatory variables include:

I for senior card holders
Xi =

0 0. w.

X 2 , {I for frequent travelers (e.g., more than 10 trips per week)

0 0. w.

X3i :measure of station complexity.

1 for trips during peak hours

0 0. w.

In the work of Kim et al. (2006), a detailed mobility model for pedestrians was

constructed based on a 13-months tracing data to estimate the physical location of
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users. Both pause time, walking speed and movement direction were examined. They

reported that the walking speed followed a log-normal distribution. The reported

average walking speed was 1.26 m/s. Several studies on pedestrian movements also

found that a normal or log-normal distribution is a good probability distribution to

represent walking speeds. Especially, when the walking speed is asymmetric, a log-

normal distribution is better (Ottomanelli et al., 2012; Zhang et al., 2009; Daamen

and Hoogendoorn, 2006). The two parameters of the log-normal distribution-j-pi and

a- will be estimated based on the observed walking speeds of individuals at both the

origin and destination stations.

It is expected that access and egress speeds are correlated. Paul (2010) dealt with

this problem by assuming that for the same individual, the access time has the same

percentile as the egress time distribution. To relax this assumption, the access and

egress speeds can be modeled separately but with a degree of correlation as shown

below:

(Vi~i ~ f(i-v;,?)( V,0-" , pi0", P) (4.2)

Where,

e the egress speed of individual i.

a the access speed of individual i.

p: the correlation between egress speed and access speed.

fve,va: the joint distribution of access/egress speed for passenger Z.

Pi, o, ai, : parameters for the distribution.

4.2 Walking Paths at Stations

The walking distance is a key element to transform the walking time observations into

speeds and hence to derive the distributions of access and egress times for input to

the PTAM. From the AFC data, the tap-in/out gates for each individual are known,

which can be used to identify the exact entry/exit points given the station layouts.
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However, even though the tap-gates are recorded, the exact locations of the plat-

forms each passenger alighted on, or boarded at, and the path he/she chose are not

observed. The boarding locations along the platform should be inferred to estimate

the walking distances, since the platforms are long and the walking distances on the

platform level can account for a large portion of the walking paths. In terms of in-

station walking distances, it is assumed that passengers are divided into two groups.

The first group optimize their location to minimize the distances to/from the gates.

The second group of passengers randomly choose their locations to alight from (or

board at) on the platforms. In this case, some passengers will have long walking

distances.

To capture this behavior, we introduce a parameter representing the proportion

(or the probability) of passengers who optimize their locations on the platform. Then

the walking distance distribution for a random passenger can be expressed as:

f (d) = pfD1 (d) + (1 - p)fD (4.3)

Where,

fD (d): the walking distance distribution for a random passenger Z.

fD' (d): the walking distance distribution for passenger i given that he/she opti-

mizes their platform locations.

fDu (d): the walking distance distribution for passenger i given that he/she is

located randomly on the platform.

p: the proportion (or the probability) of passengers who optimize their locations.

The parameter p can be estimated as an additional parameter in the model. How-

ever, in this thesis, the two cases are tested separately, stipulating p = 1 and p = 0

to obtain estimates of walking distances for the two groups respectively instead of

estimating the value of p.
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4.2.1 Distance for "Optimizing" Passengers

For this group, the lower bound on walking distance can be obtained by assuming

that all passengers will alight at the section of platform that is closest to their tap-out

gates and the nearest section to board the train after entering through the tap-in gates

at the platform level. In calculating the egress distance, for example, a passenger who

is familiar with the station, while waiting at the origin station, can always move to

the train door through which he/she can alight at the part of the destination platform

with the shortest egress distance.

Each platform is divided into sections and each gate group is assigned to the

closest section of the platform. Figure 4-1 shows a simplified station layout with the

orange area representing the concourse (fare gate) level and the blue area representing

the platform level.

Gate
Group A te

Group A'

Gate ate
Group B Group B'

Gate ate
Group C Group C'

Gate ate
Group D roup D'

Concourse Level Platform Level Platform Level Concourse Level

Origin Station Destination Station

Figure 4-1: Simplified Station Layout

The fare gates are categorized into groups A, B, C and D based on their loca-

tions. The platform is divided into four sections based on the closest fare gate group,

with boundaries drawn at the mid-point of the distance between adjacent escalators'

entries.

For this type of passenger, for example a passenger who tapped-in through fare
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gate group A and tapped-out though fare gate group B, the path "A-A-B-B'-B"'

would be taken, which represents the case that the passenger walked from fare gate

group A to section A, moved from part A to part B on the origin platform during

his/her waiting time, alighted at section B on the destination platform, and walked out

through the fare gate group B. At both entry and exit stations, the walking distances

are minimized. Note that the distance on the origin platform from section A to

section B is not counted in the access distance because the passenger has arrived at

the platform and the access time that determines his/her boarding train is not affected

by this extra walking. However, if there was not enough time for this passenger to

move along the origin platform (such as when the passenger arrived at the platform

and the train was about to leave), this passenger could also follow the path "A-A-A'-

B"'. In this case, the egress distance will be longer than for the previous path.

We assume that under most circumstances, an "optimizing" passenger can always

minimize the walking distances at both entry and exit stations. The average walking

distances for this type of passengers are estimated from the fare gate groups to the

corresponding sections.

Given inferred origin and destination points at the platform level (platform sec-

tion) and the concourse level (fare gate group), shortest distances are used assuming

that passengers will not "wander around" inside the station but go straight from the

platform to the fare gate.

4.2.2 Distance for Randomly Located Passengers

For this group, we assume that a passenger's alighting/boarding location is randomly

located along the platform no matter which gates he/she used. Under this assump-

tion, passengers may alight from one end of the platform, walk to the other end of the

platform and tap-out through a gate that is far from the alighting location. In Fig-

ure 4-1, passengers can take a longer path such as "A-A-A'-B', or "A-C-C'-B'. We

should keep in mind that, even passengers who are not familiar with the stations, can

still choose the optimal path as for the first group by chance. However, the average

walking distance for this group should be longer than the "optimizing" group. Both
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the average access and egress distances are calculated as the mean distance from any

point on the destination platform to the recorded gate.

4.3 Estimation Methodology

Measurements of the walking speed of passengers can be obtained through direct ob-

servation by having surveyors follow passengers when they enter the system. MTR for

example, has such surveys data for 10 key stations. Figure 4-2 shows the survey data

for Causeway Bay (CAB) station during the morning period with different passenger

groups being surveyed.

Walkway Stair (Up)

Size Range Mean(SD) Size Range Mean(SD)

Male
Female

Elderly 11 0.81-1.59 1.22(0.27) 17 0.39-0.66 0.54(0.08)

Children 21 0.92-3.37 1.36(0.49) 8 0.47-1.04 0.63(0.21)

Disabled 0 - - 0 -

Tourist 0 - - 6 0.46-0.95 0.76(0.3)

Figure 4-2: MTR Survey Data on Walking Speeds

However, there are several concerns about using such data. The most important

concern is the typically small sample size, which undermines estimation accuracy.

Manual data collection is an expensive and time consuming process, explaining the

small sample sizes.

The alternative, which is used here, is to use the automated data for estimation

and use survey data (if available) for validation. Based on AFC and ATR data,

there are a large number of passengers who have only one feasible itinerary. For

these passengers, their unique itinerary is certainly the one they took. Therefore, for

this subset of trips, the actual egress time for passenger i can be calculated as the

difference between the arrival time of the train and the passenger's tap-out time:

te = tout - AT. (4.4)
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Where,

t': egress time of passenger i,

t t: tap-out time,

AT, 1 is the arrival time of the first (only) feasible train at the destination for

passenger i.

Using five days' data from the MTR network, over one million trips within Tsuen

Wan Line have a single feasible itinerary. The histogram of the egress times is shown

in Figure 4-3.
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Figure 4-3: Egress Time Distribution for Trips to Central with One Feasible Itinerary

However, this sample is truncated since it only contains observations of passengers

who completed their tap-out before the arrival of the next train. In general, there

are certain conditions for passengers to have a single itinerary. First, the passenger

should arrive at the platform before the first train departure following his/her tap-in.

The time between the train departure and the tap-in time represents the upper bound

on his/her access time. Similarly, the egress time at the destination for the second

itinerary represents another upper bound. If this passenger walked slowly so that the
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tap-out time was later than the arrival of the second train at the destination station,

there will be at least two feasible itineraries.

In summary, the sample of passengers with one feasible itinerary is truncated and

is drawn from a conditional distribution with a minimum speed for each individual

based on his/her tap-in/out times and the departure/arrival time of the corresponding

train. If we assume that the access and egress speeds are perfectly correlated, the

probability density function of the speed distribution in the truncated sample will be:

fViVmnj,(VjVmin,i) fv ) (4.5)
1 - FV(Vmin,i)

Vmin = max { i i (4.6)
DTi,1' A Ti,2 - AT,1

Where,

i: the passenger index.

fVIVmini(vjvmin,i): the conditional probability density function of walking speed

for passenger i.

fv(v): the probability density function of the walking speed distribution for the

whole population.

Fv(v): the cumulative density function of the walking speed distribution for the

whole population.

vmin,i: the minimum speed for this passenger.

da: the walking distance for passenger i at the origin station, or access distance.

de: the walking distance for passenger i at the destination station, or egress dis-

tance.

DT,1 : the departure time of the 1" train at the origin station for passenger i after

the tap-in time.

t7": the tap-in time for passenger i.

AT, 1 : the arrival time of the 1" train at the destination station after the tap-in

time.

Based on the above data, maximum likelihood estimation can be used to estimate
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the model parameters. The log-likelihood function is given by:

L*= log fv (V (4.7)
(I - Fv (Vmin,i)

4.3.1 Example

In this section, synthetic data is generated based on the actual AFC tap-in times and

the ATR data to test this method. A log-normal distribution for the whole population

is assumed and observations are generated for individuals to represent their access

and egress speeds. The arrival time at the origin platform, boarding train, and egress

time are determined for each individual as well as his/her tap-out time. The subset

of people with a single itinerary are then selected and used as the sample in the

maximum likelihood estimation. The simulation results are shown in Table 4.1.

No. Sample Size Actual Speed Estimated Speed

Y 0- Mean Std a - Mean Std

a 532 0.050 0.514 1.200 0.661 0.107 0.478 1.247 0.631

b 535 0.150 0.254 1.200 0.310 0.150 0.253 1.199 0.309

c 1274 0.640 0.326 2.000 0.670 0.635 0.322 1.987 0.656

d 1371 0.680 0.162 2.000 0.326 0.681 0.161 2.001 0.324

Table 4.1: Actual and Estimated Parameters

The comparison between the estimated and the actual distributions is shown in

Figure 4-4 for different walking speed mean and standard deviation. The green line

represents the true log-normal distribution and the red dashed line the estimated

distribution. The blue bar shows the distribution of the egress times for the selected

sample (passengers with single feasible itinerary). The number of passengers with a

single itinerary almost doubles when the mean speed increases from 1.2 m/s to 2.0

m/s.

As expected, passengers who walk faster are more likely to catch the first train

and tap-out before the second train arrives at the destination. Since the blue bars
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Likelihood Estimation

represent the distribution of egress times in the truncated sample, fewer passengers

are observed in the left tail of the distribution. Comparing the estimated with the

true parameters, the overall estimation performance is very good.

4.4 Summary

The chapter presented a methodology to model and estimate the walking speed dis-

tribution parameters for the PTAM. For the walking distance estimation, upper and

lower bounds are obtained for each individual based on his/her tap-in/out gates. For

the walking speed estimation, a log-normal distribution with two parameters-mean

and variance-was estimated using the maximum likelihood. An example with syn-
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thetic data was used to illustrate the feasibility of the approach. The results show that

the maximum likelihood method provided accurate estimation of the true distribution

of walking speed for the whole population.
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Chapter 5

Application

This chapter presents the application results of the Passenger-to-Train Assignment

Model (PTAM) tailored to the MTR, network. Specifically, Automatic Fare Collection

(AFC) and Automatic Train Regulation (ATR) from the Tsuen Wan Line are used

to prepare the input to the model.

Section 5.1 provides an overview of the Tsuen Wan Line. Section 5.2 discusses the

processing of the MTR data. Section 5.4 presents the parameter estimation results of

the walking speed distribution for the MTR system and compares it with survey data.

Section 5.5 presents one of the PTAM's applications, the passenger movement based

on the PTAM's output at the individual level, while section 5.6 shows the trainload

estimation at the aggregate level. Section 5.3 shows the distribution of feasible

itineraries based on the selection criterion described in Chapter 3. Section 5.7 shows

the estimation of the number of passengers at stations to assess the crowding level.

Section 5.8 summarizes the key findings and offers recommendations.

5.1 Overview of Tsuen Wan Line

Tsuen Wan Line (TWL) is one of the busiest lines in the MTR network serving over

900,000 daily passengers. It starts from the northwestern section of Hong Kong Island

and runs through central Kowloon to the southwestern New Territories (see Figure 5-

1), serving the central CBD and the Nathan Road corridor in Kowloon. It is the most
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important cross harbor link. The TWL consists of 16 stations with about 30-minute

running time from the terminal to another.

Central, Admiralty, Tsim Sha Tsui, Mong Kok and Lai King (circled in Figure 5-

1) are very busy transfer stations with heavy transfer volumes (over 160,000 daily

patronage except Tsim Sha Tsui, whose transfer volume is 42,000). Central, Tsim

Sha Tsui, and Mong Kok are among the top ten busiest stations in the whole network,

each serving over 120,000 passengers per weekday.
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Figure 5-1: Tsuen Wan Line (MTR, 2014)

The travel demand for all the OD pairs within TWL is plotted in Figures 5-2 and

5-3 for both directions.
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All OD pairs are linked by color coded arcs to represent the hourly volume based

on AFC data. The two directions share the same pattern with three heavily used

OD pairs: Central to Tsim Sha Tsui, Tsim Sha Tsui to Mong Kok, and Mong Kok

to Sham Shui Po. Central serves the CBD area on Hong Kong Island and is the

largest financial center in Hong Kong. From Tsim Sha Tsui to Mong Kok, TWL runs

along Nathan Road's busiest segment, while Sham Shui Po is a densely populated

residential area.

For this application, all the trips within TWL traveling in the direction from

Central to Tsuen Wan between 13:00 and 16:00 on 2012/09/07 are extracted from

the AFC data. Trips with transfers are not considered. In the afternoon, when the

network is not as congested, we assume that the capacity constraints for passengers

to board the first train after their arrival at the origin platform are not binding so

there are no denied boardings. During the time period of analysis, 43,881 trips are

extracted with 50 train itineraries. During the off-peak period, most of the headways

range from 3 to 5 minutes.

5.2 Data Preprocessing

The data preprocessing depends on the format of the raw data obtained from transit

agencies. For the MTR application, this process involves two steps: generation of

complete passenger trips and generation of complete train itineraries.

5.2.1 Generation of Complete Passenger Trips

A sample of MTR's AFC data is presented in Table 5.1.

Since the tap-in and tap-out transactions are separate records, the records from the

AFC data with the same csc-phy-id, same train-entry-stn and consecutive txn-audit-no

should be joined in order to form a complete trip. The txn-type-co indicates whether

it is an entry or exit transaction. For each complete trip, an entry transaction and

an exit transaction are included.
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Data Field Record Explanation

csc-phy-id ********* Octopus Card ID

business-dt 9/7/12 Transaction Date

txn-dt 15:37:03 Transaction Time

txn-type-co ENT ENT for entry records and USE for exit

records with fare deduction

txn-subtype-co ADL Transaction subtype code, such as ADL for

adult, CHD for child, SEN for senior citizen,

STD for student, DIS for disabled, etc.

train-entry-stn 1 Entry station number

txniloc 1 Exit station number for an USE record

txn-audit-no 3452 Transaction audit number,all the transac-

tions under this card ID have a unique se-

quence number

hw-type-co 2 Hardware type code for gate device

mach-no G06 Machine number of this device

train-direct-ind 2 Direction indicator with value of 1 or 2

txn-value 8.6 HK $ value of this transaction such as fare

deducted for this trip

modaLdisc-value 0 HK $ value as discounted value

csc-rv-value 8.5 Remaining amount in HK$

Table 5.1: AFC Transaction Record

5.2.2 Generate Complete Train Itineraries

A sample of the ATR data is presented in Table 5.2.

In the ATR data all the departure and arrival events of a train at each station

are in separate records. To form a complete train trip from one terminal to another,

the records for arrival at the origin terminal are extracted and then the records at

subsequent stations (both departures and arrivals) are searched for each station in
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sequence. Records with the same lineid, i_train_nbr, train_nbr, and the time-stamp

within 10 minutes of the previous event are linked consecutively. One arrival record

is followed by a departure record and the next arrival record and so on.

Data Field Record Explanation

time-stamp 2012-07-01 00:00:19 Time Stamp

line id 1 Line ID

itrainmnbr 18 Train Trip Number

dest-code H Destination Code

trainmnbr 26 Train Number

idtype A ID Type, "A" for Arrival, "D" for Departure

station-id 12 Station Code

platform-id 10 Platform ID with value 10 or 20

actime 2012-07-01 00:00:42 Actual Time

achtime 2012-07-01 00:01:26 Scheduled Time

lead-cab 180 Lead Car Number

trail-cab 251 Trail Car Number

Table 5.2: ATR Data Record

5.3 Distribution of Feasible Itineraries

2392 transactions are extracted from the period 13:00 to 16:00 for the busiest OD

pair (Central to Tsim Sha Tsui). 113 trips have no feasible train itinerary, most of

which are with very short journey times. This problem might be partially due to clock

synchronization errors. If the clock of the AFC data is a few seconds off compared to

the ATR data, some passengers will be identified as having no feasible itinerary (e.g.,

if the AFC clock is a few seconds faster than the ATR clock, the recorded tap-out

time can be earlier than the arrival time of the passenger's boarding train, and hence

no itinerary fulfills the criterion).
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For the rest of the passengers, the distribution of the number of feasible itineraries

is shown in Figure 5-4:

1,

'

1 2 3 4 5 6 7 8 9
Number of Feasible Itineraries

10 11 >=12

Figure 5-4: Number of Feasible Itineraries

Over 90% of the passengers have either one or two feasible itineraries which indi-

cates that their journey times are relatively short (less itineraries will fit in the time

window when passengers are in the system). The reduced crowding allows passengers

to arrive at the platform quickly (assuming they engage in no other activities, such

as using the ATM in the paid area). A number of passengers have over 12 feasible

itineraries. Those are possibly passengers who conducted other activities in the paid

area, and can be treated as outliers (Halvorsen and Wood, 2014).

5.4 Parameter Estimation

Figure 5-5 presents the framework for the estimation methodology.
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Figure 5-5: Parameter Estimation Methodology

The input data for the estimation include observations of egress times for the sub-

set of passengers with a single feasible itinerary based on Automatic Fare Collection

(AFC) and Automatic Train Regulation (ATR) data. For those individuals (with a

single feasible train), their egress times are known (based on the arrival times of their

trains at the stations and their tap-out times). However, those passengers form a

truncated sample and in principle they may represent passengers who are faster than

the general population. They caught the first coming train to arrive after they tapped-

in and tapped-out before the second train arrived at the destination station. With

an estimation of the walking distance for each individual, his/her walking speed can

be derived to estimate the key parameters of the walking speed distribution. Based
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on the walking speed distribution and the estimation of the walking distances, the

egress/access time distribution can be derived and input into the PTAM.

The parameters of the walking speed distribution are estimated using the trans-

actions for the busiest OD pair on the Tsuen Wan Line- Central to Tsim Sha Tsui. In

this application, a simplified model of the walking speed is estimated for the specific

OD pair. The mean and variance of the walking speed distribution are estimated

from the available data without specifically considering the effects of different factors

such as station characteristics and individual attributes as in Equation 4.1. With

more detailed analysis in the future, these parameters can be estimated as a function

of these factors.

5.4.1 Egress Time

Among the 2392 transactions from Central to Tsim Sha Tsui during the analyzed

time period, 42% of the trips have a single feasible itinerary. For these people, their

sole itinerary is certainly the one they took. The egress times can be calculated for

them as the differences between the arrival times of the train and the tap-out time.

The histogram of these egress times are shown in Figure 5-6.
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Figure 5-6: Egress Time Distribution for Trips with One Feasible Itinerary
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5.4.2 Walking Distance

The location of each group of fare gates (usually 5 to 10 gate-machines are installed

close together, forming a "group") can be identified using the station layout, which

shows the architecture of the station (see Figures 5-7 and 5-8).
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In Figure 5-7, the blue area represents the paid area. Several groups of fare gates

are located at the edge of these areas. In Figure 5-8, the actual distances to and from

the fare gates can be measured accurately.

Figure 5-9 shows a simplified station layout at both origin and destination sta-

tions. The fare gates at the origin station are grouped into four groups A, B, C and

D (corresponding to different sections of the platform). More specifically, passengers

who tap-in at fare gate group A are more likely to arrive at the head of the platform

because it is closest to this fare gate group. Similarly, groups B, C and D have a

corresponding section of the platform. A similar grouping is used at the destination

station.

Gate ate
Group A Efficient Passenger Group A

Gateat
Gup B Grup B

Gate Inefficient Passenger ate
Group C W M4 "M MW" MGroup C

Gate ate
Group D """"""Group D

Concourse Level Platform Level Platform Level Concourse Level

Origin Station Destination Station

Figure 5-9: Simplified Station Layout

"Efficient" passengers choose the closest section of the platform that minimizes

their egress times (i.e., they alight at the destination platform in the section closest

to their exit fare gate), for example, taps-in from group A, arrives at the end of the

train, alights at the up end of the destination platform and chooses the closest fare

gate group A-to tap-out. For a passenger who taps-in from group A and taps-out at
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group B, he/she is more likely to walk to the closest section at origin platform first,

walk to the mid-up of the platform during the waiting, or walk towards the mid-up of

the train during the in-vehicle time, and alight at the closest section of the platform

to his/her tap-out gates. "Inefficient" passengers may randomly arrive at a section of

the platform from their entry gate group and wait there for the train arrival. At the

destination platform, they may have to walk to the other end to reach their tap-out

gate (see Figure 5-9 for efficient and inefficient paths).

Table 5.3 shows the fraction of passengers who tap-in/out from different groups

of fare gates for the OD pair from Central to Tsim Sha Tsui during the 3 off-peak

hours (13:00 to 16:00) with one feasible itinerary. The fare gate groups are associated

with the closest section of the platform (see Figure 5-9).

Exit \Entry Group A B C D

A 30.4% 9.4% 2.0% 4.6%

B 0.7% 0.2% 0.0% 0.1%

C 7.2% 0.9% 0.2% 0.4%

D 38.7% 3.0% 1.4% 0.9%

Table 5.3: Number of Passengers from/to Different Fare Gate Groups

In Table 5.3, group A represents the most heavily used entry gates at Central

and passengers from fare gate group A not only tapped-out from fare group A at

the destination station but also went to fare gate group D, in which case the walking

distances are much longer. Groups A and D are the most popular exit fare gate

groups while most passengers are from entry group A.

It appears that although passengers do not choose the gates completely randomly

neither do they always use the closest ones. For the population, the distribution

of their access and egress distances should be a mix of the two scenarios based on

different assumptions about the fraction p of passengers optimizing their walking

paths. By assuming that all passengers arrive randomly at the platform (p = 0), an

upper bound on the speed distribution is obtained, while a lower bound is obtained
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by assuming that all passengers optimize their walking paths (p = 1).

For simplification, instead of assuming the walking distance as a random vari-

able in the following sections, the average walking distances for different groups of

passengers are used. This assumption is made for demonstration purposes only.

5.4.3 Estimation Results

To address the truncation problem, passengers are assumed to be drawn from a

conditional distribution with a minimum speed determined by the tap-in/out times

and the trains' departure/arrival times. The estimation results from the maximum

likelihood method are shown in Table 5.4.

Scenario a - Mean Speed Std Speed

(m/s) (m/s)

Upper 0.1417 0.4883
1.2981 0.674

Bound (0.0943-0.1891) (0.4604-0.5161)

Lower -0.3521 0.4362
0.7734 0.354

Bound (-0.3918- -0.3125) (0.4362-0.4580)

Table 5.4: Estimation of Walking Speed Distribution (9 5th Confidence Interval in

Parentheses)

The first row represents the results assuming that passengers will randomly choose

the tap-out gates (upper bound). The second row represents the results using the

lower bound estimation by assuming that all passengers will optimize their walking

paths (lower bound).

p is the mean and a- the standard deviation of the exponents for the log-normal

distribution. The corresponding mean and standard deviation for speeds are shown

in the last two columns.

The estimated distributions are plotted in Figure 5-10, where the red line repre-

sents the estimated distribution and the blue bar shows the walking speed histogram

for the selected sample based on different assumptions about the distances (upper or

lower bound).
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Figure 5-10: Estimation of Walking Speed Distribution

For comparison purposes, Figure 5-11 shows the estimation results if the pas-

sengers with one feasible itinerary are assumed to be representative of the whole

population (i.e., the sample is not treated as truncated).
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Figure 5-11: Estimation of Walking Speed Distribution

The red line shows the walking speed distribution for the full population estimated

in the previous section (truncated sample), and the green line shows the one for the

subset of passengers with a single feasible itinerary. In both scenarios, with upper

89

1.5

0.5

0

U-

0
C
0)
0~
0)
LL

2



bound or lower bound on the walking distance estimation, the subset of people tends

to walk faster than the whole population. The results clearly indicate the bias that

can be introduced if the sample is not treated properly in the estimation. With

the lower bound on the walking distance estimation, the average walking speed for

the subset of passengers is 1.02 m/s, which is 32.5% faster than the average for the

whole population. With the upper bound on the walking distance estimation, the

average speed for the subset of passengers is 1.60 m/s, which is 23.5% faster than

the true average of the whole population. As we expect, passengers with a single

feasible itinerary are not representative of the whole population if using simple fitting

methods to estimate the walking speed distribution.

The results from the estimation are also compared to walking speeds estimated

from the manual speed surveys at MTR. The data was collected by surveyors following

passengers and recording their walking speeds on different segments of their paths:

walkways, stairs, ramps, etc. Tables 5.5 and 5.6 show the MTR walking speed survey

data during the morning and evening time periods. Six groups of passengers were

examined. The results indicate that male passengers tend to walk faster than females,

while elderly, children and passengers with luggage walk slower than the average.

Passenger Sample Minimum Maximum Average Std

group size speed [m/s] speed [m/s] speed [m/s] [m/s]

Male 115 0.48 2.11 1.26 0.27

Female 129 0.65 2.04 1.18 0.24

Elderly 30 0.48 1.61 1.07 0.27

Children 22 0.63 1.78 1.04 0.25

Disabled 1 - - 1.49 -

Passengers 27 0.65 1.37 1.10 0.17

with luggage

Average 0.58 1.78 1.19 1.19 -

Table 5.5: Walking Speed Survey Results (Morning Period)
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Passenger Sample Minimum Maximum Average Std

group size speed [m/s] speed [m/s] speed [m/s] [m/s]

Male 65 0.62 1.63 1.10 0.21

Female 79 0.4 1.50 1.03 0.19

Elderly 8 0.73 1.27 1.01 0.18

Children 9 0.40 1.02 0.88 0.19

Disabled 0 - - - -

Passengers 20 0.67 1.34 1.00 0.21

with luggage

Average 0.56 1.35 1.00 0.20

Table 5.6: Walking Speed Survey Results (Evening Period)

Table 5.7 compares the average speeds estimated

survey results.

Table 5.7: Comparison of

in the previous section to the

the Survey Results and Estimation

Using the upper bound on the distance estimation where the speed can be overes-

timated, the walking speed estimation is slightly faster than the average speed in the

survey data . However, the walking speed based on the lower bound tends to under-

estimate the walking speed since passengers' walking distances are underestimated.

However, the methodology provided in this research gives a reasonable range of the

walking speed solely based on automated data and can be further improved with more

detailed analysis. With appropriate modification, maximum likelihood methods can

be used to estimate the value of p as well as the impact of the different factors as
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Survey (Morning) 1.19 -

Survey (Evening) 1.00 0.20

Upper Bound 1.30 0.67

Lower Bound 0.77 0.35



discussed in section 4.1.

In the PTAM, the estimation of the walking speed based on the survey data

with mean and standard deviation as 1.0 m/s and 0.2 m/s is used. Probabilities for

each individual to have boarded different trains are estimated given the knowledge

of his/her feasible itinerary set and tap-in/out times. A series of applications are

presented in the following sections.

5.5 Passenger Movements

Based on the output of the assignment model and given inferences about the train

boarded for each individual trip, we can capture the movements of passengers in the

network in great detail. The passengers' locations in the network can be linked to

train boarded. An animated simulation has been implemented to show the individual

passenger movements over a 3 hour period. The animation is implemented in Java.

The inputs to the animation include: the tap-in and tap-out times of the passengers,

the estimated probability of boarding each train in their feasible set, and the departure

and arrival times of trains at stations. Figure 5-12 illustrates an instance of the

animation. At the origin stations, the animation assumes passengers' walking speeds

is 1.0 m/s to visualize their movement. At the destination stations, the walking speed

is calculated based on the egress time using the train arrival times at destination

stations and their tap-out times.

Figure 5-12a is based on an animation with data for 2012/09/07 at 13:21:29

on the Tsuen Wan Line, when a train just arrived at Admiralty. Another train

was approaching Jordan and a third train was at Mong Kok with many passengers

alighting. The dots represent passengers and the dark area at each station the paid

area. The assumption is that after passengers tap-in through the fare gates, they

walk towards the platform and wait for the next train. Since Central and Admiralty

stations are both busy stations, crowding at platforms was much more severe than at

the other stations (see Figures 5-12). The line was heavily used on the segments from

Admiralty to Yau Ma Tei and many people alighted at Mong Kok (see Figure 5-12c).
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On the other hand, many outliers can be observed especially at the Mong Kok

station. They exited very slowly from the platform to the tap-out gates. Those

may be the passengers who conducted other activities inside the station, such as

commercial activities, which are common in Hong Kong.

The animation illustrates the capability of the model to simulate the movements of

passengers and trains at the individual level and provides a comprehensive playback

of the operations of the system. However, many assumptions are made to visualize

the movements which should be relaxed in future research.

5.6 Trainload

At the aggregate level, the trainload is estimated based on the assignment model's

output and plotted in a time-space diagram representing the train trajectories (see

Figure 5-13).

- _- -/

14:00 14:30

Time of day

00

j -

15:00 15:30

Figure 5-13: Time-Space Diagram for Trainload Estiamtion

The x-axis represents the time of day and the y-axis represents the 16 TWL
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stations from Central to Tsuen Wan. Each line represents one train itinerary based

on the ATR data. The diagonal segments correspond to the train movements between

consecutive stations and the horizontal segments the dwell times at stations. The

headways were relatively evenly distributed within this period with the exception of

the headway for the train that departed from Central at 12:23 PM, which was longer.

The color of the line represents the estimated number of passengers on board. Most

of the trains were most heavily loaded between Tsim Sha Tsui and Prince Edward

stations. With this "heat-map", it is very easy to identify hot-spots and bottlenecks

in the network both spatially and temporally.

Figure 5-14 shows the trainload estimation for Trains 8 to 42 which were running

between 13:00 and 16:00.
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Figure 5-14: Trainload for Trains 8 to 42

The most used segment was between station 3 to station 7, which is from Tsim

Sha Tsui to Prince Edward.

Figure 5-15 illustrates the headways at Admiralty, the second station on the TWL.

The x-axis represents the train number, and headways longer than 4.2 min are marked

in red.
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Figure 5-15: Headways at Admiralty

Combining Figures 5-14 and 5-15, we can see that the trains with short headways

were usually less crowded. The trains with more than 4.2-min headway are shown

with dash line in Figure 5-14, most of which were more heavily used. In Figure 5-14,

trains marked in continuous lines were the ones with shorter headways and were less

crowded. Train 12, especially, with a 2.8-min headway at Admiralty experienced the

least crowding. Note that the heaviest load during this time period was under 550

pax/train, which was far below the train capacity. The service standard of MTR

indicates that the full-load at peak hour is 2000 pax/train. However, this estimation

is based on trips without transfers hence the estimated load here is the lower bound of

the actual load. The capacity constraints are relaxed during the off-peak. We believe

that in this case, even accounting for transfer trips, the capacity constraints were not

binding.

With relative stable passenger arrival rates during this time period, the trainload

is very sensitive to the headway. Therefore, the service reliability can be evaluated

from the crowding on trains to measure the performance of the system from the

passenger's point of view.

However, the load in this section is derived solely based on passengers without

transfers, hence the estimation can only provide a lower bound on the actual train-
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load. More work is needed to account for trips with transfers to estimate the actual

trainload.

5.7 Station Crowding

The PTAM output can be aggregated at different levels. One of them is the crowding

at stations. By accounting for the number of passengers that tap-in and those who

were able to board a train, the number of passengers at the stations can be estimated.

Two stations are examined Central and Prince Edward (see Figure 5-16).
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The saw-tooth line shows the estimated number of passengers inside the station

as a function of the time of day. Since Central is a large station, the numbers are

usually much higher than at Prince Edward, with more passengers on the stairs,

platforms, ramps, etc.. With more and more passengers tapping-in, the number kept

increasing during consecutive train departures. After a train departed, the number

dropped with a large group of people boarding this train and leaving the station.

However, the number is not necessarily zero after the trains' departures since there

were passengers inside the station who just tapped-in or were on the stairs/walkways.

The crowding information generated at this level can be very useful, both for

passengers to plan their journey, and for operating managers to facilitate the man-

agement of crowds at stations. Providing crowding information in real-time has been

another important aspect which agencies are interested in exploring. It is one of the

important ultimate goals for continuation of this research.

5.8 Summary

This chapter estimated the key parameters for the PTAM and applied the model to

the Tsuen Wan Line. The mean walking speed for the population ranges from 0.77

m/s to 1.30 m/s based on the lower/upper bound of the walking distance estimation,

compared to the survey results of 1.00 m/s in the afternoon and 1.19 m/s in the

morning period. The results confirmed that the subset of passengers with a single

itinerary is not representative for the whole population and they are 23.5% to 32.5%

faster than the full population, and the proposed method correctly deals with this

issue.

Passenger movements were simulated based on the results of the PTAM. The

trainload can also be inferred. However, to estimate the actual trainload, trips with

transfers should be included since transfer volumes at certain stations are large. The

crowding at stations was derived based on the passenger movements by counting the

number of passengers inside the stations who had not yet boarded trains.

For peak hour applications, the capacity constraints should be appropriately in-
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corporated into the model to account for denied boardings, as well as transferring

passengers. Future work is required in this direction.
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Chapter 6

Conclusion

The methodology presented in this research aims developing a Passenger-to-Train

Assignment Model (PTAM) to identify the boarding train of each passenger. Such a

model provides valuable information at both the disaggregate and aggregate levels.

The methodology uses Automatic Fare Collection (AFC) and Automatic Train Reg-

ulation (ATR) data. A series of applications based on results from the PTAM are

developed to examine the capacity utilization of the MTR system.

Section 6.1 summarizes the research findings, discusses the limitations of the

methodology, and outlines the specific contributions of this research. Section 6.2

suggests future directions.

6.1 Summary and Conclusions

6.1.1 Passenger-to-Train Assignment Model

The Passenger-to-Train Assignment Model (PTAM) serves as the main focus of this

research. To better address the uncertainty of passenger's behavior in the under-

ground system, a method is developed to estimate the probabilities of passengers to

board different trains based on the AFC and ATR data, instead of deterministically

assigning a passenger to a single train.

Based on the knowledge of the feasible itineraries (the set of trains that a pas-
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senger could possibly have boarded), the distribution of walking speed is input to

the model to estimate the probability of having used each itinerary. The trainload

model estimates the expected load for every train in the archived data, based on the

probabilities.

The application of the model to the MTR network focuses on the situation without

capacity constraints and trips without transfers. Over 40,000 trips on Tsuen Wan Line

and 50 train itineraries from the ATR data are extracted during 3 hours in the off-peak

period. Based on a conservative assumption (passengers' minimum access/egress time

is zero), the number of feasible itineraries for each individual is calculated. For the

trips between Central to Tsimg Sha Tsui, about 42% of passengers have one feasible

itinerary and over 90% have less than 3 feasible itineraries. This might partially

due to less congestion during the off-peak period and passengers traveled fast in

the underground system. Many outliers can also be observed with over 12 feasible

itineraries. Those are possibly passengers who conducted other activities in the paid

area, which is common in Hong Kong.

An animated simulation has been implemented to show the individual passenger

movements over the same period, which provides a comprehensive playback of the

operations of the system. It can be easily observed from the animation that the

crowding at platforms at Central and Admiralty stations was much more severe than

other stations and the line segments from Admiralty to Yau Ma Tei were heavily used.

On the other hand, many outliers can be observed especially at Mong Kok station

who exited very slowly.

The trainload for individual vehicles are estimated using the trainload model. A

"heat-map" is generated to represent the train trajectories and the corresponding

loads for vehicles. It has been noted that the individual trainload is very sensitive to

the headway. Therefore, the service reliability can be evaluated from the crowding on

trains to measure the performance of the system from the passenger's point of view.

The crowding at stations can also be assessed. Two examples are shown at Central

and Prince Edward stations. The number of passengers follows a saw-tooth line

where the number dropped after the departure of a train. The crowding information
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generated at these levels can be very useful both for passengers planning their journey,

and for operating managers to facilitate the crowds management at stations.

In this application, we assumed that passengers are not denied boarding and the

capacity constraints are not binding. This assumption is typically valid during the

off-peak (the time period analyzed). But during peak hours, when the demand is very

high and trains are crowded, passengers can be left behind for several trains. In that

case, the probability of boarding each train should also be influenced by the load of

the incoming train, which leads to a more general model as described in Chapter 3.

The transfer demand is also not considered in the MTR application, which results

in underestimation of the trainload and the crowding levels. Research into route and

transfer station choice int he MTR network will facilitate the treatment of transferring

path. A survey was conducted to collect the required information and a route choice

model is being developed. The estimated model can be used as input to the PTAM.

6.1.2 Parameter Estimation

In Chapter 4, a walking speed estimation method is developed based on AFC and

ATR data. The egress time for the subset of passengers with only a single feasible

itinerary was used for the estimation.

A general walking speed model is proposed to explicitly consider different factors

that affect passengers' walking speeds at stations (including the individual charac-

teristics, station configuration, the degree of crowding, etc). The access and egress

speeds can be formulated using a joint distribution where the correlation between

them can be appropriately captured.

Since there is heterogeneity among passengers in terms of their familiarity with the

system, the walking distances at stations may vary from person to person. To capture

this behavior, an additional parameter is introduced representing the proportion of

passengers who "optimize" their walking paths at stations.

Instead of using manual survey data, indirect observations from the automated

data based on the subset of passengers with one feasible itinerary are used. The

estimation is properly formulated as a maximum likelihood problem that takes into
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account the fact that the sample is truncated. Synthetic data is generated to test

this methodology. The results show that the overall estimation performance is very

good. Since the automated data accounts for a very large sample size, this method

is very promising to avoid manual data collection.

In the MTR application, a simplified walking speed model was estimated that did

not consider the effects of other factors (such as age, gender, or station configurations).

The observations of walking speeds for the subset of passengers with one feasible

itinerary form a truncated sample with average walking speed 23.5% to 32.5% faster

than the overall population. To derive the access/egress time distribution, the walking

distance is estimated using the fare gate information recorded in the AFC data.

Upper and lower bounds on the walking distance are estimated respectively based

on whether (or not) passengers optimize their walking paths. By assuming different

walking distances for the whole population (upper or lower bound), two distributions

of the walking speeds are estimated respectively. Compared with the survey data, one

of the estimated distributions shows faster walking speeds and the other one shows

slower estimation. The survey result is in the between.

6.1.3 Methodological Contributions

The methodology presented in this thesis has introduced three innovations compared

to previous research.

The PTAM captures passenger behavior at the individual level and estimates pas-

senger movements both at stations and on trains, which provides all the information

needed (journey time components, passenger location inference, etc.). Detailed anal-

ysis of passenger behavior at stations is conducted on the walking speed and distance

for each individual.

Compared with traditional passenger assignment models, the train loads can be

inferred for every recorded itinerary. PTAM facilitates the development of more

accurate and informative performance metrics, for example the number of passengers

left behind. It also presents an improvement over current MTR practice of using

passenger flow estimates in 15 minute intervals. Application across lines at this level
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of resolution may also provide an overall assessment of opportunities to improve

capacity utilization, for example through better demand management strategies.

Third, the model negates the need for time-consuming and expensive data col-

lection efforts (for example to collect data about passenger's walking speed). The

parameters input to the model are estimated based on the automated data, and the

method has proved to provide good estimates of the speed distribution parameters

for the whole population.

6.2 Future Work

Much more work is needed to extend the research to deal with congested networks

and transfers.

6.2.1 Methodological Enhancements

A general Passenger-to-Train Assignment Model (PTAM) that takes into account

capacity constraints is presented in Chapter 3. An iterative process is built into

the model to update the feasible itinerary set and the corresponding probabilities

for a given passenger based on the available capacity on the train. With capacity

constraints, the loading order of the passengers is critical because of denied boardings.

Unlike passengers with a single itinerary, the remaining passengers can be loaded

based on different service rules, such as "first-tap-in-first-board". These aspects of

the model have not yet been tested and need further refinement and validation.

A big challenge is the introduction of transfers in the model. To consider the trans-

fer demand, a route choice model should be integrated with PTAM. The probability

of choosing an itinerary is the product of the probability of choosing the correspond-

ing route and the conditional probability of choosing this itinerary given the specific

route has been chosen. Each itinerary may consist of multiple trains and the proba-

bility of being selected should be a function of the access, egress, transfer times and

train running times. More research is needed to develop a comprehensive approach

to accommodate the transfer demand.
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The definition of the set of feasible itineraries sets can be improved based on fur-

ther study of passenger behavior at stations. In this thesis, the conservative assump-

tion of zero access/egress time was used to retain all feasible itineraries. However,

given that at certain large stations, it is impossible to arrive at the platform within

30 seconds from tap-in, a larger value of the minimum access/egress time can be used

to eliminate itineraries with extremely short access/egress times and further improve

the assignment accuracy.

For the application presented in this thesis, a simplified walking speed model

is used with the mean and variance for the distribution estimated directly. Using

automated data, more detailed analysis can be conducted to assess the effects of

different factors, such as the individual characteristics, station characteristics, etc.

The underlying walking distances can also be modeled more accurately based on

assumptions about passenger behavior on the platform and their knowledge of the

system. With more detailed analysis, these parameters relating to different factors

can be estimated and tested for their significance.

The real-time application of this research is another challenging future research

direction. With data becoming available in real-time or near real-time, real-time

applications are feasible. A real-time PTAM would require prediction of OD flows in

the system. The PTAM can then proceed to estimate the probabilities of passenger

using different itineraries. However, since there is no tap-out times information, the

set of feasible itineraries set is not well defined.

6.2.2 Model Validation

The model developed in this thesis can be verified with additional data from MTR.

At the rail car level, voltage readings from the air pressure sensors installed on 10-

15% of MTR trains can be used to estimate the number of passengers on the car.

For both model validation and model enhancement, if this information is available

on most cars and reliable, voltage readings have data has the potential to support

estimates of car loads directly. The data can also be used to validate the PTAM

estimates of trainload. However, this data has serious limitations. The data can
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be fairly noisy and hence the inference of the total car weight may be erroneous; in

addition, the inference of the number of passengers from the total load weight depends

on assumptions regarding the distribution of individual passenger weight as well as

carry-on luggage. Therefore, the translation of the voltage readings to passenger

counts will require careful calibration of key parameters. A study by Frumin (2010),

with data from TfLs London Overground system, provides initial insight into the

issues involved.

6.2.3 Application

A number of other applications can be developed based on the PTAM's output, for

example:

" Crowding at different levels, for example on the platform instead station-level

crowding.

" Journey time decomposition (access, egress, waiting and in-vehicle times), which

can be used to assess the service reliability from the customers' point of view

more accurately.

" Estimation of the number of denied boardings.

" Advanced customer information, such as expected crowding, route choice rec-

ommendations, etc.
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