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Abstract

Data analysts operating on large volumes of data often rely on visualizations to in-
terpret the results of queries. However, finding the right visualization for a query is
a laborious and time-consuming task. We propose SEEDB, a system that partially
automates this task: given a query, SEEDB explores the space of all possible visualiza-
tions, and automatically identifies and recommends to the analyst those visualizations
it finds to be most "interesting" or "useful".
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Chapter 1

Introduction

This thesis presents the design and implementation of a system, SEEDB, for auto-

matically generating a large number of interesting visualizations for any given query.

There are two key challenges in automatically generating visualizations: 1) auto-

matically determining "interesting"-ness of a visualization, and 2) evaluating a large

number of possible visualizations efficiently. In this work, we present solutions to

both these problems.

1.1 The data analysis process

Data analysts must sift through very large volumes of data to identify trends, insights,

or anomalies. Given the scale of data, and the relative ease and intuitiveness of

examining data visually, analysts often use visualizations as a tool to identify these

trends, insights, and anomalies. However, selecting the "right" visualization often

remains a laborious and time-consuming task. We illustrate the data analysis process

and challenges in choosing good visualizations using a few examples.

1.1.1 Example 1: Business Intelligence

Consider a dataset containing sales records for a nation-wide chain of stores. Let's say

the store's data analyst is interested in examining how the newly-introduced heating
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device, the "Laserwave Oven", has been doing over the past year. The results of this

analysis will inform business decisions for the chain, including marketing strategies,

and the introduction of a similar "Saberwave Oven".

The analysis workflow proceeds as follows: (1) The analyst poses a query to select

the subset of data that she is interested in exploring. For instance, for the example

above, she may issue the query:

Q = SELECT * FROM Sales WHERE Product = "Laserwave"

Notice that the results for this query may have (say) several million records each

with several dozen attributes. Thus, directly perusing the query result is simply

infeasible. (2) Next, the analyst studies various properties of the selected data by

constructing diverse views or visualizations from the data. In this particular scenario,

the analyst may want to study total sales by store, quantity in stock by region, or

average profits by month. To construct these views, the analyst can use operations

such as binning, grouping, and aggregation, and then generate visualizations from

the view. For example, to generate the view 'total sales by store', the analyst would

group each sales record based on the store where the sale took place and sum up

the sale amounts per store. This operation can easily be expressed as the familiar

aggregation over group-by query:

Q' = SELECT store, SUM(amount) FROM Sales WHERE

Product = "Laserwave" GROUP BY store

The result of the above query is a two-column table that can then be visualized as

a bar-chart. Table 1.1 and Figure 1-1 respectively show an example of the results of

this view and the associated visualization.

To explore the query results from different perspectives, the analyst generates a

large number of views (and visualizations) of the form described above. (3) The an-

alyst then manually examines each view and decides which ones are "interesting".

10
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Figure 1-1: Data: Total Sales by Store for Laserwave

Store Total Sales ($)
Cambridge, MA 180.55

Seattle, WA 145.50
New York, NY 122.00

San Francisco, CA 90.13

Table 1.1: Data: Total Sales by Store for Laserwave

This is a critical and time-consuming step. Naturally, what makes a view interest-

ing depends on the application semantics and the trend we are comparing against.

For instance, the view of Laserwave sales by store, as shown in Figure 1-1, may be

interesting if the overall sales of all products show the opposite trend (e.g. Figure

1-2). However, the same view may be uninteresting if the sales of all products follow

a similar trend (Figure 1-3). Thus, we posit that a view is potentially "interesting" if

it shows a trend in the subset of data selected by the analyst (i.e., Laserwave product-

related data) that deviates from the equivalent trend in the overall dataset. Of course,

the analyst must decide if this deviation is truly an insight for this application. (4)

Once the analyst has identified interesting views, the analyst may then either share

these views with others, further interact with the displayed views (e.g., by drilling

down or rolling up), or start afresh with a new query.

Of the four steps in the workflow described above, the ones that are especially

11
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Figure 1-2: Scenario A: Total Sales by Store

repetitive and tedious are steps (2) and (3), where the analyst generates a large

number of candidate views, and examines each of them in turn. The goal of our

system, SEEDB, is to automate these labor-intensive steps of the workflow. Given

a query Q indicating the subset of data that the analyst is interested in, SEEDB

automatically identifies and highlights to the analyst the most interesting views of

the query results using methods based on deviation. Specifically, SEEDB explores

the space of all possible views and measures how much each view deviates from the

corresponding view on the entire underlying dataset (e.g. Figure 1-1 vs. Figures 1-2

or 1-3.) By generating and scoring potential views automatically, SEEDB effectively

eliminates steps (2) and (3) that the analyst currently performs. Instead, once SEEDB

recommends interesting views, the analyst can evaluate this small subset of views

using domain knowledge and limit further exploration to these views.

1.1.2 Example 2: Medical Data

Next, let us examine a use case in a completely different problem domain that also

involves analyses similar to Example 1, and therefore, can benefit from the automatic

construction of interesting views of a user query.

12
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Figure 1-3: Scenario B: Total Sales by Store

Consider a medical researcher studying the cost of care for cancer patients'. The

goal of the study is to identify patients whose cost of care is significantly greater

than average and try to explain the high cost of care. Potential reasons for high cost

include treatments for late-stage cancers, old age of the population, longer survival

time (chemotherapy for a longer duration), type of treatment etc. Note that the goal

is not to build a predictive model for cost; rather, it is to perform exploratory analysis

to explain why certain patients have high cost of care. As a first pass, assume that

the researcher identifies high cost patients as those with cost that is greater than

two standard deviations away from the average cost. This can be expressed via the

following SQL query, assuming a table of patients with their treatment costs and

other treatment-related information.

Q2 = SELECT * FROM Patients where cost-

(SELECT AVG(cost) FROM Patients) >

2 * (SELECT STDDEV(cost) FROM Patients)

Once these patients have been identified, the researcher can begin to analyze the

13
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data to find potential reasons for their high cost of care (This is similar to Step 1

in Example 1). One technique to find potential reasons for high cost is to compare

the high-cost population of patients to the remaining set of patients (called "low-

cost" population). Similar to Example 1 above, we posit that the characteristics

that explain high cost are precisely those characteristics that are different between the

high-cost and low-cost population. For instance, if the majority of high-cost patients

were those with late-stage disease (sicker patients) while the low-cost patients were

not, the researcher could reason that the sicker patients needed more medications

or procedures, leading to higher cost overall. Note that this analysis is similar to

Example 1 where we compared the "total sales by year" for Laserwave oven vs. all

store products. In this setup, we want to compare the "total patients by disease

stage" for high-cost patients vs. low-cost patients. The only change in the problem

formulation is that we are now comparing views of query Q2 against views of the

remaining table, instead of views over the entire table. The rest of the framework

remains unchanged. Therefore, SEEDB can be used to automatically construct a large

number of views of the high-cost population, compare each view to the corresponding

view over the low-cost population, and identify views showing the highest difference

between the two populations. These views identify potential causes for high cost.

Once the researcher has identified views of interest, he or she can follow up with more

complex analyses like statistical significance testing or machine learning.

1.1.3 Example 3: Product Analysis

Consider a company like Facebook2 that continuously deploys changes to its website

and mobile apps, and tracks user interaction through detailed logging. Product spe-

cialists at Facebook use these logs to study how different Facebook users respond to

changes to the web or mobile experience [2]. Each user can be characterized by a

large number of features such as location, age, device used, number of friends etc.

For each user, the logs note the actions taken on the website or app such as likes,

2www.facebook.com
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shares, comments, page visits etc. For example, in order to study the user response

to an update to the mobile app, the specialist compares user interaction metrics for

a large number of mobile users before and after the update (usually a week on week

comparison). The goal is to find patterns in the interaction metrics based on different

user characteristics. Therefore, if it appears that the average number of app visits

on the iOS app have reduced signficantly following the update, it would indicate a

problem with the iOS app.

In terms of the SEEDB framework, log data from the week following the app

update constitutes the query results we seek to analyze and the log data from the

prior week comprises the comparison dataset. As in Examples 1 and 2, the analysis

process requires the specialist to create diverse views of the query results, compare

views to equivalent views on the comparison dataset, and pick the views showing

the highest difference. SEEDB can therefore be used to automate this process and

surface only the most interesting views.

1.1.4 SEEDB

This thesis describes a prototype of the SEEDB system that finds interesting visu-

alizations of query results. Given a query Q indicating the subset of data that the

analyst is interested in, SEEDB automatically identifies and highlights to the analyst

the most interesting views of the query results using methods based on deviation. Our

prototype is based on [12] which describes the vision for SEEDB.

To efficiently and accurately identify interesting views of any given query, we are

faced with the following challenges:

* We must determine metrics that accurately measure the "deviation" of a view

with respect to the equivalent view on the entire database (e.g., Figure 1-1

vs. 1-2), while simultaneouly ensuring that SEEDB is not tied to any particular

metric(s)

9 We must intelligently explore the space of candidate views. Since the number

of candidate views (or visualizations) increases as the square of the number of

15



attributes in a table (we will demonstrate this in subsequent sections), generat-

ing and evaluating all views, even for a moderately sized dataset (e.g. IM rows,

100 attributes), can be prohibitively expensive

" While executing queries corresponding to different views, we must share com-

putation as much as possible. For example, we can compute multiple views and

measure their deviation all together in one query. Independent execution, on

the other hand, will be expensive and wasteful

" Since analysis must happen in real-time, we must trade-off accuracy of visual-

izations or estimation of "interestingness" for reduced latency.

Contributions of the work described in this thesis are:

" We implement the SEEDB system based on [12] to automatically find interesting

views of queries (Chapter 3).

" We propose and implement a number of optimizations to efficiently perform

the search for interesting views and share computation between multiple views

simultaneously (Chapter 5.2).

" We evaluate the performance of our optimizations on a range of datasets and

demonstrate the resulting 100x speedup (Chapter 6.2).

" We model the performance of SEEDB in terms of various parameters of SEEDB

and the underlying database, and use this model to identify optimal parameter

settings for SEEDB (Chapter 6.3).

16



Chapter 2

Problem Definition

Now that we have defined the goal of SEEDB, we formally describe the problem that

SEEDB seeks to address. Given a database D and a query Q, SEEDB considers a

number of views that can be generated from Q by adding relational operators to group

and aggregate query results. For the purpose of this discussion, we will refer to views

and visualizations interchangeably, since it is straightforward to translate views into

visualizations automatically. For example, there are straightforward rules that dictate

how the view in Table 1.1 (Example 1) can be transformed to give a visualization like

Figure 1-1. Furthermore, we limit the set of candidate views to those that generate

a two-column result via a single-attribute grouping and aggregation (e.g. Table 1.1).

However, SEEDB techniques can directly be used to recommend visualizations for

multiple column views (> 2 columns) that are generated via multi-attribute grouping

and aggregation.

We consider a database D with a snowflake schema, with dimension attributes

A, measure attributes M, and potential aggregate functions F over the measure

attributes. We limit the class of queries Q posed over D to be those that select one

or more rows from the fact table, and denote the results as DQ.

Given such a query Q, SEEDB considers all views Vi that perform a single-

attribute group-by and aggregation on DQ. We represent Vi as a triple (a, m, f),
where m E M, a E A, f E F, i.e., the view performs a group-by on a and applies the

17



aggregation function f on a measure attribute m. We call this the target view.

SELECT a, f(m) FROM DQ GROUP BY a

As discussed in the previous section, SEEDB evaluates whether a view Vi is interesting

by computing the deviation between the view applied to the selected data (i.e., DQ)

and the view applied to the entire database. The equivalent view on the entire

database V (D) can be expressed as shown below that we call the comparison view.

SELECT a, f(m) FROM D GROUP BY a

The results of both the above views are tables with two columns, namely a and f(m).

We normalize each result table into a probability distribution, such that the values

of f(m) sum to 1. For our example in Table 1.1, the probability distribution of

Vi(DQ), denoted as P[Vi(DQ)], is: (Jan: 180.55/538.18, Feb: 145.50/538.18, March:

122.00/538.18, April: 90.13/538.18). A similar probability distribution can be derived

for P[Vi(D)].

Given a view Vi and probability distributions for the target view (P[Vi(DQ)]) and

comparison view (P[V(D)]), the utility of Vi is defined as the distance between these

two probability distributions. Formally, if S is a distance function,

U(V ) = S(P[V(DQ)], P[Vi(D)])

The utility of a view is our measure for whether the target view is "potentially

interesting" as compared to the comparison view: the higher the utility, the more the

deviation from the comparison view, and the more likely the view is to be interesting.

Computing distance between probability distributions has been well studied, and

SEEDB supports a variety of metrics to compute utility. These include:

* Earth Movers Distance (EMD) [22]: Commonly used to measure differences

between color histograms from images, EMD is a popular metric for comparing

discrete distributions.

18



" Euclidean Distance: The L2 norm or Euclidean distance considers the two

distributions to be points in a high dimensional space and measures the distance

between them.

" Kullback-Leibler Divergence(K-L divergence) [21]: K-L divergence measures

the information lost when one probability distribution is used to approximate

the other one.

" Jenson-Shannon Distance [20, 19]: Based on the K-L divergence, this dis-

tance measures the similarity between two probability distributions.

While we set the default SEEDB distance metric as EMD (due to its simplicity),

users can choose to use any of the distance metrics defined above. We note that the

above definition of a view and its utility is merely one of many possible definitions

and we choose this particular definition for simplicity and its intuitive nature. We

describe other view definitions and utility metrics in Section 8.

Problem 2.1 Given an analyst-specified query Q on a database D, a distance func-

tion S, and a positive integer k, find k views V = (a, m, f) that have the largest values

of U(V) among all the views that can be represented using a triple (a, m, f ), while

minimizing total computation time.

While the problem definition above assumes that we have been provided with a

query Q and we compare views on Q with corresponding views on the entire database

D, other settings are also possible. For instance, in Example 2 (medical research), we

are provided with query Q and we must compare views on it to the remaining dataset,

i.e. D\Q. Similarly, in Example 3 (product analysis), we are comparing equivalent

views on two separate queries Q1 and Q2. The SEEDB framework is agnostic to

where the comparison dataset is coming from and its contents. It merely provides a

point of comparison for the target view, and therefore SEEDB can be used unchanged

for any of these settings.

19



Chapter 3

Architecture Overview

In this chapter, we present an overview of the SEEDB architecture and relevant design

decisions. Our SEEDB implementation is designed as a layer on top of a traditional

relational database system. While optimization opportunities are restricted by virtue

of being outside the database, our design permits SEEDB to be used in conjunction

with a variety of existing database systems. SEEDB is comprised of two parts: a

frontend and a backend. The frontend is a "thin client" that is used to issue queries,

display visualizations and allow basic interactions with the visualizations. The back-

end, in contrast, performs all the computation required to generate and select views

to be recommended. Figure 3-1 depicts the architecture of our system.

User
Selection
criteria SeeDB Frontend

Query Builder

SeeDB generated
visualizations

View and
interact with
visualizations L

rSeeDB Backend

Query Generator

Optimizer

Most View Processor
relevant

views

Figure 3-1: SeeDB Architecture

An analyst uses the frontend to issue queries to SEEDB. We provide three mech-

20
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anisms for the analyst to issue queries (further discussion in Chapter 4). Once the

analyst issues a query via the frontend, the backend takes over. First, the Metadata

Collector module queries metadata tables (a combination of database-provided and

SEEDB specific tables) for information such as table sizes, column types, data distri-

bution, and table access patterns. The resulting metadata along with the analyst's

query is then passed to the Query Generator module. The purpose of the Query

Generator is two-fold: first, it uses metadata to prune the space of candidate views to

only retain the most promising ones; and second, it generates target and comparison

views for each view that has not been pruned. The SQL queries corresponding to

the target and comparison views are then passed to the Optimizer module. We refer

to these queries collectively as view queries. Next, the Optimizer module determines

the best way to combine view queries intelligently so that the total execution time is

minimized. (We discuss optimizations performed by SEEDB in Chapter 5.) Once the

Optimizer module has generated the optimized queries, SEEDB runs them on the un-

derlying DBMS. Results of the optimized queries are processed by the View Processor

in a streaming fashion to produce results for individual views. Individual view results

are then normalized and the utility of each view is computed. Finally SEEDB selects

the top k views with the highest utility and returns them to the SEEDB frontend.

The frontend generates and displays visualizations for each of these view.

21



Chapter 4

SeeDB Frontend

The SEEDB frontend, designed as a thin client, performs two main functions: it

allows the analyst to issue a query to SEEDB, and it visualizes the results (views)

produced by the SEEDB backend. To provide the analyst maximum flexibility in

issuing queries, SEEDB provides the analyst with three mechanisms for specifying

an input query: (a) directly filling in SQL into a text box, (b) using a query builder

tool that allows analysts unfamiliar with SQL to formulate queries through a form-

based interface, and (c) using pre-defined query templates which encode commonly

performed operations, e.g., selecting outliers in a particular column.

Once the analyst issues a query via the SEEDB frontend, the backend evaluates

various views and delivers the most interesting ones (based on utility) to the frontend.

For each view delivered by the backend, the frontend creates a visualization based on

parameters such as the data type (e.g. ordinal, numeric), number of distinct values,

and semantics (e.g. geography vs. time series). The resulting set of visualizations is

displayed to the analyst who can then easily examine these "most interesting" views

at a glance, explore specific views in detail via drill-downs, and study metadata for

each view (e.g. size of result, sample data, value with maximum change and other

statistics). Figure 4-1 shows a screenshot of the SEEDB frontend (showing the query

builder) in action.
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Chapter 5

SeeDB Backend

The SEEDB backend is responsible for all the computations for generating and se-

lecting views. To achieve its goal of finding the most interesting views accurately and

efficiently, the SEEDB backend must not only accurately estimate the quality of a

large number of views but also minimize total processing time. We first describe the

basic SEEDB backend framework and then discuss our optimizations.

5.1 Basic Framework

Given a user query Q, the basic approach computes all possible two-column views

obtained by adding a single-attribute aggregate and group-by clause to Q. (Remember

from 2 that Q is any query that selects one or more rows from the underlying table.)

The target and comparison views corresponding to each view are then computed

and each view query is executed independently on the DBMS. The query results

for each view are normalized, and utility is computed as the distance between these

two distributions (Section 2). Finally, the top-k views with the largest utility are

chosen to be displayed. If the underlying table has d dimension attributes and m

measure attributes, 2 * d * m queries must be separately executed and their results

processed. Even for modest size tables (1M tuples, d=50, m=5), this technique takes

prohibitively long (700s on Postgres). The basic approach is clearly inefficient since it

examines every possible view and executes each view query independently. We next

24



discuss how our optimizations fix these problems.

5.2 Optimizations

Since view queries tend to be very similar in structure (they differ in the aggrega-

tion attribute, grouping attribute or subset of data queried), SEEDB uses multiple

techniques to intelligently combine view queries. In addition, SEEDB leverages par-

allelism and partitioning to further reduce query execution time. The ultimate goal

of these optimizations is to minimize scans of the underlying dataset by sharing as

many table scans as possible. SeeDB supports the following optimizations as well as

their combinations.

5.2.1 Combine target and comparison view query

Since the target view and comparison views only differ in the subset of data that

the query is executed on, we can easily rewrite these two view queries as one. For

instance, for the target and comparison view queries Q1 and Q2 shown below, we can

add a group by clause to combine the two queries into Q3.

Q1 =SELECT a, f(m) FROM D WHERE x < 10 GROUP BY a

Q2 =SELECT a, f(m) FROM D GROUP BY a

Q3 =SELECT a, f(m), CASE IF x < 10 THEN 1 ELSE 0 END as groupl, 1 as group2

FROM D GROUP BY a, group1, group2

This rewriting allows us to obtain results for both queries in a single table scan. The

impact of this optimization will depend on the selectivity of the input query and

the presence of indexes. When the input query is less selective, the query executor

must do more work in running the two queries separately. In contrast, if the target

and comparison views are both selective, and an index is present on their selection

attributes, individual queries can run much faster than the combined query which

must scan the entire table.
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5.2.2 Combine Multiple Aggregates

A large number of view queries have the same group-by attribute but different ag-

gregation attributes. In addition, the majority of real-world datasets, tables have

few measure attributes but a large number of dimension attributes (e.g. the Super

Store dataset has 5 measure attributes but tens of dimension attributes). Therefore,

SEEDB combines all view queries with the same group-by attribute into a single, com-

bined view query. For instance, instead of executing queries for views (ai, Mi, fi),

(a, im2 , f2) . . . (ai, ink, fk) independently, we can combine the n views into a single

view represented by (a,, {i, m 2 ... mk}, {fi, f2 ... fk}). We expect this optimization

to offer a speed-up roughly linear in the number of measure attributes.

5.2.3 Combine Multiple Group-bys

Since SEEDB computes a large number of group-bys, one significant optimization is to

combine queries with different group-by attributes into a single query with multiple

group-bys attributes. For instance, instead of executing queries for views (ai, mi1 ,

fi), (a 2 , Mi1 , fi) ... (an, mi, fi) independently, we can combine the n views into

a single view represented by ({ai, a2 ... a,}, mi, fi) and post-process results at the

backend. Alternatively, if the SQL GROUPING SETS' functionality is available in

the underlying DBMS, SEEDB can leverage that as well. While this optimization

has the potential to significantly reduce query execution time, the number of views

that can be combined will depend on the number of distinct groups present for the

given combination of grouping attributes. For a large number of distinct groups,

the query executor must keep track of a large number of aggregates. This increases

computational time as well as temporary storage requirements, making this technique

ineffective. The number of distinct groups in turn depends on the correlation between

values of attributes that are being grouped together. For instance, if two dimension

attributes a, and aj have ni and nr distinct values respectively and a correlation

'GROUPING SETS allow the simultaneous grouping of query results by multiple sets of
attributes.
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coefficient of c, the number of distinct groups when grouping by both a, and a3 can

be approximated by ni*nj*(1-c) for c#1 and ni for c=1 (ni must be equal to nj in

this case). As a result, we must combine group-by attributes such that the number of

distinct groups remains small enough. In Section 6.2, we characterize the performance

of this optimization and devise strategies to choose dimension attributes that can be

grouped together.

If we choose a set of grouping attributes that creates a large number of distinct

groups, not only does the query executor need to do more work, the result returned to

the client is large and the client takes longer to process the result. Since this process

can be very inefficient, we choose to store the intermediate results as temporary tables

and then subsequently query the temp tables to obtain the final results. For ease of

further analysis, we denote these two phases as Temp Table Creation (where the

intermediate results are created and stored) and Temp Table Querying (where the

temp tables are queried for final results) respectively.

5.2.4 Parallel Query Execution

While the above optimizations reduce the number of queries executed, we can further

speedup SEEDB processing by executing view queries in parallel. When executing

queries in parallel, we expect co-executing queries to share pages in the buffer pool

for scans of the same table, thus reducing the total execution time. However, a large

number of parallel queries can lead to poor performance for several reasons including

buffer pool contention, locking and cache line contention [13]. As a result, we must

identify the optimal number of parallel queries for our workload.

5.2.5 Sampling

For large datasets, sampling can be used to significantly improve performance. To use

sampling with SEEDB, we precompute a sample of the entire dataset (size of sample

depends on desired accuracy). When a query is issued to SEEDB, we run all view

queries against the sample and pick the top-k views. Only these high-utility views
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are then computed on the entire dataset. As expected, the accuracy of views depends

on the size of the sample; a larger sample generally produces more accurate results

and we can develop bounds on the accuracy of aggregates computed on samples.

There are two ways to employ sampling in the SEEDB setting: (1) depending on the

response time required, choose a sample size that will provide the required response

time and accordingly return to the user the estimated accuracy of the results; or (2)

given a user-specific threshold for accuracy, determine the correct size of the sample

and apply the above technique.

5.2.6 Pre-computing Comparison Views

We notice that in the case where our comparison view is constructed from the entire

underlying table (Example 1 in Chapter 1), comparison views are the same irrespec-

tive of the input query. In this case, we can precompute all possible comparison views

once and store them for use in all future comparisons. If the dataset has d dimension

and m measure attributes, pre-computing comparison views would add d*m tables.

This corresponds to an extra storage of O(d * m * n) where n is the maximum number

of distinct values in any of the d attributes. In this case, we still need to evaluate

each target view, and we can leverage previous optimizations to speed up target view

generation.

Note that pre-computation cannot be used in situations where the comparison

view depends on the target view (Example 2) or is directly specified by the user

(Example 3).
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Chapter 6

Experimental Evaluation

We evaluated the performance of SEEDB on a variety of datasets with different

sizes and number of attributes. We now discuss in detail the effect of each of our

optimization strategies and develop an analytical model that lets us pick the optimial

settings of SEEDB parameters.

6.1 Experimental Setup

Type Dataset Num Num Num Size (GB) Num
Name Rows Dimensions Measures Views

Small, iM 5 2 0.1
Small Small2  IOM 5 2 1 10

Small3  100M 5 2 10
Med iM 50 5 0.4

Medium Med2  lOM 50 5 4 250
Med 3  lOOM 50 5 40
Largei 1M 100 10 1

Large Large2  IOM 100 10 10 1000
Large3  lOOM 100 10 100

Table 6.1: Datasets used for testing

Table 6.1 lists the datasets on which we evaluated the performance of SEEDB.

These datasets are synthetically generated and their size varies from 100 MB to 100

GB and number of attributes ranges from 5 - 100 dimension attributes and 2 - 10
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measure attributes. The relative cardinality of dimension and measure attributes was

chosen to model real-world datasets which usually have a large number of dimension

attributes but few measure attributes. To accurately estimate the effect of specific

optimizations, for each dataset, we also created a supplemental dataset with the same

specifications except that each attribute had the same number of distinct values (100).

For each dataset, we used SEEDB to find the top 20 views of the input query.

Any run that took more than 1 hour was terminated. All experiments were repeated

three times and the results were averaged. We ran experiments using Postgres as the

backend database for SEEDB and a single machine with 32 Intel Xeon E7 processors

with hyperthreading enabled and 256 GB RAM.

6.2 Effect of Optimizations

We now present experimental characterization of the optimization strategies described

in 5. Our goal is to understand the effect of each strategy on SEEDB performance

in order to build an analytical model and predict the optimal set of parameters for

SEEDB.

6.2.1 Basic Framework

We first examined the baseline performance of SEEDB without any optimizations. For

each possible view, we executed the target and comparison view queries separately and

sequentially, and then picked the top views. This corresponds to the basic framework

described in Section 5.1. The number of queries executed for each dataset was twice

the number of views shown in Table 6.1. Figure 6-1 shows the baseline performance

for Small, Medium and Large datasets of size IM. We observe that execution time

increases super-linearly as the size of the dataset (number of dimension and measure

attributes) increases. Moreover, as mentioned before, even for the Medium sized

dataset (IM rows, 5 measure and 50 dimension attributes), SEEDB execution takes

700s, a latency that is unacceptable for interactive queries.
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6.2.2 Combine target and comparison view query

Next, we study the effect of combining target and comparison view queries as de-

scribed in Section 5.2.1. The goal of this optimization is to execute both queries in a

single scan of the table. Therefore, the total number of queries executed is equal to

the number of views possible for a given dataset. This optimization offers an average

speed up of 1.7x across a range of selectivities for the input query.

6.2.3 Combine Multiple Aggregates

SEEDB uses the parameter na,,9 to denote the number of aggregates that may be

included in the same view query. Therefore, given a set of view queries with the

same group-by attribute, view queries are combined so that each query has up to

nagg aggregates. We varied nagg E 2, 3, 5, 10 for each dataset (Note that the Small

and Medium dataset have only 2 and 5 measure attributes respectively). Figure 6-2

shows the performance gains achieved for the IM row datasets. We see that for a

given dataset, increasing n,,99, i.e. computing more aggregates in the same query,

gives an almost linear speedup. We also notice that this optimization is slightly more

effective for larger datasets.

31



Small MediumLag -

5

4

Co

UE

12-

1-1

0-

Num Aggregates

I2 3
5
10

Figure 6-2: Effect of Multiple Aggregate Optimization

6.2.4 Parallel Query Execution

As discussed in Section 5.2.4, executing view queries in parallel can provide significant

performance gains; however, a high degree of parallelism can lead to a performance

drop off for several reasons. Potential reasons include disk contention, RAM usage,

lock contention, context switches and cache line contention [13]. Identifying the

right amount of parallelism requires tuning for the particular workload. The SEEDB

workload consists of multiple parallel queries performing full sequential scans of a

given table. To evaluate the effect of parallelism, we varied the number of queries

that can be executed in parallel and measured its effect on the average time to execute

a query as well as the total execution time. Since our backend DBMS is Postgres,

parallel query execution is implemented by opening multiple connections and running

queries sequentially on each connection.

Figure 6-3 shows the effect of parallelism on the average execution time per view

(Medium dataset, IM rows). Note the log scale on the y-axis. We observe that query

execution time stays flat between 1 - 10 connections, suddenly increases between 10

- 20 connections, and then increases linearly for more than 20 connections. This

suggests that the benefits of parallel execution are outweighed by contention beyond

20 connections. Figure 6-4 shows the total time (as opposed to per view execution
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time) taken by SEEDB for varying levels of parallelism. We observe that the minima

occurs in the range between 10 - 20 parallel queries and the execution times flatten

out after 40 parallel queries. This trend is the effect of two opposing factors: (A)

increased parallelism increases contention, and therefore increases per query execution

time, and (B) parallelism decreases the number of batches of queries that must be

executed, thus reducing overall time. We will take these two opposing forces into

account when we develop an analytical model for SEEDB execution time in Section

6.3.
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Figure 6-3: Effect of Parallelism on Per View Execution Time

6.2.5 Combine Multiple Group-bys

Combining multiple attributes in a group-by clause can reduce the number of views

that must be explored individually. However, the benefits of this optimization can

be lost to high intermediate result cost if the number of distinct groups is large.

As mentioned before, we divide this optimization into two phases: (1) Temp Table

Creation and (2) Temp Table Querying. In the first phase, we run queries with

grouping based on multiple attributes and store the results in temporary tables. In

the second phase, we run single aggregate+group-by queries on the temp tables to

obtain final results for views. For instance, suppose that we want to compute the
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results for views (ai, m, f), (a 2 , m, f) and (a 3 , m, f). Instead of executing these

views individually, we combine these three views into a single view, ({ai, a 2 , a3 }, m,

f), which computes the aggregate for attribute m using function f and groups by

the attributes {ai, a 2 , a3 }. The results of this query are stored in a temporary table

which is then queried to get results for the original views, (a,, m, f), (a2 , m, f) and

(a3 , m, f).

SEEDB uses the parameter nGB to denote the number of attributes in the group-

by clause. To evaluate the effect of combining group-bys, we ran SEEDB by varying

number of group-by attributes, i.e. the nGB parameter, between 1 and the number of

dimensions d in a given table. For each run, we measured the amount of time taken

to create the temporary tables, the time taken to query the temporary tables and the

total execution time. Figure 6-5 to 6-9 show the results for the Medium dataset of

size IM tuples.

Temp Table Creation Phase: Figure 6-5 shows the average time required to

create temporary tables for nGB=-... 50. There are several points to note in this

graph: (1) for nGB >= 10, the number of connections does not have a significant

impact of the temp table creation time. We see this behavior because for nGB >= 10,

the number of temp tables created is <= 5 and therefore a maximum of 5 connections
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is used irrespective of the number of connections that are open. We also note an

upward trend in the total temp table creation time with increasing nGB because the

temporary tables gradually become larger in size (the number of rows in the table is

bounded by the number of rows in the input table but an increase in nGB increases

the columns present in the table). We also observe that the "sweet spot" for temp

table creation occurs between 1 - 2 group-bys.
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Figure 6-5: Average Temp Table Creation Time
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Figure 6-6: Total Temp Table Creation Time
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Figure 6-6 shows the total time spent in creating temporary tables in SEEDB. As

before, we see that the total time flattens out after 10 group-bys; however, we observe

a reordering of the the trend lines with respect to number of connections. While the

average time taken to generate temp tables with 5 connections is the least, SEEDB

must run more batches of queries to create the required number of temporary tables.

We observe that that 40 connections is optimal for minimizing the total temp table

creation time. As in the previous diagram, we observe a minima around nGB = 2.

Temp Table Query Phase: Figures 6-7 and 6-8 respectively show the average

time required to run each view query on the temp tables and the total time to run

all view queries. Note that for the Medium dataset, there are 250 possible views and

therefore 500 view queries that are to be run against the database.

In Figure 6-7, we see clear trends in the average time taken to execute view queries

on temp tables. Specifically: (1) The time taken to query a temp table increases non-

linearly with the number of queries executing in parallel. We see that the trend lines

are ordered by number of connections and the loss of performance grows with number

of connections. (2) As before, we observe a slight increase in the execution time as

the size of temp tables increases. This is not surprising since the query executor must

scan and process more data. (3) Finally, we observe a minima at nGB = 2, similar

the to two graphs above.

Figure 6-8 shows the total time taken to query the temp tables for all the final

views. Note again that the trends in total query time are not identical to those in

average query time because number of query batches required is inversely proportional

to the number of connections. In Figure 6-8, we see that runs with 5 connections are

slow not because of high average query time but because of the large number of

batches of queries that must be executed. In contrast, runs with 40 connections

require very few batches but have high average query time. 10 - 20 connections and

nGB = 1 - 2 achieves the best performance.

Total Execution Time: The total execution time for SEEDB is the sum of time

required for the two phases above. Figure 6-9 shows the total SEEDB execution time

for different values of nGB and number of connections. We observe that the best
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performance is obtained for nGB = 2 and 40 parallel connections.

Effect of Number of Groups: The above experiments suggest that nGB 2

is the optimal value for the number of group by attributes, both for temp table

creation and querying. Next we study whether this constraint applies to the number

of attributes in the group by clause or the number of distinct groups produced by the

grouping. For this purpose, we created variants of the Medium dataset (IM rows)

where each dimension attribute had n distinct values with n=10... 1000. We then

repeated the experiments combining multiple group-bys using these datasets. Figure

6-10 shows the results of this test. In the test dataset, the total number of distinct

groups for attributes ai and aj is the product of the number of distinct groups for

each attribute. We observe in 6-10 that the previously-observed minima at nGB = 2

is actually a function of the number of distinct groups that are generated by the

multiple-attribute grouping. Specifically, we observe that the optimal value for the

number of distinct groups is in the range of 10,000 - 100,000. We observe similar

trends for temp table creation and query time.
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6.3 Analytical Model

In this section, we use insights from the experimental characterization of various

optimizations to develop an analytical model of SEEDB performance. Table 6.2

defines the various parameters used in our model.

As before, we break our model into two parts, Temp Table Creation or Phase 1 and

Temp Table Querying or Phase 2. Note further that in each of these phases, multiple

queries are executing in parallel. We call the set of queries executing in parallel as a

"batch" of queries. Suppose that the total number of queries to be executed is q and

nco,, queries can be executed in parallel. Then the total number of batches required

to executed all the queries is . We denote the number of query batches used in

temp table creation and querying as bcreate and bquery respectively.

We now describe the analytical model for Phase 1 or Temp Table Creation. The

time required to create a temp table is proportional to the sum of the time required

to query the input table, aggregate measure attributes and finally write the temp

table. We claim that the time taken to process one row of any table is equal to the

constant time to process any record plus the time required to process all the columns
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in the record.

Tcreate n * (tr + tc * c) + tw * nt * (tr + t cctt)
nconn

We can model Temp Table Querying similarly. Total time to query a temp table

is the time to query a single row of the temp table multiplied by the number of rows

in the table.

Tquery ntt * (tr + te * ctt)

A related quantity we model is bquery, the number of temp table query batches (Phase

2 batches) that are issued per temp table creation batch (Phase 1 batch). If det is the

number of dimension attributes in a temp table and nagg is the number of measure

attributes, the given temp table contains results for (det * nagg) views, and therefore

dtt * nagg queries will be made against the table. Further, since each temp table

contains det dimension attributes, there will be Min(-, nenn) temp tables being

queried in any batch, where neon is the number of queries executing in parallel.

Therefore, the total number of queries is dtt * nagg * Min(, ncon) Finally, since
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nconn of these queries can execute at the same time, bquery can be modeled as follows:

bq - drt * n Agg * Min( d, nconn)
bquery -cn t

Using the three definitions above, we can model the total time taken by SEEDB

as shown in Equation 6.3. If there are bcjrete Phase 1 batches, then the total execution

time is equal to the time taken to complete one batch multiplied by bcreate. In turn,

the time taken to complete a Phase 1 batch is the time taken to create temp tables

and subsequently query them in Phase 2 batches. Since these two steps take place in

parallel, we approximate the completion time for a Phase 1 batch as the difference

between the temp table query time and temp table creation time.

Totai = ||(Tcreate - Tquery * bquery) I||* bcreate

We evaluate the accuracy of our model by comparing the model predictions to

actual performance results. Figure 6-11 shows the accuracy of our model for predicting

time to create temporary tables using Equation 6.3 (Medium dataset, 1M tuples, 5

connections). Similarly, Figure 6-12 shows the accuracy of our model for predicting

time to query temporary tables using Equation 6.3. Finally, Figure 6-13 shows the
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Table 6.2: Analytical model parameters

accuracy of our model for predicting total execution time as derived in Equation 6.3.
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Figure 6-11: Actual and Estimated Temp Table Query Time

6.4 Choosing SEEDB parameters based on the model

Choosing Number of Parallel Queries: The speed up offered by running queries

in parallel depends on the DBMS parameters such as maximum number of connec-

tions, shared buffer size, etc. In our implementation, each phase of processing can
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issue up to ncnn queries in parallel, so in principle, there may be up to 2 *nomn queries

running in parallel. Since each DBMS has a maximum number of queries that can be

executed in parallel, neonn must be set to be smaller than half the maximum number

of connections. The exact number of connections will depend on the other workload

in the system and the size of the dataset. In our setup, nconn,=40 gives the best

results for a range of dataset sizes and system parameters.

Choosing nagg: Combining multiple aggregates offers a performance gain that

is almost linear in the number of aggregates, without any significant penalty. As a

result, we set nagg equal to the number of measure attributes in the table.

Choosing dimension attributes to combined processing: As discussed in

Section 6.2.5, the optimal number of distinct groups consistently falls in the range

10,000 to 100,000. As a result, we set ngroups, the maximum number of groups that any

query can generate, to 100,000. This parameter is used to pick dimension attributes

that will be combined into a single view query. For a set of attributes a1 . . . an, the

maximum number of distinct groups that can be generated is fJi aj. This is the worst

case bound since correlation between two attributes can only decrease the number of

distinct groups. SEEDB models the problem of grouping attributes with a constraint

on number of groups as a variant of bin-packing. Specifically, SEEDB adopts the
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following problem formulation.

Let nrd be the number of distinct values for dimension attribute di. The traditional

definition for bin packing states that given bins of size V and n items with size a1 ... an,

find the minimum integer number of bins and a corresponding partition of the set of

items such that E, a, < V for all a3 belong to any given partition. In our setting,

there is a limit on the product (as opposed to the sum) of the sizes of items. As a result,

we formulate the problem as follows: Given bins (queries) of size V (V=100,000) and

d attributes with sizes log(ndj), find the minimum number of bins and a corresponding

partition of the d attributes such that Z3 log(nd), i.e. ]J j nd, < V. Bin-packing has

been well studied and we use off-the-shelf software [1] to perform bin-packing on the

dimension attributes.

6.5 Experimental Evaluation with All Optimiza-

tions

We now show performance results for SEEDB using the optimal parameter settings

described above. Specifically, we set neonns=40, nagg=m (i.e. number of measure

attributes) and ngroups=100,000 for bin-packing. Further, we apply the optimization

43



of combinging target and comparison queries for each view. From Figure 6-14, we see

that the combination of all optimizations gives us a speedup of about 10OX for the

Medium and Large datasets (note the log scale on Y axis). Although the impact of

optimizations is relatively small for the Small dataset, we still observe that the total

execution time is halved. We thus see that the all the optimizations taken together

can enable SEEDB to run at near-interactive response times.

Combined Effect of All Optimizations

1000

Num Aggregates
0 All

NoOp

1F-

Figure 6-14: Performance Speedup With Optimizations
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Chapter 7

Related Work

Recently, there has been renewed interest in the database community for building

data analysis tools. As compared to previous work, the emphasis of this wave of

tools is to make the data analysis accessible to non-expert users, to make the analysis

process interactive, and to enable the analysis to scale to large datasets. Our work

on the SEEDB system is related to existing work in several lines of research.

7.1 Interactive Data Visualization Tools

Over the past few years, the research community has introduced a number of inter-

active data analytics tools such as ShowMe, Polaris, and Tableau [18, 10]. Unlike

SEEDB, which recommends visualizations automatically, these tools place the onus

on the analyst to specify the visualization to be generated. For datasets with a large

number of attributes, it is not possible for the analyst to manually study all the

attributes; hence, interactive visualization needs to be augmented with automated

techniques of visualization. Profiler is one such automated tool that allows analysts

to detect anomalies in data [7].

Similar visualization specification tools have also been introduced by the database

community, including Fusion Tables [3] and the Devise [9] toolkit.
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7.2 Data Cubes

The work done in SEEDB is of a flavor similar to previous literature in building and

browsing OLAP data cubes. Data cubes have been very well studied in the literature

[5, 4], and work such as [14, 16, 15, 11] has explored the questions of allowing analysts

to find explanations for trends, get suggest for cubes to visist, identify generalizations

or patterns starting from a single cube. While we can reuse some of the similarlity

metrics proposed in these papers, the exact techniques are different because of the

specific problem setup.

7.3 General Purpose Data Analysis Tools

Our work is also related to work on building general purpose data analysis tools on

top of databases. For example, MADLib [6] implements various analytic functions

inside the database. MLBase [8] provides a platform that allows users to run various

machine learning algorithms on top of the Spark system [24]. Similarly, statistical

analysis packages such as R, SAS and Matlab could also be used to perform analysis

similar to SEEDB.

7.4 Multi-query optimization

Since SEEDB must execute a large number of queries, there are several opportuni-

ties for performing multi-query optimization and we explore some of these strategies

in Section 5 and build an analytical model of SEEDB performance. For this, we

draw upon work in the areas of multi-query optimization and modeling parallel query

execution [23, 17, 25].
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Chapter 8

Discussion

This thesis describes our implementation of SeeDB and its evaluation. There are

several ways to extend SeeDB to be more efficient, more flexible and more helpful in

the data analysis process. We now describe some directions for future work

8.1 Making SeeDB more efficient

Interactive response times for SeeDB are currently achieved mainly through aggressive

sampling and query optimization strategies. Another way to achieve lower response

times is to perform aggressive pruning of views even before the corresponding view

queries are executed by the DBMS. This pruning can be performed if we can claim

with high probability that certain views are guaranteed to be less interesting than

other views. We can leverage information about data types, data distributions and

correlations in order to perform this pruning of views.

Another approach to making SEEDB more efficient is to choose a backend DBMS

that is particularly suited for the workloads generated by SEEDB. The advantage

of having SEEDB as a wrapper over the database is that we can replace backends

without changes to the SeeDB code. In particular, it would be instructive to compare

how databases with different data layouts can speed up SEEDB processing. One may

expect that column stores like Vertica may be more efficient at processing SEEDB

workloads since individual columns would be stored separately. It is however also
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likely that optimization strategies would be significantly different depending on the

data layout. Similarly, a comparison of column stores vs. main memory databases

like VoltDB could also provide interesting insights. Finally, we can attempt to speed

up workloads like SEEDB by implementing operators inside the database that can

leverage shared scans for tables.

8.2 Making SEEDB more flexible

For data analysis tools to be effective, they must achieve the right balance of au-

tomation and interactivity in the analysis process. For instance, in SEEDB, merely

providing the analyst the system's pick of ten most interesting views is insufficient.

We must not only provide explanations for our choice but also allow the user to

interrogate our views directly and further manipulate the data iteratively.

We can offer the user even more flexibility by providing a diverse set of distance

metrics and allowing the user to specify the distance metric. In the future, we could

also attempt to learn a distance metric based on user's feedback. Similarly, we can

leverage user feedback to learn the type of views that a user finds interesting and use

that model to prune uninteresting views.

8.3 Making SEEDB more helpful in data analysis

The model used by SEEDB to measure differences in data is only one of many ways

to find differences in data. One can image applying a host a techniques including

statistical significance testing, classification and clustering for this purpose. In the

future, SeeDB should be augmented to include these additional difference-finding

techniques. It is likely that this would require redefining distance metrics and com-

pletely redesigning optimizations for these operations. However, it would be possible

to use the current aggregate+group-by framework used by SEEDB as a pruning step

for these more advanced techniques. The addition of this functionally is not a trivial

change, but it would make SEEDB much more useful for data analysts.
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Chapter 9

Conclusion

In this thesis, we described a prototype of the SEEDB system used to find interesting

visualizations of any database query. Given a query Q, SEEDB identifies and high-

lights the top-k most interesting views of Q using techniques based on deviation. We

implement SEEDB as a layer on top of a relational DBMS and describe the various

optimizations strategies used to provide near-interactive response times for a range

of datasets. Our experimental evaluation demonstrates the benefits of each of the

different optimizations. We build a model to predict the performance of SEEDB as a

function of SEEDB and the DBMS parameters. We then use this model to pick opti-

mal parameters for SEEDB over a range of diverse datasets. Finally, we demonstrate

that the combination of SEEDB optimizations offers almost a 100X speedup in total

execution time and allows automatic visualization to be performed in an interactive

manner.
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