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Abstract

Transportation agencies often resort to the use of traffic simulation models to eval-
uate the impacts of changes in network design or network operations. They often
have multiple traffic simulation tools that cover the network area where changes are
to be made. Nonetheless, these multiple simulators may differ in their modeling
assumptions (e.g., macroscopic versus microscopic), in their reliability (e.g., quality
of their calibration) as well as in their modeling scale (e.g., city-scale model versus
regional-scale model).

The choice of which simulation model to rely on, let alone of how to combine their
use, is intricate. A larger-scale model may, for instance, capture more accurately
the local-global interactions; yet may do so at a greater computational cost. This
thesis proposes a methodology that enables the simultaneous use of multiple traffic
simulation models.

We propose a simulation-based optimization algorithm that embeds information
from simulation models with different levels of accuracy and with different levels
of computational efficiency. The algorithm combines the use of high-accuracy low-
efficiency models with low-accuracy high-efficiency models. This combination leads
to an algorithm that can identify points (e.g., network designs, traffic management
strategies) with good performance at a reduced computational cost.

We evaluate the performance of the algorithm with a traffic signal control problem
on a small network, as well a large-scale city network. We show that the proposed
algorithm identifies signal plans with excellent performance, i.e., with reduced average
trip travel times, while doing so with a reduction in the computational cost.

Thesis Supervisor: Carolina Osorio
Title: Assistant Professor of Civil and Environmental Engineering
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

Managing urban vehicular traffic is an important and complex problem that cities all

over the world are interested in solving, and traffic simulation models have become

ubiquitous tools to achieve this. There are a number of commercially available traffic

simulation models, each of which is customized to suit a specific aspect of transporta-

tion planning and operations. Such models can be broadly classified in terms of how

traffic is represented as microscopic or mesoscopic or macroscopic. A detailed review

of the different types of simulation models can be found in Ratrout and Rahman

(2009). In this work, we focus on deriving traffic signal plans that reduce the average

user travel time using microscopic traffic simulation models within an optimization

framework.

1.2 Problem Statement

Let E[f(x; p)] represent the objective that needs to be optimized, x represent the de-

cision vector that can be controlled by a transportation professional, and p represent

the vector of exogenous parameters that describe the system of interest.For instance,
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x could represent traffic signal plans or the design of a vehicle sharing network. The

network topology, for instance is a parameter that is beyond the control of a trans-

portation professional in most cases, and could be represented by p. The objective,

E[f(x; p)] could be chosen as the expected value of the average delay experienced by

users, pollution level etc. as evaluated using the simulation model. The problem can

be formulated without loss of generality as follows:

minimize E[f(x; p)] (1.1)
x

subject to Z(x;p) = 0 (1.2)

x E N (1.3)

As we will describe in later sections, we use a stochastic microsimulation model

and hence are interested in the expected value of f(x; p). Here, Z(x; p) = 0 represents

the set of constraints that we need to consider (for instance, the sum of the green

time allocated to different phases should sum up to the cycle time).

Microsimulation models attempt to model traffic dynamics by modeling the behav-

ior of individual vehicles and are hence computationally intensive. This makes the use

of such models in iterative optimization algorithms that involve hundreds of iterations

time consuming and highly inefficient. Our goal is to therefore use microsimulation

models of varying fidelity within a simulation-based optimization (SO) framework

to address this inefficiency. Our approach combines the use of high-accuracy low-

efficiency models with low-accuracy high-efficiency models. This combination leads

to an algorithm that can identify points (e.g., network designs, traffic management

strategies) with good performance at a reduced computational cost.

1.3 Literature Review

In this section, we review how the the transportation community has dealt with

issues associated with the computation time of traffic simulation models using hybrid

9



models. We follow that up with a review of surrogate-based optimization models, and

how we propose to apply one such technique within a simulation-based optimization

framework.

1.3.1 Microsimulation models

Traffic microsimulation models describe the behavior of individual vehicles in a net-

work, the interaction between different vehicles as well as the interaction between the

individual vehicles and the transportation infrastructure (i.e., traffic signal design,

width of an intersection). This behavior and the resulting interactions are captured

using a set of models that govern every action of a vehicle. For instance, a car-

following model governs the acceleration and deceleration patterns of a car, while

there are other models that account for lane-changes. Similarly, a route choice model

determines how the users decide on the path to their destination, as well as if and

when they change their route along the way based on new information regarding the

network conditions.

Since each of these models are applied to every vehicle in the network, it results

in significantly larger computation times as compared to, for instance, a macroscopic

traffic model in which vehicles are aggregated and treated as flows. Another feature

of these models, since they try to model human behavior, is that they are stochastic

in nature. Therefore, two runs of the same microsimulation model with no change in

the inputs or model parameters could lead to very different outcomes. Hence, some

applications might require averaging multiple evaluations of the same point using a

traffic microsimulator.

Thus, in order to overcome the limitations of large computation times associated

with microsimulation models, several attempts have been made to combine their use

with models of lower fidelity (macroscopic or mesoscopic). The major hybrid modeling

attempts made in the past two decades are summarized in Table 1.1. We describe

each of these works in brief, and summarize the key issues associated with the hybrid

approach to traffic simulation.
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1.3.2 Bunch et al. (1999)

One of the earliest works in using transportation models of different modeling com-

plexities for the same application is reported in Bunch et al. (1999). The authors use

a macroscopic planning model (EMME/2) to model a large region. However, they are

interested in studying only a subarea of this region, and use a meso scale (mesoscopic)

simulation model (INTEGRATION) which covers this subarea in greater detail. The

primary reason they chose this approach is to save on computation effort, as is evi-

dent from their comment "In theory, one could model the entire region using only a

simulation model, but this is not yet practical for desktop PCs and current software".

As a first step, the macroscopic travel demand model is built for the Seattle

region. A subarea of the Seattle region is modeled separately using a mesoscopic

simulation model. Both the models are validated to be representative of the baseline

1990 time period. The authors study the impact of six different congestion miti-

gation strategies that are proposed to tackle an expected increase in congestion in

the Seattle 1-5 North Corridor. These strategies include measures like construction

of new roads or lane miles, conventional signal installations, transit improvements,

traditional demand management measures, advanced traveler information systems,

advanced traffic management systems and advanced public transportation systems

(Bunch et al., 1999).

The scenarios that would result from adopting each of the six strategies that are

coded into both the macroscopic and the mesoscopic models for the year, 2020 to

perform a what-if analysis. Each scenario is first evaluated using the macroscopic

model, from which relevant performance measures are recorded. The flows observed

in the macroscopic model at the interface of the subarea and the larger region are

used to define a demand matrix for the mesoscopic model covering the subarea. The

mesoscopic model is then run for each of the scenarios to evaluate the effectiveness of

ITS applications using various measures of effectiveness like delay reduction, through-

put, coefficient of trip time variation, expected number of stops per vehicle kilometer

traveled etc.

12



The authors note that the differences in assumptions between the macroscopic and

the mesoscopic models. While the macroscopic model allows for link volumes greater

than the link capacities, the mesoscopic model by design cannot have link volumes

greater than the corresponding link capacities. Also, the mesoscopic model explicitly

models queuing in links while the macroscopic model uses speed-flow relationships,

and does not model the queuing. Hence, absolute values of the link costs are not sent

as feedback to the macroscopic simulation model since the links within the subarea

and those outside of it have different link costs due to differences in the modeling

assumptions. Instead, the relative change in the queuing delays in each of the six

strategies with respect to that of the baseline scenario is sent as feedback from the

mesoscopic simulation model to the macroscopic demand model. The authors do not

describe how this feedback is used by the macroscopic model.

1.3.3 Van Vliet and Hall (1997)

Another early study of simultaneous use of models that have different levels of detail

is presented in the user manual of SATURN 9.3 (Van Vliet and Hall, 1997). Users of

the software have the option of using a macroscopic static traffic assignment model

for the route choice in a large network and a detailed mesoscopic simulation model to

model a subset of this large network. The authors prescribe an iterative procedure, in

which the macroscopic and mesoscopic model are run sequentially, one after another.

In the macroscopic traffic assignment model, speed flow relationships are used to

determine the travel time on links as a function of flow. The link travel times are

used to find a set of path flows that are in stochastic user equilibrium. On the other

hand, in the mesoscopic simulation model, users also have the option to define the

travel time either based on speed-flow relationships or simply use the free-flow travel

time. The authors expect the free-flow travel time option to be used more commonly.

The resultant path flows of the macroscopic traffic assignment model are trans-

lated into link flows and turning flows, and given as input to the simulation model.

The simulation model is then run to determine the delays, capacities and queues for

individual turning moments. It also identifies new cost-flow relationships and junc-

13



tion delays, that are used as inputs to the next iteration of the traffic assignment .

Thus, the assignment and simulation model are repeatedly run one after the other,

until the percentage variation between link flows of successive assignment runs are

less than a threshold.

1.3.4 Montero et al. (1998)

An example of a macroscopic traffic assignment model (EMME/2) being used along

with a microscopic simulation model (AIMSUN/2) to evaluate the design of road net-

works is presented in Montero et al. (1998). The traffic assignment in a large regional

network is modeled using EMME/2 and a subarea is chosen for detailed analysis

using microsimulation. A total of five different proposed infrastructure projects are

evaluated in this exercise.

The EMME/2 model uses volume delay functions to compute a static user equi-

librium while the AIMSUN/2 microsimulation model simulates individual vehicles

based on behavioral rules (gap acceptance, lane changing etc.). The first step in the

integrated framework involves running once the traffic assignment model, which is

followed by running the microsimulation model. In a procedure that is similar to the

one used in Bunch et al. (1999), the flows from the traffic assignment are used to gen-

erate the demand matrix for the microsimulation model. However, in this case there

is no feedback from the microsimulation model to the traffic assignment model. The

results of the microsumulation model alone are used for evaluation of the performance

of different road network designs.

1.3.5 Rousseau et al. (2008)

In Rousseau et al. (2008) , the authors propose a three tier structure to build a high

resolution microsimulation model of a subnetwork starting with a macroscopic model

of a larger network. The three models used in this framework are

e Regional model (software: CUBE)

e Subarea macroscopic model with high level of network detail (software: Visum)

14



* Microscopic model for the subarea (software: Vissim)

The authors propose the following approach to the integration of these three mod-

els: The first step is to to identify the subarea boundary (for instance, the downtown

area) within the regional model, following which the subarea network is cut out and

the demand matrix for this area network is computed. The path flows from the traf-

fic assignment in the regional model are used to generate the demand matrix of the

subarea. The subarea network is then refined, by using a street network of higher

resolution as compared to the one used in the original model from which it was cut

out. This high resolution street network includes side streets and important driveways

that are not modeled in the original regional model. It is not clear whether this new

data models the existing roads in more detail. Following this, traffic assignment is

run once again for the refined subarea network. Intersection data (i.e. geometry and

signal control) is then added to the refined network. While the macroscopic model

is calibrated using only the link volumes on principal highways, the subarea macro-

scopic model is calibrated using additional data in the form of turn volume counts

along with the data used to calibrate the regional model.

The path flows and the network topology from the refined subarea network are

directly exported into a microsimulation software. The microsimulation model has

different assumptions compared to the macroscopic ones used so far, including car

following, lane changing and gap acceptance models - all these models are then cal-

ibrated to come up with a realistic microsimulation model. The next logical step

would be to provide feedback from the microscopic model to the macroscopic model.

The authors comment that this step is often skipped by practitioners since it would

add an additional calibration cycle to an already complex methodology.

1.3.6 Oh et al. (2000)

In Oh et al. (2000), the authors use a microscopic simulation model PARAMICS

to describe the movements of individual vehicles. A macroscopic traffic assignment

(DYNASMART) model of the full network used in the microsimulation model is used

15



for route guidance, as described below.

The authors observe that the microscopic simulation is highly sensitive to even

minor variations in the road geometry (changing curvature, width etc.). Hence an

accurate description of this geometry in the microsimulation model requires the cre-

ation of a large number of short links that could otherwise be modeled as a single

link in a macroscopic model(as the macroscopic model is not as sensitive to minor

changes in the road geometry). As a result, the route choice models that come with

the microscopic simulation model PARAMICS do not scale efficiently to large-scale

networks due to the detailed network descriptions used in microscopic models. There-

fore, for large networks, modeling route choice decisions of drivers as a response to real

time information provided by Intelligent Transportation Systems becomes practically

impossible.

Hence, the authors create an abstract network that models the important features

of the full network used in the microsimulation model, and ignore minor changes in

geometry and road characteristics. In the abstract network, the number of nodes

isn't significantly larger than the actual number of decision nodes (i.e. intersections

in the actual road network where users have to choose from multiple paths to their

destination). This abstract network is accurate enough to model the path dynamics

using DYNASMART, as it uses macroscopic flows on idealized links.

In the integrated framework, the route choice module in PARAMICS is effectively

disabled and replaced by the route choice model from DYNASMART.The microsim-

ulation of vehicle movements in the PARAMICS model is used to compute aggregate

link costs and sent to the DYNASMART model at every time step. Every time a

vehicle in the PARAMICS model reaches a node where it has the option of choosing

from more than one link to go to, a decision routine is run on the DYNASMART

model, the result of which informs the vehicle in the PARAMICS model. Thus, the

full network is modeled in both DYNASMART and PARAMICS, with the former

being used for its efficient route choice models and the latter for its microsimulation

capabilities. Although the authors dont present a quantitative comparison of the com-

putation time between the inbuilt route choice model and their proposed approach to

16



making route choice decisions, they conclude that for large networks, their proposal

of using a macroscopic model to make route choice decisions would be advantageous.

1.3.7 TransModeler

The traffic simulation package TransModeler (version 3.0) allows users to describe

different sections of the same network as microscopic, mesoscopic or macroscopic

models. In the microscopic segments, vehicles are modeled similar to other microsim-

ulation models, using car following and lane changing models. In the mesoscopic

section, groups of vehicles are modeled as traffic cells, and speed density relationships

are used to determine their movements. The macroscopic model is based on a link

performance function similar to the one in static assignment models. The different

models are run simultaneously, and the models that run fastest wait for the others at

every time step (Burghout, 2004). The details of how the different models interact

with each other are not provided in the website that describes these features.

1.3.8 Sewall et al. (2011)

In Sewall et al. (2011) the authors propose a model that has features similar to

TransModeler, except that they allow the users to choose between a microscopic

and a macroscopic model for different parts of the network and do not provide the

mesoscopic option. That is, the road network consists of mutually exclusive regions

modeled using either a microscopic or macroscopic model. They use the 'Aw-Rascle-

Zhang' (ARZ) model for the macroscopic regions (Aw and Rascle, 2000). For the

microscopic regions, they use an extended version of the agent-based simulation model

from Treiber et al. (2000). Their version includes behavioral models for 'lane changing,

inhomogeneous driver models and vehicle response to traffic signals, intersections and

variable speed limits' (Sewall et al., 2011), in addition to the car following model from

Treiber et al. (2000).

For a timestep At , the computations are first performed for the continuum regions

covered by the macroscpoic model; this involves solving partial differental equations.
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At the interface between the two regions, the macroscopic densities are then disag-

gregated into discrete cars, using a procedure called as Poisson instantiation. This

process assumes that the spatial distribution of vehicles in a lane follows a Poisson

distribution. Now computations for an equal timestep At are carried out for the

agent-based regions. The next step is to aggregate the discrete cars flowing from

the agent-based regions to the continuum regions into densities and flows. While the

authors delve into great detail on the aggregation and disaggregation procedures at

the interface, they don't explicitly model the a ssignment of traffic in the network.

Their model seems to simply track the dynamics of the vehicles on the network after

the routes for different origin destination pairs are given as an input.

1.3.9 Bourrel and Lesort (2003)

The hybrid model Hystra (Bourrel and Lesort, 2003) uses a macroscopic and a micro-

scopic model that are both based on the LWR (Lighthill-Whitham-Richards) traffic

flow theory. The macroscopic model is the Strada model (Buisson et al., 1996). The

authors, in an attempt use a microscopic model that is also based on the LWR model

choose the Newell optimal velocity model (Newell, 1961). The authors impose the

condition that the time step used in the microscopic model is much smaller than the

same in the macroscopic model.

In the hybridization scheme proposed in Hystra, the road network consists of mu-

tually exclusive regions modeled using either a microscopic or macroscopic model. In

order to accurately transfer information from the macroscopic model to the micro-

scopic model and vice versa at the boundary at every time step, the authors use a

'transition cell' at the interface to split up the transition process.

In a transition cell connecting a macroscopic segment to a microscopic segment,

the flow from the macroscopic model is dis-aggregated into vehicles in the microscopic

region. The arrival times of these newly created vehicles are distributed uniformly

within the corresponding time period. Similarly, in a transition cell connecting a

microscopic segment to a macroscopic segment, the vehicles exiting the microscopic

segment are aggregated into macroscopic parameters (like flow and density). The
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macroscopic segment has an upper limit on the number of vehicles that are allowed

to enter within a time step. This condition is satisfied in the aggregation step by

imposing a minimum exit gap for vehicles that leave a microscopic segment and enter

a macroscopic one. The vehicles that try to exit with a smaller gap are delayed.

This model is tested on a single lane that consists of a microscopic region sand-

wiched between two macrosocopic regions. The vehicles first enter the macroscopic

region and then transition into the microscopic region through a transition cell where

the macroscopic flow is disaggregated into individual vehicles. Finally, the vehicles

re-enter the macroscopic region through a transition cell that aggregates individual

vehicles into macroscopic flow. Based on the observations from this test, authors

conclude that their model correctly translates the boundary conditions between the

two types of model used.

1.3.10 Magne et al. (2000)

The MICMAC model in Magne et al. (2000) combines the microscopic model SITRA-

B+ and the macroscopic model SIMRES. The SIMSRES model is based on the

METANET model from Messner and Papageorgiou (1990), in which the links are

discretized into cells for which quantities like flow, density and concentration are

calculated for each of the time steps. The authors state that both the microscopic

and macroscopic models in this framework need to satisfy the boundary conditions

on the flow-density function and its slope for certain critical values of the density.

The authors therefore use a modified version of the SITRA-B+ model as the original

SITRA-B+ model does not satisfy all of the aforementioned constraints.

The road network in the MICMAC model consists of mutually exclusive regions

modeled using either the microscopic or the macroscopic model (similar to Hystra).

The disaggregation of flow from a macroscopic cell to a microscopic cell is performed

using a Poisson distribution for the time gaps. Similarly, the aggreagation process

(from microscopic to macroscopic segments) of discrete vehicles into traffic flow vari-

ables like flow, density and speed involves averaging these parameters from the mi-

croscopic model. The macroscopic timestep is much larger than the microscopic one,
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and hence, in order to synchronize the two models, every timestep of the macroscopic

model includes multiple updates to the microscopic regions.

This model is tested on a single link with three lanes that consists of a macroscopic

segment followed by a microscopic segment. The results are compared to a model

in which the entire link is modeled as a macroscopic segment. While the results of

the experiment with the original SITRA-B+ model shows deviation from the full-

macroscopic model, the use of the modified SITRA-B+ model produced results that

are similar to the full-macroscopic model. One of the drawbacks of this model for our

purpose is that they do not describe if or how the travel times from regions modelled

using different scales are aggregated to model the route-choice of users. They have

only published results for simple cases where there is only one path (as in the case of

the experiment with the single link) from the origin to the destination.

1.3.11 Horowitz (2004)

The authors developed an interface between the SmartCAP mesoscopic model (Broucke

et al., 1996) and the SmartAHS microsimulation model (Deshpande et al., 1997) to

model Automated Highway Systems (AHS). In an Automated Highway System, ve-

hicles are not controlled by the drivers, but by algorithms that group vehicles into

platoons. Such an automated system is expected to reduce delays and eliminate driver

errors. SmartCAP uses a conservation model of traffic density along with traffic flow

behavior models of car following, lane changing etc. This model is specifically built

for modeling AHS, and aggregates traffic quantities by modeling the highway system

as a series of segments that are approximately 0.25 miles long. SmartAHS is similar

to most microsimulation models and describes the movement of each and every ve-

hicle in the network. Different parts of the network are modeled using either of the

two models.

Similar to MICMAC and HYSTRA, the authors propose aggregation and disag-

gregation schemes. More details on the aggregation and disaggregation procedure are

available in Horowitz (2004).
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1.3.12 Burghout (2004)

This hybrid model, MiMe, integrates the microscopic simulation model MITSIMLab

(Ben-Akiva et al., 1997) with Mezzo (Burghout, 2004), a mesoscopic simulation model.

This model also allows the user to model different regions of a network using either

the microscopic or the mesoscopic model.

The author proposes the use of mesoscopic 'virtual links', which are essentially

abstractions of the subpaths in the microscopic areas of the network. That is, for each

pair of entry and exit nodes in the subnetworks that are microsimulated, there exists

a virtual link for each used path. This consistent representation allows for pre-trip

route choices to be made using the mesoscopic model. On the other hand, the presence

of microscopic virtual links in the mesoscopic region allows for changing route choice

decisions en-route, after a vehicle has entered the microscopic region. The author also

proposes a novel method for generating initial velocities in the disaggregation phase

(i.e converting flows from upstream mesoscopic segments into individual vehicles in

the downstream microscopic links)

1.3.13 Discussion

Most of the hybrid models described so far involve the use of a higher fidelity microsim-

ulation model with a macroscopic or a mesoscopic model (the two exceptions being

Bunch et al. (1999) and Van Vliet and Hall (1997) where a mesoscopic model is used

as the higher fidelity model along with a low fidelity macroscopic model).Subnetworks

of interest are modeled with the high fidelity model while the rest of the network is

modeled using the low fidelity model. Besides the issue of data requirements for de-

tailed representation of large networks, a major reason for not modeling a large region

using only the high fidelity (microscopic) model is to reduce the computation time.

The hybrid models can broadly be classified into two categories. One category

allows the user to model different regions of the same network using different mod-

els(Transmodeler, Sewall et al. (2011), Bourrel and Lesort (2003),Magne et al. (2000),

Horowitz (2004), Burghout (2004)) . Much of the past work in this category focuses
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on the issues of aggregation and disaggregation at the boundaries of the different

types of models to ensure consistency, since the representation of traffic is different in

different kinds of models. For instance, a lot of attention has been paid to the conver-

sion of flow and density from an upstream macroscopic link into discrete vehicles in a

downstream microscopic link. Similarly, the aggregation of vehicles into cumulative

metrics of flows and densities when they move from a microscopic region to a down-

stream macroscopic segment is another important topic that most of these models

focus on. The main drawback of these hybrid models for our purpose is that they do

not discuss the impact of hybridization on route choice and traffic assignment. The

aggregation of travel times from models that have different modeling assumptions is

a key issue that affects traffic assignment, and it is omitted in all these models. For

a signal plan design problem, this is an important issue since the traffic assignment

is highly sensitive to changes in the signal plan. The notable exception among the

models discussed so far is Burghout (2004) which uses a meso-micro combination

and takes into account several aspects of assignment like pre-trip route choices and

en-route assignment. However, this hybrid model only works with a combination

of mesoscopic and microscopic simulation. It cannot be extended to a macroscopic

model that is not simulation based (for instance, a travel demand model).

The other type of hybrid models allow for the use of two separate models of the

same region. For instance Bunch et al. (1999), Van Vliet and Hall (1997) , Montero

et al. (1998) and Rousseau et al. (2008) model a large region using the low fidelity

(often macroscopic) model. Only a subnetwork of interest is then separately modeled

using a high fidelity (microscopic/mesoscopic) model. This means that there are

regions of the network that are modeled using both a high fidelity and a lower fidelity

model, unlike the first kind where each region is modeled using exactly one model.

Typically, the traffic assignment performed in the macroscopic model is used to

generate the OD matrix for the high fidelity model that covers a smaller area. The

high fidelity model is then run using this OD matrix and the results are analyzed. In

a few of these models, there is feedback of representative metrics of delays and travel

times from the high fidelity model to the macroscopic model. Several models do not
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even attempt to provide feedback since the traffic assignment in the larger region

becomes unstable (i.e. the path flows fluctuate as a result of the feedback) when

delays and travel times from the microscopic/mesoscopic assignment are considered.

Even those that provide feedback do not explicitly use travel times, and have to work

around this instability in order to achieve convergence of path flows.

It is also important to note that the second category of hybrid models described

above is a natural fit for variable fidelity optimization since two different models are

used to describe the same region of interest. Hence, there are two models, either of

which can be used to obtain an estimate of the objective function. This property

of overlapping models is very useful to us as it ensures that each run of the subarea

model need not be accompanied by a run of the larger model as part of a feedback

loop.

1.4 Surrogate Models

One approach to overcome the computational barrier in large-scale optimization prob-

lems that use simulation models is to use surrogate-based optimization, the state of

the art of which is reviewed in Robinson (2007), as well as Forrester and Keane

(2009). In these methods, the computationally expensive model is not used to evalu-

ate every iterate.In certain iterations, a less expensive model of lower fidelity is used

instead. The lower fidelity model takes less computation time at the cost of being

not as accurate as the high-fidelity model. For instance in an iterative optimization

algorithm, the less expensive model would be used in a majority of the iterations,

while computationally expensive high fidelity model would be used at a much lesser

frequency. Surrogate models can be roughly classified into three categories (Eldred

and Dunlavy (2006) and Robinson (2007)). It needs to be noted that this is only a

rough classification, and several models could fall in both the first and the second

categories.

The first category of data fit surrogates includes statistical models built using

samples of f(x; p) at one or more points. Queipo et al. (2005) provide a detailed review
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of the different variations of this class of methods, both in terms of the functional

form (polynomial regression, Kriging, radial basis functions) as well as the design of

experiments (Latin Hypercube Sampling(LHS), orthogonal arrays, optimal LHS etc).

The second category of surrogate models are reduced order models in which the

original high-dimensional system is projected down to a lower dimensional space.

These are built using techniques like principal component analysis, spectral decom-

position and the like. Since these are still physics based models, they have better

predictive qualities than data fit surrogates (Eldred and Dunlavy, 2006).

The third category of surrogate models have a hierarchical structure. These are

also called variable fidelity (or) multi-fidelity models, in which g(x;p) is a lower fidelity

physics based model. It could be of lower fidelity due simpler modeling assumptions

(for instance a coarser grid of the finite element mesh in the case of structural opti-

mization), or simply the higher fidelity model with relaxed tolerance for convergence

(Robinson, 2007). Several applications of this procedure can be found in Carter

(1986), Alexandrov et al. (1999), Sun et al. (2010) , and Huang et al. (2006). This is

the class of surrogate models to which our work belongs.

1.4.1 Surrogate-based optimization and transportation

We consider the situation where a transportation agency has access to two microscopic

simulation models that cover the network of interest and that both have the same

modeling assumptions (i.e. same demand and supply models). Let R denote the

larger-scale simulation model (R stands for regional) and C denote the smaller scale

simulation model (R stands for city-center). We assume that the subnetwork of

interest is the full network of C . This subnetwork and the rest of the region is

entirely modeled in R. This is a scenario that one can easily encounter in practice,

where R is an available large-scale model, and C is a smaller model extracted from

R, and calibrated based on R outputs. Model R is assumed to lead to more accurate

estimates of both local and global performance, yet it is significantly more expensive

to evaluate as indicated in Table 1.2. The primary focus of our work is to propose

a methodology that enables to choose one of the two models (the efficient inaccurate
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model C or the inefficient accurate model R) to evaluate the performance of a given

point.

Table 1.2: Description of the simulation models used

Model Region covered Computational Accuracy

cost

C subnetwork low low

R full network high high

The framework described in Osorio and Bierlaire (2013) combined the use of an

analytical traffic model with a stochastic microscopic traffic simulator. This general

idea has been used to address a variety of simulation-based signal control problems

including large-scale problems (Osorio and Chong, 2014), emissions and fuel-efficient

problems (Osorio and Nanduri, 2014b,a), as well as travel time reliability problems

(Chen et al., 2013). The proposed work uses the simulation-based optimization algo-

rithm in Osorio and Bierlaire (2013) and extends it in order to allow for the use of

multiple traffic simulators.

Figure 1-1 describes the basic outline of this SO algorithm. The first step is to

define a deterministic and analytical metamodel that tries to mimic the stochastic

simulator. This metamodel is optimized to obtain a new trial point. The new trial

point is then evaluated using the simulator, and the result is used to improve the

accuracy of the metamodel. Hence, as the algorithm progresses, the metamodel

becomes more representative of the objective function, and is expected to lead to

points with improved performance.

Our work embeds a multi-fidelity optimization technique as part of this simulation-

based optimization framework. Every time a trial point is to be evaluated using

the simulator, we pick between the two available ones, based our prediction of the

accuracy of the estimate obtained using C with respect to that using R.

To summarize, multi-fidelity optimization techniques have been applied widely

in optimizing structural design, especially in the field of aircraft design to overcome
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Optimization Routine

Performance Estimates Trial point
m(x) I (new x)

Metamodel

Optimization based on metamodel

Simulator
Update metamodel Evaluate Trial point

Figure 1-1: The SO algorithm used in Osorio and Bierlaire (2013), adapted from
Alexandrov et al. (1999)

computational challenges. The use of simulation-based optimization for optimizing

transportation designs is a new field, and our work embeds a multi-fidelity optimiza-

tion technique as part of this simulation-based optimization framework in order to

tackle a large-scale design problem. While we adopt a framework similar to traditional

multi-fidelity optimization techniques, we propose to use structural information from

the problem to identify with greater accuracy the trial points for which the lower

fidelity model is a reasonable substitute for the high fidelity model.
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Chapter 2

Methodology

2.1 Introduction

Let the objective function be denoted by E[fR(x)]. In our case this is the average

user travel time from origin to destination evaluated using model R. The aim is

to derive a transportation strategy (e.g., a signal control plan or a network design

alternative, hereafter called a point) that provides an improvement in E[Tb]R. We

assume we have a fixed simulation run time budget, hereafter referred to as the

computational budget. The objective is to identify a point with improved performance

within this budget using model R and model C within a simulation-based optimization

framework. There are three possible approaches:

" Use only model R

* Use only model C

* Use a combination of model R and model C

If there are no constraints on the computational budget, the first technique will

definitely lead to a transportation strategy with improved performance. However, if

the computational budget is limited, then this method might not work since model R

takes longer to execute, and we might not have sufficient number of runs of model R to

obtain a metamodel that is accurate enough to bring an improvement in performance.

Therefore, this strategy will evaluate the performance of only a few points within the
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computational budget. The second strategy enables the largest number of simulation

runs within the budget yet may not lead to a signal plan with improved performance

when evaluated with SR, as every run of SC will yield an estimate of E[T,,b]c , which

may be different from E[Tsub]R, the performance measure we want to optimize. This

difference is due to the fact that the demand-supply modeled in model C might not

be an accurate representation of the traffic assignment in model R.

The third strategy is the one proposed in this thesis. It attempts to reach a

trade-off between the two other strategies. We consider a traditional fixed-time sig-

nal control problem. We assume we calibrate model C based on the outputs of

SR and do so for a given signal plan (e.g., calibration of behavioral parameters, of

origin-destination (OD) matrix). This is done once, before starting the optimization

algorithm. Extensions of this framework may calibrate model C iteratively as more

observations from model R are collected throughout the optimization. At each iter-

ation of the SO algorithm, the main decision to be made is which simulation model

to call (model R or model C).

Note: In the remainder of the thesis, E[TuSb]R will be referred to as E[fR(X)].

Similarly E[T,,b]c will be referred to as E[fc(x)].

2.2 The simulation-based optimization framework

We propose a modified version of the framework proposed in Osorio and Bierlaire

(2013). The proposed methodology integrates multiple simulation models within the

basic SO framework. The details are given in this section.

2.2.1 Problem definition

Notation:

ri ratio of all red time to cycle time in intersection i

bi available cycle ratio of intersection i (bi = 1 - ri)

XL vector of minimum green splits for each phase
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x(j) green split of phase j (i.e. the green time of phase j divided by the cycle

time of its corresponding intersection)

nc length of the decision vector x, where x = [x(1), x(2), ..., x(nc)]

s saturation flow rate [vehicles/hour]

capacity of lane f [vehicles/hour]

I set of intersection indices

L set of indices of the signalized lanes

P (i) set of phase indices of intersection i

PL (1) set of phase indices of lane 1

fC(x) user travel time in the subnetwork evaluated for the signal plan x

using model C (i.e. the objective function evaluated using model C)

fR(x) user travel time in the subnetwork evaluated for the signal plan x

using model R (i.e. the objective function evaluated using model R).

minimize E[fR(x)] (2.1)
x

subject to x(j) = bi, Vi E I (2.2)
jEPi(i)

X ;> XL (2.3)

The objective function is the expected value of the user travel time in the sub-

network evaluated for the signal plan x using model R. Equation (2.2) is a relation

between the green times of different phases of an intersection with the available cycle

time. The second constraint (Equation (2.3)) ensures that minimum green times are

allocated to each of the phases.

2.2.2 The modified SO algorithm

Notation:

Xk current iterate at iteration k
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fc (Xk) estimate of user travel time in the subnetwork corresponding

to the signal plan Xk from one run of model C

fR(xk) estimate of user travel time in the subnetwork corresponding

to the signal plan Xk from one run of model R

the metamodel parameters of iteration k

Uk the number of successive trial points rejected

rMk metamodel in iteration k

Ak trust region radius in iteration k

dk an indicator of the decision taken at iteration k. dk = 0 indicates model R

was chosen, and dk = 1 indicates model C was chosen in this iteration

nk sample size used in fitting the metamodel in iteration k

'rk relative change in the parameters of the metamodel between successive

iterations

Wk improvement in the simulated values between successive iterations

relative improvement in the simulated values between successive iterations

with respect to the improvement in the metamodel predictions

The different steps in the framework are given below:

o Step 0: Initialization. Set

- an initial point xO (Section 3.2),

- an upper bound for the trust region radius, Amax > 0,

- an initial trust region radius AO E (0, Amax],

- the maximum number of function evaluations nmax,

- the parameters ql, v, vin,, T, u such that

* 0 < 17 < 1
* 0 < V < 1 < Vinc

*0 < ;- < 1

*a- E N

- the threshold 6 > 0 , used while choosing between the simulation models

R and C.

- Evaluate fR(xo), fit an initial model mo, and compute i0
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The numerical values of different parameters used are given in Appendix

C.

" Step 1: Step calculation

Solve the trust region subproblem to compute a step sk that sufficiently reduces

the metamodel mk(x). The problem formulation is the same as the one used in

Osorio and Bierlaire (2013), the details of which are provided here.

minimize mk(x) (2.4)
x

subject to x( ) = bi, Vi G I (2.5)
jEPi (i)

11X - xk12 < Ak (2.6)

X ;> XL (2.7)

The objective is to minimize the metamodel, by choosing an x that lies within

the trust region, while ensuring that minimum green times are allotted to each

of the phases.

" Step 2: Selection of simulation model

Choose the simulation model with which to evaluate the new trial point Xk + sk.

Refer to Section 2.3 for details on how the choice is made. At the end of this

step,

0 if model R is chosen
dk = (2.8)

1 if model C is chosen

" Step 3: Acceptance of trial point

Evaluate the point Xk + sk using the chosen simulation model to obtain fd, (Xk +

Sk). If dk is set as '0' in step 2, the signal plan Xk + Sk is coded into model R,

which is then run to obtain fo(xk+sk) . If dk is set as '1', the signal plan Xk+Sk
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is coded into model C, which is then run to obtain fl(xk + Sk). Compute

{ R(xk)-f(xk+sk) if dk = 0
k k(Xk)-Mk(Xik+Sk) (2.9)

fC(Xk)-f0(Xk**k3 if dk = 1
Mk(xk)-mk(xk+sk)

and Wk fR(xk) fR(xk + sk) ifdk=0 (2.10)
fC() _ f 0 (xk + Sk) if dk = 1

There are two possibilities:

- dk = dk_1. That is, the simulation model used in iteration k is the same

as the one used in iteration k - 1. In this case, we would have already

evaluated xk using the model chosen by dk in iteration k - 1.

- 5 A dk_1. In this case, we also need to evaluate Xk using the model chosen

by dk as it is needed in the computation of k and Wk. Set nk = nk + 1.

If k r1 and Wk > 0, then accept the trial point. Set Xk+1 = Xk + Sk and

Uk = 0. Else, reject the trial point. Set Xk+1 = Xk and Uk = Uk + 1.

Include the new observation in the sample set (nk = nk + 1) and fit the new

model mk+1 (thereby obtaining the metamodel parameter vector ,3 k+1). We use

a quadratic metamodel as described in section 2.2.3.

Step 4: Model improvement

Compute

Ik+1= 3k±1 - 1k1 
(2.11)

If Tk+1 < ;, then improve the model by evaluating a point x, which is chosen

randomly in the feasible region. The simulation model R is used for evaluating
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this point. Include this point x in the sample set( Set nk = nk + 1.), and update

mk+1-

Step 5: Trust region radius update

If Pk > qj, then increase the trust region radius:

Ak+1 = min{VincAk, Amax} (2.12)

Otherwise

- If Uk > U, then reduce the trust region radius:

Ak+1 = max(VAk, Amin) (2.13)

- Else if Uk < , then Ak+1 = Ak-

Set nk+1 = nk, Uk+1 = Uk and k = k + 1. If nk < nmax go to Step 1; otherwise,

stop.

2.2.3 Fitting the metamodel

The quadratic metamodel used in the SO algorithm is given below.

7
lc nc

mk(x, /k) = 01,k + 11+i,kX(i) + > nc+1+i,kX(i)2
i=1 i=1

(2.14)

The parameters of the metamodel, k = ( 3i,k)i=1,2,...,2nc+1 are estimated using a

weighted least squares method, as shown in Equation (2.15) . Let Ak correspond to

the set of points evaluated with model R and Afk correspond to the same for model

C, at iteration k.

Ak 1k 2n,+1
minimize E { j(f R _{Mk(j,Ck))2 C )~mk(j,3k))1 2+ 2 ( )2

A k 1= j=1

(2.15)
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The first squared term in Equation (2.15) corresponds to the weighted distance be-

tween the simulations from model R of points from Ak and the metamodel predictions

, while the second squared term is the weighted distance between the simulations from

model R of points from .Ak and the metamodel predictions. In this metamodel, errors

corresponding to the estimates obtained from model C are weighted down by a factor

of 10, as compared to the errors corresponding to the estimates obtained from model

R, in view of the inaccuracy of model C with respect to model R; hence we multiply

the second term by 1.

The weights 4'j denote the significance of each of the points in Ak and PNA with

respect to the current iterate Xk. We use the inverse distance weight function, with

Euclidean distance, leading to the following definition of the weights:

S= 1 (2.16)
1 + I|xk - XjI|2

This definition of weights is identical to that used by Osorio (2010) for the estima-

tion of metamodel parameters. Such a definition gives greater importance to points

near the current iterate Xk.

The third term arises due to a set of 2n, + 1 artificial (or augmented) data points

which we add to the data used to fit the metamodel. These points ensure that the

number of data points used to fit metamodel is greater than or equal to the number of

parameters (i.e., 1141) we are fitting. This ensures that the least squares matrix is of

full rank, and hence the uniqueness of the parameters. This minimization problem is

solved using the Matlab routine lsqlin. Since these are artificial points, their impact

on the parameters is reduced by using a small value of 0.1 for the fixed weight 'z0.

The details of the parameters used in the lsqlin routine are given in Appendix D.
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2.3 Choice of simulation model

Since the computation time of model C is much lesser than that of model R, we

choose model C to evaluate all x when we can expect that

IfR(X) - fC(x)I < j, (2.17)

where 6 is a parameter that is tuned a priori. That is, if we can predict that model

C will return a similar value of the objective function to model R for the signal plan

corresponding to x, then we choose the less expensive model C.

The value of IfR(X) - fC(x) shall be denoted as e(x). Our methodology is as

follows.

" For a given signal plan Xk, approximate the value of e(xk). Let the approxima-

tion be denoted as (xk).

* If 8(Xk) < 6 set d = 1 (i.e. choose model C). Otherwise, set dk = 0. (i.e.

choose model R).

In order to compute 8(x), we use the analytical model of Osorio and Bierlaire

(2009) to describe the congestion in the network and a multinomial logit model to

describe the route choice behavior of users in the network. The results of the traffic

assignment are a key input to computing B(x).

2.3.1 Modeling congestion

We build upon the analytical queuing model presented in Osorio (2010, Chap. 4), in

which each lane of a road section is modeled as an M/M/1/f queue, where f is the

space capacity of the queue. This space capacity is an upper bound on the queue-

length, and is used to capture the propagation of congestion. Given the network

structure, the arrival rates and the turning probabilities, this model can be used to

obtain the delays and queue length distributions of all the queues in the network.
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For a given queue i, the following notation is used.

7i external arrival rate;

Aj total arrival rate;

Ai service rate;

#ii unblocking rate;

Ai effective service rate;

pA traffic intensity;

Pf probability of being blocked after service at queue i;

fj space capacity;

Ni number of vehicles in queue i;

P(N = fi) probability of queue i being full;

Pij transition probability from queue i to queue j;

Di set of downstream queues of queue i

E[T] travel cost of queue i;

E[Ni] number of vehicles in queue i;

1veh average vehicle length;

VfreefL ' free flow speed;

For a given road network represented as a queueing network, the marginal queue-

length distributions of each queue are obtained by simultaneously solving for all

queues the following system of equations.

Ai -j +Zjpi Aj P(Nj < j)
P(N <e)

Ai =Ai +
1 A -P(N < i)1 _

1 _ AjP(N, < e&)
/AL .ED ,xP(Ni < i#

1 -pi eP(N =I )= e p A
1 - p

36

(2.18)

(2.19)

(2.20)

(2.21)



P = ZpiP(Nj = j) (2.22)

pi = -'(2.23)pi

We briefly describe the interpretation of these equations. Equation (2.18) de-

scribes the conservation of flow between upstream and downstream queues. For queue

i, its total arrival rate, Aj, is related to its external arrival rate, -yj and to the arrivals

arising from upstream queues (second-term in the right-hand side of the equation).

Equation (2.19) describes the service process of a vehicle, which is composed of two

phases. First, the vehicle undergoes an initial service. The queue has an underlying

service rate, pi, that is determined by its underlying supply (e.g., flow capacity of the

downstream intersection). After receiving service, a vehicle that is at queue i and is

ready to proceed to queue j may do so if queue j is not full. If queue j is full (i.e., if

there is a spillback at queue j), then the vehicle is forced to remain at queue i. This

is known in queueing theory as blocking. This occurs with probability PJ and this

second service is referred to as blocking time, the expected blocked time is given by

1/j. Equation (2.20) describes the expected blocking time, which is a function of

the effective service rate of downstream queue j, j. Equation (2.21) describes the

probability that queue i is full, it is also known as the blocking probability. In vehicu-

lar traffic this represents the spillback probability. The expression of Equation (2.21)

is obtained by assuming that queue i is an M/M/1/t queue (e.g., Bocharov et al.,

2004). Equation (2.22) describes the probability that a vehicle at queue i gets blocked

(i.e., that it cannot proceed downstream of queue i due to downstream spillbacks).

Equation (2.23) describes the traffic intensity, which is a ratio of demand to supply.

The following algebraic manipulations are performed on the above equations in

order to make the Jacobian of these equations simpler to compute.

Equation (2.18) is multiplied by P(Nj <= fi) and Aj(P(Nj <= fi)) is denoted as

A)f. Equation (2.19) is multiplied by Alf; -'- is denoted as pj and - is denoted

as p!f. Equation (2.20) is multiplied by A' 0 . Equations (2.21) and (2.22) are left

unchanged. In the right hand side of Equation (2.23) , ' is replaced by p 1P(Nj=f)
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as the two are equivalent.

The modified set of equations is given below:

n

(1 - P(NM = £i)) + Ip iAf (2.24)
j=1

)eff

p = '+FP (2.25)
p-i

S e (2.26)
jEDi

P(N = ei) = 1 - (2.27)
1 -pi

n

P! = PijP(Nj = fj) (2.28)
j=1

Pi = peff 1(2.29)' I - P(Ni = fi)

The queue length and travel time on different queues are computed as follows:

E[Nj] - P' -i + 1 _ + (2.30)
1- Pi 1 -p

E[MN] lveh(ei - E[Ni ])
E [Ti = j f + Vfreeflow (2.31)

The expected value of the queue length is defined as a function of traffic intensity

in Equation (2.30), and the average delay experienced by a vehicle in queue i is

obtained by applying Little's Law for that queue, and is equal to . A derivation

of Equation (2.30) can be found in Osorio and Chong (2014).

The total travel time experienced by a vehicle in a lane is approximated by the

sum of the free flow travel until the beginning of the physical vehicular queue and the

delay before it exits the queue, as described in Equation (2.31).The second term in

Equation (2.31) is an approximation of the travel time to reach the physical queue

of vehicles: the numerator approximates the available road-space length not occupied

by a stationary vehicular queue, the denominator is the roads free-flow speed. The
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constants 1,eh and vfreefI' are assigned values of 4 meters and 60 kilometers per hour

respectively. We assume that the free flow speed is the same on all queues, since the

simulation model we use also has the same maximum speed on all links.

The main limitation of the model of Osorio (2010) for the purpose of our work

is that it assumes exogenous turning probabilities, pij and arrival rates 'yi. In this

work, the purpose of the analytical model is to approximate how subnetwork bound-

ary conditions may change due to changes in supply. More specifically, we want to

approximate how the OD matrix of the subnetwork changes due to changes in the

subnetwork signal plans. Hence, accounting for endogenous assignment is necessary.

Hence, we consider the turning probabilities and arrival rates as endogenous and

derive them using a multinomial logit route choice model.

2.3.2 Modeling route choice

The simulation model we use models the route choice behavior according to a stochas-

tic user equilibrium, and we use a similar route choice model in the analytical for-

mulation. The microsimulation models that we use enumerate the first k, shortest

paths between every origin-destination (OD) pair, and then assign flow on these paths

in such a way that the probability of a path being chosen from among the different

alternatives between that OD pair decreases with increasing travel time. The details

are given below.

Notation:

d, demand corresponding to OD pair s

Ct travel time on path t

Yt expected flow on path t

ra proportion of flow on path t that goes through queue i

ati indicates whether path t contains queue i

a*, indicates whether the first link of path t contains queue i

Zij indicates whether queue i and queue j are parallel queues within the same
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link (i.e., parallel lanes)

1st probability that a vehicle travelling the OD pair s takes path t

0 route choice probability parameter

S set of OD pairs

Q set of queue indices

T- set of paths indices

PS set of paths of OD pair s

!ij set of paths that consecutively go through queues i and j

'Hi set of paths that go through queue i

Ct = ZriE [Ti] Vt C T (2.32)
iCQ

1st = e Vs C S, Vt E P8  (2.33)
E e-Oci

Yt = dlst Vt E T (2.34)
SES

yi = rti a*yt Vi Q (2.35)
tET

E ft
p Vi EQ, Vj Q (2.36)

EZfu

The indicator variables are defined as follows.

at= 1 if queue i is part of path t, (2.37)
0 otherwise.

= 1 if queue i is part of the first link (road) of path t, (2.38)
0 otherwise.
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zi = 1 if queue i and queue j are parallel lanes in the same link, (2.39)
0 otherwise.

r 2 = ati Vt E TVi Q (2.40)
EZjEQ at3 zij

The route cost is defined by Equation (2.32) as the expected travel time for route

t. The route travel time is a function of queue travel time E[T], which is given

by Equation (2.31). The path choice probability is given by the multinomial logit

expression of Equation (2.33). The deterministic component of the utility function

for a given route t is defined as a function of a single (exogenous) parameter 0 and

the costs of that particular route. Equation (2.34) defines the flow along a path t as

a function of the total demand of a given OD-pair s, denoted d8, and the probability

of choosing path t for OD-pair s, denoted 1,t. Note that the OD-pair demand d,

of the full R network is exogenous, and obtained from the OD matrix of the R

model. Equation (2.35) gives the expression for the external arrival rate of queue i,

-y. Equation (2.36) defines the probability of turning from queue i to queue j as the

ratio of the total flow along paths that have queues i and j as consecutive queues and

of the total flow that goes through queue i. In the model of Osorio (2010), this rate

is exogenous. In this work, since we account for endogenous assignment, the external

arrival rates of a given queue depend on the (endogenous) path choice probabilities,

and hence are themselves endogenous.

We use the network shown in Figure 2-1 to illustrate how the parameters ati, a*i

and zij are defined. In this network, there are two paths between the origin 0 and

destination D. The first path (on top) consists of two links, shown in different colors.

The first link of this path has a complicated geometry - it is two lanes wide at the

beginning and narrows down to a single lane. Each lane is modeled as an M/M/1/f

queue - this network has a total of 6 queues.
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Figure 2-1: An example network

For this network, a1 = 1,Vi E {1, 2,3, 4} while a12 = 0,Vi E {5, 6} . Similarly,

considering the second path, a2i = 1,Vi E {5,6} while a1 = 0,Vi E {1,2,3,4}.

a*1 =1, a*2 = 1 and a* = 0, Vi E {3,4, 5, 6}. Similarly, considering the second path,

a*,= 1, while a* = 0, Vi E {1, 2,4, 6} . Also, the only non-zero values of zij are

Z2= Z21= 1. Note that z13, for instance is 0, since these queues are not parallel to

each other, although they belong to the same link.

In this network, for instance, rl = r12 = 0.5, while r 13 = r14= 0. Also, ri =

0, Vr = 5,6 . Thus, in order to compute the cost of the first path, using Equation

(2.32) we get:

Ci = 0.5E[T] + O.5E[T 2 ] + E[T3] + E[T41 (2.41)

Thus, the cost of a path is taken to be the sum of the costs on individual queues,

weighted by the fraction of flow that passes through each queue that is part of the

path. The definition of indicator variables ai3 and aig allows us to directly compute

path costs from the queues, without having to ever consider the links which these

queues are part of.

2.3.3 Solution Procedure

When Equations (2.24) through (2.36) are solved simultaneously (Appendix B), we

can obtain all the information regarding the traffic assignment of any network. This

model takes the signal plan, x, the network topology and the different OD demands

as input. The behavioral parameter 0 is assumed to be known apriori. While the
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service rates of the non-signalized queues do not change with the signal plan, and can

be extracted from the simulation model R, the signal plan defines the service rates

Ii's for all signalized queues as shown in (2.42). (Note: L was defined earlier as the

set of indices of the signalized lanes (i.e. queues), and PL(f) was defined as the set

of phase indices of lane (i.e. queue) £ )

f = x(j)s, V C L (2.42)
Ji'L M~

For each OD pair, the first 3 shortest paths are computed. These shortest paths

are computed based on the length of the links in the network. We assume that

all the flow between an OD pair takes goes through one of these paths. In case

3 paths aren't available between an OD pair (for example, the network shown in

Figure 2-1), we distribute the flow among how many ever paths are available. While

the simulation models allow a vehicles to choose from all possible paths between its

origin and destination, we choose to restrict the path choice set to the first three

shortest paths as an approximation in the analytical models. This approximation

allows us to model the traffic assignment with the complicated cost function provided

by the queuing model.

The network topology and path information determine the other exogenous pa-

rameters. The rest of the variables, Ai, eff, 1 ,P(Ni = £i) ,P/, p , E[Ni], E[T], ct,

1st, yt 7i and pij, are endogenous. The list of endogenous variables are given in Table

2.1. For any network, the system of equations yields IQ 2 + 9QI + 21TI + ESS IPj

endogenous variables and the same number of equations. All the variables listed in

Table 2.1 are implemented as endogenous variables and solved for, as described in

Appendix B.

When these equations are solved in terms of the endogenous variables, one can

extract the expected value of the average user delay for the entire network or a

subnetwork. In this section, this system of equations shall be referred to as the

'analytical model'.

When such an analytical model of the full network that is modeled in R is built,
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it shall be denoted as AR , and the corresponding analytical model of the subnetwork

modeled in C shall be denoted by Ac (Appendix A). We can obtain the analytical

approximation of average user travel time in a subnetwork of choice (E[T,,b(Xk)]) by

applying Little's law to that subnetwork. When this average user travel time for the

subnetwork is computed using AR, it shall be denoted as E[T,,b(xk)]AR; when it is

computed using Ac, it shall be denoted as E[Tsub(Xk)]Ac. (Note that to compute

E[Tsub(Xk)]Ac, the subnetwork of choice will be the entire network modeled in C).

Table 2.1: List of endogenous variables

Notation

Aieff

PIi

P(Nj = i)

Pf

pi

E[Nj]

E[T]

Ct

'st

Yt

7yi

Pij

Number of variables

IQI
IQI
IQI
IQI

IQI

IQI

IQI
IQI
|TI

ZSES IP' I
|TI
IQI
|Q12

Let F represent the set of all queues in a subnetwork of interest. Using Little's

law,

44



E E[Ni]
E[Tsu(x)] = iEF (2.43)

E 7(l - P(N3 = jj))
jET

Our current objective is to obtain 6(xk). We use |E[Tsub(xk)] AR - E[Tsub(xk)]A,|I

as one of the inputs for this, as described below.

2.3.4 Part 1: Training the prediction model

" Before running the SO algorithm, select feasible solutions to the SO problem

randomly to create the training set U. These solutions are picked the the same

way the initial point is identified, and the details are given in Section 3.2.

" Evaluate each of these feasible solutions using both the simulation models R

and C (one replication using each of model R and model C). Thus we have

estimates jR(x) and fc(x) Vx E U.

" Compute w(x) = R(X) - fC (X) ,VX E U

" Write the equations (2.24) through (2.36) and solve the analytical models AR

and AC, to obtain E[Tsub(x)]AR and E[Tsub(x)]A , VX E U.

" Compute h(x) = IE[Tsub(x)]AR - E[Tsub(x)]AR,VX E U

* Note that x = [x(1), x(2), ..., x(nc)]. Fit the following quadratic model:

nc n

e(x, a) = a, + a 2h(x) + a 2+ix(i) + anc+2+ix(i) 2  (2.44)
i=1 i=1

The parameter vector a = [&i, a2, ... , a2nc+2] is calibrated using a linear least

squares procedure (Appendix D) as follows to get the optimal set of parameters

a*.

2n,+2

minimize Z(w(x,) - e(xj, a))2 + E (Woa,) 2  (2.45)
jEU i=1
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The first squared term in Equation (2.45) represents the difference between the

simulated and predicted inaccuracies. The second term in the same equation

arises due to the addition of an artificial set of 2n, +2 data points which ensure

that we always have at least 2n, +2 data points to fit 2n, +2 parameters. This

ensures that the least squares matrix is of full rank, and hence the uniqueness

of the parameters. The weight wo is set a small value of 0.001, which mini-

mizes the impact of these artificial data points on the value of the parameters.

This minimization problem is solved using the Matlab function lsqlin, and the

algorithm parameters are detailed in Appendix D.

2.3.5 Part 2: Predicting 2(xk) at iteration k

Now that we have a prediction model, compute a(Xk) as follows:

e(x, a*) = a* + a*h(x) + a*+ix(i) + a*+2+X(i)2  (2.46)
i=1 i=1

This value of a(Xk) can be used to make the decision of choosing a simulation model

for each iteration, as described at the beginning of section 2.2.2 .
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Chapter 3

Results and Conclusions

In this section we present two case studies where the proposed algorithm is applied

to a traffic signal design problem. The first case study is that of a toy network, while

the second one uses data from a microsimulation model of Lausanne. We follow this

up with a few concluding remarks.

3.1 Case study - toy network

We illustrate the performance of the proposed algorithm with a small toy network

example. Figure 3-1 displays the networks of interest. The network on the left

represents the full network R, which considers two OD apirs: A -+ B and C -+ D.

Each OD pair of network R has two path alternatives, one of which goes through a

signalized intersection (denoted by the yellow square). The subnetwork C is displayed

to the right of Figure 3-1. It contains the same OD pairs as the R network, but

accounts only for the paths that travel through the intersection, i.e., it considers two

OD pairs, each with one path each. A change in the signal plan of the intersection

may affect the path choice probabilities. This change will be reflected when running

simulator R but will not be reflected when running simulator C.

The objective function was the average user travel time for the users in the sub-

network modeled in C. The decision variable involved the green splits for two phases

in one traffic signal, and hence the problem dimension (n,) was 1. Using a total com-
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(a) regional network R (b) subnetwork C

Figure 3-1: (1) the full network modeled in R, (r) the subnetwork modeled in C (toy
example)

putational budget of 21 runs, we tested the different strategies with three different

starting solutions. The same experiment was run three times on each of the starting

solutions to identify trends.

The three strategies described in Section 2.1 were tried out with these two models.

The objective function is the expected subnetwork travel time, i.e., the travel time

in the links of subnetwork C. The intersection has two endogenous signal phases:

one for east-west bound traffic and the second for north-south bound traffic. We

evaluate the performance of the three strategies described in Section 2.1. We allow

for a maximum of 21 simulation runs. That is approach 1 (resp. 2) allows for 21 runs

of simulator R (resp. C), while approach 3 allows for a total of 21 runs, which consist

of a combination of runs from R and from C.

We consider three different initial signal plans. The feasibility of a signal plan is

defined by Equations (2.5) and (2.7). We use the code of Stafford (2006) to random

uniformly generate initial points. For each initial signal plan and each approach, we

run the SO algorithm 3 times, allowing each time for a maximum of 21 simulation

runs. Each time we run the SO algorithm, we obtain a new signal plan proposed

by the SO algorithm. In order to evaluate the performance of this proposed signal

plan, we embed it within the R simulator and run 50 simulation replications. We
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Figure 3-2: The results from three different initial solutions for the toy network

then plot the empirical cumulative distribution function (cdf) of these 50 simulation

replications. Figure 3-2 displays the corresponding cdf curves. Each plot of the figure

considers a different initial signal plan. Each plot contains 10 cdf curves:

" The black curve corresponds to the initial signal plan.

" The 3 blue curves correspond to the 3 signal plans proposed by only running the

C simulator. This the least accurate yet also the least computationally-costly

approach.

" The 3 red curves correspond to the 3 signal plans proposed by only running the

R simulator. This is the most accurate yet also the most computationally-costly

approach.

o The 3 green curves correspond to the 3 signal plans proposed by our approach.
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Figure 3-3: Percentage of model R runs in different experiments with the toy network

For each plot, the x-axis represents the average subnetwork travel time. For

a given x value the corresponding y value of the curve represents the proportion

of replications (out of the 50 replications) where the simulated average travel time

was smaller than x. The more the cdf curves are shifted to the left, the higher

the proportion of simulated observations with low average subnetwork travel times.

Table 3.1: Number of runs of each model, averaged across all the experiments (Toy
Network)

Percentage of Percentage of
Method

model R runs model C runs

Only R 100 0

Only C 0 100

Both R and C 66.1 33.9

When running only the simulator C, all 3 plots of Figure 3-2 indicate that signal plans

with poor performance are derived. In particular, in Figure 3-2(a) two out of the 3

plans proposed by C perform worse than the initial signal plan, in Figures 3-2(b)

and 3-2(c) all 3 proposed plans are worse than the initial plan. In Figure 3-2(c) all 3

proposed plans perform significantly worse than the initial plan.

When running only the simulator R, all 3 plots of Figure 3-2 indicate that signal

plans with good performance are obtained (with a subnetwork travel time average
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of approximately 0.75 minutes). Note that for Figure 3-2(c) the improvement of the

signal plans proposed by R compared to the initial plan is not large, yet the initial

signal plan already had a good performance with low average travel times.

When running a combination of simulators R and C, the signal plans system-

atically yield performance similar to the signal plans propose by running only R.

Additionally, for the proposed approach the R model was called on average 66% of

the time, while the C model was called 34% of the time (Table 3.1). The number

percentage of model R runs for different experiments are shown in Figure 3-3. In

case of the toy network, this number seems to show a large variation from the aver-

age value of 66%. However, as we describe later, for a large scale city-network, this

variation is much lesser.

These results indicate that the proposed approach identifies signal plans with

good performance and does so at a lower computational cost, for the toy example.

We present the results of similar experiments on a large-scale network in the next

section.

3.2 Case study - Lausanne

Here we illustrate the effectiveness of our procedure on a microsimulation model of

the Swiss city of Lausanne. The regional network (also referred to as the large-scale

network) and the subnetwork are shown in Figure 3-4. The regional network modeled

in R has a total of 653 links (modeled as a network of 922 queues) and 79 centroids

(i.e nodes which that have non-zero demand or supply). This network has 2075 OD

pairs with non-zero demand. On the other hand, the subnetwork modeled in C has 48

links (modeled as a network of 102 queues) and 16 centroids . Of these 16, only one of

the centroids is common to model R. The others are artificially created to represent

the exchange of flow between the subnetwork and the rest of the city. We compute

the demand and supply for these artificial centroids by summing the contribution the

paths of vehicles in an analytical model of R which pass through the subnetwork,

but begin and end outside of it. This procedure is described in the appendix. Out of
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Figure 3-4: (1) the full network modeled in R, (r) the subnetwork modeled in C
(Lausanne)

the 240 possible OD pair combinations that could result from these 16 centroids, 121

have non-zero demand.

Table 3.2: Number of runs of each model, averaged across all the experiments (Lau-
sanne Network)

Percentage of Percentage of
Method

model R runs model C runs

Only R 100 0

Only C 0 100

Both R and C 41.6 58.4

According to the route choice model that was embedded within the simulation

model, each vehicle belonging to an OD pair choose one of the first three shortest

paths between that OD pair. The route choice is made using a multinomial logit

model, with faster routes having a higher probability of being chosen.

We implement the three strategies described at the beginning of Section 2.1 , with

the objective of reducing the average user travel time for users in the subnetwork.

We use the algorithm to design the signal plan for 9 intersections in the subnetwork

which amount to a total of 51 endogenous phases.

We carry out the experiment for three different initial points and with a compu-

tational budget of 200 simulation runs per experiment. For each of the initial points,
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Figure 3-5: The results from three different initial solutions for the Lausanne network

the same experiment is replicated thrice, to observe trends.

We encode the solution resulting from the SO algorithm into model R and run

50 simulation replications, end plot the empirical cumulative distribution function of

these replications. Figure 3-5 has the curves for the three initial points. Each plot

contains 10 different cdf curves, similar to the results of Section 3.1.

As seen with in the case of the toy network, using only model C results in a poor

performance. In fact, for two of the three initial points, it leads to a signal plan that

performs worse than the initial point (Figures 3-5(a) and 3-5(c)). On the other hand,

when only model R is used, it results in signal plans perform much better than the

initial points. In all of the experiments, the average subnetwork delay was reduced

at least by a factor of 2.

While running experiments that use both models R and C, the proposed signal
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Figure 3-6: Percentage of model R runs in different experiments with the Lausanne

network

plans give a performance that is close to that of the plans obtained by using only R.

This performance is achieved in spite of model R being used in less than 42% of the

iterations (Table 3.2). The percentage of model R runs in different experiments is

shown in Figure 3-6), and there doesn't seem to be much variation from the mean

value of 42% . Note that the computation time of model R is of the order of 90

seconds, while it is around 2.8 seconds for C. Therefore, the computation time used

for the simulations alone is reduced by almost 78%.

However, this does not translate into a great reduction in the overall computation

time as such, since the time taken to decide between the two models takes around

45 seconds in itself. This is due to the time taken to solve the traffic assignment

analytically. However, by efficient implementation of the decision making framework,

this time can be reduced significantly. Also, for an SO algorithm where multiple

replications of the same point are required, this methodology is sure to result in

major computation time savings, since the time spent on deciding between the model

for a given point will be recovered by the savings resulting from multiple replications

using the less expensive model C. Note that we run only one simulation replication

per point in our case studies.

To illustrate the potential of our methodology, we consider the scenarios in Table

3.3 . Let T Cce represent the computation time spent on choosing between the two

models, and TOIR represent the time spent on running simulations,per iteration, for
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the method in which both models C and R are used. Similarly, let Tl'eice represent

the computation time spent on choosing between the two models, and T'm represent

the time spent on running simulations, per iteration, for the method in which only

model R is used. Note that TL=ce 0, as we don't spend any computational re-

source on making a choice in this method. Let the savings in computation time,per

iteration, due to using the third strategy (of using models C and R) as compared to

the computation time of the first strategy be denoted by Taved %.

TR -(TC/R + TC/R
Tsaved = 100 sim coice sim (3.1)

The computation time required to decide between the two models for a point

is performed only once for each point irrespective of the number of replications the

algorithm uses, and hence TC/R is constant in Table 3.3 . On the other hand, the

average simulation time saved per iteration (Tm - Tca) increases linearly with the

number of replications. Hence, when the SO algorithm uses more than one replication

per iteration, the overall computation time savings (Tsaved) increases while the cost

of taking this decision remains constant.

Table 3.3: Effect of the number of replications on the computation time savings per
iteration

Number of TC/R TR - TC/R Tsaved

replications choice Sim

per point (seconds) (seconds) (percentage)

1 45 50.6 6%

3 45 151.7 39 %

5 45 252.9 46 %
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3.3 Conclusions

We have addressed a large-scale traffic signal design problem using a simulation-based

optimization framework. Our primary goal was to solve this optimization problem

efficiently, without resorting to running a computationally intensive simulation model

at every iteration.

In order to choose a simulation model at every iteration in the SO framework, we

use an analytical traffic assignment model. Combining a queing network model for

congestion with a multinomial logit model for route choice enabled us to model with

good accuracy the traffic assignment in the network. Using the results of the traffic

assignment, we are able to predict the relative inaccuracy of the small-scale model

with respect to the large-scale model. This allows to trade-off the high computational

costs of running accurate large-scale simulators with the lower costs of running less

accurate smaller-scale simulators.

We illustrate the proposed approach with a signal control problem on a toy net-

work. The proposed approach identifies signal plans with good performance and can

do so at a lower computational cost than when systematically running the larger-

scale simulator. The approach produced similar results when applied to a large-scale

model that covers an entire city, resulting in a 78% reduction in the computation

time spent on simulation. We also showed the potential of this method to reduce

the overall computation time by 46% in the case of SO algorithms that use multiple

replications of every point. Thus, we expect our work to be particularly useful for

solving large-scale optimization problems using simulation based optimization.
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Appendix A

Calibration of the demand for

model C

We assume that a fully functional model R is given to us. In our case R is a mi-

crosimulation model in AIMSUN. Now, if our objective is to minimize the delay in a

subnetwork of the city, we then carve out the subnetwork C from the larger model

R. We extract model C from R in such a way that all the links of the subnetwork of

interest are contained in C (Figure A-1).

We use the behavioral parameters from R in model C without any modification.

A key input in the definition of model C is the traffic demand. The traffic demand in

model C has two components. The first includes the traffic generated by the existing

Figure A-1: (1) the full network modeled in R, (r) the subnetwork modeled in C
(Lausanne)
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sources and sinks located within the subnetwork. The second component includes

vehicles that have their origins and destinations outside of the subnetwork, but travel

through the subnetwork. For all practical purposes, this second component can be

treated as being generated by a source located at the interface of models C and R

and attracted to a sink that is also located at this interface.

Thus, in order to model the second component of the demand described above, we

create dummy sources and sinks at the interface of R and C. The next step involved

analyzing the different paths in model R and the flows on each of these paths to

estimate the contribution of each of these paths to the pseudo demand matrix. While

we could have chosen to analyze the path flows from model R, we chose to use an

approximate method since the analysis of the paths of individual vehicles in AIMSUN

is computationally intensive and time consuming. Hence, we used the path flows from

analytical model AR, corresponding to a randomly chosen signal plan, to come up

with the pseudo demand matrix.

Let J be the set of links at the interface of model R and C. For each of these

links, add two dummy nodes - an origin and a destination. let this set of dummy

modes be represented by D. Now, each path in model AR that passes through the

subnetwork has to enter and exit through one of the links in J. Since each link in J is

associated with an origin and a destination (from D), the flow in any path can simply

be translated into a demand between two dummy nodes in D by identifying the entry

and exit links of the path. The contributions of all the path-flows to the demand in

these dummy matrices are summed up to obtain the pseudo demand matrix for C.

The same demands are used in models C and Ac.

While the paths flows from AR do change with different signal plans, we perform

this procedure just once.
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Appendix B

Solving the equations

We first attempted to solve the system of equations using the Matlab routine fsolve.

We analytically computed the Jacobian and implemented it. While this method

worked with networks of smaller sizes, it failed to scale to the full Lausanne network.

That is, AR couldn't be solved using this method. Hence, we adopted an approximate

solution methodology.

We split the system of equations into two parts - the queuing model (Equations

(2.24) to (2.29)) and the route choice model (Equations (2.32) to (2.36) ). The

queuing model effectively took the queue arrival rates -yi and the transition matrix pij

as inputs and could be solved to obtain the expected travel time on different queues

E[T]. The choice model took E[Ti] as input , and gave as output the queue arrival

rates -yi and the transition matrix pij.

The fsolve routine was able to solve the queuing model without any problems.

Therefore, we first started with an initial assumption for E[T] - we set E[Ti] =

ei, Vi C Q. Using these proxy costs, the route choice model was solved to obtain an

initial estimate of the queue arrival rates -yj and the transition matrix pij. These were

then given as input to the queuing model, which was solved using fsolve. Now the

queuing model is solved to obtain estimates of E[Ti], which are used as inputs for the

route choice model in the next iteration. This procedure of solving the route choice

and the queuing model one after another is repeated 30 times at the end of which the

values from the last fsolve run are taken as the solution to the system of equations..
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Listed below are the parameters we used for the fsolve routing. We used the

default values for the rest of the parameters. The same values were used for both the

case studies (toy network and Lausanne).

Table B.1: parameters used in the fsolve routine

Parameter

'Algorithm'

'MaxFunEvals'

'MaxIter'

'TolFun'

'TolX'

'Jacobian'

Value

'trust-region-dogleg'

100000000

100

le-4

le-4

'on'

60



Appendix C

SO parameters

The parameters of the SO algorithm were tuned a priori, and set to the values shown

here. The same values were used for both the case studies (toy network and Lau-

sanne).

Table C.1: Parameters of the SO algorithm

Value

Parameter (toy (Lausanne
network) network)

r71  0.001 0.001

V 0.9 0.9

vinc 1.2 1.2

- 0.1 0.1

U 10 10

1800 1800
s

vehicles/hour vehicles/hour

nmax 21 201

6 2 2

IUI 3 25
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Appendix D

Parameters used in lsqlin to

estimate parameters using least

squares

The minimization problems in Sections 2.2.3 and 2.3.5 are used to estimate parameters

by minimizing a quadratic function. We used the lsqlin routine in Matlab for this

purpose. Listed below are the parameters we used for the lsqlin method. We used

the default values for the rest of the parameters.The same values were used for both

the case studies (toy network and Lausanne).

Table D.1: parameters used in the lsqlin routine

Parameter Value

'LargeScale' 'off'

'MaxFunEvals' 100000000

'MaxIter' 100000000

'TolFun' le-7
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