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Abstract

Even prior to the elucidation of the structure of DNA, the theoretical foundations
of population genetics had been well developed. Advances made by Sewall Wright, John
B.S. Haldane, and Ronald A. Fisher form the basis with which we understand the
statistical dynamics of evolution and inheritance. Using this foundation, recent advances
in DNA profiling technologies have enabled genome-wide analysis of thousands of
individuals from a diverse array of human populations. These new analyses can answer
fundamental questions about human population differences, natural selection, and
admixture. However, with this deluge of newly available data, confusion about statistical
methods may lead to misleading conclusions about human population history and
natural selection. We view it as imperative to put analyses of population differences on
sound statistical footing.

In the course of this thesis, we have developed methods and reanalyzed existing
results in two related areas: the detection of natural selection and estimation of genetic
distance. Throughout our work, we have strived for statistical rigor, attempting to
understand variation in previously reported results and provide a resource for other
researchers in our field. Where necessary, we have made simplifying assumptions about
evolutionary processes but have attempted to state these clearly and validate their
reasonableness using simulations. Our efforts have culminated in three projects that will
be described in the subsequent chapters: (1) A model based approach to detect natural
selection in 3 populations (2) A protocol to generate consistent estimates of FST and, (3)
Reanalysis of previously reports of selection in African Americans since the arrival of
their ancestors in the Americas.

We note that our work is just part of a rich literature on population and evolutionary
genetics. We have attempted to cite this literature in detail and have published our own
methods to enable others to utilize and improve upon them.
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Chapter 1: Introduction

From the 2001 cost of -$3 billion, the cost of generating a single human genome
sequence has decreased by nearly a factor of 1 million 1. This decrease has been
mirrored to a lesser extent in genotyping technologies 2, enabling private companies ,4
to offer genome-wide genotyping direct-to-consumer at increasingly reduced cost. At the
point of this writing, 23andme and AncestryDNA were offering a genome-wide profile for
$99. As a point of a comparison, genetic testing of a single locus or a small number of
loci in the medical context can cost "more than $2000" 5. Though this difference is
partially explained by different technologies and tolerance for errors, the revolutionary
potential of ultra low-cost DNA profiling is clear.

Scientifically, the revolutionary impact of these technologies has already been
felt. Since the release of a human genome reference 6, analyses of large data-sets of
human genetic variation have enabled numerous large scale genome-wide association
studies 7- that have identified thousands of genetic associations with common
phenotypes 10. These associations have provided some insight into the genetic
architecture of human disease 11,12, while raising new questions 13

Beyond medical genetics, the availability of whole genome data from large
numbers of individuals has enabled testing of human population genetic hypotheses as
never before. Large consortia 14-19 have made data from a diverse array of populations
available as a resource for population geneticists. These data and others have been
used to detect natural selection 20-2s, and answer questions about human demographic
history 26-30. Indeed, these data present an orthogonal line of evidence for comparison to
the historical, archaeological and linguistic record 28,31

In this thesis, we focus on analysis of genome-wide data for the purpose of
assessing genetic distance between populations and detecting natural selection. Our
goal is to explain discrepancies in previous reports and contribute to a methodological
basis for future studies. A particular focus of this work is the analysis of allele frequency
differences between different populations. These differences, quantified by FsT, are the
result of neutral genetic drift as well as natural selection and can give insight into both.
FST is a quantity originally described by Sewall Wright (1949) and Gustave Mal6cot
(1948), which is used to quantify the genetic distance between pairs of populations.
Specifically, FST is the "correlation between random gametes, drawn from the same
subpopulation, relative to the total" 32.

Unfortunately, in this original description, Wright did not clearly define the "total"
population, or give a means of estimating FST from observed data. Subsequent authors
have attempted to clarify this3 ~37 , though there has been significant disagreement about
both topics. Addition to the confusion, FST has been related to a large number of
additional quantities, such as divergence time 3, coalescent time 3, migration rates32
and heterozygosity 33,40. Beyond clarifying FsT's definition and estimation, its value as a
metric of differentiation has also been the subject of recent debate 41,42. Considering all
of this, the fact that published estimates of FST from genotype data 16 were nearly double
those from sequence data 17 was difficult to evaluate. In Chapter 2 of this thesis and our
related publication , we show that the difference between these estimates is largely
artifactual and provide a protocol that can be used to produce consistent estimates of
FST across studies.

In addition to its use in quantifying genetic distances, FsT can be used to calibrate
selection statistics. Specifically, under certain assumptions, FST functions as a parameter
in a statistical model of genetic drift. To detect selection, this as used as a null model of
allele frequency differences between populations44 and violations of this model
represent likely targets of selection. We explored this approach in the context three
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populations with majority West African ancestry: African Americans, Gambians, and
Nigerians. In addition to testing all pairs of populations for evidence of selection, we
developed an approach to reconstruct a tree of the three populations and test for
selection using the reconstructed tree as a null model. This approach may increase
power to detect selection and resolution of the specific population that is subject to
selection. We used these approaches to corroborate previously published targets of
selection 4,4-'o and provide evidence for a novel target of selection. This analysis is
described in Chapter 3.

In Chapter 4, we reanalyze a previous report of natural selection in African
Americans since the arrival of their ancestors in the Americas 51. Given the small number
of generations since admixture between the African ancestors of African Americans and
Europeans 52, any detected selection would have to be extremely strong. This
suggestion garnered much attention, including a New York Times article suggesting, "the
harsh new world... apparently brought genetic change". Considering this high profile, and
that previous reports of such recent natural selection53 may have been false positives 54,
we sought to examine the claims of Jin and colleagues 51 in detail. Building on our work
in Chapter 2, we show that estimates of allele frequency differences (i.e. FsT) are inflated
due to artifacts of the estimation method. In addition, any selection that did occur is more
parsimoniously explained by selection in Africa, as opposed to selection in the Americas.
The second line of evidence used by Jin and colleagues is an excess of African or
European ancestry at loci under selection. However, we show that reported loci do not
achieve an appropriate genome-wide significance threshold 55 and, thus, are likely to be
false positives. Overall, we conclude that no study has provided evidence of selection
since admixture in African Americans.

Finally, in Chapter 5, we summarize these findings and discuss future directions.
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Chapter 2: Estimating and Interpreting FST: The Impact of Rare Variants

In a pair of seminal papers, Sewall Wright and Gustave Malecot introduced FST
as a measure of structure in natural populations. In the decades that followed, a number
of papers provided differing definitions, estimation methods, and interpretations beyond
Wright's. While this diversity in methods has enabled many studies in genetics, it has
also introduced confusion about how to estimate FST from available data.

Considering this confusion, wide variation in published estimates of FsT for pairs
of HapMap populations is a cause for concern. These estimates changed-in some
cases more than two-fold-when comparing estimates from genotyping arrays to those
from sequence data 1. Indeed, changes in FST from sequencing data might be expected
data due to population genetic factors affecting rare variants. While rare variants do
influence the result, we show that this is largely through differences in estimation
methods. Correcting for this yields estimates of FST that are much more concordant
between sequence and genotype data.

These differences relate to three specific issues: (1) estimating FST for a single
SNP, (2) combining estimates of FST across multiple SNPs, and (3) selecting the set of
SNPs used in the computation. Changes in each of these aspects of estimation may
result in FST estimates that are highly divergent from one another. Here, we clarify these
issues and propose solutions.
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Introduction

Since its introduction by Sewall Wright and Gustave MaIecot 34, FST estimation 5,6

has become a key component of studies of population structure in humans 1,2,7,8 and
other species 3,4,112. Additionally, FST is a mainstay of much of the literature on detecting
directional natural selection 13-22. Despite a recent debate about the utility of FST and
related measures 23,24, FST continues to be widely used by population geneticists 25-27

Despite its widespread use in genetic studies, confusion remains about what FsT
is and how to estimate it. Beyond Wright's original description of FST as a ratio of
variances, FST has been conceptually defined in many ways 4,2&-32. Additionally, multiple

5,29,30,33-35estimators for FST have been described in the literature , , often making the
correct choice of estimator unclear.

With this diversity of definition and estimation in mind, we consider estimates of
FsT published by the 1000 Genomes Consortium 1 of 0.052 for European and East Asian
populations and 0.071 for European and West African populations. These are less than
half of the published estimates, 0.111 and 0.156, from HapMap3 data 2 and may be the
result of demography that differentially impacts FST at rare variants. These estimates
have been subsequently used to simulate properties of recent rare variants 36 making it
imperative to know if this reduction in FST is a meaningful result of the inclusion of rare
variants or merely an artifact of estimation.

To answer these questions, we examine the issues surrounding FST estimated on
data containing rare variants. We focus our attention on FST estimation in the context of
comparing two populations-potentially with differing amounts of drift since the
populations split-using a series of bi-allelic SNPs. Considering this general scenario,
we employ the definition of 35 which allows for population-specific FST. Using this
definition, we divide the issues surrounding estimation into three categories and examine
them using both simulated and 1000 Genomes data:

(1) Estimating FST for a single SNP. For two populations with different population-
specific FST, we are interested in estimating the average of these population-specific
FsT's. We examine several estimators in the limit of very large sample sizes. For different
estimators this limit can vary with changes in sample sizes, potentially leading to
inconsistency across studies, or consistently overestimate FsT. We suggest an estimator
that is shown via simulation and application to empirical data to avoid these issues.

(2) Combining estimates of FsT across multiple SNPs. We show that an average
of single-SNP estimates of FST can result in a large reduction in the genome-wide
estimate of FST, particularly in data sets that include rare variants. We show how to
compute an average that avoids this problem.

(3) Dependence of FST on the set of SNPs analyzed. We explore the effects of
SNP ascertainment schemes 3 and demonstrate the effects of demographic events on
rare and common variants. We show that the underlying FST parameter is a function of
the set of SNPs analyzed, in addition to the populations studied.

We conclude that FST estimates reported by the 1000 Genomes Consortium 1 are
a consequence of the estimation method that was applied and are not informative for
human demographic history. Correcting for differences in estimation method yields FsT
estimates of 0.106 for Europeans and East Asians and 0.139 for Europeans and West
Africans. Despite a large increase relative to the results reported by the 1000 Genomes
Consortium, these remain slightly reduced relative to the corresponding estimates from
HapMap3. The small reduction in FST relative to HapMap3 is due not to the inclusion of
rare variants, but to the ascertainment of SNPs in HapMap3 that excluded less
differentiated common variants. In fact, when ascertaining within one of the two
populations studied, rare variants actually have higher FST estimates than common
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variants. This is consistent with bottlenecks having a more significant effect on FsT
estimates than recent expansion. Overall, our results contradict a recent statement
"among human populations, FST is typically estimated to be <0.1" by 36 that was based
on results from 1.

All together, our results suggest that, in the setting of rare variants, a careful
protocol for producing FST estimates is warranted. We provide such a protocol.

Results

Theory

Defining FsT
Wright 4,37 defined FST as the correlation of randomly drawn gametes from the

same population, relative to the total population. However, he did not clearly specify the
"total population", leaving subsequent authors to interpret it's meaning. For Nei29, the
"total" population is the combination of the two population samples. This means, that FsT
quantifies drift relative to an average of the two population samples. For Cockerham,
Weir, and Hill32 ,35 , the "total" population is the most recent common ancestral population
to the two populations being considered. We agree with these authors that FST is a
parameter of the evolutionary process, and not a statistic from observed samples as Nei
described.

Confusion surrounding FST also comes from the differing set of assumptions
made by each definition. For example, the definitions of Cockerham, and Weir and Hill
all assume that studied SNPs were polymorphic in the ancestral population. Additionally,
in a two-population comparison, Weir and Cockerham 5,32 defined a single FsT for both
populations studied. This assumes that the two populations have experienced identical
amounts of drift since splitting, which may be unrealistic in many real data sets. Weir and
Hill 35 generalized this, allowing for each population to have it's own FST. Because we
believe that the definition of 35 (WH) is sufficiently general to apply to real world
scenarios, we use this definition throughout our manuscript. WH define FST for a single
population as:

E[pI p.]= p=

Var(pf I p.,) = Fs p (I1- ps)
Where py is the allele frequency of the derived allele in population i, at SNP s, and p is
the allele frequency of the derived allele in the ancestral population at SNP s.
We analyze FST estimates, using the WH definition, in the context of comparing two
populations each with it's own population-specific FST. Below, we focus on how these
estimates will vary with changes in estimation method.

In addition to the definitions described above, FST has been related to divergence
time, coalescent times, and migration rates. Additionally, likelihood based definitions
view FST as a parameter in the distribution (e.g. normal, beta) of allele frequencies in
current populations. We give a short overview of these definitions, and the assumptions
that they depend on in the Supplementary Material of Bhatia et al.50.

Choice of FST Estimator
While estimators of FST handle issues related to finite sample size, we are

interested in their behavior in the limit of large sample sizes, or the "quantity being
estimated". Most published estimates of FST are produced using the Weir and
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Cockerham (WC) * (>8,000 citations), or Nei 29 (>5,500 citations) estimators. However,
we do not recommend these estimators.

The WC estimator was for the case of populations with identical FST, and if it is
used when FST is not identical for both populations, we demonstrate that the WC quantity
being estimated becomes dependent on the ratio of sample sizes (see Methods), M
according to:

WC > (F,+FT)
S T 1(2__w___ F(2+Fs)

(F,' + F 2 +2 [M(1- FsT)+(I- FST)(2
ST ST(M+1)

We note that this variation with sample size is not due to any flaw in WC estimator, but
rather due to the use of the WC estimator for a purpose different than what was
intended.

In the setting described by the Weir and Hill definition, the Nei estimator will
consistently overestimate FST and the degree of overestimation will depend upon the
magnitude of FST itself (see Methods):

fNei (F' + FsT)

2T _(FT + F) (3)

2
We note that this result, with a maximum value of 2, makes it impossible to view FsT as a
correlation.

We also analyze a different estimator of FST motivated by Hudson 3,, which
produces estimates that are independent of sample sizes even when FST is not identical
across populations. We provide comparisons of this estimator to the WC when applied to
simulated (See Supplementary Material of Bhatia et al.') and empirical data (see
below). We note that while Hudson did not explicitly provide an estimator of FST, he did
describe a method of estimation that corresponds to the estimator that we explicitly
provide here (see Supplementary Material of Bhatia et al.50). Thus, we refer to this
estimator as the Hudson estimator. Hudson estimates correspond to a simple average of
the population specific FST estimates as given by:

2
We note that the Hudson estimator is a simple average of the population-specific
estimators proposed by Weir and Hill 2002.

Combining estimates of FST across multiple SNPs
We investigate two approaches for combining estimates of FsT across multiple

SNPs. In the first approach, variance components-the numerator and denominator-
are averaged separately and the genome-wide estimate of FST is a "ratio of averages" 2,5

In the second approach, single SNP estimates of FsT are averaged across SNPs. The
resulting "average of ratios" is reported as the genome-wide estimate 1 (see Methods).

In the context of the WH definition, the numerator of the Hudson FsT estimator
(See Methods) is an unbiased estimator of the variance between populations. The
denominator is an unbiased estimator of the total variance in the ancestral population.
However, this does not mean that the ratio of the estimators is itself an unbiased
estimator of FST. We are not aware of any unbiased estimator.

While, an unbiased estimator is not available, FST estimates produced using a
ratio of these two unbiased estimates will be asymptotically consistent in the sense that
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they will converge to the correct underlying value as the number of independent SNPs
increases. This is the basis of our recommendation FST be estimated as a ratio of
averages.

We analyze the effects of choosing an average of ratios in coalescent
simulations detailed in the Supplementary Material of Bhatia et al.50 .

Dependence of FsT on the set of SNPs analyzed
It is well known that population genetic factors can cause variation in FST

estimates, and that ascertainment scheme can alter the properties of studied SNPs 39,40.
For example, selection can result in differences between FST estimated on genic and
nongenic SNPs 4143; complex demography can cause FST to vary with SNP allele
frequency 4 (see below). Indeed, variation in FST estimates between ascertained classes
of SNPs can be used to test a variety of hypotheses about population history 454. This
usage of FST demonstrates that there is no single correct ascertainment scheme, as FsT
is a parameter of both the populations and the set of SNPs that are used in the
computation.

Though there is no single correct ascertainment scheme, ascertainment in an
out-group may have desirable properties. Outgroup ascertainment guarantees that
studied SNPs were polymorphic in the most recent common ancestral population
(ignoring recurrent mutation), satisfying an assumption made in the Weir and Hill
definition. This leads estimates of FST to be independent of allele-frequency and depend
upon time since divergence according to a simple equation (see Supplementary
Equation s1).

While we view these as desirable properties, if no reasonable out-group sample
is available, it may become necessary to choose SNPs that are polymorphic in one,
both, or either of the populations studied. These choices will affect the estimate of FST
produced and may explain discrepancies in FST estimates across studies of the same
populations.

We explore the effects of various ascertainment schemes on FST estimates
across the allele frequency spectrum in a variety of simulated demographic scenarios
(See Supplementary Material of Bhatia et al.50).

Other Estimation Methods
In addition to the methods that we consider above, we have also analyzed

several additional methods. The moment-based estimator of Weir and Hill (2002) (WH)
introduced population-specific estimates of FST. Weir and Hill recommend a sample size
weighted average of these estimates, which may result in wide variation with sample
size. However, one could report these estimates independently or perform a simple
average of these estimates.

A separate maximum-likelihood estimator of Weir and Hill 2002 (WH-ML) is
based upon a normal approximation to genetic drift. However, the equations given in 35

are not applicable to the general case of unequal sample size, and the authors
recommend that estimates be "simply averaged across loci" causing WH-ML estimates
to vary widely with the inclusion of rare variants.

The Bayesian method of 4 (Holsinger) approximates the distribution of allele
frequencies as a beta distribution. Our simulations suggest that Holsinger estimates
increase dramatically if rare SNPs are analyzed.

We also evaluated two estimators based on the beta-binomial likelihood using
point estimates for the allele frequency in the ancestral population (DJB, personal
communication). These estimates perform well for small values of FST but do poorly as
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FST increases. It may be possible to improve on these methods by integrating over the
distribution of ancestral allele frequencies, and this is an area of active research.

We describe results from these methods in greater detail in the Supplementary
Material of Bhatia et al.g.

Analysis of 1000 Genomes Data
We analyzed data from 1000 Genomes populations 1 to illustrate the effects of changes
in each of the aspects of estimation described above. We focus largely on the
comparison of Utah residents of European ancestry (CEU) and Chinese individuals from
Beijing (CHB), as the Yoruba in Ibadan, Nigeria (YRI) sample functions as a natural
outgroup for ascertainment of SNPs. This ascertainment has desirable properties (see
above).

Choice of FsT Estimator
Estimates of FSTfor CEU and CHB are 0.106 (s.e. 0.0006), 0.112 (s.e. 0.0006),

and 0.107 (s.e. 0.0006) for the WC, Nei, and Hudson estimators, respectively. These
estimates were produced over SNPs ascertained as polymorphic in YRI. The higher Nei
estimate is expected. In addition, sample sizes for CEU (85 individuals) and CHB (97
individuals) are similar so we do not expect WC and Hudson estimates to differ.

In order to investigate the effects of sample size variation we selected 14
individuals-the size of the smallest sample (Iberian populations in Spain; IBS) in the
1000 Genomes Consortium data-from both CEU and CHB to produce populations
CEU14 and CHB14. Hudson FST estimates for CEU14 and CHB are similar to those for
CHB14 and CEU (see Table 1). However, WC estimates are 0.114 (s.e. 0.0006) and
0.107 (s.e. 0.0006) for CEU14 vs. CHB and CHB14 vs. CEU, respectively. The
difference between these estimates is statistically significant (>8 standard errors). To
verify that this difference is not due to different sets of polymorphic SNPs, we re-
estimated FST restricting to SNPs that were polymorphic in YRI and at least one of
CEU14 or CHB14. Re-estimated values of FST were similar to those above and WC
estimates remained discordant (data not shown).

The effect of sample size variation is further exacerbated when ascertainment is
performed within the populations studied. For example, in comparing IBS-with a
sample size of only 14 individuals-to YRI, no reasonable out-group population exists in
the 1000 Genomes data. If we ascertain within one of these populations, WC estimates
are 0.121 and 0.144 for ascertainment in YRI and IBS, respectively. These estimates-
computed using identical populations and even identical individuals-are highly
divergent at >25 standard errors apart, whereas Hudson estimates are much more
stable (see Table 1). This underscores that FST estimates can vary substantially based
on the choice of estimator

Regardless of choice of estimator, our estimates of FST from 1000 Genomes data
are relatively close to previously reported values of FsT (see Table S1 of Bhatia et al.50

for all populations). This suggests that while the choice of estimator can impact the
resulting value of FST, it does not explain the disparate results reported by the 1000
Genomes consortium, and other aspects of estimation may be involved. We consider
these in the sections below.

Combining Estimates of FsT across Multiple SNPs
From 1000 Genomes data, we estimated FST for CEU and CHB as 0.106 (s.e.

0.0006) and 0.072 (s.e. 0.0003) for the ratio of averages and average of ratios,
respectively. These estimates were produced over SNPs ascertained as polymorphic in
YRI. This suggests that the result reported by the 1000 Genomes consortium (0.052)
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may be partially explained by the large reduction in FST obtained by use of an average of
ratios. These results are replicated for several comparisons of populations included in
the 1000 Genomes data (see Table 2).

To explore the effect of the rare variants included in sequence data we compared
our results to those obtained using HapMap3 genotypes. We obtain FST estimates for
CEU and CHB of 0.110 (s.e. 0.0010) and 0.089 (s.e. 0.0006) using the ratio of averages
and average of ratios, respectively. This suggests that the inclusion of rare variants with
low single-SNP FST estimates in the 1000 Genomes data tends to exacerbate the
discrepancy produced by the average of ratios. We expect that this discrepancy will
grow with sample sizes and sequencing depth (see Figure S2 of Bhatia et al.5).
Ultimately, using the average of ratios may make estimates incomparable across studies
and unrelated to population demographic history.

While the use of the average of ratios clearly results in lower estimates of FST,
these estimates are not as low as those published by the 1000 Genomes Consortium.
Below, we explore the possibility that the remaining discrepancy can be accounted for by
differences in the set of SNPs analyzed.

Dependence of FsT on the Set of SNPs Analyzed
When estimating FST for CEU and CHB, we compared the effects of ascertaining

in YRI (YRI-ascertainment) versus ascertaining SNPs that were polymorphic in CEU,
CHB, both populations, or either population (see Table 3). When using an average of
ratios, our estimates of FST were approximately 0.103 for all of these modified
ascertainment schemes. These can be compared to an FsT of 0.106 produced from YRI-
ascertainment in 1000 Genomes Data or 0.110 in HapMap3 data. Though statistically
significant, these results suggest that the effects of modified ascertainment are not very
large when analyzing human populations using a ratio of averages. This indicates that
reasonable estimates of FST may be produced when comparing populations without
access to an out-group.

However, when using an average of ratios and including all SNPs polymorphic in
either CEU or CHB, our estimate changed from 0.072 to 0.047 (s.e. 0.0002), which is
similar to the result reported by the 1000 Genomes Consortium. This suggests that
much of the discrepancy between previously published estimates of FST for CEU and
CHB and the published 1000 Genomes estimate is explained by using the average of
ratios and an ascertainment scheme that includes all SNPs that are polymorphic in
either of the two populations. These results are replicated for comparisons of continental
populations included in the 1000 Genomes data as we obtained values of 0.056, and
0.063 for comparisons of CEU-YRI and CHB-YRI, respectively.

Separately, we note that when comparing CEU to CHB on the 1000 Genomes
data we observed larger FST estimates of 0.108 for the lowest frequency SNPs (0.0 <
MAF <= 0.05) versus estimates of 0.103 for the most common SNPs (0.45 < MAF < 0.5),
when ascertaining in CEU. These estimates were 0.131 and 0.097 when ascertaining in
CHB (See Figure 1). Increased FsT for rare variants suggests that bottlenecks are likely
to be a stronger influence on FsT estimates for CEU and CHB than recent expansions.
Our results also indicate that bottlenecks in the population history of CHB are likely to be
stronger than those in the population history of CEU, consistent with the findings of 38

This is in contrast to the much lower FST estimates reported on sequence data by the
1000 Genomes consortium, which might suggest that expansions are a stronger
influence on FST at rare SNPs.

Under a simple demographic history (i.e. without migration or admixture), this
dependence on minor allele frequency is expected to disappear when ascertaining SNPs
in an out-group. When ascertaining in YRI we do not observe any significant
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dependence on frequency, which suggests that YRI is a reasonable out-group for the
comparison for CEU and CHB.

We note that when ascertaining in YRI, our genome-wide estimate of FST (0.106)
is lower than estimated from HapMap3 (0.110). To investigate whether this difference is
due to non-random ascertainment of HapMap3 SNPs, we sampled 10 subsets of SNPs
from the 1000 Genomes data that matched the allele frequency spectrum of HapMap3
SNPs (see Supplementary Material of Bhatia et al. 50). We estimated FST for CEU and
CHB in each of these subsets ranging from 0.106-0.107 (s.e. 0.0010). This suggests that
HapMap3 SNPs are more highly differentiated than random SNPs, consistent with
previous findings on the effects of ascertainment on genotyping arrays 4,41.

Recommendations
Choice of FsT Estimator

Because the Hudson estimator is not sensitive to the ratio of sample sizes and
does not systematically overestimate FST, we recommend it be used to estimate FST for
pairs of populations. The proposed estimator for FST and a corresponding block-jackknife
estimator for standard error of FST are implemented in the EIGENSOFT software
package (see Web Resources).

Combining Estimates of FsT across Multiple SNPs
Using an average of ratios will result in large reductions in FST estimates. This

effect will be exacerbated when estimating FST from sequence data. Therefore, we
recommend using a ratio of averages.

Dependence of FST on the Set of SNPs Analyzed
Estimating FST from SNPs ascertained in an out-group has the valuable

properties that (1) FST estimates are expected to be independent of allele frequency in
the out-group and (2) FST estimates will relate to divergence time according to
Supplementary Equation si if there has been no migration or admixture. However, data
from a reasonable out-group is not always available. Additionally, comparison of FST

between ascertained classes of SNPs (e.g. genic vs. nongenic) can be used to test a
variety of hypotheses about population history. Thus, we recommend that future
publications of FST estimates include details of the ascertainment scheme used,
including the proportion of SNPs that are polymorphic in each sample.

Discussion
The use of FST to quantify the genetic distance between populations and to

assess differentiation at individual SNPs is widespread. Here, we point out several
challenges surrounding FST, and provide a protocol for its robust estimation in the case
of two populations and bi-allelic SNPs. We show that the estimator of FST, the method of
combining estimates across SNPs and the scheme for SNP ascertainment can impact
the resulting estimate of FST. An inappropriate choice for any of these aspects of
estimation can lead to widely disparate estimates of FST, especially in a setting of large
numbers of rare variants.

Indeed, the FST estimate 0.052 for CEU and CHB reported by the 1000 Genomes
Consortium 1 underscores the need for a careful analysis. Utilizing the careful protocol
set out here, we provide an estimate of 0.106 for CEU and CHB on 1000 Genomes data,
which is close to our estimate of 0.110 on HapMap3 2 data. Additionally, we show that
when ascertaining for SNPs in one of the two populations studied, rare variants have
higher FST estimates than common variants. This is the exact opposite of the results
suggested by the 1000 Genomes data. The difference between these two results
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changes the conclusions that are drawn about the role of demography in shaping the
patterns of differentiation between human populations.

In addition to altering genome-wide estimates of FST, the choice of estimator can
introduce inflation at the level of single SNP estimates. This inflation can be arbitrarily
large and may call into question the results of any study of selection that uses the WC
estimator 5 to produce single-SNP FST estimates for two populations with large
differences in the sample sizes (See Supplementary Material of Bhatia et al. 5).

Another concern about FST was considered by 23, who showed that as
heterozygosity becomes large FST will naturally approach 0-indicating low
differentiation-even if all alleles at a locus are population private. In an effort to avoid
this problem Jost introduced D as an alternate measure of differentiation. However, it
has been suggested that Jost's D shares the same problems as FST, and that these

24problems are sometimes even more pronounced for Jost's D . In any case, FST and
related measures "unquestionably provide important insights into population structure"
23

particularly for species such as humans in which heterozygosity is relatively low.
In conclusion, we recommend the use of the Hudson estimator 30,3 of FsT that is

independent of sample size. We demonstrate that a ratio of averages is an appropriate
method for combining these estimates across multiple SNPs. We also show the value of
estimating FST from SNPs ascertained in an out-group, though we do not view this as a
necessity. We do recommend, however, that future publications of FST estimates include
details of the ascertainment of SNPs.

Methods

Weir and Cockerham's Fsr (WC)
Definition
Weir and Cockerham 5 used the definition provided by Cockerham 32 of FST as a ratio of
the variance between populations to the total variance in the ancestral population. We
analyze this definition in the Supplementary Material of Bhatia et al.50.

Estimator
In the setting of population specific FST, described by the WH definition, the WC
estimator will result in estimates that vary with the ratio of sample sizes (see
Supplementary Material of Bhatia et al.50 for details). For the case of 2 populations and
biallelic SNPs, the WC estimator is:

2 __n2 I [-) (1-b)+n2A20 - 2A

si _W -I_ n + n2 i +n2-2()
T nj2(N. -,p2)2 +(2 njn2 _,) I [nihbj(I - h) +n2?2 0 A 2 5)

nl+n2 n1 +n 2  n1 i+n2 -2

where n, is the sample size and A is the sample allele frequency in population i for

i E {1, 2}. Then, in the limit of large sample sizes (n, -1~ n ), we can assume that

sample allele frequencies become close to population allele frequencies (, -> pi ). We
analyze the estimator as the sample sizes increase, but their ratio goes to a constant M
(see Supplementary Material of Bhatia et al. 50 for a derivation). In this case, we show
(see Supplementary Material of Bhatia et al.50) that the estimate tends toward equation 1
(see Results).
If the sample sizes are equal, M =1 , then the estimate becomes
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Also, when FST is identical for both populations, i.e. FT = F = F T, it is straightforward

to see that Fs -- Fr , i.e. the estimate will not depend upon the ratio of sample sizes

(M). We note that if FST is identical across populations, weighting by sample sizes will
reduce the variance of the estimator. This was the intent of Weir and Cockerham. If the
sample sizes are unequal or this assumption does not hold, however, the estimate will
depend upon the ratio of sample sizes underlying the limit. Given the complexity of
human population history, it is unlikely that this assumption will hold in general. This
means that even if large numbers of samples and SNPs are used to estimate FST for a
pair of populations, this estimate may not be comparable across studies with different
sample sizes.

We note that when FST is not identical for both populations, it is possible to

estimate FST separately for each population (i.e. F r, F) (Weir and Hill 2002). Estimates

for these produced according to the method given in (Weir and Hill 2002) will not depend
on sample size. We focus here on estimating FST for a pair of populations, as this is a
very common use when analyzing human genetic data.

Nei's FST
Definition
Nei 33 defined FST (he used the term GsT) based upon the sample gene diversity between
and within populations as

FsT _ sH (6)
HT

where Ds is the average gene diversity between populations and HT is the diversity in
the average of the two population samples. We consider this definition in detail in the

Supplementary Material of Bhatia et al.50 .

Estimator
In the case of two populations and biallelic SNPs, Nei's estimator is

F eiN- (A p2 )2

ZST ~ 7
2pavg(1- pJv)

where

A2Jb =g 2

and A is the sample allele frequency in population i for i E {l, 2} . We note that this is

Nei's updated estimator and, for the case of two populations, differs from the estimator
given in 2947 by a factor of 2. We use the estimator given in 33 as it is most closely related
to the other estimators considered. This is identical to the estimator used in several
recent papers 21,48

Using the definition of (Weir and Hill 2002) we show (see Supplementary Material
of Bhatia et al. 50) that estimates made using Nei's estimator will tend toward equation 2

(see Results), with a maximum value of 2 as F,1 -+ 1,FT -- 1 .This overestimates the
average of population-specific FST values and alters the relation from this average of FST
values to divergence time (see Supplementary Material of Bhatia et al.50). Estimates of

21



FST given for the Nei estimator were generated using the proposed estimator for the
numerator (see Supplementary Material of Bhatia et al. 50) and a simple estimator for the
denominator.

Hudson's FST
Definition
Hudson 30 defined FST in terms of heterozygosity. The fundamental difference between
these estimators is that for Hudson, the total variance is based upon the ancestral
population and not the current sample.

Estimator
Hudson's estimator for FST is given by

$sT Hb (8)
H,

where H, is the mean number of differences within populations, and Hb is the mean
number of differences between populations. While Hudson did not give explicit equations
for H, and H, , we cast his description into an explicit estimator (see Supplementary

Material of Bhatia et al.50 for a derivation). The estimator that we analyze is:

Sp2 )2 2 (P 2 )

-Hudson _ 2-1 2-1 (9)
ST 

A 1 -P 2) + 2  1-A)

where ni is the sample size and P is the sample allele frequency in population i for
i E {1,2}. Analyzing this estimator using the definition of (Weir and Hill 2002) we show
(see Supplementary Material of Bhatia et al.5 ) that FST estimated using Hudson's
estimator will tend toward equation 3 (see Results) which is exactly the average of
population-specific FST values that we seek to estimate. This emerges naturally, as the
proposed estimator is the simple average of the population specific estimators given in
(Weir and Hill 2002). This estimator has the desirable properties that it is (1)
independent of sample composition and (2) does not overestimate FST (it has a
maximum value of 1). We recommend its use to produce estimates of FST for two
populations.

Estimating FST From Multiple SNPs

The Hudson estimator is asymptotically consistent as the estimators of the variance
components involved in the computation of FsT are unbiased in the context of the WH
definition. However, as their quotient is not an unbiased estimator of FsT, use of an
average of ratios will, in general, result in a biased estimate.

As many rare variants discovered by deep sequencing are population specific,
we analyze the effect of this approach in the presence of many such variants. Consider
a rare SNP with p, = Ep2= 0. This yields a single SNP FsT = E. An estimate produced

using an average of ratios will be highly sensitive to rare SNPs of this type and is likely
to exhibit dependence on both the sequencing depth and sample size used in the
analysis (see Figure S2 of Bhatia et al.50).

Previous works have examined this choice and advocated for the use of a ratio of
averages 54. However, in describing the WH-ML method, Weir and Hill recommend that
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estimates be "simply averaged over loci." We believe that use of an average of ratios
can account for the bulk of the discrepancy between the estimates of FST from 1 and
previously published estimates 2 (see Results).

Effects Of SNP Ascertainment
In relating quantities being estimated from current populations to parameters of the
evolutionary model we have calculated expected values given the allele frequency in the
ancestral population. This implicitly performs an ascertainment of SNPs that are
polymorphic in the ancestral population or, equivalently, in an out-group population.
Provided there is no migration or admixture between populations, the relationship
between FST and divergence time is given by equation s12.

This relationship is accounts for changes in effective population size (i.e.
bottlenecks or expansions) in the demographic history of the populations being
compared. Additionally, ascertainment in an out-group renders the estimate independent
of the allele frequency spectrum in the out-group. Therefore, with this type of
ascertainment scheme, estimates should be concordant regardless of whether they are
produced from rare or common SNPs.

While ascertainment in an out-group has several helpful properties, in many
practical circumstances no data from a reasonable out-group is available. In these
instances, FsT can be estimated using SNPs ascertained in either one of the populations
under study. However, in these instances estimates are not expected to be independent
of allele frequency spectrum or complex demographic scenarios.
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Allele frequency dependence of FsT under different ascertainment schemes. This shows
FST for CEU and CHB as a function of allele frequency when ascertaining in either CEU,
CHB, and YRI. The increased FsT for rare variants is consistent with bottlenecks being a
stronger force on FsT for CEU and CHB than recent expansion. In fact, this is consistent
with a stronger bottleneck in the population history of CHB. We note that this frequency
dependence disappears when ascertaining in YRI suggesting that YRI is a reasonable
out-group for the comparison of CEU and CHB
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Tables

Table 1.

WC
FS Estimator

Nei Hudson
Comparison # Of SNPs Est. Std. Error Est. Std. Error Est. Std. Error

CEUvCHB 7799780 0.107 5.70E-04 0.112 6.36E-04 0.106 5.69E-04
CEUvYRI 17814120 0.139 4.97E-04 0.149 5.79E-04 0.139 5.OOE-04

CHBvYRI 17814120 0.163 5.85E-04 0.175 6.84E-04 0.161 5.78E-04
CEUvCHB14 7215431 0.107 6.1OE-04 0.113 7.16E-04 0.106 6.36E-04
CHBvCEU14 7465953 0.114 6.49E-04 0.114 7.12E-04 0.107 6.32E-04

IBSvYRI 17814120 0.121 4.37E-04 0.145 6.02E-04 0.131 6.73E-04
YRIvIBS* 7709984 0.144 8.06E-04 0.141 7.77E-04 0.134 8.43E-04

*ln this case ascertainment was performed in the IBS sample. In all other cases, ascertainment was performed in YRI.

EST estimates for pairs of populations in 1000 Genomes. Unless otherwise specified SNPs were ascertained as polymorphic in YRI.
These estimates are concordant with results reported on common SNPs 2 than the results reported by the 1000 Genomes
consortium 1. Even so, we note that the choice of FsT estimator impacts the resulting estimate. This is evident when comparing
CEU14-14 individuals sampled from the CEU population-to CHB, and CHB to CEU14. Though these estimates are produced
using overlapping sets of SNPs and individuals, the estimates are statistically significantly different when produced using the WC
estimator. This difference is underscored when comparing the YRI and IBS populations. The small sample from the IBS population
causes WC estimates to change significantly depending on ascertainment in IBS (line 4) or YRI (line 5). The number of SNPs listed
indicates the number of SNPs that were polymorphic in the ascertained population (usually YRI) and at least one of the populations
studied.
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Table 2

Ratio of Averages

Comparison 1000 Genomes HapMap 3
Est. Std. Error Est. Std. Error

CEU-YRI 0.139 5.OOE-04 0.156 9.73E-04
CEU-CHB 0.106 5.69E-04 0.110 9.61E-04
CHB-YRI 0.161 5.78E-04 0.183 1.13E-03

Average of Ratios

Comparison 1000 Genomes HapMap 3
Est. Std. Error Est. Std. Error

CEU-YRI 0.063 1.53E-04 0.124 6.23E-04

CEU-CHB 0.072 3.04E-04 0.089 6.35E-04

CHB-YRI 0.070 1.70E-04 0.141 6.93E-04

A comparison of the FST estimated using 1000 Genomes and HapMap data by either
using a ratio of averages or an average of ratios. It is clear that the average of ratios of
FST results in a significant underestimate of FST and use of an average of ratios approach
can explain the bulk of the discrepancy between the FST reported by the 1000 Genomes
Consortium and previously reported estimates. The ratio of averages estimates are
much more concordant with estimates on HapMap data. We believe that discrepancies
between these different data sets are due to the different set of SNPs used in the
computation. Finally, use of the average of ratios results in a smaller reduction when
applied to HapMap3 data. This is consistent with an average of ratios being sensitive to
rare variants that are, in general, excluded from the HapMap set of SNPs.
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Table 3

Polymorphic In Ratio of Averages Average of Ratios

CEU 0.104 6.19E-04 0.056 2.55E-04

CHB 0.104 6.40E-04 0.057 2.74E-04

CEU AND CHB 0.104 7.25E-04 0.078 4.49E-04

CEU OR CHB 0.103 5.64E-04 0.047 1.87E-04

Assessing the effect of ascertainment schemes and combination methods on the
resulting FST estimate for CEU and CHB. When using a ratio of averages, modified
ascertainment results in a small, though statistically significant, difference from a value
0.106 obtained using YRI-ascertainment. The effect is much larger when employing an
average of ratios, and the bolded cell indicates that a permissive ascertainment scheme
coupled with an average of ratios can produce a value similar to the estimate of FST for
CEU and CHB published by the 1000 Genomes Consortium.
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Chapter 3: Genome-wide comparison of African-ancestry populations from
CARe and other cohorts reveals signals of natural selection

The study of recent natural selection in human populations has important
applications to human population history and medicine. Positive natural selection drives
the increase in beneficial alleles and plays a role in explaining diversity across human
populations. By discovering traits subject to positive selection we can better understand
the population level response to environmental pressures including infectious disease.

Our study examines unusual population differentiation between three large
datasets to detect natural selection. The populations examined: African Americans,
Nigerians, and Gambians, are genetically close to one another (FST < 0.01 for all pairs),
allowing us to detect selection even with moderate changes in allele frequency. We also
develop a tree-based method to pinpoint the population in which selection occurred,
incorporating information across populations.

Our genome-wide significant results corroborate loci previously reported to be
under selection in Africans including HBB and CD36. At the HLA locus on chromosome
6, results suggest the existence of multiple, independent targets of population-specific
selective pressure. In addition, we report a genome-wide significant (P=1.36x10-1)
signal of selection in the Prostate Stem Cell Antigen (PSCA) gene. The most
significantly differentiated marker in our analysis, rs2920283, is highly differentiated in
both Africa and East Asia and has prior genome-wide significant associations to bladder
and gastric cancers.

32



Introduction
The study of recent natural selection in humans has important applications to

human population history and medicine. Previous studies have reported selection at loci
associated with susceptibility to falciparum malaria", vivax malaria 4, Lassa virus 5, end-
stage kidney disease6 , tuberculosis and HIV/AIDS 7 -9 . Indeed, it has been suggested that
signals of selection at malaria loci are "only the tip of the iceberg"10 . Signals of selection
fit into three main categories: unusually long, recent haplotypes; deviations from the
expected allele frequency spectrum; and unusual population differentiation". Signals of
the first two types are only expected under the "selective sweep" model of selection. 12

This model assumes that a novel or very rare variant is subject to selection and then
"sweeps" to high frequency, carrying hitchhiking variants and long haplotypes with it. If,
however, selection acts on a common or "standing" variant, as has been suggested in

13-15recent studies -, these tests would be unlikely to uncover a signal. Therefore, a key
advantage of our approach, based on unusual population differentiation, is the ability to
detect selection on standing variation 6 . Additionally, while other approaches based on
population differentiation simply report top-ranked loci, our study of selection allows for
the assessment of genome-wide significance.

Many prior studies of unusual population differentiation have focused on
comparing continental populations2 ~17-19. Because of large genetic distances (FsT) 20

these studies may be better suited to understanding population history rather than
detecting selection. Studies of population differentiation to detect selection are
maximally powered when comparing closely related populations that have large effective
population size, with data from a large number of individuals (> 1/FsT). This approach
has been applied genome-wide to comparisons of closely related populations within

Europe and within East Asia 22,23, and to candidate loci of closely related populations
within Africa24 . Now, the availability of genome-wide data from > 12,000 individuals of
African-American, Nigerian and Gambian ancestry makes it possible to proceed with
genome-wide application of this approach in Africa.

To accomplish this analysis, we have developed a tree-based method, which
incorporates information from all 3 populations in order to increase power to detect
selection and enable resolution of the population subject to selection. However, both
African-American and Gambian 26, 27 populations have significant European-related
admixture. While it is possible to perform a study of population differentiation between
admixed populations, our method minimizes FST and maximizes power by accounting for
this admixture. Additionally, we sought to increase coverage of selected loci y
performing imputation using a combined reference panel of Europeans (CEU) and
Yoruba (YRI) from the HapMap 3 Project28. We note that our method bears similarity to
the Locus Specific Branch Length (LSBL)29 method, though our statistic follows a well-
defined distribution under the null model of no selection. This allows for the evaluation of
genome-wide significance, as opposed to the ranking of loci produced by most genome-

30wide scans for selection
We applied this approach and detected genome-wide significant signals at

previously established targets of selection in CD36 31 [MIM 173510], HBB24 ,32,33 [MIM
141900]-both reported targets of selection due to malaria-and HLA7,.34,35 [MIM
142800], which has a major role in immunity, including in malaria resistance10 33 . In
addition, by combining evidence of extreme population differentiation within Africa and
within East Asia, we have identified a genome-wide significant locus under selection in
the Prostate Stem Cell Antigen (PSCA) [MIM 602470] gene (P=1.36x10 1 ). The most
significantly differentiated marker at this locus, rs2920283, is also highly differentiated in
our analysis of East Asian populations. This SNP is tightly linked to a nonsynonymous
coding variant that has previous genome-wide significant associations to bladder36 and
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gastric cancers3 7. The PSCA markers are common in all continental populations,
indicating a likely instance of selection on standing variation.

In addition, at the HLA locus, we observe multiple signals of differentiation. While
selection at HLA is unsurprising given its role in immunity and many disease
associations 7, we note that several markers that are highly differentiated on one branch
of the tree do not show significant differentiation on other branches. This evidence is
consistent with multiple, population-specific selective pressures at the HLA locus.
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Methods
CARe Data set
Our main African-American (AA) dataset consists of 6209 unrelated individuals

genotyped on the Affymetrix 6.0 array as previously described 3. These individuals were
genotyped as part of one of the ARIC, CARDIA, CFS, JHS or MESA cohorts in the
CARe consortium3 9 . The ARIC study is a prospective population-based study of
atherosclerosis and cardiovascular diseases in 15,792 men and women, including
11,478 non-Hispanic whites and 4,314 African Americans, drawn from 4 U.S.
communities (suburban Minneapolis, Minnesota; Washington County, Maryland; Forsyth
County, North Carolina, and Jackson, Mississippi). The CARDIA study is a prospective,
multi-center investigation of the natural history and etiology of cardiovascular disease in
African Americans and whites 18-30 years of age at the time of initial examination. The
initial examination included 5,115 participants selectively recruited to represent
proportionate racial, gender, age, and education groups from four communities:
Birmingham, AL; Chicago, IL; Minneapolis, MN; and Oakland, CA. The Cleveland
Family Study (CFS) is a family-based, longitudinal study designed to characterize the
genetic and non-genetic risk factors for sleep apnea. In total, 2534 individuals (46%
African American) from 352 families were studied on up to 4 occasions over a period of
16 years (1990-2006). The Jackson Heart Study (JHS) is a prospective population-
based study to seek the causes of the high prevalence of common complex diseases
among African Americans in the Jackson, Mississippi metropolitan area, including
cardiovascular disease, type-2 diabetes, obesity, chronic kidney disease, and stroke.
The Multi-Ethnic Study of Atherosclerosis (MESA) is a study of the characteristics of
subclinical cardiovascular disease (disease detected non-invasively before it has
produced clinical signs and symptoms) and the risk factors that predict progression to
clinically overt cardiovascular disease or progression of the subclinical disease.

Other Data sets
Additionally, we analyze 756 Nigerian (NIG) individuals genotyped on the Affymetrix 6.0
array as well as a Gambian dataset of 2946 individuals from the WTCCC-TB study2 7

genotyped on the Affymetrix 500k array. For quality control we have utilized separate
datasets of 757 African Americans genotyped on the Affymetrix 6.0 array and 2556
Gambians genotyped on the Affymetrix 500k array as part of the MalariaGen study2 6 .
Finally, to account for European-related admixture we used a dataset of 1178 European
(EA) individuals genotyped on the Affymetrix 6.0 array. We also analyzed genome-wide
data from the International HapMap 3 Project 28 . For our analysis, we considered only
unrelated individuals. The population panel consisted of 113 Yoruba from Ibadan,
Nigeria (YRI), 112 individuals of northwestern European ancestry (CEU), 84 Han
Chinese from Beijing (CHB), 85 Chinese in Metropolitan Denver, Colorado (CHD), 86
Japanese from Tokyo (JPT), 88 Toscans from Italy (TSI), and 90 Luhya from Webuye,
Kenya (LWK). We analyzed all autosomal SNPs in our pairwise comparisons. Finally, for
the purpose of illustration of population differentiation on a global scale at loci of interest,
we examined allele frequencies in the 52 distinct ethnic groups genotyped as part of the
Human Genome Diversity Project". Appropriate sample consent and IRB approval was
obtained in all cases.

Quality Control
In order to limit the possibility that assay artifacts in our data cause spurious signals of
selection, we compared each of our large data sets with an independent dataset,
genotyping individuals drawn from the same population. That is, we compared our
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primary African-American dataset with an African-American dataset from a separate
study, and similarly for our Nigerian and Gambian datasets. We then excluded all
markers that showed significant (P < 10) population differentiation between the two
datasets. This is a conservative approach because it excludes markers with assay
artifacts in either of the two datasets. In order to further eliminate assay artifacts, we only
reported loci that contained at least 2 SNPs with P < 10 within 1 Mb of each other.
Both our pairwise and tree based methods depend upon an assumption of a normal
distribution of allele frequency differences42 .This assumption is not likely to hold when
alleles are very rare (see Figure S1 of Bhatia et al.6 2). Therefore, SNPs with an average
MAF < 5% were excluded from reported results.

Two Populations
Our approach to detecting unusual population differentiation over a set of SNPs
genotyped in a pair of populations proceeds in two steps. The first step is to estimate the
degree of differentiation between the two populations. Wright's FST is a measure of
genetic drift and can be used for this purpose. Let D, = pi-p represent the allele
frequency difference at SNPs between population 1 and population 2.
If population 1 and 2 are identical then Ds is approximately normally distributed with
mean 0 and variance

2 = ps g(1-p )(1/Ni+1/N 2).

We note that this variance is only due to using finite size samples. Here, N, is the

sample size for population i and ps may be a simple or sample size weighted

average ofps and p'. If population 1 and 2 are genetically differentiated then D, is again
approximately normally distributed with mean 0 and variance

2r,= p (1-ps )(2Fsr +1N+1N2)UD= vg kagJ ST~iI~I~2

In this formulation both genetic drift and sampling error provide components of the
variance. From this, we can estimate FST using a method of moments. We note that this
is not the standard estimator of FsT and was chosen because it guarantees a correct
statistic in expectation (kc =1) when evaluated as below.

While it is possible to test for significant allele frequency differences without
accounting for FST by using a X2 test based on a 2x2 contingency table2 3

,43, this is not a
test for selection22. In particular, this approach tests a null hypothesis that the allele
frequency is identical in the two populations. This implies that neither drift nor selection
has taken place. However, when comparing genetically differentiated populations, we
expect differences to accrue due to genetic drift and should not be surprised to see this
hypothesis rejected. On the other hand, a test for population differences such as ours
can test the null hypothesis that the observed allele frequency difference can be
accounted for by drift alone. This removes drift as an alternate explanation and gives
stronger evidence of a selective event. To illustrate this, we reexamined the most highly
differentiated marker in a recent study of East Asians 23. This marker has a P-value of
2.4x1 0-13 for the null hypothesis of "neither drift nor selection", and a P-value of 1.32x1 0-
under our test for "no selection." While this remains genome-wide significant, less
differentiated markers reported in this type of analysis may not be convincing cases of
selection.

The second step in detecting selection using two populations is to evaluate a
statistic for population differentiation at every available marker. Our statistic is based
upon a likelihood ratio test. The null model assumes that the observed allele frequency
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differences are solely due to genetic drift and sampling error.
-D,2

1 2cv%
LNUU 2 , e2

The causal model allows an arbitrary amount of differentiation between the populations
to be attributed to selection.

-(D,+SEL)
2

1 2
LcAUSAL = maxsL 2 e 2 D

where SEL denotes the allele frequency difference attributed to selection. This gives a
likelihood ratio test as below.

-(D, +SEL) 2

maxsL 2* 2,D
2na 2

LRT = 2
-D,

1 2a
2

Maximizing over SEL gives SEL = -D, then we have

D2
21n(LRT) = D,

UD,

which is a X 2 1 d.f. statistic. In order to verify that this statistic gave the correct null

distribution we performed neutral simulations (see Table S1 of Bhatia et al.6 2).
Additionally, we sought to investigate the power of such a test to detect selection when
one of the two populations was under selection, or when both populations were under
selection with differing selection coefficients. Our simulations (see Table S2 of Bhatia et
al.6 2) show that, as expected, this test is highly sensitive to the difference between the
selection coefficients in the two populations. This indicates that maximal power is
obtained when comparing closely related populations subject to differing environmental
pressures.

Finally, we note that a normal distribution is an approximation of the true
distribution of allele frequency differences under neutral drift. We evaluated the validity
of this approximation by comparing the cumulative distribution function under the normal
approximation to the distribution obtained using Kimura theory (see Figure S1 of Bhatia
et al.6 2). While the normal approximation breaks down for rare variation (MAF < 0.05)
and high genetic drift (FsT > 0.01), it appears reasonable for the range of allele
frequencies and genetic drift that are under consideration here.

Multiple Populations
We can generalize the analysis of unusual allele frequency differentiation between a pair
of populations to multiple populations in an unrooted tree. That is, we can consider each
population to be a leaf-node in an unrooted tree that describes the patterns of population
divergence without knowing the order of divergence events in time. Then if we can
reconstruct the tree from the observed populations we can begin the work of detecting
selection in the tree. This approach presents a variety of challenges relative to the
pairwise test.
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We must select an unrooted tree topology, estimate the branch lengths, and develop a
statistic to use on the resulting tree. As the number of populations increases, each of
these steps becomes increasingly difficult. Indeed, the number of possible unrooted tree
topologies given n populations is (2n-5)!/[2"-43 (n-3)!] and this does not begin to
consider the possible branch length assignments to each of these topologies. While the
literature on tree estimation in the context of multiple populations is relatively well
developed 4 , we consider the simpler case of n = 3 for this study. This allows us to
analyze each of these problems in discrete steps. For larger n, the analysis may have to
be combined.

Given n =3 there is a single, star-shaped topology for an unrooted tree. In order to
estimate the branch lengths, we utilized a pseudo-likelihood model considering all pairs
of populations involved.

In our approach we consider pairwise differences between each pair of populations. We
can define a pairwise variance, o'( +2F + 1/N,+1/N) where the FsT

between the populations is represented by a sum of the branch lengths FsT and Fsr. If
we assume independence of the pairwise differences, this gives a pseudo-likelihood

l(pIpepsT)=J271 e 20o
's~~~ ~~ (P1. IP1P1-S)= H 2 oi=1 j=i+1

We used gradient ascent to find a local maximum likelihood estimate forFs over all
SNPs s. This gives results that closely recapitulate previous estimates of FST. Once the
branch lengths are estimated, we can estimate the allele frequency at our central node
using a branch length weighted average.

(2F' +1 / N,)
1

.2i +1 I N.)

Given an estimate of the allele frequencies at the central node, we devise a test for
selection akin to our pairwise test for population differentiation. In particular, we first re-
estimate FST between each population and the allele frequencies at the central node.
Once this is done, we formulate our statistic based upon the likelihood ratio test. We
note that this test focuses on selection at any single branch in the tree, and each branch
can be tested in turn, provided that the appropriate multiple testing correction is paid as
a penalty.

In our null model we assume that all population differentiation is the result of genetic
drift.

3 ~-Dj
L 1 2

2ira
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where Di = p, -p and or,= ^ (1- -')(2F' +1/ N)

In our causal model, we allow an arbitrary amount of differentiation on one branch to be
attributed to selection. Therefore, we have

-(Ds,+SEL )
2

2 2 SE2U,,LCAUSAL= =maSEL 22 se 42e

where is represents the branch on which we are allowing an arbitrary amount of

differentiation due to selection. F' in both of these equations is re-estimated using the

central allele frequencies estimated in the prior step. This re-estimation guarantees that

we have a correct statistic in expectation ( AGC= ). The test becomes akin to our

pairwise test for population differentiation and we have
-(Ds,+SEL) -D2

2xumax e 2c'1'SEL . sor . ,

UTV 2 'SELSE 2,LRT- Z"S 2

H i rD
1 2xorD

and

D 2
21n(LRT)= 2SEL

This is a X2 1 degree of freedom statistic. At a first glance, this approach passes the
sanity checks of giving no additional power when one of the branch lengths is very large
relative to the others, and of giving additional power when a large differentiation is
replicated over multiple branches. Software implementing our methods is publicly
available (TreeSelect software; see Web Resources).

We note that pairwise comparisons between our main datasets was performed but
yielded nothing that was fundamentally different from our tree-based results. As such
only the tree-based results are reported in the main text.

Our genome-wide significance threshold for this analysis is based on 103 markers tested
for 3 branches of the tree, with a corrected significance level of a < 0.05. Using a
standard Bonferroni correction this gives a nominal significance level P < 1.67x1 0-. In
our analysis of additional populations we only included the comparison between East
Asian populations because allele frequency differences in East Asia are independent of
allele frequency differences in our tree-based analysis. This is not the case for
differentiation between African populations (LWK vs. YRI)-as Nigerians are
represented in the tree-nor European populations (CEU vs. TSI)-as Europeans are
used to correct for European-like admixture. However, we conservatively correct for 3
additional tests, as though all comparisons were performed. This gives a nominal
significance level of P < 5.56x1 09.

Controlling for Admixture
In order to maximize power, we sought to minimize genetic distance between our
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populations by accounting for European-related admixture in our African-American and
Gambian datasets. A simple example of comparing an admixed population to an
unadmixed population is the comparison of African Americans (AA) to Nigerians (YRI).
The African admixed component of AA individuals has been shown to have FST < 10-3
with respect to YR128 ,45 . However, European admixture in AA individuals increases the
observed value of FST to 0.0075 and results in a less powerful test. We address this by
producing estimates of the "pseudo-unadmixed" allele frequencies, where

PM =( - aA 4PUR . The parameter aA can then be estimated to minimize FsT with
FA (1- a)

Nigerians. This process was performed separately for African-American and Gambian
datasets.

The allele frequencies in European-related admixture were estimated from our 1178
European individuals. These individuals were split into two equally sized datasets used
to produce estimates of the "pseudo-unadmixed" allele frequencies for African
Americans and Gambians, respectively.

Population Differences By SNP Class
In order to test for enrichment of highly differentiated SNPs based upon annotated
functional class, we partitioned the SNPs according to predicted functional impact46 . We
assigned SNPs to be either genic or nongenic and further subdivided genic SNPs into
either synonymous or nonsynonymous categories (all nongenic SNPs were categorized
as synonymous). We tested for an excess of highly differentiated markers (P< 0.0001) in
genic vs. nongenic SNPs and in nonsynonymous vs. synonymous by using a X test on
a 2x2 contingency table. We used the dbSNP classification for function-class
annotations and assigned intronic, 5' UTR, 3' UTR, synonymous, nonsynonymous and
splice site mutations as genic.

We also sought to evaluate variation in FST across the genome by comparing estimates
of FST between genic and nongenic SNPs. To explore this further, we partitioned the
SNPs according to evidence for background selection as estimated by the previously
described B parameter. We binned SNPs according to the estimate of B (0 <= B <= 1)
at the SNP, using 10 equally sized bins for B. Because of the change in FST according to
bin reported statistics for differentiation were calculated separately for each bin.
However, reported values for FST are genome-wide averages.

Imputation
We used the MaCH software package to perform imputation of the HapMap3 SNP set
in each of our datasets. Our European dataset was used to create the pseudo-
unadmixed datasets of African Americans and Gambians. The imputation process
proceeded in three steps. First, the model parameters were estimated using a subset of
300 individuals from each dataset. The input files for the reference CEU and YRI panels
were downloaded from the MaCH website. Next, the imputation was performed 300
individuals at a time and parallelized on a large computing cluster. Finally, once the
imputation was complete, we performed quality control on the results using r as our
quality metric . Only SNPs that had r2 > 0.6 in the combined set of individuals were
retained.
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Results

Population structure in African-American, Nigerian and Gambian populations
500 individuals from each of our African-American, Nigerian, and Gambian datasets
were studied together with 500 European individuals via PCA with EIGENSOFT 49 (see
Figure 1). The PCA was performed on the basis of 309,373 autosomal SNPs shared by
all individuals. As expected, European and Nigerian individuals form tight clusters that
are separated by PC1. The African-American individuals form a cline between these two
clusters indicating varying degrees of European admixture in African-American
individuals. We note that while several African-American individuals come very close to
the Nigerian cluster, there remains a non-zero distance between all African-American
individuals and the Nigerian cluster. This is consistent with a small, but measurable, FST

between the African ancestors of African Americans and Nigerians. The Gambian
individuals are separated from Europeans on PC1 and from the Nigerians on PC2. We
label each of the Gambian individuals with their subpopulation label (Mandinka, Jola,
Fula, Wolloff) and note the existence of cryptic population structure within the Gambia.
Several Fula individuals show significant evidence of European-related admixture by
their position on PC1. Additionally, the four subpopulations form overlapping but
distinguishable clusters along PC2.

We further investigated population structure by estimating the pairwise FsT between
each pair of populations (see Table 1a). However, we sought to increase power and
decrease genetic distance between our populations by accounting for the significant
European-related admixture. We produced new 'pseudo-unadmixed' populations by
subtracting European allele frequencies, weighted by admixture proportion, from both
the African-American and Gambian datasets (see Methods). We computed admixture
proportions aAA and aGm to minimize the pairwise FST estimates between each
'pseudo-unadmixed' population and the Nigerians (see Table 1b). This reduced FsT
between African Americans and Nigerians from an estimate of 0.0075 to an estimate of
0.0011. We calculated an aA of 0.20 and an aGA of 0.02 consistent with prior

estimates. We also examined pairwise genetic distances in the Gambia (see Table 2).
The lowest FST was estimated between Mandinka and Wolloff subpopulations (FST =

0.0005) and the highest between the Fula and Jola subpopulations (FST =0.005). These
values are consistent with prior estimates 262 7 and indicate that studies of selection using
population differentiation within the Gambia may be a fruitful endeavor. However, given
current sample sizes such a study is unlikely to be well-powered.

In order to validate our use of imputed data we compared Fs5 estimates between pairs of
imputed datasets to those observed between genotyped datasets. Pairwise FsT
estimates were 0.0048, 0.0012, and 0.0066 for genotyped SNPs in African Americans
vs. Gambians, African Americans vs. Nigerians and Nigerians vs. Gambians,
respectively. The corresponding estimates for all SNPs (genotyped + imputed) were
0.0044, 0.0011, and 0.0058. This close concordance, and the absence of peaks of
population differentiation containing only imputed SNPs, suggests that our reported
results do not contain spurious signals due to imputation. All reported results are on data
imputed with a combined HapMap 328 reference panel of CEU and YRI.
Signals of selection in African-ancestry populations
Our tree-based method evaluates selection on a set of markers from multiple
populations in two steps (see Methods). In the first, an unrooted tree of populations is
estimated. This tree is intended to explain the observed amount of divergence between

41



each pair of populations. With three populations, this is a "star" shaped topology where
each population is a leaf node connected to a single internal population by a branch. The
length of this branch operates similar to Wright's FST and represents the genetic distance
between the leaf population and the internal population (see Figure 2). Following our
subtraction of European-related admixture, we estimated the tree for our three data sets
in each of 10 bins based on the strength of background selection. For the tree
connecting African Americans, Nigerians, and Gambians (see Figure 2b) we estimate
branch lengths of 0.0005, 0.0006, and 0.0046. These are closely concordant to the
pairwise results for FST.

Once the tree is estimated, we can evaluate a statistic for selection at every marker
common to all datasets. This statistic enables resolution of the population subject to the
selective pressure and can give additional power to detect loci under selection relative to
pairwise comparisons.

Q-Q plots comparing observed and expected p-values indicate an excess of highly
differentiated markers (Figure 3). The proportion of markers with P < 0.0001 is 0.0005.
After excluding loci with genome-wide significant evidence of selection the proportion of
markers with P < 0.0001 is 0.0002. This excess is suggestive of additional selected loci
beyond the genome-wide significant signals we describe here. We note that genetic drift
at rare and low frequency SNPs (MAF < 5%) is unlikely to be well described in our model
and these SNPs are not included in the analysis. Our threshold for genome-wide
significance in this analysis was P < 1.67x1 0-8 (see Methods).

A genome-wide significant signal (see Figure 4) at CD36 2 24 ,31 is present on both the
Nigerian (P=2.32x10-m) and African-American (P=7.05x10~) branches of the tree.
Additionally, we note a highly suggestive signal for selection at the HBB32'5 locus
(P=6.15x10-0) on chromosome 11. Selection at both of these loci has been previously
detected using population differentiation between African populations ascertained based
on malaria exposure 24. The finding of selection at these loci in a genome-wide scan
without ascertainment of populations further corroborates the power of our approach
(see Table 3 for all signals).

Natural selection at HBB is likely due to the well-known association in which
heterozygotes for the sickle cell trait HbAS (HbAS T) are protected against severe
malarial0 . We note that a study of unusual population differentiation between Han
Chinese and Tibetans14 also showed evidence of selection at the HBB locus. However,
the most significantly differentiated marker in that analysis, rsl 0768683, and the most
significantly differentiated marker in our analysis, rs2213169, are not polymorphic in any
of the same HapMap populations. While we cannot rule out separate selective sweeps
on the same variant, the absence of HbAS T allele in East Asia leads us to believe that
separate selective events on separate causal variants is most consistent with this
finding.

Genome-wide significant evidence of selection (see Figure 4) exists for HLA on
chromosome 6, known to be heavily involved in human immunity and a well studied
example of natural selection7' *'. Peaks at HLA are observed on all three branches of
the tree. However, our analysis of selection at HLA shows distinct sets of SNPs with
significant evidence of selection on the Gambian, Nigerian and African-American
branches of the tree. Specifically, there are unlinked SNPs which show strongest
evidence of selection in different populations. The most significantly differentiated SNP
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along the Gambian branch, rs28366191 (P=6.3x10 16), is differentiated to a much lesser
degree on either of the Nigerian or African-American branches (P =2.5x10 and P= 0.59,
respectively) or in a pairwise comparison of these populations (P = 0.02). Additionally,
the Nigerian and African-American branches show significant evidence of selection at
SNPs in the HLA region, for example rs2179915 (P=1.48x10~' and P=2.45x0 1 '0 ,
respectively), which are not significant on the Gambian branch (P=0.53). This SNP was
not significantly differentiated in a pairwise analysis of Gambians and African Americans
(P = 0.47) indicating that selection likely took place on the Nigerian branch. This leaves
multiple selective events as a parsimonious explanation of our findings at HLA.

We also observe a signal in the HLA at rs6901541 which is highly differentiated on all
branches of the tree, P=3.61x10-5, 6.37x10~'0 , and 1.71x10-6 , for African American,
Nigerian and Gambian branches, respectively. This SNP is also highly differentiated in
all three pairwise analyses. We note that this is consistent with selection on multiple
branches of the tree and further indicates the widespread nature of selection at the HLA.

We observe a suggestive signal, rs2920283 (P = 1 .1x10- 7), on chromosome 8 within the
protein-coding gene Prostate Stem Cell Antigen (PSCA). Further evidence of selection
at this locus was obtained by analyzing additional populations (see below). A
nonsynonymous SNP in PSCA, rs2294008, causing a 9 amino acid truncation of the
protein, has been shown to be associated to both gastric and bladder cancers with P =
8x10 1- and P = 2.14x10' 0 , respectively3 6 3 7. The marker with the most significant
evidence of selection on the African-American branch, rs2920283, is in very high LD with
the disease associated SNP (r2> 0.85). We note that rs2920283 is polymorphic in all of
the populations studied here (see Table 3c) and those included in the Human Genome
Diversity Project (see Figure 5). This indicates that the classical "selective sweep", in
which a novel variant rises to high frequency under selection, is unlikely to apply.
Instead, we posit that selection at PSCA is a case of selection on "standing variation"
and an ideal candidate for a test based on population differentiation. We note that no
Extended Haplotype Homozygosity12 or integrated Haplotype Score51 signal has been
previously reported at this locus1 ' .

For comparison purposes we implemented the LSBL statistic29, which has been used to
discover or validate loci under selection with associations to altitude response1314, cystic
fibrosis52, skin pigmentation 5355, and hair straightnessr,, and ran it on our data (see
Table S3 of Bhatia et al.2). The HLA, HBB, and CD36 loci have statistics that rank in the
top 0.01% (see Figure S2 of Bhatia et al.6 2). The PSCA locus has a statistic in the top
1%. However, many SNPs (nearly 10,000) rank in the top 1% and it is unclear which of
these, if any, present significant evidence of selection.

We note that all reported loci are constrained to contain multiple highly differentiated
markers, ruling out the possibility of spurious signals due to assay. While 2 markers 16
Mb apart on chromosome 16 achieved genome-wide significance, they were not
reported because they did not satisfy this criteria.

Examining Additional Populations

In order to further explore evidence of selection at our implicated loci, we examined pairs
of populations from HapMap3 that were closely related (FST < 0.01). We compared YRI
to LWK (FsT = 0.0080), TSI to CEU (FST = 0.0039), and JPT to the combined individuals
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from CHB and CHD (FST = 0.0075)28. In this analysis we corroborated several published
examples of natural selection including LC76 7 [MIM 603202] and OCA2 5' [MIM 611409]
in Europeans, KITLGo" [MIM 184745] in East Asians, and CD362 in Africans (see Table
4). Unsurprisingly, we observe that markers in HLAM are highly differentiated in all three
pairwise analyses consistent with the role of HLA in immunity. While our comparison of
African populations (LWK-YRI) does show a high degree of differentiation at the HLA
and CD36 loci (Table 4) we do not observe a signal at the HBB locus. This may be due
to insufficient sample size or similar selection pressures in both populations. We note
that this comparison is not independent of our tree-based analysis as both involve
Yoruba populations.

We note the surprising finding of a high degree of differentiation between JPT and
CHB+CHD at the PSCA locus (rs2928023, X1 =21.03, P=4.58x1 0-) and (rs2976397, X2
=24.95, P=5.88x1 07). This is one of the strongest signals of selection in our analysis and
corresponds to a 34% allele frequency difference between JPT and CHB+CHD. We
note that this comparison is independent of the tree-based analysis because no
population in East Asia was used in the tree (i.e. YRI) or to correct for European-related
admixture (i.e. CEU). Independence allows us to sum the statistic for differentiation in
East Asia with that obtained from the tree at any SNP and produce a X 2 degree of

freedom statistic. Doing so yields (rs2920283, X =48.12, P=3.56x10~1 ), which remains
genome-wide significant (P<5.56x1 0-9) after correction for multiple hypotheses tested
(see Methods).

We have also plotted allele frequencies at SNP rs2294008 in all of the populations
included in HGDP 40 (Figure 5). There exist large differences in allele frequency
throughout East Asia as well as Europe and South America. While the small sample
sizes taken from each population make studies of differentiation underpowered, further
studies may elucidate the underlying cause of the selective pressure by analyzing global
allele frequency differences.

Population Differences By SNP Class

We analyzed coding and nonsynonymous SNPs for excessive differentiation similar to
previous work. We examined SNPs which were differentiated with P < 0.0001 on any
branch of the tree and compared the number of nonsynonymous coding SNPs and genic
SNPs to the number expected under neutrality. We observed 22 nonsynonymous coding
SNPs differentiated to this degree, a 3.7-fold enrichment compared with expectations
under neutrality (X2 =42.08, P=8.77x10~1 ). However, several of these nonsynonymous
variants were highly collocated-many occurring in the HLA region-and are unlikely to
have been subject to independent selective events. Once we restricted to a single
variant per locus, only 8 highly differentiated, nonsynonymous SNPs remained (X, =0.7,

P=0.40). We did not observe a statistically significant enrichment of genic SNPs (X1
=0.21, P=0.65).

A recent study of natural selection in sequence data59 found that nonsynonymous coding
sites were not enriched for excessive differentiation relative to synonymous sites. This is
consistent with our findings. The authors of this study suggest that the "selective sweep"
is an uncommon model of human evolution and that methods based on population
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differentiation between closely related populations may be more powerful for detecting
selection. We provide such a method.

Variation in functional status and strength of background selection has been shown to
influence the effective population size and, therefore, genetic drift at a locus-specific
level60 . Specifically, background selection, often observed in known functional regions,
tends to increase the rate of drift and increase the average differentiation at the locus. In
our data we observed a difference in FsT estimates (Table 5a) when computed using
markers classified as genic or non-genic46. This trend was also apparent when we
classified markers by the strength of background selection4 7 at the locus (Table 5b) and
was especially prevalent when we examined loci with the strongest evidence of
background selection.

In order to verify that our results were not spurious signals due to variation in genetic
drift across the genome47 , we repeated our analysis in separate bins according to the
strength of background selection. Our results prior to (Table 3a) and after (Table 3b)
correction for the strength of background selection at each locus are very similar. This
would indicate that our results including the signal at PSCA are robust to this correction.
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Discussion

We have examined population differentiation in a genome-wide fashion in three closely
related African populations. Similar studies of population differentiation have been
previously performed with some success 2, 17-19, 22-24, however, many of these have
focused on continental populations with much larger genetic distance. While studies
have examined closely related populations within Europe or Asia, such studies require
the availability of data from large numbers of individuals. Now, as such data has become
available we are able to apply this approach to closely related African populations. In
addition to performing pairwise comparisons between closely related populations, we
have developed a method of analysis based upon differentiation in a tree of populations.

The tree-based analysis that we use is somewhat comparable to the Population Branch
Statistic (PBS) described by Yi et. al.14 and the Locus Specific Branch Length (LSBL) 13,
29,52-5. The PBS seeks to estimate the time since divergence from a central node using
SNP-specific FST and has been shown to have power to detect recent population-specific
natural selection. One challenge associated with using the PBS/LSBL is that the null
distribution of these statistics is not well-defined. Thus, significance can be assessed
using extensive simulations according to a specific demographic history or a simple
ranking of results. When implemented on our dataset the LSBL replicated clear peaks at
HLA, HBB, and CD36; however, no other significant peaks were observed.

Our results provided genome-wide significant or suggestive corroboration of several
known loci including HLA, HBB and CD36. We identified a new genome-wide significant
locus in PSCA. Our most significantly differentiated marker is tightly linked to a marker
with prior, genome-wide significant associations to both gastric and bladder cancer.
Additionally, our evidence suggests that multiple, independent selective events have
occurred in the HLA region.

Several questions of interest arise from this work. Notably, imputation of the HLA
genotypes of individuals in our datasets would allow us to pinpoint specific alleles under
selection. By analyzing the various HLA alleles individually for population differentiation,
it may be possible to infer which HLA alleles are being pushed to high frequency.
Understanding this may give further insight into infectious disease resistance. Similarly,
understanding the selective pressure acting at PSCA is a question of interest. Analysis
of data specific to infectious disease and other possible drivers of selection61 may yield
insight into the environmental pressure responsible for selection at this locus.
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Figures

Figure 1
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PCA Analysis of Population Structure. This analysis of population structure in our
main data sets shows Europeans and Nigerians forming separate tight clusters. African
Americans form a cline between the Nigerian and European clusters indicative of varying
degrees of European ancestry. The Gambian samples are separated from the Nigerians
on PC2, form separate but overlapping clusters, and show evidence of European-like
admixture within the Fula subpopulation.
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Figure 2
a)
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Tree Estimates From Sample Data. a) This tree was estimated using unrelated
individuals from the YRI, CEU and CHB populations sampled as part of the International
HapMap Project Phase Ill. The branch lengths show strong concordance with estimated
pairwise values for Fst. b) This tree was estimated using our main data sets of African
American, Nigerian and Gambian samples after accounting for significant European-like
admixture in the African-American and Gambian datasets. We note that the second tree
is scaled approximately by a factor of 100 with respect to the first. The values quoted are
based on genome-wide average estimates of Fst.
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Figure 3

Expecd -ogo(p)

Q-Q Plots of Population Differentiation in Africans. a) We compare the actual and
expected distribution of selection statistics. The red line represents expectation under
neutrality. It is clear that a "fat-tail" of highly differentiated markers exists, consistent with
multiple selective events. b) We repeated the analysis after removing the 5 Mb regions
containing each of our most significant SNPs and still observe a fat-tail of highly
differentiated markers.
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Figure 4
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Genome-Wide Population Differentiation in Africans. All values are reported after
correcting for variation in Fs1 according to quantity of background selection. We note
genome-specific peaks in the HLA locus on chromosome 6, and CD36 on chromosome
7. HLA has a major role in immunity with multiple prior disease associations, and CD36
is known for its role in malaria resistance. We also observe a highly suggestive peak at
PSCA (chromosome 8) tightly linked to a protein-altering variant with prior associations
to gastric and bladder cancers. The highly suggestive signal at HBB is unsurprising
given its role in malaria resistance. HLA, HBB and CD36 have been previously reported
targets of selection.
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Figure 5

Distribution of Allele Frequencies at PSCA. The allele frequencies of the most
differentiated SNP at PSCA are plotted in 52 distinct ethnic groups genotyped as part of
the Human Genome Diversity Project. We note the high degree of differentiation in East
Asia, Africa and South America (insert, upper right). While small samples sizes of these
populations hinder analysis of selection, analysis of selection pressures in each of these
populations may elucidate the cause of the large allele frequency differences at PSCA.
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Tables
Table 1

a)

b)

African American Nigerian Gambian

African American 0.0074 ± 5.2E-5 0.0072 ± 5.1E-5

Nigerian 0.0059 ± 4.6E-5

African American Nigerian Gambian

African American 0.0011 ± 1.1E-5 0.0045 ± 3.3E-5

Nigerian 0.0058 ± 4.6E-5

Pairwise Fst Between African Populations. Here we combined all of the Gambian
samples and compared these with the African American and Nigerian samples. We list
both the estimate and standard error of the estimate for Fst. In (a) we have not
accounted for significant European-like admixture in the Gambians and African
Americans. In (b) we show the values after accounting for admixture by subtracting
European allele frequencies weighted by admixture proportion. The large decrease in
Fst between African Americans and both Nigerians and Gambians is expected to
increase our power to detect signals of selection. While the drop in Fst between
Nigerians and Gambians is small, this is expected due to the small admixture proportion
estimated.
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Table 2

Mandinka

Mandinka

Jola

Fula

Jola Fula Wolloff

0.0012 0.0030 0.0005

0.0051 0.0020

0.0027

Pairwise Fst Between Gambian Subpopulations. We note that the values for Fst do not
account for significant European-like admixture within the Fula subpopulation and these
values could potentially be reduced further. With these low values for Fst exploring
population differentiation within the Gambia may be a fruitful endeavor. However, such a
study may require larger samples than we have available.
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Table 3
a)

Gene orP-values
Chr Gene or SNP Position

Region African American Nigerian Gambian

6 HLA rs28366191 32472168 0.62 3.62E-04 1.89E-15

6 HLA rs6901541 32550239 4.28E-05 1.29E-09 2.75E-06

6 HLA rs2179915 33173712 2.45E-10 1.48E-09 0.53

7 CD36 rs12721454 79678275 6.82E-09 1.76E-07 0.97

7 CD36 rs513740 79872884 5.64E-08 4.03E-09 0.05

8 PSCA rs2920283 143754039 1.66E-07 2.60E-06 0.95

11 HBB rs7936387 5256204 3.15E-05 5.99E-08 1.05E-03

b)

Gene or P-values
Chr SNP Position

Region African American Nigerian Gambian

6 HLA rs28366191 32472168 0.59 2.51E-04 6.25E-16

6 HLA rs6901541 32550239 3.61E-05 6.37E-10 1.71E-06

6 HLA rs2179915 33173712 3.16E-10 1.78E-09 0.52

7 CD36 rs12721454 79678275 7.05E-09 1.76E-07 0.96

7 CD36 rs513740 79872884 3.78E-08 2.32E-09 0.05

8 PSCA rs2920283 143754039 1.06E-07 1.88E-06 0.96

11 HBB rs7936387 5256204 4.06E-05 6.15E-08 9.53E-04

C)

Gene or Allele Frequencies
Chr .SNP Position

Region African American Nigerian Gambian

6 HLA rs28366191 32472168 0.08 0.05 0.28

6 HLA rs6901541 32550239 0.31 0.45 0.14

6 HLA rs2179915 33173712 0.42 0.59 0.46

7 CD36 rs12721454 79678275 0.25 0.39 0.31

7 CD36 rs513740 79872884 0.27 0.41 0.23

8 PSCA rs2920283 143754039 0.37 0.24 0.32

11 HBB rs7936387 5256204 0.17 0.28 0.08

Loci with Evidence of Selection in African Populations. We report the most
significant SNPs in loci that showed genome-wide significant or suggestive evidence of
natural selection. All SNPs are imputed. Table 4(a) shows the P-values for each SNP
without correcting for background selection at the locus and Table 4(b) shows the results
after the correction. We note the relative insensitivity of our results to correcting for
evidence of background selection. Table 4(c) lists the allele frequencies of the highly
differentiated SNPs.
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Table 4
a)

P-values
Chr Gene or Region SNP Position

JPT-CH LWK-YRI CEU-TSI

2 LCT rs6754311 136424452 N/A 0.60 2.03E-15

3 SLC9A9/Corf58 rs7649861 145653390 0.65 2.68E-07 0.04

6 HLA rs7745413 30023448 1.35E-07 0.15 0.15

6 HLA rs28366191 32472168 0.08 0.23 0.69

6 HLA rs6901541 32550239 0.13 0.19 0.64

6 HLA rs2179915 33173712 N/A 1.08E-03 0.87

7 CD36 rs12721454 79678275 N/A 2.63E-05 0.40

7 CD36 rs513740 79872884 0.11 9.74E-04 0.65

7 CD36 rs6944302 79942827 N/A 7.47E-07 0.09

8 PSCA rs2976397 143761615 5.87E-07 0.01 0.60

8 PSCA rs2920283 143754039 4.58E-06 0.01 0.75

11 HBB+HBG2 rs7936387 5256204 N/A 0.66 N/A

11 OPCML rs11223548 133036865 8.90E-07 0.90 N/A

12 KITLG rs11104947 87467111 4.88E-07 N/A 0.43

15 OCA2 rs12913832 26039213 N/A N/A 1.42E-08

b)
Gene or JPT-CH LWK-YRI CEU-TSI
Region P-value SNP P-value SNP P-value SNP

HLA 1.35E-07 rs7745413 9.30E-05 rs7905 3.39E-06 rs2256175

CD36 - 7.47E-07 rs6944302 - -

HBB+HBG2 - - - - - -

PSCA 5.87E-07 rs2976397 - - - -

Loci with Evidence of Selection in Other Comparisons. a) We report all highly
differentiated SNPs with strong or suggestive evidence for selection (P < 10~). We see
several well studied examples of selection such as LCT, and OCA2 in Europeans,
KITLG in East Asians and CD36 in Africans. However, several markers significant in our
original analysis of African populations do not appear significant in this analysis. This
may be because of the small sample size taken from each of the HapMap3 populations.
b) To test concordance with the signals observed in our analysis of Africans, the regions
surrounding (2.5 Mb on either side) the most highly differentiated markers in our analysis
are analyzed here. We report the most significant P-value in the region provided that P <
10~4. Surprisingly no SNP appears differentiated with P < < 10-4 in our analysis of the
HBB region in Yoruba (YRI) and Luhya (LWK). This may be due to small sample size or
an absence of different malaria pressure between these populations.
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Table 5

AA-Nigerian AA-Gambian Nigerian-Gambian

Genic 0.0011 0.0045 0.0061

Nongenic 0.0011 0.0044 0.0060

B AA-Nigerian AA-Gambian Nigerian-Gambian

0.0-0.1 0.0017 0.0069 0.0100

0.1-0.2 0.0011 0.0051 0.0070

0.2-0.3 0.0011 0.0052 0.0065

0.3-0.4 0.0011 0.0050 0.0066

0.4-0.5 0.0012 0.0047 0.0065

0.5-0.6 0.0011 0.0046 0.0064

0.6-0.7 0.0011 0.0046 0.0063

0.7-0.8 0.0011 0.0044 0.0060

0.8-0.9 0.0011 0.0043 0.0059

0.9-1.0 0.0010 0.0042 0.0057

Pairwise Fst Estimated Using Partitioned Sets of SNPs. a) Pairwise estimates of Fst
calculated using genic and nongenic SNPs. b) Pairwise estimates of Fst calculated after
binning SNPs according to the strength of background selection at the locus as
quantified by the B statistic of McVicker and colleagues. The trend observed in (a) is
magnified when looking at B values between 0 and 0.1 with respect to the remainder of
the genome. Because of this difference, we performed all subsequent analysis
separately for each bin of B.

57

a)

b)



References

1. Sabeti, P.C., Reich, D.E., Higgins, J.M., Levine, H.Z., Richter, D.J., Schaffner, S.F.,
Gabriel, S.B., Platko, J.V., Patterson, N.J., McDonald, G.J. et al. (2002). Detecting
recent positive selection in the human genome from haplotype structure. Nature 419,
832-837.

2. The International HapMap Project. (2005). A haplotype map of the human genome.
Nature 437, 1299-1320.

3. Ko, W., Kaercher, K.A., Giombini, E., Marcatili, P., Froment, A., Ibrahim, M., Lema, G.,
Nyambo, T.B., Omar, S.A., Wambebe, C. et al. (2011). Effects of Natural Selection and
Gene Conversion on the Evolution of Human Glycophorins Coding for MNS Blood
Polymorphisms in Malaria-Endemic African Populations. Am. J. Hum. Genet. 88, 741-
754.

4. Hamblin, M.T., Di Rienzo, A. (2000). Detection of the signature of natural selection in
humans: evidence from the Duffy blood group locus. Am. J. Hum. Genet. 66, 1669-1679.

5. Sabeti, P.C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., Xie, X.,
Byrne, E.H., McCarroll, S.A., Gaudet, R. et al. (2007). Genome-wide detection and
characterization of positive selection in human populations. Nature 449, 913-918.

6. Genovese, G., Friedman, D.J., Ross, M.D., Lecordier, L., Uzureau, P., Freedman,
B.I., Bowden, D.W., Langefeld, C.D., Oleksyk, T.K., Uscinski Knob, A.L. et al. (2010).
Association of Trypanolytic ApoL1 Variants with Kidney Disease in African Americans.
Science 329, 841-845.

7. de Bakker, P.I., McVean, G., Sabeti, P.C., Miretti, M.M., Green, T., Marchini, J., Ke,
X., Monsuur, A.J., Whittaker, P., Delgado, M. et al. (2006). A high-resolution HLA and
SNP haplotype map for disease association studies in the extended human MHC. Nat.
Genet. 38, 1166-1172.

8. Lewinsohn, D.A., Winata, E., Swarbrick, G.M., Tanner, K.E., Cook, M.S., Null, M.D.,
Cansler, M.E., Sette, A., Sidney, J., Lewinsohn, D.M. (2007). Immunodominant
tuberculosis CD8 antigens preferentially restricted by HLA-B. PLoS Pathog. 3, 1240-
1249.

9. Fellay, J., Shianna, K.V., Ge, D., Colombo, S., Ledergerber, B., Weale, M., Zhang, K.,
Gumbs, C., Castagna, A., Cossarizza, A. et al. (2007). A whole-genome association
study of major determinants for host control of HIV-1. Science 317, 944-947.

10. Kwiatkowski, D.P. (2005). How malaria has affected the human genome and what
human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171-192.

11. Nielsen, R., Hellmann, I., Hubisz, M., Bustamante, C., Clark, A.G. (2007). Recent
and ongoing selection in the human genome. Nat. Rev. Genet. 8, 857-868.

12. Sabeti, P.C., Schaffner, S.F., Fry, B., Lohmueller, J., Varilly, P., Shamovsky, 0.,
Palma, A., Mikkelsen, T.S., Altshuler, D., Lander, E.S. (2006). Positive natural selection
in the human lineage. Science 312, 1614-1620.

58



13. Bigham, A., Bauchet, M., Pinto, D., Mao, X., Akey, J.M., Mei, R., Scherer, S.W.,
Julian, C.G., Wilson, M.J., Lopez Herraez, D. et al. (2010). Identifying signatures of
natural selection in Tibetan and Andean populations using dense genome scan data.
PLoS Genet. 6.

14. Yi, X., Liang, Y., Huerta-Sanchez, E., Jin, X., Cuo, Z.X., Pool, J.E., Xu, X., Jiang, H.,
Vinckenbosch, N., Korneliussen, T.S. et al. (2010). Sequencing of 50 human exomes
reveals adaptation to high altitude. Science 329, 75-78.

15. Simonson, T.S., Yang, Y., Huff, C.D., Yun, H., Qin, G., Witherspoon, D.J., Bai, Z.,
Lorenzo, F.R., Xing, J., Jorde, L.B. et al. (2010). Genetic evidence for high-altitude
adaptation in Tibet. Science 329, 72-75.

16. Novembre, J., Di Rienzo, A. (2009). Spatial patterns of variation due to natural
selection in humans. Nat. Rev. Genet. 10, 745-755.

17. The International HapMap Project. (2007). A second generation human haplotype
map of over 3.1 million SNPs. Nature 449, 851-861.

18. Campbell, C., Sampas, N., Tsalenko, A., Sudmant, P., Kidd, J., Malig, M., Vu, T.,
Vives, L., Tsang, P., Bruhn, L. et al. (2011). Population-Genetic Properties of
Differentiated Human Copy-Number Polymorphisms. The American Joumal of Human
Genetics 88, 317-332.

19. Akey, J.M., Zhang, G., Zhang, K., Jin, L., Shriver, M.D. (2002). Interrogating a high-
density SNP map for signatures of natural selection. Genome Res. 12, 1805-1814.

20. Holsinger, K.E., Weir, B.S. (2009). Genetics in geographically structured populations:
defining, estimating and interpreting FST. Nat. Rev. Genet. 10, 639-650.

21. Tishkoff, S.A., Reed, F.A., Friedlaender, F.R., Ehret, C., Ranciaro, A., Froment, A.,
Hirbo, J.B., Awomoyi, A.A., Bodo, J.M., Doumbo, 0. et al. (2009). The genetic structure
and history of Africans and African Americans. Science 324, 1035-1044.

22. Price, A.L., Helgason, A., Palsson, S., Stefansson, H., St Clair, D., Andreassen,
O.A., Reich, D., Kong, A., Stefansson, K. (2009). The impact of divergence time on the
nature of population structure: an example from Iceland. PLoS Genet. 5, e1000505.

23. Xu, S., Yin, X., Li, S., Jin, W., Lou, H., Yang, L., Gong, X., Wang, H., Shen, Y., Pan,
X. et al. (2009). Genomic dissection of population substructure of Han Chinese and its
implication in association studies. Am. J. Hum. Genet. 85, 762-774.

24. Ayodo, G., Price, A.L., Keinan, A., Ajwang, A., Otieno, M.F., Orago, A.S., Patterson,
N., Reich, D. (2007). Combining evidence of natural selection with association analysis
increases power to detect malaria-resistance variants. Am. J. Hum. Genet. 81, 234-242.

25. Patterson, N., Hattangadi, N., Lane, B., Lohmueller, K.E., Hafler, D.A., Oksenberg,
J.R., Hauser, S.L., Smith, M.W., O'Brien, S.J., Altshuler, D. et al. (2004). Methods for
High-Density Admixture Mapping of Disease Genes. The American Joumal of Human
Genetics 74, 979.

59



26. Jallow, M., Teo, Y.Y., Small, K.S., Rockett, K.A., Deloukas, P., Clark, T.G., Kivinen,
K., Bojang, K.A., Conway, D.J., Pinder, M. et al. (2009). Genome-wide and fine-
resolution association analysis of malaria in West Africa. Nat. Genet. 41, 657-665.

27. Thye, T., Vannberg, F.O., Wong, S.H., Owusu-Dabo, E., Osei, I., Gyapong, J.,
Sirugo, G., Sisay-Joof, F., Enimil, A., Chinbuah, M.A. et al. (2010). Genome-wide
association analyses identifies a susceptibility locus for tuberculosis on chromosome
18q11.2. Nat. Genet. 42, 739-741.

28. The International HapMap 3 Project. (2010). Integrating common and rare genetic
variation in diverse human populations. Nature 467, 52-58.

29. Shriver, M.D., Kennedy, G.C., Parra, E.J., Lawson, H.A., Sonpar, V., Huang, J.,
Akey, J.M., Jones, K.W. (2004). The genomic distribution of population substructure in
four populations using 8,525 autosomal SNPs. Hum.Genomics 1, 274-286.

30. Akey, J.M. (2009). Constructing genomic maps of positive selection in humans:
Where do we go from here? Genome Research 19, 711-722.

31. Fry, A.E., Ghansa, A., Small, K.S., Palma, A., Auburn, S., Diakite, M., Green, A.,
Campino, S., Teo, Y.Y., Clark, T.G. et al. (2009). Positive selection of a CD36 nonsense
variant in sub-Saharan Africa, but no association with severe malaria phenotypes.
Human Molecular Genetics 18, 2683-2692.

32. Currat, M., Trabuchet, G., Rees, D., Perrin, P., Harding, R.M., Clegg, J.B.,
Langaney, A., Excoffier, L. (2002). Molecular Analysis of the [beta]-Globin Gene Cluster
in the Niokholo Mandenka Population Reveals a Recent Origin of the [beta]S Senegal
Mutation. The American Journal of Human Genetics 70, 207-223.

33. Hedrick, P.W. (2011). Population genetics of malaria resistance in humans. Heredity.

34. Hedrick, P.W., Thomson, G. (1983). Evidence for Balancing Selection at HLA.
Genetics 104, 449-456.

35. Cao, K., Moormann, A.M., Lyke, K.E., Masaberg, C., Sumba, O.P., Doumbo, O.K.,
Koech, D., Lancaster, A., Nelson, M., Meyer, D. et al. (2004). Differentiation between
African populations is evidenced by the diversity of alleles and haplotypes of HLA class I
loci. Tissue Antigens 63, 293-325.

36. Sakamoto, H., Yoshimura, K., Saeki, N., Katai, H., Shimoda, T., Matsuno, Y., Saito,
D., Sugimura, H., Tanioka, F., Kato, S. et al. (2008). Genetic variation in PSCA is
associated with susceptibility to diffuse-type gastric cancer. Nat. Genet. 40, 730-740.

37. Wu, X., Ye, Y., Kiemeney, L.A., Sulem, P., Rafnar, T., Matullo, G., Seminara, D.,
Yoshida, T., Saeki, N., Andrew, A.S. et al. (2009). Genetic variation in the prostate stem
cell antigen gene PSCA confers susceptibility to urinary bladder cancer. Nat. Genet. 41,
991-995.

38. Pasaniuc, B., Zaitlen, N., Lettre, G., Chen, G.K., Tandon, A., Kao, W.H.L., Ruczinski,
I., Fornage, M., Siscovick, D.S., Zhu, X. et al. (2011). Enhanced Statistical Tests for

60



GWAS in Admixed Populations: Assessment using African Americans from CARe and a
Breast Cancer Consortium. PLoS Genet 7, el 001371.

39. Lettre, G., Palmer, C.D., Young, T., Ejebe, K.G., Allayee, H., Benjamin, E.J.,
Bennett, F., Bowden, D.W., Chakravarti, A., Dreisbach, A. et al. (2011). Genome-Wide
Association Study of Coronary Heart Disease and Its Risk Factors in 8,090 African
Americans: The NHLBI CARe Project. PLoS Genet 7, el 001300.

40. Cann, H.M., De Toma, C., Cazes, L., Legrand, M.-F., Morel, V., Piouffre, L., Bodmer,
J., Bodmer, W.F., Bonne-Tamir, B., Cambon-Thomsen, A., Chen, Z., Chu, J., Carcassi,
C., Contu, L., Du, R., Excoffier, L., Ferrara, G.B., Friedlaender, J.S., Groot, H., Gurwitz,
D., Jenkins, T., Herrera, R.J., Huang, X., Kidd, J., Kidd, K.K., Langaney, A., Lin, A.A.,
Mehdi, S.Q., Parham, P., Piazza, A., Pistillo, M.P., Qian, Y., Shu, Q., Xu, J., Zhu, S.,
Weber, J.L., Greely, H.T., Feldman, M.W., Thomas, G., Dausset, J., Cavalli-Sforza,L.L.
(2002). A human genome diversity cell line panel Science 296, 261-262.

41. Clayton, D.G., Walker, N.M., Smyth, D.J., Pask, R., Cooper, J.D., Maier, L.M.,
Smink, L.J., Lam, A.C., Ovington, N.R., Stevens, H.E. et al. (2005). Population structure,
differential bias and genomic control in a large-scale, case-control association study.
Nat. Genet. 37, 1243-1246.

42. Nicholson, G., Smith, A.V., Jonsson, F., Gustafsson, A., Stefansson, K., Donnelly, P.
(2002). Assessing population differentiation and isolation from single-nucleotide
polymorphism data. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 64, 695-715.

43. The Wellcome Trust Case Control Consortium. (2007). Genome-wide association
study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature
447, 661-678.

44. Cavalli-Sforza, L.L., Edwards, A.W. (1967). Phylogenetic analysis. Models and
estimation procedures. Am. J. Hum. Genet. 19, 233-257.

45. Price, A.L., Tandon, A., Patterson, N., Bames, K.C., Rafaels, N., Ruczinski, I., Beaty,
T.H., Mathias, R., Reich, D., Myers, S. (2009). Sensitive detection of chromosomal
segments of distinct ancestry in admixed populations. PLoS Genet. 5, el 000519.

46. Barreiro, L.B., Laval, G., Quach, H., Patin, E., Quintana-Murci, L. (2008). Natural
selection has driven population differentiation in modem humans. Nat. Genet. 40, 340-
345.

47. McVicker, G., Gordon, D., Davis, C., Green, P. (2009). Widespread genomic
signatures of natural selection in hominid evolution. PLoS Genet. 5, el 000471.

48. Li, Y., Willer, C.J., Ding, J., Scheet, P., Abecasis, G.R. (2010). MaCH: using
sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet.
Epidemiol. 34, 816-834.

49. Patterson, N., Price, A.L., Reich, D. (2006). Population structure and eigenanalysis.
PLoS Genet. 2, e190.

61



50. Wainscoat, J.S., Hill, A.V.S., Boyce, A.L., Flint, J., Hernandez, M., Thein, S.L., Old,
J.M., Lynch, J.R., Falusi, A.G., Weatherall, D.J. et al. (1986). Evolutionary relationships
of human populations from an analysis of nuclear DNA polymorphisms. Nature 319, 491-
493.

51. Voight, B.F., Kudaravalli, S., Wen, X., Pritchard, J.K. (2006). A Map of Recent
Positive Selection in the Human Genome. PLoS Biol 4, e72.

52. Mattiangeli, V., Ryan, A., McManus, R., Bradley, D. (2006). A genome-wide
approach to identify genetic loci with a signature of natural selection in the Irish
population. Genome Biol. 7, R74.

53. Norton, H.L., Kittles, R.A., Parra, E., McKeigue, P., Mao, X., Cheng, K., Canfield,
V.A., Bradley, D.G., McEvoy, B., Shriver, M.D. (2007). Genetic Evidence for the
Convergent Evolution of Light Skin in Europeans and East Asians. Molecular Biology
and Evolution 24, 710-722.

54. McEvoy, B., Beleza, S., Shriver, M.D. (2006). The genetic architecture of normal
variation in human pigmentation: an evolutionary perspective and model. Human
Molecular Genetics 15, R176-R181.

55. Edwards, Melissa AND Bigham, Abigail AND Tan, Jinze AND Li, Shilin AND
Gozdzik, Agnes AND Ross, Kendra AND Jin, Li AND Parra,Esteban J. (2010).
Association of the OCA2 Polymorphism His615Arg with Melanin Content in East Asian
Populations: Further Evidence of Convergent Evolution of Skin Pigmentation. PLoS
Genet 6, e1000867.

56. Medland, S.E., Nyholt, D.R., Painter, J.N., McEvoy, B.P., McRae, A.F., Zhu, G.,
Gordon, S.D., Ferreira, M.A.R., Wright, M.J., Henders, A.K. et al. (2009). Common
Variants in the Trichohyalin Gene Are Associated with Straight Hair in Europeans. The
American Journal of Human Genetics 85, 750.

57. Bersaglieri, T., Sabeti, P.C., Patterson, N., Vanderploeg, T., Schaffner, S.F., Drake,
J.A., Rhodes, M., Reich, D.E., Hirschhorn, J.N. (2004). Genetic Signatures of Strong
Recent Positive Selection at the Lactase Gene. The American Journal of Human
Genetics 74, 1111-1120.

58. Williamson, S.H., Hubisz, M.J., Clark, A.G., Payseur, B.A., Bustamante, C.D.,
Nielsen, R. (2007). Localizing Recent Adaptive Evolution in the Human Genome. PLoS
Genet 3, e90.

59. Hernandez, R.D., Kelley, J.L., Elyashiv, E., Melton, S.C., Auton, A., McVean, G.,
1000 Genomes Project, Sella, G., Przeworski, M. (2011). Classic Selective Sweeps
Were Rare in Recent Human Evolution. Science 331, 920-924.

60. Weir, B.S., Cardon, L.R., Anderson, A.D., Nielsen, D.M., Hill, W.G. (2005). Measures
of human population structure show heterogeneity among genomic regions. Genome
Res. 15, 1468-1476.

62



61. Hancock, A.M., Witonsky, D.B., Gordon, A.S., Eshel, G., Pritchard, J.K., Coop, G., Di
Rienzo, A. (2008). Adaptations to Climate in Candidate Genes for Common Metabolic
Disorders. PLoS Genet 4, e32.

62. Bhatia, G., Patterson, N., Pasaniuc, B., Zaitlen, N., Genovese, G., Pollack, S.,
Mallick, S., Myers, S., Tandon, A., Spencer, C., et al. (2011). Genome-wide comparison
of African-ancestry populations from CARe and other cohorts reveals signals of natural
selection. Am. J. Hum. Genet. 89, 368-381.

63



Appendix

Neutral Simulations

We simulated allele frequencies from a pair of populations to verify that this statistic
follows the correct null distribution. In order to do this, we chose a variety of starting
allele frequencies, f,, and values for FsT. For each f and FST we sampled pairs of allele
frequencies from a normal distribution with mean f and variance given by 2Fs . We
then estimated Ft from the generated samples and computed the statistic for each pair

of sample allele frequencies. In doing this we notice inflation of the x2 statistic for small
values of f . However, we note that this inflation is very small with respect to the fat tail

observed on real data and is negligible for the allele frequencies of the SNPs that we
report to be showing a signal of selection (See Table S1 of Bhatia et al.).

Locus Specific Branch Length

The Locus Specific Branch Length generates a statistic for population differentiation on
each of the branches of a tree of three populations. This method assumes that FST
statistics are additive and assesses the branch specific FST for each population.
Specifically, given 3 populations, three pairwise FST statistics (FSB, FS, ) can be
computed for each marker. Then, each of the branch-specific FST statistics can be
calculated by solving a system of equations giving

FA_ FjAB + Fsr' - FBc
STB ST STFA -

2_ Fj + FB, c-F C

FT
2

Bc FC +Fc-FB
FST

2

However, this method is applicable specifically to the case of three populations. Once
these statistics are computed significance is assessed by ranking. Thus, LSBL can not
provide evidence of genome-wide significance.
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Chapter 4: Genome-wide scan of 29,141 African Americans finds no
evidence of selection since admixture

We scanned through the genomes of 29,141 African Americans, searching for loci where
the average proportion of African ancestry deviates significantly from the genome-wide
average. We failed to find any genome-wide significant deviations, and conclude that
any selection in African Americans since admixture is sufficiently weak that it falls below
the threshold of our power to detect it using a large sample size. These results stand in
contrast to the findings of a recent study with 15 times fewer samples that reported six
loci with significant deviations; we show that the discrepancy is likely due to insufficient
correction for multiple hypothesis testing in the previous study. We also tested for
polymorphic sites in the genome that exhibit greater population differentiation between
African Americans and Nigerian Yoruba than would be expected in the absence of
natural selection. Four such loci were previously shown to be genome-wide significant
and likely to be affected by selection, but we show that most of the 10 additional loci
reported in a recent study are likely to be false positives. Additionally, the most
parsimonious explanation for the loci that have significant evidence of unusual
differentiation in frequency between Nigerians and Africans Americans is selection in
Africa prior to their forced migration to the Americas.
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Introduction

Admixed populations such as African Americans and Latinos are formed by the mixing of
populations from different continents. Alleles that are highly differentiated between the
ancestral populations and advantageous in the admixed population are expected to rise
in frequency after admixture, causing a deviation in local ancestry compared with the
genome-wide average 1. This signal can be used to test for selection since admixture.

A recent study applied this approach to 1,890 African Americans 2. The study reported
six loci as likely targets of natural selection since admixture. However, that study used a
genome-wide significance threshold of P < 2.7x1 0-3, correcting for -20 hypotheses
tested. Based on the scale of admixture linkage disequilibrium in African Americans, a
more appropriate threshold would be P < 10~5, correcting for 5,000 hypotheses tested as
recommended by Seldin et al. (2011).

To revisit the issue of whether there is evidence of natural selection since admixture in
African Americans, we scanned through the genomes of 29,141 African Americans,
using exactly the same genotyping data set that had previously been used to study the
landscape of recombination (meiotic crossover) in African Americans a. This is the
largest sample size analyzed to date for this type of study. Using a genome-wide
significance threshold of P < 10 5, we find no genome-wide significant signals of
selection since admixture. The six previously reported loci do not attain nominal
significance (P < 0.05), suggesting that they are false positives due to insufficient
correction for multiple tests in the previous study.

We also evaluated the 14 signals of unusual population differentiation between African
Americans and Yoruba reported by Jin et al. (2012). Four of these loci were previously
shown to be genome-wide significant 4'5. However, we show that most of the 10
remaining loci are likely to be false positives due to biases that arise when using the
Weir and Cockerham (1984) estimator of FST to compare two populations of very
unequal sample size, or due to an insufficient correction for multiple testing. Additionally,
at loci with robust signals of selection, the selection is most likely to have occurred within
Africa, prior to the arrival of Africans in the Americas. Thus, any conclusions of selection
since the arrival of Africans in the Americas should be viewed with caution, and indeed,
at present no unambiguous examples of such selection have been empirically
documented.

Results

Genome-wide scan of 29,141 African Americans

We performed an admixture scan for unusual deviations in local ancestry in 29,141
African Americans from five cohorts, genotiped on three different platforms (see
Methods). We used the HAPMIX software to infer local ancestry in each individual and
averaged local ancestry estimates across individuals (see Methods). To search for
signals of selection since admixture, we computed the difference between the average
local ancestry estimate at each locus and the genome-wide average, divided by the
empirical standard deviation in local ancestry estimates across SNPs. It is important to
divide by the empirical standard deviation, rather than by the theoretical standard
deviation expected if all individuals are independent, as in practice there may be cryptic
relatedness among samples-as well as systematic error in the ancestry inference-that
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will inflate the variance across loci compared with what is theoretically expected (see
Methods).

The average genome-wide estimate of European ancestry over all samples in the
dataset is 0.204 with a standard deviation of 0.117 across individuals and 0.0036 across
SNPs. We considered any deviation in local ancestry greater than 4.42 s.d (i.e. greater
than 0.0154) to be genome-wide significant, corresponding to a threshold of P < 10-5

(correcting for 5,000 hypotheses tested) as recommended by Seldin et al. (2011). No
locus achieved this threshold of genome-wide significance (see Figure 1).

A previous study of selection in 1,890 African Americans 2 reported six loci that passed a
(less stringent) significance threshold of P < 2.7x1 0-3 (equivalent to a Bonferroni
correction for -20 hypotheses tested). The six loci did not replicate at nominal
significance (P < 0.05) in our much larger dataset (see Table 1 and Figure 1), and are
likely to be false positives due to an insufficient correction for multiple tests in the
previous study. For 5 of the 6 loci in Table 1, the deviation that we observe has the same
sign as the deviation reported by Jin et al. This could be due either to statistical chance
(P=0.11; 1-sided Fisher's exact test) or small systematic deviations in local ancestry
inference that are correlated between the two analyses (see Supplementary Note of
Bhatia et al. 2 s). In either case, our results show that the proportion of African ancestry at
these six loci is not likely to have been strongly affected by natural selection since
admixture.

Inferring selection using allele frequency differences

Studies of selection often rank single SNP estimates of FST and report the most highly
differentiated SNPs as signals of selection 2,7-11. These estimates are most often
produced using the Weir and Cockerham (1984) (WC) FST estimator (see Methods).
However, a concern with the use of the WC estimator for this application is that
estimates can depend on the sample sizes used, potentially resulting in overestimates of
the degree of differentiation at single SNPs 1. In the situation most prone to
overestimation, which would be a study of rare variants with large differences in sample
sizes between populations, greater than 99% of the highest single SNP FST estimates
would be expected to be the result of inflation due to unequal sample sizes (Figure S1 of
Bhatia et al. (2013)). On the other hand, the Hudson estimator 12, which is a simple
average of the population-specific estimators of Weir and Hill (2002), does not have this
bias.

We tested the magnitude of inflation of WC estimates in real data by reanalyzing the
most highly differentiated SNPs reported in a recent analysis of this type 2 (see Table 2).
This study compared African segments of 1,890 African Americans (AAF) and 113
Yoruba (YRI) at SNPs with MAF > 5%, and reported 40 SNPs-the 99. 9 9 th percentile of
401,559 SNPs tested-that have FST greater than 0.0452. These 40 SNPs are clustered
into 14 regions, of which 10 are previously unreported targets of natural selection and 4
were reported as genome-wide significant in the parallel study of 4 (or nearly genome-
wide significant in the case of HBB, a previously identified target of selection 5). Of the
10 novel signals, 9 produce lower estimates when we used the Hudson estimator and 3
fall below the Jin et al. threshold (FST> 0.0452) (see Table 2). We note that the 9 9 .99t'
percentile of FST could change when switching from the WC estimator to the Hudson
estimator. In our analysis, the magnitude of this change was smaller than the decreases
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observed (see Methods), suggesting that inflated WC FST estimates may lead to false
positive signals of selection.

In addition to issues of FST estimation, studies that simply rank the most highly
differentiated SNPs between populations are unable to evaluate genome-wide
significance of reported signals. Model-based approaches, on the other hand, 4'5,14'15 can
formally assess genome-wide significance and are robust to the biases of the WC FsT
estimator at single SNPs. In general, studies that use a model-based approach are well
powered if sample sizes are much larger than 1/FsT ', as both FST and sampling noise
contribute to normal variation in allele frequency differences. In the Jin et al. comparison,
the sample size of Yoruba (n=113), is much smaller than the reciprocal of FsT between
AAF and YRI (1/FsT = 1429). Thus, sampling variation is expected to dominate the
variance of the distribution of allele frequency differences. This may contribute to the fact
that, when re-evaluated using a model-based approach 4,, none of the reported SNPs
achieves genome-wide significance (P < 5x10-) (see Table 2).

We re-examined the statistical significance of the 10 novel loci reported by Jin et al. in
the Bhatia et al. (2011) dataset, which included 6,209 African Americans and 756
Yoruba. (Extending the analysis to all 29,141 African Americans in the current study
yields very similar results, as the Yoruba sample size is the limiting factor.) The Bhatia
et al. data includes 9 of these 10 loci, and only 4 of the 9 loci were nominally significant
(P<0.05 without correcting for multiple hypothesis testing) (see Table 2). We caution
however that these 4 loci should not be viewed as an independent replication, because
the two analyses are not statistically independent due to genetic drift between AAF and
YRI populations that is common to both analyses, so that loci in the tail of one analysis
could be expected to lie in the tail of the other analysis. The lack of nominal significance
at most loci in the non-independent analysis of Bhatia et al. data suggests that most of
the reported novel loci are false positives, although a subset may be genuine.

It is important to recognize that even robust, genome-wide significant evidence of
unusual population differentiation, e.g. at the 4 loci identified by both Bhatia et al. (2011)
and Jin et al. (2012), does not imply selection following the forced migration from Africa.
The observed population differences at these loci are more parsimoniously explained by
selection within Africa, in the ancestors of Yoruba and/or in the African ancestors of
African Americans (prior to enslavement). This is because the majority of time since
these populations diverged was spent in Africa, giving more time for selection to produce
an allele frequency difference.

As a counterexample that proves the rule, we consider the well-studied sickle-cell variant
rs334 at the HBB locus, where biological evidence suggests some selection since the
arrival of Africans in the Americas is likely to have occurred. Homozygotes for the
recessive allele are afflicted with sickle-cell anemia, a debilitating condition that results in
very low fertility. However, the minor allele at rs334 is maintained at high frequency in
Africa because heterozygotes have increased malaria resistance 16. The minor allele
frequency at rs334 in African Americans is 0.050 17, corresponding to an allele frequency
of 0.063 (0.050/0.8) on African segments. Conservatively assuming the strongest
possible negative selection against the minor allele-that heterozygotes have no
advantage (due to much lower rates of malaria in the Americas) and that no people with
sickle-cell anemia have children-the allele frequency in the African ancestors of African
Americans 7 generations ag06 would have been 0.096 (see Methods). This
corresponds to a maximum possible allele frequency difference of 0.033 due to selection
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since the migration from Africa. Allele frequency differences at HBB of >10% have been
reported between African populations ', showing that selection in Africa cannot be ruled
out as explaining most of the observed frequency difference between African Americans
and Yoruba. We have no doubt that the frequency of the minor allele decreased in
African Americans since arrival in the Americas. However, the empirical data do not
allow us to conclude that the allele frequency difference between African Americans and
Yoruba at the sickle cell variant is primarily explained by selection since the arrival of
Africans in the Americas.

We note in passing that the lack of a genome-wide significant deviation in average local
ancestry at the HBB locus (y=0.206, vs. a genome-wide average of 0.204) is not

unexpected, even given the decrease in frequency of this allele that must surely have
occurred. Even though the per-allele selection coefficient is strong (saie = 0.077), the

selection coefficient per copy of local ancestry is still quite low (sme = 0.0074), and

below the threshold of sanstry = 0.019 that our local ancestry analysis is powered to
detect (see Methods). According to our model of selection we expect an average local
ancestry of 0.210 at the HBB locus (see Methods), consistent with our observed result of
y =0.206 (1.11 s.d. apart).

Discussion

We performed a scan for unusual deviations in local ancestry in African Americans
compared with the genome-wide average, which found no genome-wide significant loci
and did not replicate 6 previously reported loci with unusual deviations in local ancestry.
We also reanalyzed 14 unusually differentiated loci from a previous study using a
different FST estimator, showing that many single-SNP FST estimates were inflated. Even
after correcting for this inflation, most of the reported loci are not genome-wide
significant. Furthermore, even for loci with robust, genome-wide significant evidence of
selection based on population differentiation, selection within Africa provides a
parsimonious explanation for most of the empirically observed differentiation.

We caution that although there is little evidence of selection since the forced migration
out of Africa in the data analyzed by Jin et al. (2012) or in the current study, we cannot
exclude the possibility that some selection of this type has occurred. Indeed, selection is
an ongoing process, and has surely occurred to some degree in African Americans since
migration out of Africa. The key point here is statistical power. Our genome-wide scan of
29,141 samples study is well-powered (>95%) to detect signals of selection with a
selection coefficient for local ancestry (sancefry) greater than 0.019 (see Methods).

Although selection of this magnitude or greater is ruled out by our data, weaker selection
may have occurred. For example, selection after the forced migration from Africa is likely
to have occurred at the HBB locus due to much lower rates of malaria and a
corresponding reduction in positive selection. However, our estimate of the likely
selection coefficient for local ancestry (s ,t = 0.0074) is too small for us to produce

genome-wide significant evidence of selection even in the context of the large sample
size we analyzed.

We conclude with three recommendations for future studies. First, studies of selection
since admixture based on deviations in local ancestry in African Americans or in other
admixed populations with similar ages of admixture should employ a genome-wide
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significance threshold of P=1x10-5 1, and should be cognizant of the possibility that
systematic errors in local ancestry inference can lead to false-positive signals. Second,
studies of selection based on population differentiation that involve unequal sample
sizes should not use the FST estimator of Weir and Cockerham (1984), which is
susceptible to bias in this case, and instead should use the Hudson estimator 12,13,18

Third, genome-wide significance should never be reported based on a simple ranking,
and instead should be reported via model-based approaches 4'5,14'15,.
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Methods

Samples

We studied the local ancestry distribution of African Americans from five different cohorts
(N = 29,141 samples combined across cohorts), using a previously published data set
where a nearly identical local ancestry inference procedure was used to study the rate of

3recombination

In detail, the dataset was derived from five genome-wide association studies conducted
on African Americans, all of which differ in population size and characteristics. A
coherent summary of the generation of these five datasets and the filters we used to
harmonize the genotyping data is presented in 3, and hence we do not present it again
here.

A complication in the analysis of these data is that the data were produced on three
different genotyping platforms. Three of these data sets are genotyped on the Illumina
1 M array: samples from the African American Lung Cancer Consortium (AALCC), the
African American Breast Cancer Consortium (AABCC), and t the African American
Prostate Cancer Consortium (AAPCC). The fourth data set was genotyped on the
Illumina Human Hap550 array and is from the Children's Hospital of Philadelphia
(CHOP) 3. The fifth data set is the Candidate Gene Association Resource (CARe) study,
a consortium of cohorts. This data set consists of the ARIC, CFS, CARDIA, JHS and
MESA cohorts and is genotyped on the Affymetrix 6.0 chip. We note that the AALCC,
AABCC and AAPCC data sets consist of disease cases and controls, but phenotype
information was not available in the current study. The inclusion of disease cases could
produce false-positive signals of selection due to admixture associations to disease (no
such signals were observed), but are unlikely to produce false-negative signals of
selection.

For our local ancestry inferences of the CARe dataset, we simply used the already
published results of Pasaniuc et al. (2011). All of the remaining datasets were curated to
retain only markers and samples with high genotyping completeness (>90%). We
removed samples with genetic evidence of being second-degree relatives or closer
using either PLINK 20 or EIGENSOFT 21 (smartrel). Samples with genome-wide
European ancestry proportion less than 2.5% or greater than 75% were removed in all
cohorts. All these datasets were separately combined with the phased Hapmap3 data of
88 European (CEU) and 100 West African (YRI) samples. Markers were removed if their
allele frequency was inconsistent with a linear combination of 0.8 African and 0.2
European allele frequencies according to a t-statistic greater than 15 (or less than -15).
This filter was applied to each cohort individually. A total of 626 markers were removed,
none of which were located inside the 6 regions that were previously reported as being
loci affected by natural selection since admixture 2. The markers that were removed had
values of (PAA-PEUR)W(PAFR~PEUR) that were either greater than 0.25 or less than 2.86.
These extreme deviations from the expected admixture proportion of African and
European ancestral allele frequencies are likely due to genotyping artifacts.

Following QC, the remaining samples were 4,094 AALCC samples genotyped at
877,881 autosomal markers; 5,131 AABCC samples genotyped at 866,269 autosomal
markers; 6,339 AAPCC samples genotyped at 867,658 autosomal markers; 7,368
CHOP samples genotyped at 480,029 autosomal markers; and 6,209 CARE samples
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genotyped at 738,831 autosomal markers. These five datasets have 121,511 autosomal
markers in common, which we used to generate Figure S1 of Bhatia et al.2 5

Inferring Local Ancestry

For the CARe cohort, we used the exact same local ancestry inference reported in
Pasaniuc et al. (2011). For the remaining datasets, we ran the HAPMIX 6 software
separately in each cohort to infer local ancestry estimates for all the samples at each of
the autosomal loci. The software was run using the Hapmap3 CEU and YRI haplotypes
as the ancestral populations, assuming that the number of generations since admixture
(A) was 6, using an individual specific average European ancestry proportion (0) prior,
and using the Oxford recombination map 22. The individual-specific 0 values were
calculated by running HAPMIX on these same samples using a uniform recombination
map. The software was run in a mode in which it outputs an integer estimate of local
ancestry by sampling from the probabilities for 0, 1 or 2 European chromosomes at each
locus. The genome wide ancestry for each sample was calculated by averaging over
local ancestry estimates genome-wide, after scaling these estimates by half. The
average local ancestry at each locus was calculated as an average of the local ancestry
estimates across all the samples. The entire analysis was conducted separately for each
cohort and then combined across cohorts. Because of issues with ancestry inference at
the ends of chromosomes, we removed the first and last 2 Mb of each chromosome from
analysis. We note that 3 loci in these regions (which do not overlap with the Jin et al.
loci) did show significant deviations in local ancestry, but these are very likely to be
artifacts (see Supplementary Note of Bhatia et al.T). This filtering left a total of 118,006
SNPs in our analysis of local ancestry, which we used to generate Figure 1.

The mean European genome-wide ancestry proportion was 0.210 (S.D across
individuals 0.123) in the AALCC sample, 0.218 (0.134) in the AABCC sample, 0.215
(0.131) in the AAPCC sample, and 0.193 (0.086) in the CHOP sample. These estimates
are similar to previous studies .
The standard deviation in average local ancestry estimates across SNPs was 0.0036 for
the full set of 29,141 samples.

Theoretical Standard Deviation in Local Ancestry

We calculated the theoretical standard deviation in average local ancestry as follows:

2 (1- K
SD*(y)=

2N
Where 7 is the average genome-wide ancestry for individual i, and N is the total number

of samples. Using this calculation we obtain a theoretical standard deviation of 0.0016,
less than half the empirical standard deviation of 0.0036.

Assessing Population Differentiation with the WC Estimator

Consider a biallelic SNP in a sample of individuals from 2 populations. The WC
estimator is:

(1)
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where n, is the sample size and i, is the sample allele frequency in population i for

i E {1,2}. Then, in the limit of large sample sizes (n, -1 ~ n ), we can assume that

sample allele frequencies become close to population allele frequencies (P, -+ pi ). We

analyze the estimator as the sample sizes increase, but their ratio goes to a constant M.
In the limit of infinite, but not necessarily equal sample sizes the estimator is:

^w _p 1 2-p2 )2

im Fsr 1 (2)
n,1n 2-M + (P ~2 +2 (1- A)+ P2(1- P2A

Consider a SNP that is rare in one population and has allele frequency zero in the other

population: p, = 0,p 2 = E . If sample sizes are equal, the single SNP estimate of FST from

the WC estimator is approximately e . Now, consider what happens as we increase n?
arbitrarily. It is clear that both numerator and denominator tend toward the same quantity
and FsT approaches 1.

Changes in Estimator Alter the 99.996 Percentile

Use of the Hudson FsT estimator instead of the WC estimator results in lower estimates
of FsT at the loci reported by Jin et al. However, it is possible that the 9 9 .9 9th percentile
threshold is also lowered by use of this estimator and that reported loci still fall at this

upper tail of the distribution. To assess this effect in sample sizes similar to those of Jin

et al. (2012) we sub-sampled 2,500 African American individuals from our data,
subtracted European allele frequencies from CEU 4, and compared the result to YRI
using both the WC and Hudson FST at every SNP. According to this analysis, the 9 9 . 9 9 th

percentile of FST was 0.048 for the WC estimator and 0.046 for the Hudson estimator.

Jin et al. report a threshold of 0.0452. Even if this decreases by 0.002 due to use of the
Hudson estimator, 2 of the 14 reported loci would no longer be in the 99.991 percentile.

Selection at HBB after the migration of African American ancestors from Africa

In order to assess the maximum effect of selection at HBB, we consider the following

situation. The minor allele at rs334-which is known to cause sickle cell anemia-in
African Americans today has a frequency of 0.050 1, corresponding to a MAF of 0.0625
(0.05/0.8) on African segments. From this information, we can work backwards in time
with the following equation:

P.1 = Pg (3)1 -pg
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Assuming that po = 0.0625, and 7 generations since the admixture of the African and
European ancestors of African Americans 6, we have p7 = 0.0962. According to these
estimates, the maximum allele frequency difference since admixture is 0.0337.

Under this model, the per-allele selection coefficient is simply the allele frequency in the
population-not on African segments alone-at the current generation (sgiieie = YPg)'
where y is the proportion of African ancestry at the HBB locus during the current
generation. Assuming that the proportion of local ancestry at each locus 7 generations
ago is equivalent to the current genome-wide average, the maximum value of this
coefficient is s,,,,e = 0.796p7 = 0.077. The selection coefficient per copy of African local

ancestry is given by s .'esty = y(p) 2 . That is, given that an individual carries one African
chromosome at the HBB locus he must also carry (1) the sickle allele on this first African
chromosome (with probability p) (2) a second African chromosome at this locus (with
probability y) and (3) the sickle cell allele on that second African chromosome (with
probability p). According to our model, the maximum value of this coefficient is
st,, = 0.796(p) 2 = 0.0074.

Estimating Local Ancestry Proportions After Selection

To perform power calculations and estimate the expected deviation in local ancestry at
HBB (see above) we need to be able to assess the effect of a particular selection
coefficient on local ancestry proportion. We did this iteratively, using the equation

Ygl= Y gl -Scce,.y) 4
y91 I yancesy (4)

We performed this iteration g times to assess the effect of selection at the locus. To
perform power calculations, we used a static value of sancesty , to assess the expected

deviation in local ancestry at HBB we substituted st,, = Yg(p) 2

Estimating the Minimum Detectable Selection Coefficient

In order to call a genome-wide significant deviation in local ancestry, we must have

fL -> 44r . That is, the observed average ancestry at a locus L , must deviate

from the genome wide average 7 by more than 4.42 standard deviations (estimated
from the data). We can assume that the sampling distribution of observed average local
ancestry is normal and centered around the true population average ancestry at the

locus. That is -L ~N(YL, ) where YL is the true population average ancestry at
n

the locus and n is sample size of the study. We can then solve for YL, so that

Pr(I -I> 4.46 -IyL) = 0.95. In our case, assuming =0.204, and = 0.0036 weLYL IrLI assmig L

obtain yL = 0.183 or 0.225. Then, assuming 7 generations since admixture we perform a
grid search over possible values of the selection coefficient for local ancestry that would
produce these values of YL (see below) and obtain an estimate of 0.019.
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Using a model-based approach to detect selection on Jin et al. (2012) data

When using a model-based approach to reanalyze Jin et al. results, we were unable to
estimate FST in their sample (since we did not have the raw genotypes) and thus used
their reported FST of 0.0007 in the model 4'5'4'5. We note that this FST was calculated
using the WC estimator, which may be susceptible to biases when very different sample
sizes are analyzed. The reported FST of 0.0007 was less than the FST of 0.0011 used in
Bhatia et al. (2011). This difference has a minimal impact on the resulting statistics, as
the variance is primarily due to the small sample size from Yoruba. However, using an
FST of 0.0011 would lead to even less statistically significant results than those reported
in Table 2, so that all model-based P-values using Jin et al. data would remain non-
genome-wide significant.
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Figures
Figure 1
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Ancestry at each location in the genome in 29,141 African Americans. This figure gives the proportion of European ancestry at each
of the 118,006 SNPs common to all cohorts. The black line indicates the genome-wide average proportion European ancestry. The
red and blue lines indicate the threshold for genome-wide significance (P < 10~5) in our study, and the Jin et al. study, respectively.
The dashed blue line indicates the threshold for significance (P < 2.7x10') that was actually used in the Jin et al. study. The
standard deviation was computed empirically over all SNPs. It is clear that no region attains genome-wide significance in our scan.
Dashed vertical lines indicate the location and blue points the deviation in local ancestry of the six loci reported under selection in Jin
et al. These deviations are reported relative to the genome-wide average ancestry proportion in our study. None of the six reported
loci exceed the P < 10~5 genome-wide significance threshold for the Jin et al. study (blue lines).
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Tables
Table 1

Region Jin et al. Current study
Deviation Nominal P-Value Deviation Nominal P-Value

chrl:17409539..21604321 -0.025 7.43E-04 -0.004 0.55
chr2:241750403..242568618 -0.023 2.07E-03 -0.006 0.44
chr2:37451925..37508581 0.023 2.16E-03 0.005 0.51
chr3:116930811..118313302 0.025 8.58E-04 -0.002 0.83
chr6:163653158..163653428 0.023 2.70E-03 0.004 0.60
chrl6:61214438..61242497 0.023 2.26E-03 0.006 0.41

We list the 6 regions with unusual deviations in local ancestry reported by Jin et al. and compare these to our scan. None of the 6
regions replicated at nominal significance (P < 0.05) in our analysis.
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Table 2

WC Fsd Hudson Model-based P-value Model-basedSNP id Region Gene Jin Data F T n Jin Data P-value Bhatia DataData
rs1541044 chrl:100125058..100183875 0.0562 0.0439 4.7 x 10-5 0.04
rs4460629 chr1:153401959..153464086 0.0692 0.065 6.8 x 10-7 2.1 X 10~4
rs12094201 chrl:236509336 0.0561 0.0489 1.7 x 10-5  0.86
rs7642575 chr3: 31400165 0.0453 0.0393 1.1 x 10-4  0.41
rs652888 chr6:26554684..33961049 HLA 0.0711 0.0627 1.1 x 10-6  1.8 x 10-
rs9478984 chr6:151555551..151569258 0.0545 0.0596 2.1 x 10-6 0.02
rs10499542 chr7: 22235870 0.0461 0.0453 3.6 x 10-5  0.35
rs304735 chr7:79768487..80482597 CD36 0.0946 0.069 3.0 x 10-7 3.7 x 10-13
rs2920283 chr8:143754039..143758933 PSCA 0.0468 0.0532 7.6 x 10-6 6.4 x 10-7
rs1498487 chrl1:5034229..5421456 HBB 0.0617 0.0464 2.4 x 10-5  1.7 x 10-7
rs4883422 chrl2:7189594 0.0472 0.0461 3.0 x 10-5  1.3 x 10-3
rs6491096 chrl3:25488362 0.0472 0.0373 1.5 x 10-4 0.4
rs1075875 chr16: 47595721 0.0766 0.0608 1.3 x 10-6 N/A
rs6015945 chr20:59319574 0.0627 0.055 4.3 x 10-6  0.5
We recreate Table 2 of Jin et. al (2012) analyzing the same data with the Hudson instead of the WC estimator. The bolded cells indicate
loci that fall below the 9 9 .99t' percentile threshold of 0.0452 when the Hudson estimator is used. We also estimated the P-value at each
SNP using the reported FsT = 0.0007 of Jin et al. (2012) (see Methods), and a model based approach 5. Finally, we report the model-
based P-value of the most significant SNP in the region reported in the parallel study of Bhatia et al. (2011). We note that results
reported in that paper were more significant than those reported here due to analysis of additional populations. The chrl6 locus is
reported as N/A due to a lack of data at this locus in the Bhatia et al. data.
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Chapter 5: Conclusions

In this thesis we presented methods to measure genetic distances between human
populations, and detect natural selection. We applied these methods to genotyping and
sequencing data-sets from multiple populations.

In Chapter 2, we gave a definition for FST based on allele frequencies in the
currently observed population and the most recent common ancestral population. We
showed that commonly used estimators for FST 1,2 generate biased FST estimates that
may depend on the sample sizes studied. We formalized an estimator 3 4 of FST that
gives results consistent with population genetic theory across sampling regimes. While
the numerator of this estimator is an unbiased estimator of the variance between
populations, and the denominator of this estimator is an unbiased estimator of the total
variance, the ratio of these quantities is not an unbiased estimator of FST. As a result, we
recommended that a ratio of averages be used to generate asymptotically consistent
estimates. Finally, we demonstrated that outgroup ascertainment is desirable if the
established relationship between FsT and divergence time5 is to hold. More generally,
differing ascertainment schemes can be used to test a variety of hypotheses about
human population history and selection and we encourage authors to publish the
ascertainment scheme used to produce published estimates of FST.

We used this protocol for FsT estimation to show that FST estimates from sequence
data 6 are highly concordant with estimates from genotype data 7, contrary to prior
reports 8. While these earlier reports might have lead to the conclusion that FST

estimated from rare variant data is substantially lower than FST estimated using common
variants, our results suggest the opposite. Under certain ascertainment schemes, FST
estimated from rare variants is actually higher than FST estimated from common variants.
This is consistent with the strong effects of bottlenecks in human population history on
FST at rare variants and is more pronounced for strongly bottlenecked populations 4. We
note that our approach assumes that the populations under study are outbred. A method
to deal with inbred populations has been described in the supplementary note of 9.

In Chapter 3, we utilized a model-based approach10 13 to detect selection between
West African populations. An alternate approach is to rank loci by a local estimate of
selection (i.e. FST, XP-EHH) 14'15. While this approach is commonly used, an advantage
of a model-based approach is the ability to generate robust genome-wide significant
evidence for selection at a locus. In addition to using the model-based approach to
compare two populations, we extended this approach to three populations by using an
unrooted tree with a single central node. We caution that this model-based approach
may be applicable to a smaller range of usage scenarios than ranking based
approaches as the underlying null model-that the distribution of allele frequency
differences is normal-only applies for common mutations and a small amount of
genetic drift.

We used this model-based approach to validate previously published targets of
selectioni"~19, to provide evidence of multiple, population-specific selective events at
HLA, and to discover a novel target of selection at PSCA. Of note, the mutations in this
locus that show maximal differentiation between the West African populations are also
highly differentiated between Japanese and Chinese populations7 . This may serve as a
motivating example for future work investigating concordance of highly differentiated loci
between closely related populations. Finally, a potential criticism of our approach is that
matching the empirical distribution, in expectation, to a X2 (1 d.f.) distribution requires
that we use an average of ratios estimate of FST, which, was not our recommendation in
Chapter 2. We note that under reasonable usage scenarios for model-based approach-
small FST and common variants-we expect the ratio of averages and the average of
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ratios to be largely concordant.
In Chapter 4, we used our work in Chapter 2 and additional analysis of local

ancestry to reevaluate reports of natural selection in African Americans since the arrival
of their ancestors in the Americas. Considering the very small number of generations20

since this event, any detected selection would have to be very strong. If present, this
could result in an excess (or loss) of African ancestry at the locus under selection due to
hitchhiking with the selected allele. Jin and colleagues provide evidence for this
deviation in average local ancestry at 6 loci. These are all loci that achieved a deviation
of greater than three standard deviations from the genome-wide average. However, we
point out that a threshold of 3 standard deviations corresponds to a Bonferroni correction
for less than 20 independent hypotheses. As there are more than 20 chromosomes in
the genome, we believe that this is likely to be insufficient and the more stringent
threshold of 4.4 standard deviations (corresponding to 5000 independent hypotheses) is

21more appropriate . Using this more stringent threshold, none of the loci reported by Jin
and colleagues achieves genome-wide significance. Moreover, in a reanalysis of nearly
30 thousand African American individuals, no locus showed genome-wide significant
deviations in average local ancestry. This suggests that we can rule out selection since
admixture stronger than sancesty > 0.019. In general, we caution that detecting selection
via admixture analysis may be unreliable due to biases in local ancestry inference and
insufficient correction for multiple hypotheses.

The second line of evidence used by Jin and colleagues was population
differences between Yoruba 7 and allele frequencies in the inferred African segments
from the genomes of African American individuals. This analysis was done using an FST
estimator 1 that may produce false positive results when comparing samples with very
different sizes. We demonstrated that nine of the ten loci reported by Jin et al. had FST
estimates inflated by this estimator, with three of these dropping below their nominal
significance threshold. While Jin and colleagues do corroborate previously established
targets of selection at HLA, CD36 and HBB as well as the result we described in chapter
3 at PSCA, we believe these are much more likely to indicate selection in African than
selection in the Americas. As an example, we considered strong negative selection on
the sickle cell allele in African Americans. Considering the current frequency in African
Americans 22, and working backwards over 7 generations, we show that a difference of
only -3% can be explained by selection in the Americas. At this locus, allele frequency
differences of greater than 10% have been reported in Africa 2 , suggesting that natural
selection in Africa is a more parsimonious explanation of observed signals.

In this thesis, we have examined questions of estimating genetic distance and
detecting natural selection with regard to pairs of populations. In Chapter 3, we did
generalize this to three populations using a tree of populations, but we believe that
further extensions will be difficult due to a combinatorial explosion in tree topologies23.
Additionally, while simplifying methods may allow a reasonable first approximation to a
tree of human populations 24, recent studies suggest that admixture has been the rule,
rather than the exception, in human population history 9,25,26. As a result, tree based
approaches, even those that allow for admixture events through use of directed acyclic
graphs 27, are unlikely to model the full complexity of relationships between large
numbers of human populations. Our belief is that a population covariance matrix 28 may
present a more reasonable approximation of the true relationships between human
populations. Additionally, a weakness of the literature on natural selection is the limited
capacity with which researchers can identify the phenotype that is under selection.
Methods incorporating a large number of human populations, perhaps through such
covariance matrices, may be better powered to detect selection correlated with specific
environmental pressures, potentially improving our understanding of human population
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history, biology, and disease.
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