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1 Introduction

In this report, we consider longitudinal dynamics of a vehicle and prove that its longitudinal
position and velocity are order preserving with respect to the driver’s (or automatic controller’s)
input. We also prove that the position is strictly order preserving with respect to the constant term
of the acceleration replaced with a linear function of the position and the velocity. This estimation
of the acceleration is used for the cases in which no direct measurement of the acceleration is
available.

2 System Model

Before introducing the model that we are considering, we define the strict and non-strict order
preserving properties.

Definition 1. (Order preserving) For all w, z ∈ Rn we have that w ≤ z (w < z) if and only if
wi ≤ zi (wi < zi) for all i ∈ {1, 2, ..., n}, in which wi denotes the ith component of w. We denote
the piecewise continuous signal on U by S(U) : R+ → U . For U ⊂ Rm we define the partial order
(strict partial order) by component-wise ordering for all times, that is, for all w, z ∈ S(U) we have
that w ≤ z (w < z) provided w(t) ≤ z(t) (w(t) < z(t)) for all t ∈ R+. The map f : P → Q is
order preserving (strict order preserving) provided if for x, y ∈ P we have x ≤ y (x < y), then
f(x) ≤ f(y) (f(x) < f(y)).

Definition 2. (Continuous system) A continuous system is a tuple Σ = (X,U,∆, O, f, h), with
state x ∈ X ⊂ Rn, control input u ∈ U ⊂ Rm, disturbance input d ∈ ∆ ⊂ Rq, output y ∈ O ⊂ X,
vector field in the form of f : X × U ×∆→ X, and output map h : X → O.

We denote the flow of a system Σ at time t ∈ R+ by φ(t, x,u,d), with initial condition x ∈ X,
control input signal u ∈ S(U) and disturbance input signal d ∈ S(∆). We also denote the ith
component of the flow by φi(t, x,u,d).

Definition 3. (Control input/output order preserving) A continuous system Σ = (X,U,∆, O, f, h)
is called input/output order preserving (strict input/output order preserving) with respect to the
control input, if the map h(φ(t, x, ·,d)) : U → O, for any fixed t, x and d, is order preserving (strict
order preserving).
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Definition 4. (Disturbance input/output order preserving) A continuous system Σ = (X,U,∆, O,
f, h) is called input/output order preserving (strict input/output order preserving) with respect to
the disturbance input, if the map h(φ(t, x,u, ·)) : ∆ → O, for any fixed t, x and u, is order
preserving (strict order preserving).

We denote the position and the velocity of vehicle by p and v, respectively. We consider two
systems Σ1 and Σ2. For Σ1 we assume that the input is the control input u and there is no
disturbance. Therefore it is reasonable to represent the flow of Σ1 by φ1(t, x1,u), where x1 is the
initial state of the system. The deceleration due to the road load (rolling resistance) and the slope
of the road are represented by ar and as, respectively, and the drag coefficient is denoted by D. We
also impose a condition that the speed of the vehicle must be non-negative. We use the superscript
T to denote the transpose of a vector or matrix, e.g., AT represents the transpose of matrix A. The
dynamics of Σ1 is as the following:

x1 ∈ X ⊂ R2,where x1 = (p, v)T , (1)

u ∈ U ⊂ R,with U = {u | u ∈ [um, uM ]}, (2)

where um is the minimal control input, and uM is the maximal control input,

f1 : X × U → X ,with ẋ1 = f1(x1, u), (3)

where

f1(x1, u) =

{
f̄1(x1, u) if v > 0
0 if v ≤ 0

. (4)

The function f̄1(x1, u) is also in the following form:

f̄1(x1, u) =

[
v

u−Dv2 − ar − as

]
. (5)

Since we cannot measure the acceleration for system Σ2, we assume the total acceleration of the
vehicle to be in the form of a linear function of the position and the velocity. Moreover we assume
the input term (the constant term of the linear function), be a disturbance input. Therefore it is
reasonable to represent the flow of Σ2 by φ2(t, x2,d), where x2 is the initial state of the system.
The dynamics of system Σ2 is in the following form:

x2 ∈ X ⊂ R2,where x2 = (p, v)T , (6)

d ∈ R, (7)

f2 : X ×∆→ X ,with ẋ2 = f2(x2, d), (8)

where

f2(x2, d) =

{
f̄2(x2, d) if v > 0
0 if v ≤ 0

. (9)

The function f̄2(x2, d) is also in the following form:

f̄2(x2, d) =

[
v

ap+ bv + d

]
. (10)

The term ap + bv + d is the total acceleration of the vehicle in Σ2, where a and b are known
constants. Since in Σ2, unlike Σ1, we cannot measure the acceleration directly, this model can be
a good approximation to the acceleration of the vehicle.
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3 Order Preserving Properties

We prove that the flows of the position and the velocity in Σ1, φ1
1(t, x1,u) and φ1

2(t, x1,u),
respectively, have order preserving property with respect to the control input signal u.

Proposition 1. The flows φ1
1(t, x1,u) and φ1

2(t, x1,u) are order preserving with respect to the
control input signal u.

Proof. If we consider two different input signals u1 and u2, such that u1 > u2, then for the
velocity of Σ1 at time t corresponding to these two input signals, with the same initial conditions
p1(0) = p2(0) = p(0) and v1(0) = v2(0) = v(0), we have v̇1(t) = u1(t) − Dv1(t)2 − ar − as and
v̇2(t) = u2(t)−Dv2

2(t)−ar−as, if both v1(t) > 0 and v2(t) > 0. Let the function g(t) := v1(t)−v2(t).
At an arbitrary time t we have

ġ(t) = v̇1(t)− v̇2(t) = (u1(t)− u2(t))−D
(
v2

1(t)− v2
2(t)

)
. (11)

Note that since we have chosen the same initial conditions, we have g(0) = v1(0) − v2(0) = 0.
Because of the continuity of flow of the system with respect to time, if order in state v is not
preserved, we must have a time t′ ∈ R+ such that g(t′) = 0, since otherwise for all t ∈ R+,
either g(t) < 0 or g(t) > 0. Therefore we can define t∗ := min{t ∈ R+ | g(t) = 0}. Since
ġ(0+) = u1(0+) − u2(0+) > 0, ġ(t∗−) = u1(t∗−) − u2(t∗−) > 0, and g(0) = g(t∗) = 0, for the
interval t ∈ (0, t∗) we have

ġ(0+) = lim
h→0+

g(h)− g(0)

h− 0
= lim

h→0+

g(h)

h
> 0⇒

since h > 0 : ∃ h = h1 ∈ (0, t∗) s.t. g(h1) > 0, (12)

and similarly

ġ(t∗−) = lim
h→0−

g(t∗)− g(t∗ + h)

t∗ − (t∗ + h)
= lim

h→0−

g(t∗ + h)

h
> 0⇒

since h < 0 : ∃ h = h2 ∈ (0, t∗) s.t. g(h2) < 0, (13)

and because of the continuity of the flow with respect to time, there is a t ∈ [h1, h2] such that
g(t) = 0, which is in contradiction with the initial assumption that t∗ := min{t ∈ R+ | g(t) = 0}.
Therefore there is no such t∗, and for all t ∈ R+ such that v1(t) > 0 and v2(t) > 0 we have either
g(t) = v1(t)− v2(t) > 0 or g(t) = v1(t)− v2(t) < 0. From (12) we conclude that the former is true.

We had assumed initially that v1(t) > 0 and v2(t) > 0. For a case that for some t′ ∈ R+ we have
v1(t′) = 0 and v2(t′) = 0, we let t̄1 := min{t ∈ R+ | v1(t) = 0} and t̄2 = min{t ∈ R+ | v2(t) = 0}.
Because of the non-negativity of v1(t), v2(t) and v1(t)−v2(t), we must have t̄2 ≤ t̄1. If an arbitrary
time t ∈ (0, t̄2), then g(t) = v1(t) − v2(t) > 0; if t ∈ [t̄2, t̄1), then v1(t) − v2(t) = v1(t) > 0; and if
t ∈ [t̄1,∞), then g(t) = v1(t)−v2(t) = 0. Therefore, in any case the order of the flow of the velocity
is preserved with respect to the control input signal. Since p1(0) = p2(0) = p(0), then based on
equation (5), p1(t)− p2(t) =

∫ t
0 g(s)ds ≥ 0, which implies that the order preserving property of the

flow of p is also satisfied with respect to the control input signal.

In Proposition 2 we prove that the position in Σ2, φ2
1(t, x2,d), is strictly order preserving with

respect to d.
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Proposition 2. The flow φ2
1(t, x2,d) is strictly order preserving with respect to the disturbance

input d.

Proof. Let x2
0 := (p0, v0)T be the initial condition, where v0 > 0. Since d is not a function of time,

then by differentiating v̇ from equations (8) and (10), we have that the velocity in Σ2, for v(t) > 0,
satisfies the following differential equation:

v̈ − bv̇ − av = 0 where v(0) = v0 and v̇(0) = ap0 + bv0 + d. (14)

The above differential equation has the solution in the form

v(t) = k1e
λ1t + k2e

λ2t where,

λ1 = 0.5(b+
√
b2 + 4a) and λ2 = 0.5(b−

√
b2 + 4a). (15)

Since complex and real values of λ1 and λ2 reveal different behaviors for v(t), we consider different
possible cases and analyze the behaviors of v(t) and p(t) with respect to d for each of them. We
divide the problem into three different cases; (1): b2 +4a > 0, (2): b2 +4a < 0 and (3): b2 +4a = 0.
For each case we consider two input signals d1 = d1 and d2 = d2 such that d1 > d2 and determine
the relationship between v1(t) and v2(t) and then between p1(t) and p2(t), the velocity and the
position at time t corresponding to d1 and d2, respectively.

Case (1): If b2 + 4a > 0, then λ1 and λ2 in (15) are real numbers. The solution of (14) then
takes the form

v(t) =
1

λ2 − λ1

(
(v0(λ2 − b)− ap0 − d) eλ1t − (v0(λ1 − b)− ap0 − d) eλ2t

)
. (16)

If we replace d in equation (16) with d1 and d2 in order to obtain their corresponding velocities at
time t, represented by v1(t) and v2(t), respectively, we have

v1(t)− v2(t) =
d1 − d2

λ2 − λ1

(
eλ2t − eλ1t

)
. (17)

Equation (17) can become zero only when t = 0. Therefore because of the continuity of flow of
the system with respect to time, for all t ∈ R+, either v1(t) − v2(t) > 0 or v1(t) − v2(t) < 0. To
determine which of these two cases holds, we note that in general for any x ∈ R − {0} we have
that if x > 0, then ex − 1 > 0 and if x < 0, then ex − 1 < 0. These two statements together imply
that ex−1

x > 0. Since in Case (1) λ2 − λ1 6= 0 and we are considering t ∈ R+, then (λ2 − λ1)t 6= 0.
Therefore we can replace x with (λ2 − λ1)t in order to obtain

e(λ2−λ1)t − 1

(λ2 − λ1)t
> 0⇒ teλ1t

[
e(λ2−λ1)t − 1

(λ2 − λ1)t

]
> 0⇒ eλ2t − eλ1t

λ2 − λ1
> 0⇒

d1 − d2

λ2 − λ1

(
eλ2t − eλ1t

)
> 0⇒ v1(t) > v2(t), (18)

where we have used the facts that t ∈ R+, eλ1t > 0 and d1 − d2 > 0. By integrating both sides of
(18) to determine the position at time t, we obtain∫ t

0
v1(s)ds >

∫ t

0
v2(s)ds⇒
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p0 +

∫ t

0
v1(s)ds > p0 +

∫ t

0
v2(s)ds⇒ p1(t) > p2(t). (19)

Case (2): If b2 + 4a < 0, then λ1 and λ2 in (15) are complex numbers. The solution of (14)
then takes the form

v(t) = eαt
(
ap0 + (b− α)v0 + d

β
sinβt+ v0 cosβt

)
,

with α = 0.5b, and β = 0.5
√
−(b2 + 4a). (20)

If we replace d in equation (20) with d1 and d2 in order to obtain their corresponding velocities at
time t, represented by v1(t) and v2(t), respectively, we have

v1(t)− v2(t) =
d1 − d2

β
eαt sinβt. (21)

We observe that in Case (2), unlike Case (1), we cannot guarantee that for all t ∈ R+, v
1(t)−v2(t) 6=

0. Note that v1(t)− v2(t) = 0 for all t such that sinβt = 0 or alternatively, βt = kπ, for all k ∈ Z.
The smallest t ∈ R+ that satisfies sinβt = 0 is t∗ = π

β . The velocity at time t∗ corresponding to d1

and d2, based on equation (20), is given by

vi(t∗) = v0e
αt∗ cos

βπ

β
= −v0e

αt∗ < 0 for i ∈ {1, 2}. (22)

Since for all t ∈ R+, v(t) ≥ 0, we must have vi(t∗) = 0, or in other words, for all t ∈ [0, t∗] we
have either v1(t) − v2(t) ≥ 0 or v1(t) − v2(t) ≤ 0. In order to determine which case holds, we
note that for all t ∈ [0, t∗] we have β > 0 and 0 ≤ sinβt ≤ 1. Therefore in any case, for all
t ∈ [0, t∗] we have sinβt

β ≥ 0. Also eαt(d1 − d2) > 0. These two statements along with (21) imply

that v1(t) − v2(t) ≥ 0. Since in (20) we have v2(0) = v0 > 0 and v2(t∗) = −v0e
αt∗ < 0, then

because of the continuity of flow of the system with respect to time, there is a t̄ ∈ (0, t∗) such that
t̄ := min{t ∈ (0, t∗) | v2(t) = 0}. Then we have for all t ∈ (0, t̄), v1(t)− v2(t) > 0. For a t ∈ (0, t̄),
we have

p1(t)− p2(t) =

∫ t

0
(v1(s)− v2(s))ds > 0; (23)

for a t ∈ [t̄, t∗) we have

p1(t)− p2(t) =

∫ t̄

0
(v1(s)− v2(s))ds+

∫ t

t̄
(v1(s)− v2(s))ds >

0 +

∫ t

t̄
(v1(s)− v2(s))ds ≥ 0⇒ p1(t)− p2(t) > 0; (24)

and for a t ∈ [t∗,∞), we have

p1(t)− p2(t) =

∫ t∗

0
(v1(s)− v2(s))ds+

∫ t

t∗
(v1(s)− v2(s))ds =

∫ t∗

0
(v1(s)− v2(s))ds+ 0 > 0⇒ p1(t)− p2(t) > 0. (25)
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Case (3): If b2 + 4a = 0, then λ1 = λ2 = λ, which is also a real number. The solution of (14)
then takes the form

v(t) = eλt [v0 + (ap0 + (b− λ)v0 + d) t] , (26)

and for v1(t)− v2(t) we have

v1(t)− v2(t) = t(d1 − d2)eλt > 0, (27)

which implies

p1(t)− p2(t) =

∫ t

0
(v1(s)− v2(s))ds > 0. (28)

We had assumed initially that v1(t) > 0 and v2(t) > 0. In general, we may have a time t∗

such that v1(t∗) = 0 and v2(t∗) = 0. In this case, because of the continuity of flow of the system
with respect to time, there are times t̄1 and t̄2 such that t̄1 = sup{t ∈ (0, t∗) | v1(t) > 0} and
t̄2 = sup{t ∈ (0, t∗) | v2(t) > 0}. Since we have proved through Cases (1)-(3) that as long as
v1(t) > 0 and v2(t) > 0 we have v1(t) − v2(t) > 0, then t̄2 ≤ t̄1. For an arbitrary time τ ∈ (0, t̄2)
Cases (1)-(3) imply that p1(τ)− p2(τ) > 0; if τ ∈ [t̄2, t̄1), then

p1(τ)− p2(τ) =

∫ t̄2

0
(v1(s)− v2(s))ds+

∫ τ

t̄2

(v1(s)− 0)ds > 0; (29)

and if τ ∈ [t̄1,∞), then

p1(τ)− p2(τ) =

∫ t̄2

0
(v1(s)− v2(s))ds+

∫ t̄1

t̄2

(v1(s)− 0)ds+

∫ τ

t̄1

(0− 0)ds > 0, (30)

and the proof is complete.
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