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ABSTRACT The temporal dynamics of the concentrations of several proteins are tightly regulated, particularly for critical
nodes in biological networks such as transcription factors. An important mechanism to control transcription factor levels is
through autoregulatory feedback loops where the protein can bind its own promoter. Here we use theoretical tools and compu-
tational simulations to further our understanding of transcription-factor autoregulatory loops. We show that the stochastic
dynamics of feedback and mRNA synthesis can significantly influence the speed of response of autoregulatory genetic networks
toward external stimuli. The fluctuations in the response-times associated with the accumulation of the transcription factor in the
presence of negative or positive autoregulation can be minimized by confining the ratio of mRNA/protein lifetimes within 1:10.
This predicted range of mRNA/protein lifetime agrees with ranges observed empirically in prokaryotes and eukaryotes. The
theory can quantitatively and systematically account for the influence of regulatory element binding and unbinding dynamics
on the transcription-factor concentration rise-times. The simulation results are robust against changes in several system para-
meters of the gene expression machinery.
INTRODUCTION
The quantitative levels of many proteins inside a cell are
tightly regulated. The lag in response to an external or
internal stimulus in attaining a given intracellular concentra-
tion is an important quantity in gene signaling, quorum
sensing, genetic networks, switches, synthetic gene circuits,
and gene memory devices (1–6). Raising the protein
concentration beyond a certain threshold level in response
to a signal subsequently triggers other signaling cascades.
Transcriptional regulation plays an important role in deter-
mining the temporal evolution of protein levels and is
orchestrated by the binding of transcription factor (TF)
proteins to cis-regulatory elements such as promoters and
enhancers.

The time required to achieve the nth fraction of the steady-
state concentration of a protein is a stochastic quantity and
the mean first-passage time is often referred to as the rise-
n-time. For precise regulation of cellular functions, the
rise-times of the associated genes should be robust with
respect to internal and external fluctuations. Even small
delays in the rise times can have a significant effect on the
cell or organism (5,7,8). In particular, given that transcrip-
tion factors control the expression of multiple downstream
genes, the TF concentrations need to be tightly regulated
in a timely manner.

A large number of TFs interact with their own promoter
sequences via the corresponding cis-acting regulatory
elements, leading to self-regulatory loops that affect tran-
scriptional regulation (9–12). Transcriptional autoregula-
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tory networks play a critical role in fine-tuning the
steady-state spatiotemporal protein concentrations (2,9,10,
13–16), which are important for proper functioning, stabili-
zation, development, and differentiation of the organism.
Positive transcriptional autoregulation seems to be impor-
tant for maintaining cellular memory and cell types across
subsequent generations whereas negative transcriptional
autoregulation seems to be important for maintaining the
required in vivo concentrations of various proteins (1–3).
Negative transcriptional autoregulation has also been shown
to decrease the rise-n-time and the molecular number
fluctuations associated with protein levels whereas positive
autoregulation has been shown to increase both quantities
(5,9,17).

In addition to the robustness of intracellular concentra-
tions of various proteins in various types of self-regulatory
loops, it is important to consider the robustness in the rise-
n-times against internal and external fluctuations. Variations
in the rise-n-times can play an important role in natural and
synthetic gene networks. Although the effect of self-regula-
tion on the extent of protein number fluctuations has been
studied in detail (13–17), it is still not clear how self-regu-
latory loops influence the fluctuations in the rise-n-times
associated with the building up of protein levels. In this
work we seek to provide a theory to explain the following
phenomena associated with the influence of transcriptional
autoregulation on fluctuations in the rise-n-times:

1. The effect of promoter state fluctuations and the
dynamics of mRNA synthesis on rise-n-times;

2. The influence of autoregulation on the fluctuations in the
rise-n-times of gene expression systems;
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3. The biologically relevant set of parameters which deter-
mine the robustness of the rise-n-times against fluctua-
tions; and

4. The mechanism(s) by which gene expression systems are
able to reduce the fluctuations in the rise-n-times.

Using theoretical and simulation tools, we show that
a temporally efficient and responsively robust self-regula-
tory gene-network can be obtained by tuning the ratio of
the lifetimes of mRNA and the corresponding TF protein.
THEORY

A theoretical framework for autoregulation
in gene expression

We consider the generalized autoregulated gene expression
model described by the set of reactions illustrated in
Fig. 1 A. In general, for a chemical reaction involving a
molecule with concentration x, we consider its rate of crea-
tion (rin) and elimination (rout). We can write the stochastic
kinetic equation describing the dynamics of concentration
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changes as a sum of a deterministic drift term that depends
on rin-rout, and a diffusion term that depends on rin and rout
(18–20). The stochastic chemical Langevin equation (CLE)
is given by dx=dt ¼ rin � rout þ ffiffiffiffiffi

rin
p

xinx;t þ
ffiffiffiffiffiffiffi
rout

p
xoutx;t : Here

xkx;t are Gaussian noise terms for each of the chemical reac-
tions and satisfy hxkx;ti ¼ 0 and hxkx;txkx;t0 i ¼ dðt � t0Þ, where
k ¼ in or out.

The reactions in Fig. 1 A refer to a gene that produces
a transcription factor (TF) that can interact with its own
promoter via binding at the corresponding regulatory
elements along the DNA.

The first reaction describes the binding of the TF to its
own free promoter (DNA) to form the DNA-TF complex.
We denote by d0 the total concentration of the promoter
sequence (mols/liter, M) and by x the concentration of
the DNA-TF complex. The phenomenological bimolecular
rate constant kf (M�1 s�1) and the unimolecular rate
constant kr (s�1) characterize the binding and unbinding
of the TF with its own promoter. The expression Kr/f ¼
kr/kf (M) is the corresponding Michaelis-Menten-like
constant. The second reaction describes the transcriptional
0.6 0.8 1.0
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0.007,σ=4,ν=3x10-4,w=0.12)

0,σ=0,v=0,w=0)

 Ref. 5

mRNA

DNA

km

{A,C,G,T}γm

cids

FIGURE 1 (A) Schematic description of the

reactions analyzed in this work. (A1) Binding of

the transcription factor protein (TF) to its cognate

DNA sequence to form the DNA-TF complex. The

concentration of promoter not bound by TF is de-

noted by d0-x and the concentration of DNA bound

by TF is denoted by x. The values kf and kr denote

the kinetic constants for binding and unbinding,

respectively. (A2) mRNA synthesis. The concen-

tration of mRNA is denoted by m. The value km
denotes the phenomenological kinetic constant

for transcription. (A3) Protein synthesis. The

concentration of the TF is denoted by p. The value

kp denotes the phenomenological kinetic constant

for translation. (A4) mRNA degradation with

kinetic constant gm. (A5) Protein degradation

with kinetic constant gp. The variables x, m, and

p are transformed into the dimensionless variables

X, M, and P (see text). (B) Simulation results for

the deterministic system of Eq. 3 (G ¼ 0) Rise-n-

time for the TF (the time required to reach the

nth fraction of the stationary state concentration)

as a function of w (w ¼ gp/gm, that is, the ratio

of the decay rate constants for the protein and

mRNA, respectively; shown in log scale) for posi-

tive autoregulation (blue), negative autoregulation

(red), and no autoregulation (green). The rise-n-

times are measured in terms of the number of

generation times for n ¼ 0.99 (solid lines) and

n ¼ 0.5 (dashed lines). Step size ¼ 0.001. Dt ¼
10�3, m ¼ 7 � 10�3, s ¼ 4, and n ¼ 3 � 10�4.

Negative autoregulation shows a minimum rise-

n-time as a function of w at w ~ 0.2 (n ¼ 0.99)

or w ~ 0.02 (n ¼ 0.50). (C) Comparison of the

theoretical predictions from the expressions in

level normalized by the stationary state level in the negative autoregulation

e) Numerical integration of Eq. 3 with m ¼ 0.007, s ¼ 4, n ¼ 3 � 10�4, and

s) Experimental data from Rosenfeld et al. (5,9). Because the experimental

the simulated data to the same value at t ¼ 0.



On Minimization of Fluctuations in Response-Times 1299
process to form mRNA (concentration ¼ m) and is
characterized by the rate constant km (M s�1). The third
reaction describes the translation of the mRNA to form
the TF protein (concentration ¼ p) with a rate constant
kp (s

�1).
Reactions two and three describe the degradation of

mRNA and TF; the intracellular lifetimes are characterized
by the unimolecular decay rate constants gm (s�1) and
gp (s�1), respectively. The reactions in Fig. 1 A are prone
to fluctuations in the molecule numbers and the dynamics
can be described in terms of a deterministic drift term
controlled by the rate of production and degradation and
a diffusion term. Because of these fluctuations, the first-
passage time or rise-n-time to attain a given fraction n of
the steady-state concentration (p ¼ nps5) is prone to varia-
tion. The stochastic CLEs corresponding to the set of
chemical reactions in Fig. 1 A can be written as follows
(18,19,21):

dX=dt ¼ kf pð1� XÞ � krX þ Xx=
ffiffiffiffiffi
d0

p
;

Xx ¼
ffiffiffiffiffiffiffi
krX

p
xx;a;t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf pð1� XÞp

xx;b;t

dm=dt ¼ kmU5 ðXÞ � gmmþ mx;

mx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmU5 ðXÞp

xm;a;t þ ffiffiffiffiffiffiffiffiffi
gmm

p
xm;b;t

dp=dt ¼ kpm� gp p� kf d0ð1� XÞpþ krXd0 þ px

þ ffiffiffiffiffi
d0

p
Xx; px ¼ ffiffiffiffiffiffiffiffi

kpm
p

xp;a;t þ ffiffiffiffiffiffiffiffi
gpp

p
xp;b;t�

xk;i;t
� ¼ 0;

�
xk;i;txs;j;t0

� ¼ dksdijdðt � t0Þ;
k; s ¼ fx;m; pg; i; j ¼ fa; bg

9>>=
>>;
: (1)

Here x are Gaussian white-noise terms associated with each

of the chemical reactions and X¼ x/d0 denotes the promoter
occupancy (X ˛ [0,1]). In the negative autoregulation case,
U� (X) ¼ 1 � X reflects the microscopic probability of
finding the free promoter. In the positive autoregulation
case, Uþ (X) ¼ X indicates the microscopic probability of
finding the DNA-TF complex. In the absence of self-regula-
tion, U(X) ¼ 1.
Scaling and stochastic simulations
of autoregulated gene expression

Although the scheme in Fig. 1 A can be directly simulated
using the Gillespie algorithm (22) we use the CLE
formalism (18) for the following reasons. We are interested
in the distribution of the mean first-passage times associ-
ated with the building up of the TF protein to a certain
preset fraction (n) of the steady-state value. The binding-
unbinding dynamics of the protein with its own promoter
is observed as a continuous process in the timescale of
the synthesis of the mRNA and protein. We can use a con-
tinuous probability variable (such as X ¼ x/d0) to describe
the promoter state dynamics to account for the promoter
that is partially bound by the TF rather than a discrete
Boolean type as described earlier (23,24). Because there
is only one promoter associated with the gene of interest,
using the Gillespie algorithm on such a system along
the integer space and subsequently taking the ratio of
bound/free number of promoters (¼ 0 or 1 at any time)
with the total promoters (¼ 1) would result in Boolean
type on-/off-states. The promoter state fluctuations mainly
originate from the intrinsic randomness in the searching
and arrival time of TF proteins and RNA polymerase at
the promoter (25–28).

In the absence of autoregulation (U(X) / 1), the steady-
state concentration of mRNA is ms ¼ km/gm. Defining the
translational efficiency ε ¼ kp/gm, the steady-state TF
concentration in the absence of autoregulation becomes
ps ¼ εkm/gp. An analytical solution to the system of Eq. 1
in the presence of autoregulation is not known but these
equations can be stochastically simulated. To simplify this
system of equations, we rescale the dynamical variables as
follows:

M ¼ m=ms;
P ¼ p=ps;
t ¼ gpt:

(2)

The validity of the CLE formalism can be ensured by adjust-

ing the transformed time-step in such a way that the vari-
ables X, M, and P are observed as continuous type random
variables in this timescale. With these variable transforma-
tions, the system of equations in Eq. 1 is reduced to the
following dimensionless form:

vdX=dt ¼ Pð1� XÞ � mX þ XG;

XG ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1� XÞp

GX;a;t þ
ffiffiffiffiffiffi
mX

p
GX;b;t

wdM=dt ¼ U5 ðXÞ �M þMG;

MG ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U5 ðXÞp

GM;a;t þ
ffiffiffiffiffi
M

p
GM;b;t

dP=dt ¼ M � P� sðð1� XÞP� mXÞ
þ PG þ ffiffiffi

s
p

XG;
PG ¼ ffiffiffiffiffi

M
p

GP;a;t þ
ffiffiffi
P

p
GP;b;t

9=
;: (3)

The expressions in Eq. 3 contain the following dimension-

less parameters:

w ¼ gp=gm;
m ¼ Kr=f=ps;
s ¼ kf d0=gp;
v ¼ gp=kf ps:

(4)

The parameters n and s reflect the temporal coupling

between the mRNA/protein dynamics and the binding-
unbinding dynamics of TF molecules with the promoter.
The ordinary perturbation parameter s characterizes the
strength of temporal coupling between the protein state
dynamics with the promoter state fluctuations. The variable
w represents the lifetimes of protein/mRNA and reflects the
Biophysical Journal 101(6) 1297–1306
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coupling between the mRNA and protein degradation
dynamics. The variable m, the Michaelis-Menten-like equi-
librium constant measured in terms of the steady-state
protein concentration ps, is inversely proportional to the
TF/promoter binding affinity and characterizes the strength
of autoregulatory feedback.

The perturbation parameters w and v in the expressions in
Eq. 3 are particularly important because they multiply the
derivative terms, which describe, respectively, the dynamics
of mRNA synthesis and the binding-unbinding dynamics of
the TF to the promoter. Because ps is proportional to the
translational efficiency ε(ε ¼ kp/gm), both m and n are
inversely proportional to ε. When the protein decay rate is
high, both v and s tend to 0 and the binding-unbinding
dynamics of the TF is temporally uncoupled from the
dynamics of protein-synthesis and decay. Further s does
not affect the rise-n-time of the transcription factor signifi-
cantly because the change in the number of protein mole-
cules due to promoter state fluctuations is negligible. In
contrast, n significantly affects the protein number fluctua-
tions and fluctuations in the response times because the
effect of varying n is indirectly amplified through mRNA
dynamics.

Furthermore, an increase in n would decrease the rate at
which promoter state occupancy shifts toward X ¼ 1 (posi-
tive autoregulation) or X ¼ 0 (negative autoregulation) as
the TF level builds up. The decrease in the promoter state
dynamics as v increases can be a consequence of either an
increase in gp or a decrease in kf. This means that there
are not enough protein molecules to bind the promoter or
there is a temporal slow-down in the autoregulatory feed-
back. This would eventually increase the rise-n-times in
positive autoregulated networks and decrease the rise-n-
time in negative autoregulated networks. The temporal
slow-down in promoter state dynamics due to higher values
of v can also lead to an overshooting behavior in the case of
negative autoregulated network as observed experimentally
by Rosenfeld et al. (9). For large values of w, an increase in
w ¼ (gp/gm), which may be a result of an increase in the
protein decay rate and/or a decrease in the mRNA decay
rate, leads to an increase in rise-n-times. Because the TF
decays much faster, more time will be required to attain
the nth fraction of steady-state protein level, which in turn
results in higher rise-n-times.

On the other hand, a decrease in w implies that the tran-
scription factor protein will be stable over relatively longer
times which in turn lead to an efficient binding and satura-
tion of the promoter. This would result in an increase of
rise-n-times in the case of negative autoregulated networks
and a decrease of rise-n-times in the case of positive autor-
egulated networks under weak binding conditions (higher
values of m). Because the rise-n-time increases both at
higher and lower values of w in the case of negatively autor-
egulated networks, one can eventually expect a minimum of
rise-n-time at some optimum value of w. The system of
Biophysical Journal 101(6) 1297–1306
expressions in Eq. 3 is completely characterized by this
set of dimensionless perturbation parameters.

In the system of rate equations in Eq. 3, G are dimension-
less Gaussian noise variables associated with the various
reaction steps and satisfy the following constraints,

GK;i;t ¼
ffiffiffiffiffi
lK

p
xk;i;t; hGK;i;ti ¼ 0;�

GK;i;tGS;j;t0
� ¼ lKdKSdijdðt � t0Þ

K; S ¼ fX;M;Pg; i; j ¼ fa; bg;
lX ¼ �

kf psd0
��1

; lM ¼ ðgmmsÞ�1
;

lP ¼ �
gp ps

��1

�
; (5)

where lX/P/M are the noise strength parameters in the
t -space. Here X, M, P ˛ (0,1) during stochastic simula-
tions, where X ¼ 0, M ¼ 0, P ¼ 0, and X ¼ 1, M ¼ 1,
P ¼ 1 act as the reflecting boundaries and P ¼ nPs5 (where
n˛[0, 1]) is the absorbing boundary condition for the given
mean first-passage time or rise-n-time problem under
consideration. The deterministic steady-state concentration
of TF levels P under the different autoregulation scenarios
is given by

Ps ¼ 1;
Psþ ¼ 1� m;
Ps� ¼ ð1=2Þ�� mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 4m
p �

:
(6)

In the limit when m grows to infinity, we have limm/N
Ps� ¼ Ps ¼ 1. Similarly, when m tends to zero, Psþ also
tends to 1.
Biologically relevant parameters characterizing
autoregulated gene expression

For a given gene, d0 ¼ 1 molecule, ps ~ 103 molecules, and
ms ~ 102 molecules. In the t-time space, we find gm ~ 1/w
and gp ~ 1. We assume that under in vivo conditions, the
protein interacts with its own promoter via a three-dimen-
sional diffusion with a rate kt ~ 106 M�1 s�1. The concentra-
tion of a single specific binding site or a protein molecule
inside the Escherichia coli cell will be ~2 nM and the
number of collisions that can happen between a single TF
protein with its own promoter will be in the order of kf ~
10�3 molecules�1 s�1 (29). Here we have used the scaling
1 molecule ¼ 2 nM inside the cellular volume. For a protein
lifetime of ~60 min, we find gp ~ 3 � 10�4 s�1. This means
that in the transformed t-space, kf ~ (10�3/gp) molecules�1

gp
1. Upon substituting these values in the expressions in

Eq. 5 we find the following empirical values:

lX � 10�4;
lM � w10�2;
lP � 10�3:

(7)
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Extension to dimers and protein-protein
interactions

So far we have assumed that a single copy of the TF binds its
own promoter and self-regulates its own expression. In
several cases, a dimerized or multimerized protein binds
its cis-regulatory modules and acts on the promoter (30).
Under such conditions, the promoter occupancy variable X
in the expressions in Eq. 3 will be modified as follows:

qdY=dt ¼ P2 � 4Y þ fðmX � Yð1� XÞÞ þ YG;

YG ¼
ffiffiffiffiffi
P2

p
GY;a;t þ

ffiffiffiffiffiffi
4Y

p
GY;b;t þ XG

vdX=dt ¼ Yð1� XÞ � mX þ XG;

XG ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yð1� XÞp

GX;a;t þ
ffiffiffiffiffiffi
mX

p
GX;b;t

wdM=dt ¼ U5 ðXÞ �M þMG;

MG ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U5 ðXÞp

GM;a;t þ
ffiffiffiffiffi
M

p
GM;b;t

dP=dt ¼ M � P��
P2� 4Y

��
qþ PG þ YG=

ffiffiffi
q

p
;

PG ¼ ffiffiffiffiffi
M

p
GP;a;t þ

ffiffiffi
P

p
GP;b;t

9>>>=
>>>;
: (8)

Here Y ¼ p2/ps, where p2 is the concentration of the freely
available dimerized form of the protein while ka and k�a

are corresponding forward and reverse rate constants associ-
ated with the dimerization reaction. Various other parame-
ters and noise terms involved in the set of dynamical
equations in Eq. 8 are defined as

q ¼ gp=ka ps;
f ¼ kf d0=pska;
4 ¼ k�a=ka ps;

GY;a;t ¼ ffiffiffiffiffi
lY

p
xy;a;t;

lY ¼ ðka psÞ�1
:

(9)

The on-rate for the dimerization reaction will be diffusion-
controlled and we estimate ka ~ 106 M�1 s�1. Upon sub-
stituting the experimentally determined numerical values
in the expressions in Eq. 9 we obtain the following empirical
values:

q � 10�4;
f � 10�3;
4 � 10�3e�a;
lY � 10�4:

(10)

Here a is the binding energy associated with the dimeriza-
tion of TF proteins measured in terms of RT. The expres-
sions in Eqs. 3–10 can be generalized to other systems
including feed-forward, feedback, or cross-regulatory loops.
In the latter case, two TFs such as A and B up-/downregulate
each other’s transcription. Under such conditions, the
promoter occupancy rate equations for such a coupled
system can be written as follows:
vSdXS=dtS ¼ PKð1� XSÞ � mSXS þ XSG;

X ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð1� X Þp

G þ ffiffiffiffiffiffiffiffiffiffi
m X

p
G

9>

SG K S XS;a;tS S S XS;b;tS

wSdMS=dtS ¼ U5 ðXSÞ �MS þMSG;

MSG ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U5 ðXSÞ

p
GMS;a;tS þ

ffiffiffiffiffiffi
MS

p
GMS;b;tS

dPS=dtS ¼ MS � PS � sSðð1� XSÞPK � mSXÞ
þPSG þ ffiffiffiffiffi

sS
p

XSG

PSG ¼ ffiffiffiffiffiffi
MS

p
GPS;a;tS �

ffiffiffiffiffi
PS

p
GPS;b;tS ;

PA : ðS ¼ A;K ¼ BÞ; PB : ðS ¼ B;K ¼ AÞ

>=
>>;
: (11)

Here PA and PB are the scaled concentration terms associ-
ated with the two TF proteins which cross-regulate each
other. Following the idea described in the expressions in
Eq. 8, one can include the dimerization reaction between
proteins A and B before cross-binding the respective cis-
regulatory modules into the expressions in Eq. 11. The
steady-state values of TF proteins which are required to
set up the absorbing boundary condition for the mean
first-passage time problem need to be numerically evaluated
from Eqs. 8 and 11.
Stochastic simulations

The quantities that we want to calculate here are the mean
and coefficient of variation (CV ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

variance
p

=mean) of
the time required to attain the nth fraction of the steady-state
value of P. The estimated dimensionless parameters from
empirical values are summarized in Table 1. We used the
following numerical scheme (21) for the stochastic simula-
tion of the expressions in Eq. 3,

Xkþ1¼Xk þ ðPk�ðmþ PkÞXkÞDt=vþ
ffiffiffiffiffiffiffiffiffiffiffi
lXDt

p
Xz=v;

Xz ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pkð1� XkÞ

p
z0;1;1 þ

ffiffiffiffiffiffiffiffi
mXk

p
z0;1;2

Mkþ1¼Mk þ ðU5 ðXkÞ�MkÞDt=wþ
ffiffiffiffiffiffiffiffiffiffiffi
lMDt

p
Mz=w;

Mz¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U5 ðXkÞ

p
z0;2;1 þ

ffiffiffiffiffiffi
Mk

p
z0;2;2

Pkþ1¼Pk þðMk� Pk� sðð1�XkÞPk� mXkÞÞDt
þ ffiffiffiffiffiffiffiffiffiffiffi

lPDt
p

Pzþ
ffiffiffi
s

p
Xz; Pz¼

ffiffiffiffiffiffi
Mk

p
z0;3;1þ

ffiffiffiffiffi
Pk

p
z0;3;2

9=
;; (12)

where z are independent random values drawn from the
standard normal distribution N(0,1). When the TF strongly
binds with its own promoter, then the value of Kr/f under
in vivo conditions is Kr/f ~ (1–7) nM (9). This means that
approximately three protein molecules are enough to bind
and saturate 50% of their own promoter sequences inside
the cellular volume and we estimate m ~ 7� 10�3. The value
of w ¼ gp/gm seems to vary from w ~ 10�1 in the case of
prokaryotes to w ~ 100 in the case of eukaryotes (25,29).
Together with all these values, we also set the scaled
time step as Dt ¼ 10�3 and iterate w inside the range
Biophysical Journal 101(6) 1297–1306



TABLE 1 Variables and parameters used in the stochastic simulations

Variable/parameter Definition Default values in t-space Default values in t ¼ gpt space Range examined

d0 1 molecule 1 molecule

ms km/gm 100 molecules 100 molecules

ps kmkp/gmgp 1000 molecules 1000 molecules

Kr/f kr/kf 7 molecules 7 molecules

kf 10�3 molecules�1 s�1 4 molecules�1 gp
1

gm 2.5 � 10�3 s�1 8 (1/w ¼ gm
/gp) gp

1

gp 3 � 0�4 s�1 1 gp
1

n gp/kfps 0.0003 0.0003 5 � 10�5–0.004 in Figs. 3 and 4

s kfd0/gp 4 4 0–10,000 in Figs. 3 and 4

w gp
/gm 0.12 0.12 10�3–10 in Figs. 3 and 4

m Kf/r/ps 0.007 0.007 0.001–0.05 in Figs. 3 and 4

lM 1/gmms 1/gm10
2 molecules�1 s1 w10�2 molecules�1 gp

�1

lP 1/gpps 4 molecules�1 s1 10�3 molecules�1 gp
�1

lX 1/kfd0ps 1 molecules�1 s1 10�4 molecules�1 gp
�1

This table describes the variables and parameters used in the stochastic simulations (see text for details). The corresponding chemical reactions are shown in

Fig. 1 A. The values d0 represent the number of promoters of a gene of interest inside the cell. The valuesms and ps are the steady-state numbers of mRNA and

protein molecules in the absence of autoregulation. The value Kr/f is the Michaelis-Menten-like equilibrium constant (the normalized and dimensionless form

is m) associated with the binding of the protein with its own promoter. The kf is the forward rate constant associated with TF binding to DNA and kr is the

corresponding unbinding constant. The values gm and gp are the decay rate constants associated with the mRNA and protein molecules. The values n and s

are the dimensionless parameters that reflect the temporal coupling between the mRNA/protein dynamics with the binding-unbinding dynamics of protein

molecules with the promoter. The value w is lifetimes of protein/mRNA and reflects the coupling between the mRNA and protein dynamics; lX/P/M values are

the noise strength parameters in the t-space.
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(0.01, 10.0) with a step size of Dw ¼ 0.01 and n inside the
range (0.1, 0.99) with a step size of Dn ¼ 0.01.

The value of the scaled time-step Dt¼ 10�3 plays critical
role in capturing the effects of binding and unbinding of the
transcription factor with its own promoter. In the real-time-
scale we find Dt ¼ (10�3/gp) z 4 s for a typical decay rate
of the protein gp ~ 3� 10�4 s�1, which corresponds to a life-
time of ~60 min. One should note that Dt is already within
the timescale that is required by the autoregulatory tran-
scription factor to locate its specific promoter on DNA by
searching via a combination of three- and one-dimensional
diffusion dynamics inside the cell (25–27). Our numerical
simulations show that the results do not change significantly
wheneverDt< 10�3. The values of X,M, and P are confined
inside (0,1); X ¼ 0, M ¼ 0, P ¼ 0 and X ¼ 1, M ¼ 1, P ¼ 1
act as the reflecting boundaries. The stochastic simulations
are stopped whenever P ¼ nPs5 (where n˛[0,1]), which
is the absorbing boundary condition for a given value of n.

In the scaled dimensionless space, the rise-n-time is the
scaled time t required to attain the nth fraction of the
steady-state value of q. To convert t into the original time
variable t, which is measured in terms of the generation-
time (tg) of the organism, we use the transformation rule
tg ¼ t/ln2. All the statistical estimates associated with
various rise-n-times were computed over 105 stochastic
realizations of the rescaled Langevin equations (see expres-
sions in Eq. 3). The initial conditions for the negatively self-
regulated and non-self-regulated gene expression systems
were set to X0 ¼ 0, M0 ¼ 0, P0 ¼ 0, and t ¼ 0. We set
the initial conditions to X0 ¼ 1, M0 ¼ 0, P0 ¼ 0, and t ¼
0 for the simulation of positively self-regulated gene expres-
sion system.
Biophysical Journal 101(6) 1297–1306
RESULTS AND DISCUSSION

We start by considering the deterministic case in Fig. 1 B.
The rise-n-time associated with the negatively autoregulated
gene expression system is shorter than the rise-n-time for the
nonautoregulated and positively autoregulated cases. In the
case of negatively autoregulated gene expression, there is an
optimum value of w ¼ gp/gm at which the rise-n-time is
a minimum. This optimum becomes more prominent as n
increases. When w is low, the mRNA levels decay faster
than the transcription factor protein levels and there are
very few mRNA molecules available for translation. In the
negative autoregulation case, as the mRNA decay becomes
slower, more proteins are produced per transcript, leading to
faster blocking of the promoter by negative self-regula-
tion—which, in turn, slows down the transcription factor
protein production rate. In the positive autoregulation
case, the promoter is further activated by protein production.
In the strong binding scenario simulated in Fig. 1 B (m ¼
0.007), as the protein level builds up and saturates the
promoter, the system moves closer to the nonregulated
case. With these strong-binding simulations, we obtain
the following steady-state values: Ps� z 0.0, Ps ¼ 1, and
Psþ z 0.993. This means that ~10-times the rise-n-time
will be required by the negatively autoregulated gene
expression system to attain the steady-state concentration
of the TF protein, similar to that of the positively or nonau-
toregulated gene network.

Fig. 1 C shows a single trajectory of the ratio (P/Ps�) for
a negatively autoregulated network as a function of time.
The quantitative results from the numerical integration
agree well with the experimental data that were obtained
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on the negatively autoregulated E. coli TetR system (9). The
fit from the numerical integration (m¼ 0.007, s¼ 4, n¼ 3�
10�4, and w ¼ 0.12) is better than the one obtained from the
deterministic analytical solution obtained by Rosenfeld
et al. (9) for the conditions n ¼ 0, w ¼ 0, and s ¼ 0.
However, it should be noted that the model proposed here
has more parameters than the one used in Rosenfeld et al.
(9). These results argue that the feedback input functions
for the protein dynamics (31), which are used in modeling
various genetic networks, should also contain information
about the mRNA dynamics.

After considering the deterministic conditions, we turn to
the numerical simulations of the expressions in Eq. 3 under
stochastic conditions (Fig. 2). Under negative autoregula-
tion (Fig. 2 C), these simulations indicate that the rise-n-
time attains a minimum at a value w ¼ wmin,t, which is
a function of n (Fig. 2, C1 and C2). To characterize the fluc-
tuations in the rise-n-times, we computed the coefficient
of variation of the rise-n-time (CVrise) which attained a
minimum value (CVmin) around n ~ (0.4–0.6) (Fig. 2, C3
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and C4); we denote with wmin,n the value of w at which
this minimum was achieved. In contrast, the stochastic
simulations of the gene expression system with positive
autoregulation (Fig. 2 B) and without any autoregulation
(Fig. 2 A) showed rise-n-times that were higher than the
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simulation results for positive autoregulation and no-autor-
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fluctuations of the response-times is a consequence of
promoter-state fluctuations introduced by the binding and
unbinding of the autoregulating TF with the promoter
sequences.

These theoretical results suggest that the optimum value
of the parameter w that can be considered to design an effi-
cient and robust negative autoregulatory gene expression
network is inside the interval (0.1, 0.5), where fluctuations
in the response-times are minimized. We asked whether
this optimum range for w would be affected by changes in
the other perturbation parameters by considering the deter-
ministic version of the expressions in Eq. 3 with G ¼ 0.
The simulation results show that the optimum range of w
is not significantly affected upon changing v, s, m, lX, lM,
and lP. The effects of increasing the parameter v on the
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deterministic version of the expressions in Eq. 3 are shown
in Fig. 3, A and B, the effects of changing s are shown in
Fig. 3, C and D, and the effects of changing m are shown
in Fig. 3, E and F. The minimum response-time values
decrease as n increases. Increasing n in a negatively autore-
gulated network results in the overshooting of the synthesis
of the TF protein as shown in Fig. 3 A.

This result agrees with the experimental observations in
Rosenfeld et al. (9). Increasing the value of m in the nega-
tively autoregulated network transforms the negatively
autoregulated system to a non-self-regulated one. Decreas-
ing m can also lead to an overshooting behavior (Fig. 3 E)
and increase the rise-n-time (Fig. 3 F). Because m f Kr/f

and mf ε
�1, this means that an increase in the translational

efficiency of the negatively autoregulated system would
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FIGURE 3 Effect of simulation parameters on

rise-n-time and kinetics of negative autoregulation.

We characterize the parameter landscape to

describe how the rise-n-time and the kinetics of

TF synthesis depend on the perturbation parame-

ters w, n, s, and m. We show these dependencies

on several two-dimensional plots. All these plots

were obtained by numerical integration of Eq. 3

for the negatively autoregulated network. (A, C,

and E) Variation of protein synthesis levels as

a function of the number of generation times (tg).

(Red asterisks) Experimental data from Rosenfeld

et al. (9). (A) Curves show different values of

parameter n, ranging from 5 � 10�5 (top curve)

to 0.004 (bottom curve) (s ¼ 4; m ¼ 0.007; w ¼
0.12; and n ¼ 0.004, 0.003, 0.002, 0.001, 0.0009,

0.0008, 0.0007, 0.0006, 0.0004, 0.0002, 0.0001,

and 0.00005). Larger values of n show evidence

of overshooting in TF synthesis. (C) Curves show

different values of the parameter s ranging from

0 to 10,000 (n ¼ 3 � 10�4, w ¼ 0.12, m ¼ 0.007;

and s ¼ 0, 1, 2, 3, 4, 10, 100, 1000, 2000, 3000,

4000, 5000, 6000, 7000, 8000, 9000, and

10,000). When s < 103, the protein synthesis

trajectory is not affected much. Beyond this value,

the rise-n-time increases with s. (E) Curves show

different values of m ranging from 0.001 to 0.05

(n ¼ 3 � 10�4, w ¼ 0.12, s ¼ 4; m ¼ 0.05, 0.04,

0.03, 0.02, 0.01, 0.009, 0.008, 0.007, 0.006,

0.004, 0.003, 0.002, and 0.001). Lower values of

m show overshooting behavior in TF synthesis.

(B, D, and F) Rise-n-times (log scale) as a function

of parameterw (ranging from 0.001 to 10; shown in

log scale). The characterization of the parameter

variation in panels B, D, and F parallels the corre-

sponding plots in panels A, C, and E. (Red curves)

Rise-0.5-times (t0.5�). (Blue curves) Rise-0.99-

times (t0.99�). The value of w at which the rise-n-

times attain a minimum is a function of n and v.

For a fixed n we observe w0.5� < w0.99�. When

n > 5 � 10�3, then the rise-0.5-times show very

shallow minimum with w. With these parameter

settings, for n % 3 � 10�4 and w ~ 0.12, we find

that t0.5� ~ 0.23tg and t0.99� ~ tg. These values are

consistent with the experimental observations on

negative self-regulation in transcription networks.
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enhance the effects of negative self-regulation further. In the
stochastic conditions, changing n, m, and s values do not
affect the optimum range of wmin,t at which the coefficient
of variation in the rise-n-times attains a minimum (Fig. 4).
This suggests that this optimum range of w is also robust
against the changes in the binding strength of the TF with
its own promoter and the translational efficiency of the
self-regulated gene network. Similarly, the optimum range
of the parameter n that can be considered to attain the
minimum level of fluctuations in the rise-n-times is in the
interval 0.4–0.6.

In addition to reducing the rise-n-times, the negatively
autoregulated gene-network is more efficient in synthe-
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parameters (s, m, and n) in negatively autoregulated network: We further

characterize the parameter landscape to describe the dependence of the

coefficient of variation of the rise-n-times on the perturbation parameters

w, n, s, and m. We show these dependencies on several two-dimensional

plots. All these plots were obtained by numerical integration of Eq. 3 for

the negatively autoregulated network. (A, C, and E) Curve color denotes

different values of n (green, n ¼ 0.1; blue, n ¼ 0.5; and red, n ¼ 0.99).

(A) Variation of CVrise (log scale) as a function of w (log scale) for n ¼
0.00025 (solid curves) and n ¼ 0.025 (dashed-dotted curves). (s ¼ 4;

m ¼ 0.007.) (C) Variation of CVrise (log scale) as a function of w (log scale)

for m ¼ 0.007 (solid curves) and m ¼ 0.07 (dashed-dotted curves). (s ¼ 4;

n ¼ 0.00025.) (E) Variation of CVrise (log scale) as a function of w (log

scale) for s ¼ 4 (solid curves) and s ¼ 100 (dashed-dotted curves). (n ¼
0.00025; m ¼ 0.007.) (B, D, and F) (B) Variation of CVmin (red) and wmin,t

(green) as a function n for n¼ 0.00025 (solid curve) and n¼ 0.025 (dashed-

dotted curve). As n increases, CVmin decreases monotonically. (D) Variation

of CVmin (red) and wmin,t (green) as a function n for m¼ 0.007 (solid curve)

and m¼ 0.07 (dashed-dotted curve). (F) Variation of CVmin (red) and wmin,t

(green) as a function n for s ¼ 4 (solid curve) and s ¼ 100 (dashed-dotted

curve).
sizing the protein whenever w falls between 0.1 and 1
because more protein is synthesized in less time. More
generally, the simulations suggest that w is an important
tuning parameter of the system as the complexity, compart-
mentalization, and size of the cell increases from prokary-
otes to eukaryotes. Shorter mRNA lifetimes are sufficient
in prokaryotes, where both transcription and translation
are parallel processes. Longer mRNA lifetimes are neces-
sary in eukaryotes because transcription and translation
are spatially and temporally decoupled.

Studies on various prokaryotic systems show that the
lifetimes of various mRNA molecules are in the range of
1/gm ~ (1–5) min and the lifetimes of the TF proteins are
1/gp ~ (1–60) min (23,24). Thus, the observed range of
the parameter w (~0.1 to ~1) is within the optimum range
to attain the minimum level of fluctuations in the rise-n-
times as predicted by our theory. In eukaryotes (budding
yeast), the lifetime of mRNA molecules is longer than in
prokaryotes and the physiological range of w is inside
interval 0.1–1, with a median of ~0.3 (estimated over
~2000 expressed genes) (24). The parameter w is positively
correlated with the total noise of the protein expression
system (32) and the condition w < 1 helps in reducing the
protein number fluctuations by allowing averaging of the
underlying mRNA fluctuations (24).

The robustness of various autoregulatory or cross-regula-
tory circuits against fluctuations in the response times can be
fine-tuned by the parameters m, s, n, and w. Here m describes
the strength of the feedback connection, s describes the
coupling strength between promoter state and protein
dynamics, n describes the speed of the feedback connection,
and w describes the relative speed of mRNA degradation to
protein degradation dynamics. These parameters and the
corresponding equations governing expression levels and
rise-n-times may help not only understand existing biolog-
ical circuits but also design parts for synthetic biological
circuits.

The total noise in protein numbers seems to be a linear
function of w when the promoter state fluctuations are
modeled as a binary dynamic variable (with respect to the
current settings, X ¼ 0 or 1) (24). Because here the time
required by the gene expression system to produce a given
number of TF proteins is a varying quantity, fluctuations
in the response times should be directly proportional to
the protein number fluctuations. This means that a decrease
in w would steadily decrease the fluctuations in both the
response times and protein numbers. On the other hand,
this study suggests that the level of fluctuations in the
response times is higher at lower and higher values of w
than its optimum. This means that there is a trade-off
between the requirements to reduce the extent of protein
number fluctuations and fluctuations in the response times.
These observations are consistent with our theoretical
results, which indicate that the gene expression machineries
of prokaryotes and eukaryotes are well optimized to
Biophysical Journal 101(6) 1297–1306
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minimize the extent of fluctuations in their response-times
and protein numbers by setting the value of w inside 0.1–1.
CONCLUSIONS

We presented a theoretical framework to describe the
dynamics of transcription and translation for TF proteins
that bind their own promoters (autoregulatory loops). We
simulated the theoretical equations to characterize the
rise-n-times and their fluctuations and the overall robustness
of the system to different biological parameters. We have
shown that the binding-unbinding dynamics of the TF
with its own promoter and the dynamics of synthesis of
mRNA significantly influence the response-time associated
with autoregulatory gene networks. We have also demon-
strated that the level of fluctuations in the response-times
associated with the building up of a TF to the nth fraction
of its steady-state concentration in the presence of negative,
positive, or no autoregulation can be minimized by tuning
the dimensionless parameter w ¼ gp/gm, where 1/gm is the
lifetime of the mRNA and 1/gp is the lifetime of the TF
protein.
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