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Abstract 
 
As a consequence of the push to increase National Airspace System capacity, air 
traffic control displays will not only have to show the increasing number of aircraft, 
but also all the associated data such as airspeed and altitude. The representation of 
aircraft data and associated relational information, often superimposed on a map, 
leads to cluttered displays, which could negatively affect controller performance, 
especially as aircraft numbers increase. To investigate these issues further, an 
experiment was conducted that examined the effect of increasing data-block lines on 
controller performance in an aircraft vectoring task. Data-block design, the primary 
factor, varied in the number of lines displayed (2-5). In addition a data-block 
information priority factor was examined that addressed the frequency of 
information access across data-block lines. Results demonstrated that while task 
load, measured as an increasing number of planes under control, negatively 
influenced reaction times and task accuracy, the number of lines in a data block was 
not statistically significant. However there was a trend towards reduced 
performance when data-blocks exceeded more than three lines on a base layer. In 
addition, the data blocks that contained prioritized information across levels 
promoted faster reaction times, but at a cost of lower situation awareness. This 
research demonstrated that the design of data-blocks should consider the balance 
between reduction in data-block interaction time against the need to allow enough 
interaction time to build situation awareness. 
 
 
INTRODUCTION 
 
In human supervisory control tasks such as air traffic control (ATC), where humans 
supervise multiple entities depicted on a display, entity-specific information is often 
presented in the form of a data-block. Data-blocks can include alphanumerical and 
graphical information relevant to the target entity and the specific task. In the ATC 
domain, data-blocks include information pertinent to each aircraft displayed on a monitor. 
This information typically includes altitude, speed, heading, and flight and identification 
numbers, as well as possible additional information depending on the specific display 
type and ATC subtask. Two aircraft and accompanying data-blocks are shown in a 
representative ATC display in Figure 1. 
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Figure 1. Representative en-route ATC display data-blocks containing three lines of information: flight 
number, altitude, and the computer identification number (CID), respectively. 
 
It is essential that such a critical display element be carefully designed from a human 
factors perspective in order to ensure efficiency in the human-computer interaction 
process which should increase productivity and promote fewer errors, thus enhancing 
safety.  

A cognitive task analysis, which included direct observation and interviews of 
controllers using en-route ATC interfaces at the FAA Technical Center in Atlantic City, 
NJ (detailed in (Tsonis, 2006)), yielded four important aircraft data-block design 
considerations: 

1. Whether the information in data blocks should be embedded and layered such that 
portions could be accessed on demand, or presented in a single constant layer. 
2. What types of actions in terms of clicks or cursor movements the human controller 
must perform in order to interact with the information contained in the data-blocks. 
3. How to best graphically present symbols as well as past and future projections. 
4. Where the data block should appear with respect to aircraft heading. 

The experiment described in this article focused on the first design concern: the trade-offs, 
limits, and penalties of embedded, layered information in an ATC data-block. 
 
MULTIPLE VERSUS SINGLE DATA-BLOCK LAYERS  
 
The data-blocks represented in Figure 1 demonstrate the concept of a single layer data-
block. There are three lines in the data-blocks, which are always displayed to the 
controller. We refer to this kind of design as a single layer data-block, in which all lines 
of a data-block are displayed, allowing for direct access to all information at all times. 
One alternate design strategy could be to layer data-block information in an on-demand, 
embedded format such that only when an action is intentionally communicated by the 
controller (e.g., through a button selection), additional data-block information is 
displayed. An example of this would be a data-block that always provided airspeed, 
altitude, and heading on the initial “base” layer, but when a control is activated (such as a 
mouse-click), additional data-block lines could give flight numbers, aircraft type, etc. 
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This kind of data-block dynamically expands to meet additional controller information 
requirements, and collapses back to its original base layer once no longer needed. 

There are several advantages and disadvantages of single-layered data-blocks versus 
ones that are interactive, multi-layered, and expandable.  A single layer data-block, in 
which all lines of a data-block are always shown on the display, allows for direct access 
to all information, which reduces operator reliance on working memory. While air traffic 
controllers can store and access large amounts of information in long term working 
memory (Ericsson & Kintsch, 1995), direct perception-interaction of display elements 
has been shown to improve reaction time in supervisory control tasks since operators 
employ more efficient perception processes rather than the cognitively demanding 
processes involved when relying on memory (Bennett, 1992; Rasmussen & Vicente, 
1989).  

However, as the number of aircraft on a screen increases, clutter inevitably increases 
to the point where it could increase search time. While the number of aircraft can 
contribute to display clutter, data-block design has also been shown to be a significant 
source of display clutter (Abbott et al., 1980). Clutter, those display elements that mask 
the visual perception of a stimulus in the presence of surrounding stimuli, can reduce 
controller performance through increased search time and reduced text readability, 
particularly in air traffic control displays (Xing, 2004).  

Previous research has shown that the negative effects of display clutter can be reduced 
by reducing the amount of text in a display (Xing & Heeger, 2001). Highlighting the 
cost-benefit role of clutter, in one study the integration of display elements has been 
shown to reduce scan time in traffic display monitoring for student pilots, despite 
increased display clutter (Kroft & Wickens, 2002). In addition, map overlay clutter has 
been shown to impose more significant response times than additional aircraft clutter, 
suggesting that all display clutter is not equal (Wickens, Nunes, Alexander, & Steelman, 
2005). In terms of interactive, layered display elements, previous research has 
demonstrated that presenting less information on a display does not outweigh the cost of 
retrieving information (Yeh & Wickens, 2001). 

Thus, in this research effort, we hypothesize that data-blocks with lines that are only 
revealed on user action allows for collapsed data-blocks. This reduces display clutter and 
possibly improves controller performance, as measured by reaction time and errors. 
However, we recognize that this same display intervention meant to improve controller 
performance could also incur longer reaction times due to the activation of a control to 
access additional information.  

In addition to the importance of the number of lines and an interactive component in a 
data-block, we also hypothesize that data-block information content should be linked to 
the information priority. Those pieces of information used most often and are the most 
critical (such as airspeed, altitude, and heading) should always be accessible through the 
base layer. Those pieces of information that are used more infrequently should be placed 
on “lower level” data-block lines, both to convey priority as well as to reduce search time. 
We propose that the data-block design configuration that yields the best performance (in 
terms of reaction times and accuracy of task) depends not only on the number and 
visibility of layers, but also on the data-block information priority (i.e. level of interaction 
required to find a required piece of information). This paper describes an experiment that 
was conducted in order to investigate the impact of number of and access to data-block 
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lines on ATC controller performance, as well as the role of data-block information 
priority. 
 
METHOD 
 
In order to systematically analyze the previously discussed data-block design issues, an 
experiment was conducted. Using a MATLAB® ATC simulation program developed for 
this experiment, the primary task of controllers consisted of basic en-route aircraft 
separation and vectoring. The primary objectives were to determine if interactive multi-
layered data-blocks provided any benefit over the single layered data-blocks, and if so, 
how many data-block lines should be accessible upon user request. Moreover, the impact 
of varying information priorities across the data-block was also a primary research 
question. 
 
Participants  
 
The subject controller population consisted of 22 U.S. Navy air traffic controllers (17 
male, 5 female) with a mean age = 22.9 years, and standard deviation (SD) = 5.7 years. 
Seventeen of these controllers were trainees (4 female) and five were instructors (1 
female). The novices had less than a year of experience and the instructors had more than 
five years experience. Navy air traffic controllers perform functions very similar to 
civilian air traffic controllers in that they qualify in air traffic control towers and radar air 
traffic control facilities. However, they also support offshore fleet area control and 
surveillance facilities, as well as distinctly military operations such as aircraft carrier air 
traffic control. 
 
Apparatus 
 A human-in-the-loop ATC simulation interface known as the Reprogrammable 
Air Traffic Experimental Test bed (RATE) was programmed in MATLAB® to support 
this experiment. RATE was intended to emulate a Display System Replacement (DSR) 
type interface used in en-route ATC operations. An example of the RATE interface is 
shown in Figure 2.  

The large diamond in the center of the display outlines the airspace sector for which a 
subject operator is formally responsible, with four surrounding “zones” representing 
adjoining airspace. The bottom left of the display contains a data-link interface where 
questions from a “supervisor” are answered (in this simulation, the supervisor was 
automated). This data-link interface simulates communication demands and acts as a 
secondary workload device by measuring the response time and accuracy of questions. 
The alert confirmation button, located on the bottom center, is pressed when operators 
first notice an alert that appears beside an aircraft data-block, in the form of a dot (as seen 
in Figure 2). The aircraft command panel, in the lower right portion of the screen, appears 
when an aircraft is selected, and is used to issue altitude, speed or heading commands. 
Selected aircraft were displayed as green on the display and unselected aircraft were 
yellow.  
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Training and testing were conducted on three identical Fujitsu tablet PC computers 
connected to external Dell 19 inch monitors (resolution 1024x768, 16 bit color), and user 
inputs were achieved through an external keyboard and mouse.  

 
 
Procedure 
 
For the primary task, controllers were required to observe incoming traffic, determine 
which of three possible egress zones each flight should be directed to, and then command 
the altitude and velocity required for each particular egress. Each egress zone had a 
specific altitude and airspeed that exiting aircraft must maintain prior to crossing the area 
threshold.  The egress zone assignment for each flight was displayed on the first line of 
every data-block, (data block design will be discussed in more detail in the next section).  

Controllers were also required to avoid conflicts, and had the option of bringing up 
three nautical mile diameter circles around each aircraft. Although controllers were 

Alert circle 

Figure 2.  The RATE interface with collapsed data-blocks. Lower lines are accessed via the chevrons. 

Data-link interface for question response Alert confirmation Aircraft command panel DRAFT
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formally in charge of the diamond sector, controllers could issue commands as soon as an 
aircraft appeared anywhere on screen. Thus, every aircraft appearing on screen had been 
effectively “handed over” to them, and controllers were informed of this in training. To 
command the aircraft, controllers first clicked on the aircraft symbol or heading vector, 
then issued commands in the control panel, and aircraft automatically maneuvered at 
rates typical of commercial aircraft. All aircraft were fully compliant with commands, 
although maneuver rates included small random variations.  

As discussed previously, in every session a secondary workload task was included that 
consisted of answering a series of sixteen real-time evenly-spaced questions, a method 
similar to the SPAM technique for measuring situation awareness (Durso & Dattel, 2004; 
Durso et al., 1998). The order was predetermined and consistent between subjects, but 
randomized for each subject’s test session. The questions required the controller to 
respond with a single piece of information about a flight (for example, a flight’s altitude 
or final destination). These simple questions were prompted by an aural tone and green 
“New Request” text which appeared in the data-link window. Controllers scanned the 
spatial display to locate the relevant information, which required a search within either a 
single or multi-layered data-block to retrieve the requested information. They then typed 
their response in the data-link window. The response was confirmed by clicking the 
“Report” button.  

An additional secondary task consisted of confirming a displayed alert, which was the 
yellow dot previously described. A total of four alerts appeared throughout each scenario. 
Alerts remained active until they were acknowledged, the aircraft left the screen, or the 
next alert appeared which randomly ranged from 20-280 seconds. Controllers were 
required to maintain an appropriate level of vigilance in order to quickly observe the 
appearance of an alert symbol. As the goal was to test spare visual attention, and there 
was no associated aural tone. Furthermore, the symbol was not particularly prominent, 
with the same color as the data-block text in order to increase the sensitivity of the 
associated detection metric.  

The subject controllers completed a detailed tutorial presentation that discussed the 
nature of the experiment, and explained the task and the software. Controllers were then 
quizzed to ensure that they had memorized the meaning of each data-block information 
entry. If they made errors, they were corrected and re-tested prior to continuing with the 
experiment. All subject controllers then completed a single five-minute practice scenario 
before beginning the four nine-minute test sessions. After completing all sessions, they 
answered a brief demographic survey.  
 
Experimental Design 
 
Three independent variables were examined: number of data-block lines, information 
priority across each data-block, and task load level, which will be discussed in detail 
below.  

Four different data-block design were tested (Figure 3), and while each contained 
identical information, the four types (or factor levels) varied by how much information 
was presented on the single base layer (as opposed to toggled from embedded layers 
using the chevrons). The first data-block had two lines (2 Line DB) and could be 
expanded to present the third, then the fourth and finally the fifth line, with a sequence of 
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mouse clicks (one click per chevron on each line revealed the single line below). 
Similarly, the next data-block (3 Line DB) had three base layer lines (the two base layer 
lines from the 2 Line DB, plus the addition of the 3rd line containing destination and 
aircraft type, as seen in Figure 3). It could be expanded to the fourth and the fifth lines 
with two distinct mouse clicks. The 4 Line DB had four base layer lines (the three from 
the 3 Line DB, an additional line with Computer ID and Origin, and the fifth line could 
be revealed with a click. Finally, the 5 Line DB presented all five lines of information at 
all times, and thus represents the single layered data-block form. Only one data-block 
could be expanded at any given time. Thus for scenarios with expandable data-block 
levels, as one data-block was expanded, any other already expanded data-blocks would 
contract to their base number of lines.  

 
The information priority factor consisted of two levels, equal and prioritized, which 

examined the impact of information priority across the data-block lines via the secondary 
task. For the equal factor level, controllers were asked an equal number of questions 
(four) about the second through fifth lines in the data-blocks, for a total of sixteen 
questions. For the prioritized factor level, controllers were asked a higher number of 
questions about the second line (ten) and fewer questions about the other three data-block 
lines (six total). The intent for the prioritized level was to organize information such that 

Figure 3.  Four data-block types. Each data-block varied in the number of lines on the base layer. 
Controllers activated the next lower line by clicking on the chevron. 

Destination, A/C Type 

2 Line DB

3 Line DB

4 Line DB

5 Line DBDRAFT
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more frequently needed information would always be on the top layer, and less important 
information on the lower levels. 

Increasing task load, known to potentially negatively impact controller performance, 
was defined in this experiment by aircraft count, which has been cited throughout the 
literature as a leading source of controller workload (Hilburn, Bakker, Pekela, & 
Parasuraman, 1997; Kopardekar, 2003; Majumdar & Ochieng, 2002; Metzger & 
Parasuraman, 2001). In this experiment, the task load factor had two levels, low and high, 
and was determined by the number of aircraft a controller was responsible for at a given 
time. Under low task load conditions, approximately 5-6 aircraft were controlled, as 
opposed to 11-12 in the high task load condition. These levels were determined both 
because of previous research with similar levels (Hilburn, Jorna, Byrne, & Parasuraman, 
1997), and with pilot testing to ensure an adequate, but not overly excessive increase in 
workload. 

The experiment therefore consisted of a 4x2x2 mixed factorial design (data-block 
lines x information priority x task load). The data-block independent variable was 
administered between subjects, and the task load and data-block information priority 
independent variables were administered within subjects. Scenarios were 
counterbalanced to control for learning effects. Multiple dependent variables were 
gathered to determine the performance of controllers due to the influence of the 
independent variables on the various tasks, as outlined in the following discussion. 

Performance of the primary en-route vectoring task was measured by egress fraction 
(EF), a weighted metric that was developed for the RATE interface to capture the 
participants’ adherence to the pre-specified rules that each aircraft exit a specific egress 
zones at a certain altitude and velocity. Thus, EF consists of the sum of the number of 
correct egress locations (e), correct egress altitudes (a) and correct egress velocities (v), 
divided by three times the maximum number of possible correct egresses (T) within a 
scenario (to account for the sum of three variables), as shown in Equation 1. All three 
variables appeared on the first two lines of each data-block. A perfect score indicating 
compliance with all states exit rules equaled 1.  

T
vaeEF

3
++

=      (1) 

 For the secondary task questions, correctness and response time were measured, 
since secondary task reaction times can be used as an indirect measure of spare mental 
capacity and thus give insight into mental workload (Wickens, 1995). In addition, the 
number of alert confirmations was recorded for each session, as was the number of six-
second intervals in which two or more aircraft potentially conflicted, called the near miss 
measure. In both cases the number and lines of data-blocks, and hence display clutter, 
could degrade performance. In the case of alert confirmations, the yellow dot is more 
difficult to discriminate from the surrounding screen elements, and thus is an indication 
of how much display clutter contributed to workload. For the near-miss measure, 
trajectory extrapolation also is more difficult as more and larger data-blocks fill the 
display.  
 To summarize the relationships and hypotheses between the independent and 
dependent variables, display clutter is a primary concern with increasing numbers of 
data-block lines, compounded by an increasing number of aircraft. Increasing data-block 
base layer lines that are continuously exposed will increase display clutter, and thus 
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controller performance is likely to degrade on clutter-sensitive tasks. We hypothesize that 
in terms of this experiment, the near miss, alert confirmation, and secondary task 
dependent variables are most likely influenced by the degree of display clutter (as a 
function of data-block lines and number of aircraft.) 
 While the number of data-block base layer lines and the number of aircraft are 
hypothesized to degrade controller performance as a function of increased display clutter 
due to quantity and lines of data-blocks, another important consideration is the 
organization and prioritization information across a data-block. Thus we hypothesize that 
the information prioritization factor will significantly affect the situation awareness of 
controllers as measured by the secondary task question response accuracy and near miss 
metrics. 
 The egress fraction dependent variable is a meta-performance metric that accounts 
for controller performance in terms of adherence to the pre-specified RATE rules (that an 
aircraft must exit the correct egress location at the correct altitude and correct velocity). 
Thus while it does not explicitly capture any effects due to display clutter or information 
prioritization, this aggregate measure demonstrates how well controllers were able to 
perform in light of the levels of independent variables over the entire experiment, and 
thus can be seen as an efficiency metric. 
 
 
RESULTS 
 
Comprehensive statistical analyses were conducted to determine the effect of the 
independent variables on each of the dependent variables, which is detailed below. For all 
tests, α = .05, and there were no outliers in the data set.  Means are reported for 
parametric data and medians are reported for non-parametric data. 
 
Egress Fraction 
 

 

2 3 4 5 
Datablock lines

0.57 

0.60 

0.63 

0.66 

0.69 

0.72 

0.75 

0.78 

0.81 

Mean 
egress 
fraction 

 
Figure 4.  Mean operator egress fraction (with one standard error) by data-block type. 

 
The egress fraction dependent measure was an objective aggregate assessment of the 
performance on the primary en-route ATC vectoring task, i.e., how well the controllers 
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adhered to the pre-specified rules. A 4x2x2 (data-block lines x information priority x task 
load) mixed ANOVA was used to analyze the data, and all assumptions were met. The 
primary data-block line factor was found not to be a statistically significant factor 
(F(3,18) = 1.78, p = .187, η2 (effect size) = .23). Although the data-block line factor was 
not statistically significant, a plot of egress fraction versus data-block line (Figure 4) 
shows a trend towards decreased performance for data-blocks with 4 or more base layer 
lines. While the omnibus test was not significant, the clustering of data deserved further 
investigation. The decrease was shown to be statistically significant using a contrast 
between the 2 and 3 line data-blocks as compared to the 4 and 5 line data-blocks (p 
= .012). 

While the information priority factor was not significant (F(1,18) = 2.141, p = .161, 
η2 = .11), the interaction between information priority and task load was statistically 
significant (F(1,18) = 13.24, p = .002, η2 = .42). The equal priority factor level essentially 
added to overall workload by imposing a greater level of cognitive effort than the 
prioritized level under high task load conditions, which reduced overall performance by 
12.5% from the low task load condition (as measured by the egress fraction). This can be 
seen by point a in Figure 5 (equal information priority, high task load) and is confirmed 
by a t-test comparison (t(22) = -5.73, p < .001) with point b (prioritized information at 
high task load.)   
 

2 - High 1- Low 
Task load 

0.750 

0.725 

0.700 

0.675 

0.650 

0.625 

0.600 

0.575 

Mean 
egress 
fraction 

Equal priority  
of information 

Prioritized 
information 

a 

b 

 
Figure 5. Interaction between task load and data-block information priority factor. 

 
As expected, task load was significant (F(1,18) = 7.96, p = .011, η2 = .31), such that 

as the number of aircraft increased, the vectoring task became more difficult and 
performance dropped significantly (mean low = .73, high = .64). This corroborates 
previous studies that have reported aircraft count as a primary source of controller 
workload and cognitive complexity (Hilburn, Bakker, Pekela, & Parasuraman, 1997; 
Kopardekar, 2003; Majumdar & Ochieng, 2002).  
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Secondary Task Reaction Time 
 
In this experiment, spare mental capacity was measured through questions introduced 
through the data-link interface, which required controllers to seek out a particular piece of 
information. As with the egress fraction dependent variable, a mixed 4x2x2 ANOVA was 
carried out in order to uncover the significant main effects and interactions. The three 
independent variables were once again the between-subjects factor of data-block lines 
and the two within-subjects factors of information priority and task load. As before, the 
assumptions required for ANOVA were met.  

 

2 3 4 5 
Datablock lines 

12 

13 

14 

15 

Mean 
question 
response 
time (s) 

  
Figure 6. Mean question response time (with one standard deviation) by data-block. 

 
The data-block line factor was not statistically significant in affecting the mean 

question response times (F(3,18) = .988, p = .421, η2 = .14). The data-block means for 
question response time are plotted in Figure 6. While the omnibus test was not significant, 
Figure 6 demonstrates an overall trend towards increased reaction time based on 
increasing the number of base layer lines in the data-block, particularly between the data-
blocks with 2 embedded lines (3 Line DB) and 1 embedded line (4 Line DB), which was 
a similar trend seen in the egress fraction performance score. When the reaction times 
were grouped for the data-blocks with 2 and 3 lines and compared with the 4 and 5 line 
data-blocks (also combined), the difference is marginally significant (p = .061).  While 
not as significant as the trend seen for egress fraction, there is a marginally significant 
difference between data-block with three or less base layer lines as compared to those 
with four or more. 

The information priority factor was significant (F(1,18) = 5.40, p = .032 η2 = .23),  
with equal priority resulting in overall longer response times than the prioritized 
condition (equal mean = 14.2s, prioritized mean = 12.5s). Thus, those data-blocks with 
less frequently needed information placed on the lower priority levels contributed to 
faster response times as compared to those data-blocks with an equal priority across all 
data-block lines. Figure 7 shows how information priority affected response times for 
each of the four data-block lines. Interestingly, the data-blocks with the smallest base 
layer of 2 lines and the largest base layer of 5 lines gained the most benefit from 
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prioritized information in terms of secondary task response time. In the case of the 2 line 
data-block, this result is likely due to the fact that for the prioritized information 
condition, the correct answer could be found without uncovering the embedded layers 
63% of the time. Thus controllers generally did not have to click through the embedded 
layers. In the 5 line data-block, all information was present all the time, but since the 
required information could more often be found in the first 2 lines, this priority scheme 
helped them to more quickly find the required information. 
 As with the egress fraction performance dependent variable, task load was statistically 
significant in determining question response time (F(1,18) = 6.30, p = .022, η2 = .26). 
Those people with more aircraft expectedly took longer to answer the questions, and thus 
had less spare mental capacity (mean for 6 aircraft = 12.8s, mean for 12 aircraft = 14.4s). 
The primary source of this response time increase is most likely the increased search time 
penalty across the aircraft, as well as longer delays in attending to the secondary tasks. 
There were no significant interactions for any of the independent variables. 

 

2 Lines 3 Lines 4 Lines 5 Lines 

Data-block  

10 

11 

12 

13 

14 

15 

16 

17 

Mean 
question 
response 
time (s) 

 
Figure 7. Mean question response time for equal (solid) and prioritized (dashed) information (with 
one standard error) by data-block type. 

 
Question Response Accuracy 
 
Question response accuracy, which measured through an on-line probe method, was 
measured as the number of correct responses within each scenario. As this was not 
interval data, a non-parametric Kruskal-Wallis test was conducted. It was expected that 
the data-block line factor would not affect the accuracy of the question responses because 
as long as operators could get to the information, it was hypothesized that they would be 
able to respond correctly, even though they may take longer doing so. There was 
generally no speed-accuracy trade-off as those people who answered the most questions 
correctly generally had the lowest response times.  

The chi-square statistic of the data-block ranks was not significant (χ2(3, 22) = .41, p 
= .94). Thus as expected, the question response accuracy did not depend on the type of 
data-block. To investigate whether the information priority factor was significant in 
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determining accuracy, a Wilcoxon Signed-Rank test was performed, which also showed 
non-significance (Z = -.51, p = .61). However, the task load factor, also examined with a 
Wilcoxon Signed-Rank test, showed significance (Z = -4.41, p = .000). In low task load 
scenarios, controllers had on average 13.8 correct responses per scenario, as compared 
with 11.4 correct responses per scenario under high task load (out of a maximum of 16 
possible correct responses). 

Thus the question accuracy results demonstrated that accuracy was only dependent on 
task load, and not on the number of data-block lines from which the information is 
extracted, or on the information priority. As long as the information in a data-block could 
be found, there appears to be no significant difference in the accuracy of responses. 
 
Alert Confirmation 
 
As discussed previously, controllers were instructed to acknowledge alerts by pressing a 
button on the interface (Figure 2). The actual metric used was whether or not the alert 
was confirmed. As expected, the higher task load (more planes to manage) reduced the 
ability of controllers to detect alerts on the display (Wilcoxon Z = -2.95, p = .009). 
However, a Kruskal-Wallis test (χ2(3, 88) = 3.34, p = .34) showed that the number of 
data-block lines did not significantly affect the ability of controllers to detect a change on 
the display.  

The effect of data-block information priority on alert confirmation accuracy was 
analyzed using a Wilcoxon Signed-Rank test and was found to be significant (Z = -2.22, 
p = .027). Controllers using data-blocks with evenly distributed information across the 
data-block lines missed more alert confirmations than those controllers with prioritized 
information (mean equal percentage missed = 16%, mean prioritization percentage 
missed = 10%). This difference is likely due to the fact that, on average, with the evenly 
distributed information, controllers had to search longer in order to access a required 
piece of information, regardless of whether any information was embedded. This extra 
attention and resultant time meant that they were less likely to detect a visual alert on the 
display.  

Thus the number of aircraft was the only significant contributor to missed alert 
confirmations in terms of added display clutter. In addition, while not an explicit display 
clutter issue but also an important design consideration, the organization of the 
information and the frequency of access also added to diminished controller performance. 

 
Near Misses 
 
The final dependent metric was a count of the number of near misses, which was 
measured when any two aircraft were separated by less than three nautical miles in 6 
second intervals. This was chosen as a metric as it is representative of the severity of a 
traffic violation. In general, the more time aircraft are in conflict, the greater the chance 
of a collision, which is why this metric has a temporal component. In addition, this metric 
was important to consider since all the previous metrics focused on controller 
performance per aircraft or per task, but did not take into account the interactions 
between aircraft which is arguably the most important metric since an air traffic 

DRAFT



 14

controller is responsible for the safety of all aircraft interacting in space and time. Thus 
the near miss metric provides an overall human-system performance measurement.  

A Kruskal-Wallis test showed that the data-block line factor was not significant in 
affecting the near miss count (χ2(3, 92) = .11, p = .99). Regardless of how many lines 
were present on the base layer, controllers performed no differently. However, as 
expected, the effect of task load on near misses was significant (Z = -5.77, p = .000). 
Higher task load resulted in more near misses (low task load median = 6, high task load 
median = 15). While this number of near misses seems high, the RATE interface is an 
abstraction of the ATC task, and thus near misses in RATE are not indicative of actual 
operational errors. Moreover, due to Navy operational constraints, training, testing, and 
debriefing time was limited, thus no controller was an expert in the RATE interface, but 
all received equal training time. 

Analysis of the information priority factor yielded intriguing results in that the 
Wilcoxon Signed-Rank test was also significant (Z = -5.43, p = .000). Prioritized 
information resulted in a significantly larger number of near miss counts as compared to 
the equal information priority condition (prioritized median = 11.5, equal median = 6.5). 
These results are unexpected in that for all other performance measures, prioritized 
information appeared to reduce controller workload (in comparison to equal information 
priority), such that controllers were able to attend to both primary and secondary tasks 
more quickly and accurately. However, in the case of the near miss metric, which took 
into account not only the current state of each aircraft, but its relationship to all other 
nearby aircraft, those controllers with equal information priority clearly had fewer near 
misses.  

We hypothesize that the source of the seeming anomaly is the concept of situation 
awareness. Situation awareness (SA) is generally defined as the perception of the 
elements in the environment within a volume of time and space, the comprehension of 
their meaning, and the projection of their status in the near future. SA has three distinct 
levels, which are: 1) the perception of the elements in the environment, 2) the 
comprehension of the current situation, and 3) the projection of future status (Endsley, 
1995). We propose that while equal information priority across the data-block lines 
required longer search times (as evidenced by the significance of the results for the 
secondary workload reaction times), this longer interaction forced controllers to better 
understand both the current and likely future states of each aircraft.  

In the equal information priority condition, controllers spent approximately 75% of 
their time interacting with the bottom 3 lines of the data-block as compared to only 38% 
for those controllers with the prioritized information. This lower level interaction caused 
controllers to have more comprehensive and accurate mental models of the overall air 
traffic picture, which allowed them to better understand the relationships between aircraft. 
While the prioritized information allowed controllers to more quickly execute their tasks, 
the lack of in-depth interaction prevented them from building more detailed mental 
models. This lack of a more complete mental model was not manifested in the other 
performance metrics since they only examined individual performance of egressing 
aircraft or secondary communications tasks. It was only when the near miss metric was 
examined that this disadvantage of prioritized information across each data-block was 
revealed. 
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In order to further investigate this hypothesis, a Friedman test was conducted which 
compared the interactions between low and high task load, and equal and prioritized 
information, resulting in four distinct conditions: equal priority/low task load, equal 
priority/high task load, prioritized/low task load, and prioritized/high task load. The 
overall Friedman test was significant (χ2(3, 22)= 56.45, p < .001), and the medians of the 
four conditions are depicted in Figure 8. Conditions 1 and 3 represent low task load 
conditions (with equal and prioritized information, respectively), and not surprisingly, 
controllers in these conditions experienced fewer near misses than those in the high task 
load conditions. However, those controllers experiencing high task load with the 
prioritized information across the data-block (Figure 8) experienced, on average, 66% 
more near misses per test scenario than all other conditions. This lends credence to our 
hypothesis that controllers in this condition had lower situation awareness than in all 
other conditions, as we know they were spending less time interacting with the data-block 
(from the secondary task results), but were also under the maximum task load level which 
also allowed them less time to actually perceive, comprehend, and project aircraft states 
correctly. 

 

 
Figure 8. Medians of the near miss measure for information priority and task load 

 
 
DISCUSSION 
 
We originally hypothesized that it was possible that interactive data-block designs with 
embedded lines of lesser important information could improve operator performance due 
to reduction of display clutter. However, we also recognized that the actual act of clicking 
through an embedded data-block in order to reveal hidden layers would have some 
display overhead associated with it. According to Fitts’ law, for the RATE interface, on 
average, it takes approximately 1.2 seconds to move the mouse cursor from the aircraft 
interface panel to the data-block and initiate the first data-block expansion (Card, English, 
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& Burr, 1978; Fitts, 1954). Additional clicks take around 200 ms each, if the user knows 
how many expansions are necessary before looking at any results. However, if the user 
must search each layer that was revealed to find the desired piece of information, the 
access time could increase significantly, making an interaction data-block counter-
productive to efficient performance.   

Counter to the concern that interactive data-blocks could cause increased reaction 
times and possible resultant degraded performance, the results in this experiment showed 
unequivocally across a number of dependent variables (performance, secondary task 
reaction time and accuracy, alert confirmations, and near miss counts), controllers’ 
performance was relatively robust to the data-block design. In this ATC en-route 
simulation, regardless of whether a controller interacted with data-blocks with 2-4 base 
layer lines, or a 5 line data-block, performance was statistically no different.  

The only caveat to this finding is that for both the egress fraction score and secondary 
task reaction time, there appeared to be a performance decrease trend between the data-
blocks with 2/3 base layer lines and those with 4/5. Repeating this experiment with a 
larger population may shed more light on this possible implication, but based on these 
results, controllers generally appear to be able to effectively adjust to whatever data-
block design they are given. 

While controllers’ performance was robust in the face of multiple data-block designs 
for egress fraction and response times, performance across all five dependent variables 
was not with increasing task load, as represented by an increasing number of aircraft to 
control. For the five different dependent variables, controllers performed statistically 
significantly worse when presented the higher (11-12) number of aircraft as opposed to 
the lower (5-6). These results provide additional evidence for the theory that aircraft 
number is a significant contributor to air traffic complexity and controller workload 
(Kopardekar, 2003; Majumdar & Ochieng, 2002). 

The information priority independent variable (with equal and prioritized levels) 
demonstrated mixed results across the five dependent variables. For the egress fraction 
performance score, controllers with equal information priority across the data-blocks in 
the high task load scenario performed significantly worse than those controllers with 
prioritized information. In addition, for the secondary task response time and alert 
confirmation dependent variables, controllers with information distributed equally across 
data-block lines did not perform as well as those with the prioritized information. 
However, there was no difference between the two information priority levels for 
question accuracy.  

For the near miss metric, which is arguably the most critical metric because of its 
safety implications, the results showed that the prioritized information led to significantly 
more near-misses than the equal priority condition across the data-blocks. Given the 
relatively consistent poorer performance of those controllers with equal information 
priority across the other dependent variables, this result was unexpected. This result was 
thought to occur because the longer interaction times caused by equal information 
priority (confirmed by the secondary task reaction time metric) contributed to higher 
situation awareness and fewer near-misses than for those controllers who did not spend as 
much time interacting with the data-block under the prioritized information condition. 
This effect was not seen in the meta-performance metric, egress fraction, most likely 
because even though egress fraction was considered an aggregate performance measure, 
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it did not explicitly account for relational situation awareness (i.e., the relationships 
between aircraft), and only captured how well controllers handled individual aircraft. 

This mix of results for the information priority factor highlights the cost-benefit 
analysis nature of interface design. If data-blocks are designed such that the information 
that is needed most is placed on the upper levels, controllers do not have to spend as 
much time interacting with each individual data-block. However, this reduction in 
interaction time is a double-edged sword in that some period of time is needed to build 
situation awareness, and if controllers do not spend enough time perceiving and 
comprehending current information, they have difficulty making future projections that 
are critical for such tasks as detecting possible future collisions. Thus a critical lesson 
learned in this research study is that faster is not always better when interacting with a 
data-block, and that some period of interaction time is needed to build situation 
awareness.  
 Lastly, these results should be interpreted in light of efficiency and safety, critical 
issues for ATC operations. The egress fraction dependent variable is representative of 
system efficiency (i.e., the percentage of aircraft that were correctly processed through 
the system), and the near miss metric is indicative of system safety. While the number of 
data-block lines and interactivity appeared not to induce any performance detriment, the 
number of aircraft and hence number of data-blocks did appear to negatively affect 
controllers for both efficiency and safety measures. However, these results also 
demonstrate that there is a cost-benefit tradeoff between efficiency and safety, which is a 
common problem across numerous supervisory control systems. The equal versus 
prioritized data-block design for information location and access did not significantly 
impact system efficiency (as measured by egress fraction), but there was a tradeoff for 
system safety in the two different designs. These results are not an endorsement for a 
specific data-block design strategy, but highlight that a design decision can affect 
efficiency and safety with sometimes conflicting results. 
 
 
CONCLUSION 
 
In a cognitive task analysis conducted at the FAA Technical Center in Atlantic City, NJ, 
one important aircraft data-block design issue raised was whether the information in data-
blocks should be embedded and layered such that it is accessed on demand, as opposed to 
a single layer. One possible benefit of such an interactive, multiple-layer design would be 
reduced display clutter. However, one possible drawback to such a design would be 
increased interaction times such that any positive benefit could be negated in terms of 
controller performance. 

To address this design conundrum, an experiment was conducted to compare four 
data-block designs, in addition to varying task load and data-block information priority 
factors. The results demonstrated that data-blocks with interactive, expanding layers did 
not have an overall effect on any of the dependent measures. Despite the lack of 
statistical significance, there was a trend towards reduced performance between data-
blocks with 2 and 3 embedded lines, and data-blocks with 1 and no embedded lines, with 
the latter conditions producing the lowest performance.  
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Results for the objective task load factor, represented through increasing the number 
of aircraft under control, demonstrated that increasing task load reduced performance on 
the primary ATC en-route vectoring task, reduced secondary task question response 
accuracy, increased response times, impaired the ability to confirm alerts, and resulted in 
a higher number of near misses.  These results provide additional evidence that aircraft 
numbers are a primary source of operator workload. 

Lastly, data-block information priority was significant across multiple dependent 
variables, and while equally prioritized information across the data-block increased 
workload, it also led to fewer near misses. Thus, as with all complex system design cost-
benefit analyses, the design of new data-blocks should consider the balance between a 
reduction in individual data-block interaction time to allow for more time to interact with 
more data-blocks, against the need to allow enough interaction time to build situation 
awareness for supervisory control of multiple aircraft. This cost-benefit approach to 
providing controllers with just the right amount of information will be critical during the 
transition from the current system to the Next Generation Air Traffic Control System 
(NextGen).  
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