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Quadruped Bounding Control with Variable Duty Cycle
via Vertical Impulse Scaling

Hae-Won Park1, Meng Yee (Michael) Chuah1, and Sangbae Kim1

Abstract— This paper introduces a bounding gait control
algorithm that allows a successful implementation of duty cycle
modulation in the MIT Cheetah 2. Instead of controlling leg
stiffness to emulate a ‘springy leg’ inspired from the Spring-
Loaded-Inverted-Pendulum (SLIP) model, the algorithm pre-
scribes vertical impulse by generating scaled ground reaction
forces at each step to achieve the desired stance and total
stride duration. Therefore, we can control the duty cycle:
the percentage of the stance phase over the entire cycle. By
prescribing the required vertical impulse of the ground reaction
force at each step, the algorithm can adapt to variable duty
cycles attributed to variations in running speed. Following
linear momentum conservation law, in order to achieve a limit-
cycle gait, the sum of all vertical ground reaction forces must
match vertical momentum created by gravity during a cycle.
In addition, we added a virtual compliance control in the
vertical direction to enhance stability. The stiffness of the virtual
compliance is selected based on the eigenvalue analysis of the
linearized Poincaré map and the chosen stiffness is 700 N/m,
which corresponds to around 12% of the stiffness used in the
previous trotting experiments of the MIT Cheetah, where the
ground reaction forces are purely caused by the impedance
controller with equilibrium point trajectories. This indicates
that the virtual compliance control does not significantly con-
tributes to generating ground reaction forces, but to stability.
The experimental results show that the algorithm successfully
prescribes the duty cycle for stable bounding gaits. This new
approach can shed a light on variable speed running control
algorithm.

I. INTRODUCTION

Recent advances in quadrupedal robots show a remarkable
performance. Several robots developed by Boston Dynam-
ics began to unveil the potential advantage of four-legged
morphology by demonstrating robust gait control [1], and
fast locomotion [2]. While these robots take advantage of
a high energy density source - gasoline, the MIT Cheetah
2 employs a unique electric actuation system and achieved
a fast (13.5 mph) and high energy efficiency (Total cost
of transport: 0.51) running rivaling animals in a similar
scale [3]. StarlETH [4] and HyQ [5] also demonstrate
an impressive robustness on rough terrain walking. These
advancements show that robotic quadrupdalism has a great
potential to be a future transportation mode.

In developing legged robots, biomechanical studies on
animals have significantly influenced the engineering en-
deavor to design controllers for quadrupedal locomotion.
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Biologists suggested a simple model, the Spring-Loaded-
Inverted-Pendulum (SLIP) that well represents the center
of mass behaviors of steady state symmetric running gaits
[6], [7]. The introduction of the SLIP model spawned a
number of studies on legged running. Study in [8] focused
on comparing various kinds of gaits using the SLIP model.
Nanua [9] developed a simple control strategy for the gallop-
ing gait based on Raibert’s controller [10] and analyzed the
stability of the gait in a simulation model. Also, studies on
quadrupedal gait controllers use passive compliance model
at each leg similar to the SLIP model [11], [12], [13].

The introduction of SLIP model has significantly in-
fluenced the hardware design of quadrupedal robots.
Poulakakis [14] suggested the utilization of the natural sta-
bility of the system with passive compliances in the legs, the
physical embodiment of which became mechanical springs
at the prismatic legs in Scout II. Cheetah-cub also employs
physical springs to achieve stable, dynamic running [15].
Haynes [16] utilizes passive compliance of curved composite
leg design with a passive spine. StarlETH [4] employs a
series elastic actuator at each leg to achieve a dynamic
walking gait. Although many robots demonstrate successful
locomotion, still most of them stay in a slow speed range
(< Fr = 1.3) and it is not clear how to optimize the leg
impedance for maximum stability in a wide range of speed.

In contrast to the effort to emulate the ‘springy leg’, a
few recent studies investigated the direct control of ground
reaction forces. Koepl modeled a spring-mass system with
a force-controlled actuator and the algorithm commands
forces according to an ideal model of the passive dynamics
[17]. The study shows the potential advantages of a ground
force tracking approach over a passive spring leg approach
in ground disturbance rejection. Valenzuela introduces an
algorithm that uses optimum forces and torques acting on
the hip, focusing on the body dynamics with an assumption
that the leg mass and inertia are significantly smaller than
those of the body [18]. However, successful implementation
of ground reaction force control for running robots has been a
difficult challenge due to the high bandwidth requirement and
contact instability caused by non-collocated force sensing
feedback [19].

Utilizing a unique high bandwidth actuation of the MIT
Cheetah 2, we aim to control the stance time and aerial
time by scaling ground reaction forces to achieve variable
speed running. The duty cycle naturally drops as running
speed increases because the stance time is limited by the
stroke length divided by the forward running speed. The
experimental data of dog running show that the stance



Fig. 1. Simplified Sagittal Plane Model of the MIT Cheetah 2 Robot.
The legs are modeled as massless, and the effect of the legs on the body’s
dynamics are included as forces at the shoulder of the robot similar to [18].

time decreases as the running speed increases, whereas the
swing time remains constant over a wide range of speeds
[20]. Therefore, the duty cycle decreases as the running
speed increases. In order to achieve a periodic running gait,
according to linear momentum conservation law, the sum of
all ground reaction forces must match vertical momentum
loss due to gravity during a cycle. This means quadrupeds
should be able to scale the ground reaction force according
to decrease in stance time attributed to the running speed.

In this paper, we introduce a new algorithm that allows
accurate prescription of the stance duration in a bounding gait
of the MIT Cheetah 2. Instead of controlling leg stiffness and
the equilibrium point trajectories, the leg control algorithm
tracks a prescribed ground reaction force profile determined
by the desired stance duration and swing phase duration. This
technique allows modulation of the duty cycle of bounding,
taking advantage of the high bandwidth and low inertia leg
of the MIT Cheetah 2.

The remainder of the paper is organized as follows:
Section II explains the underlying principles of the vertical
impulse control algorithm that allows duty cycle modulation.
Section III details how the controller is implemented. Sec-
tion IV summarize the experimental results of bounding gait
of the MIT Cheetah 2. Section V concludes the paper and
discusses future research direction.

II. DUTY CYCLE MODULATION VIA SCALING OF
VERTICAL IMPULSE

This section presents the concepts of duty cycle modula-
tion via scaling vertical impulse in the context of a simple
two-legged model that represents a quadruped in the sagittal
plane. Given that the relative distance the robot contacts with
the ground during the stance is limited by the workspace
of the leg, the stance duration should be decreased as the
running speed increases. In this paper, among the various
running gaits of quadrupeds, only the bounding gait is
studied for the sake of brevity. The duty cycle of bounding is
modulated via changing the duration of stance while keeping
the duration of swing constant.
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Fig. 2. Force profile when Tstance = 133 msec and Tswing = 220 msec.

A. Simplified Sagittal Plane Model

A quadruped runner can be modeled as a two-legged
sagittal plane model, as shown in Figure 1, because we
restrict our attention to the bounding gait where front and
hind pairs of the leg act as in parallel [21]. The generalized
coordinates of the robot are taken as q := (x, z, θ). This
model assumes massless legs and the effect of the leg on
the body’s dynamics is represented by the vertical direction
forces FF and FH at the front and hind shoulder of the body.
The equations of motion of the body are shown below.

ẍ = 0

z̈ = −g +
FF

m
+
FH

m
(1)

θ̈ = FF
l

2I
cos θ − FH

l

2I
cos θ

The body’s mass m and inertia I are 31 kg and 2.9 kgm2

respectively, length l of the body is 0.7 m, and the center
of mass is located in the middle of the body. All the inertial
and kinematic parameters are drawn from the MIT Cheetah
2 robot.

The model is symmetric in the fore-aft direction, and
dynamics in the direction of x and z are decoupled from
each other. Therefore, we can assume the control of the
vertical and horizontal direction as separate problems. This
can be clearly seen from the equation of motions above.
In particular, horizontal speed control becomes trivial in
this model because the horizontal momentum mẋ will be
conserved as specified by an initial condition unless there
are external forces in the direction of x. Hence, we only
focus on the control of vertical motion during bounding in
this paper.

B. Selection of Force Profile

The force profile Fi, i ∈ F,H, which represents the effect
of the leg on the body’s dynamics, is chosen such as to
provide periodic limit cycle bounding with the desired duty
cycle. Here, the subscripts F and H represent the front and
hind legs, respectively. Time-dependent force profile for Fi

shown in Figure 2 is parametrized as,

Fi = h(α, t, Tstance, Tswing), for i = F,H, (2)



where α is the scalar value representing the magnitude of the
force profile, as depicted in Figure 2, t is the time counted
from the beginning of the step, Tstance is the duration of the
stance where the legs affects the dynamics of the body by the
forces at the shoulder, and Tswing is the duration of the swing
where the leg is not touching the ground. The force profile
of the front leg is made up of 3rd-order Bézier polynomials,
where the Bézier coefficients are given by,

β =

 α [0.0 0.8 1.0 1.0] 0 < t < 1
2Tstance

α [1.0 1.0 0.8 0.0] 1
2Tstance < t < Tstance

[0.0 0.0 0.0 0.0] otherwise
(3)

These coefficients are chosen to ensure smooth continuity
between the first two Bézier polynomials, and for easy
scaling of the force profile. The Bézier coefficients for force
profile of the hind leg are identical.

The two airborne durations in the middle of the stride and
at the end of the stride where both legs are not touching the
ground are assumed to be equal for the sake of simplicity,
and hence calculated as,

Tair =
Tswing − Tstance

2
(4)

Additional simplification can be done by assuming the
same scalar value α for the front and hind legs. Furthermore,
without loss of generality, we can suppose that the step
always starts with the force profile for the front leg, followed
by the first airborne duration, and second force profile for
the hind leg, and ends with second airborne duration, as
illustrated in Figure 2. Duration of the swing phase Tswing

can be chosen as any value. However, the choice of Tswing

provides a chance to make use of insights from biology. In
the case of a quadrupedal robot, insights can be drawn from
steady running locomotion of cheetahs and dogs. Several
bio-mechanical studies of animal galloping found that swing
duration remains relatively constant within a range of 0.22-
0.3 sec over a wide range of locomotion speeds [20], or had
a weak trend with speed [22]. Drawing from this biological
observation, further simplification can be done by keeping
the duration of the swing phase Tswing a constant value at
0.22 sec for a wide range of Tstance. The lowest value of
Tswing was chosen so as to keep the vertical height of the
robot manageable during the aerial phase.

C. Modulation of Stance Duration

From the Sections II-A and II-B, we can see that only
two remaining parameters remain undefined for describing
the force profile, which are the duration of stance Tstance and
the magnitude of the force profile α. Here, we will draw the
relation between those two parameters, using the principle
that the total vertical impulse during one period of cyclic
locomotion must be equal to the total gravitational impulse
to satisfy momentum conservation in steady state running.
This is described in the following equation,

i∑∫ T

0

Fidt = mgT (5)
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Fig. 3. Phase plot of body pitch angle θ for periodic limit cycle of
open-loop system (solid line) and closed-loop system (dashed-line). Red
line represents the front leg stance phase, and start of the stance phase is
represented by the square or circle respectively. Black line represents the
hind leg stance phase, and start of the stance phase is represented by the
square or circle respectively. Blue line represents the airborne durations.
Top Left: Tstance = 133 msec (D = 0.377) Top Right: Tstance =
100 msec (D = 0.312) Bottom Right: Tstance = 80 msec (D = 0.267)
Bottom Right: Tstance = 66.7 msec (D = 0.233)

where T := Tstance+Tswing is the total duration of one step.
Using the assumption that the two force profiles for the front
and hind legs are identical, the equation is further simplified
into,

2

∫ T

0

Fdt = mgT (6)

Because the area under the Bézier curve can be simply
calculated by averaging the Bézier coefficients multiplied by
the length of duration, (6) is rewritten by,

2αcTstance = mgT, (7)

where c = E
[
1
2 [0.0 0.8 1.0 1.0] + 1

2 [1.0 1.0 0.8 0.0]
]

is
the unit area under the force profile when α = 1 and
Tstance = 1. From (7), α is given by,

α =
mgT

2cTstance
(8)

Equation 8 will be used to calculate the magnitude of force
profile α when Tstance is given. Now, all the parameters
associated with force profile are defined given the value of
Tstance. Figure 2 shows an example of force profile when
Tstance = 0.133 sec. In the next section, we will search for
periodic limit cycles using various values of Tstance .

D. Periodic Limit Cycle

Periodic limit cycles have been found by searching for
fixed points of the following Poincaré return map, as defined
by P : {(x, t) |t = 0} → {(x, t) |t = T }1,

x∗ = P(x∗, Tstance), (9)

1Application of time-dependent force profile causes non-autonomous
dynamic system, resulting in Poincaré section with states x and time t
[23].



A large number of fixed points have been computed
for Tstance ∈ [0.0615 0.133] sec (corresponds to duty
cycle D ∈ [0.219 0.377]) numerically using MATLAB’s
fmincon function. Figure 3 shows the obtained periodic
limit cycle for Tstance = 133, 100, 80, 66.7 msec (D =
0.377, 0.312, 0.267, 0.233) represented by solid line. Lin-
earizing (9) about the fixed point x∗ corresponding to the
periodic orbit results in a discrete linear system, which is
given by,

∆x[i+ 1] = A∆x[i], (10)

where ∆x = x− x∗, and

A =
∂P
∂x

∣∣∣∣
x=x∗

. (11)

Calculation of the largest eigenvalue of matrices A corre-
sponding to the Tstance ∈ [0.0615 0.133] sec revealed that
the obtained periodic limit cycles are unstable.

E. Feedback Control

In order to obtain locally stabilized periodic limit cycles,
we introduce a simple feedback controller during the stance
phase. Hence, following simple PD control is added onto
force profile Fi as seen in (2),

Ffb = −kp,z(zi − zd)− kd,z(żi), for i = F,H, (12)

where, kp,z is the stiffness, kd,z is the damping, zd, is
the set point value which is constant throughout the stance
phase and selected as the averaged value of zF,H of the
open-loop periodic orbit during the stance phase. We could
use time-dependent trajectory for zd(t) obtained from the
corresponding periodic limit cycle to exactly track the open-
loop trajectory, but this causes different sets of trajectories
zd(t) for different values of Tstance. Because our focus is to
obtain a stable periodic limit cycle for various Tstance rather
than to follow exact trajectories, a single set point value for
all the case of Tstance is sought for in this paper. Damping
kd,z is chosen as 30 Ns/m for the simulation which is the
maximum value until the real-hardware becomes unstable
due to the noise caused from the numerical differentiation
of the encoder signal.

Because feedback is added onto the original force profile
and influences the dynamics of the system, the behavior of
the system will be changed accordingly. Therefore, new fixed
points should be calculated numerically. A large number
of fixed points have been computed for different values of
Tstance ∈ [0.0615 0.133] sec and k ∈ [0, 3000].

x̄∗ = P(x̄∗, kp,z, Tstance). (13)

The eigenvalues of linearized Poincaré map A for kp,z ∈
[0, 3000] and Tstance ∈ [0.0615, 0.133] are calculated, and
the largest eigenvalues are plotted in Figure 4. The result
shows that addition of the feedback yields stable periodic
orbit for a wide range of the value of kp,z for all Tstance ∈
[0.0615, 0.133]. The stable region is depicted by the area
enclosed by the solid red line, and kp,z is selected as
700 N/m because the value provides stable periodic limit
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Fig. 4. The largest eigenvalues of linearized Poincaré map for kp,z ∈
[0, 3000] and Tstance ∈ [0.0615, 0.133]. The area enclosed by solid red
line represents the largest eigenvalue is less than 1 which means locally
exponentially stable about the fixed point x̄∗.

cycle for all Tstance ∈ [0.0615, 0.133]. We would like note
that this value of stiffness 700 N/m is around 12% of the
stiffness value used in the previous trotting experiments of
MIT Cheetah where only a impedance controller is used.

Dashed lines of Figure 3 show the phase plot of body pitch
angle θ for closed-loop system. Addition of feedback could
successfully stabilizes the open-loop system’s periodic orbits
without changing them.

III. IMPLEMENTATION OF THE ALGORITHM

This section presents the implementation of the algorithm
introduced in Section II on the real robot hardware. Only
vertical motion is considered in this paper, and force profiles
Fi, where i = F,H , obtained from Section II will be imple-
mented in the robot through the torques of the two coaxial
motors in the MIT Cheetah 2 as shown in Figure 5. Each leg
of the MIT Cheetah 2 consists of three links, and the motions
of first and last link from the shoulder are kinematically tied
to be parallel to each other as shown in Figure 5(a), resulting
in two degree of freedom links. The first actuator rotates the
link represented by thick solid black line, providing rotation
of all three links relative to the body. The second actuator
rotates the link represented by dashed red line, yielding
rotation of second link while first and third links are kept
in parallel. Because the first and third links are parallel, the
original link structure can be kinematically converted to a
mechanism with only two links shown in Figure 5(b).

A. Application of Force Profile and Feedback

The algorithm we obtained in Section II of combining
force profile and feedback with low gain is implemented
on the robot using actuator torques on the leg. We could
calculate the exact required actuator torques to provide
desired horizontal and vertical direction ground reaction
force from solving inverse dynamics, but the following static



(a) (b)

Fig. 5. (a) MIT Cheetah’s leg consisting of three links. First and third links
are kept in parallel each other by parallelogram mechanism. (b) Two links
kinematic conversion of original link structure. Body coordinates system
x’-z’ is attached on the shoulder.

force/torque relationship is only considered in this paper
instead.

u = JT
xz

[
Fx

Fz

]
(14)

where x and z are the horizontal and vertical position of
the foot relative to the shoulder respectively as shown in
Figure 5, Fx and Fy are desired ground reaction forces in x
and z direction, and Jxz is the manipulator Jacobian obtained
by taking partial derivative of position of the foot relative to
the shoulder with respect to the knee and shoulder joint an-
gles. This approximation of the calculating control inputs is
reasonable because the robots leg is relatively light compared
to the body (less than 10% of body mass). Furthermore, it
removes all the complex calculation of the Coriolis matrix
and the inverse of the inertia matrix, making implementation
simpler and easier with regular joint encoders and signals
from an IMU sensor. A similar approach introduced in [24]
which also only takes static force/torque relationships have
been successfully implemented and tested experimentally on
their robot with extremely light legs [24], [25].

To hold the horizontal position of the foot in place, the
horizontal direction force Fx is chosen as,

Fx = −kp,xx− kd,xẋ (15)

Fig. 6. Coordinates system for control of MIT Cheetah 2. In addition
to actuators for knee and shoulder angles, there is one more actuator for
ab/adduction rotation for each leg.

(a) (b)

Fig. 7. Lateral and yaw motion control. (a) Lateral motion is regulated using
z-direction forces on the both feet. (b) Yaw is regulated using x-direction
forces on the both feet.

The vertical direction force Fz is chosen as,

Fz = Fi − kp,z(z − zd)− kd,z ż, for i = F,H (16)

where Fi is predefined force profile as in (2) and (3)
corresponding to the desired Tstance. The scalar gain value
kp,x and kd,x is the stiffness and damping for PD control
in the x direction which are chosen as 2100 N/m and
14 Ns/m and kp,z and kd,z is the stiffness and damping for
PD control in the z direction which are chosen as 700 N/m
and 30 Ns/m as in Section II, and zd is the set point for PD
control, selected as −0.5 m

B. Lateral and Yaw Motion Control

Because the robot can freely move in 3D without any
support mechanism, we have to regulate yaw and lateral
motion of the robot. Figure 6 depicts the coordinates system
for yaw and lateral motion control of MIT Cheetah 2 and
actuators for ab/adduction rotation. Here, the motor for
controlling ab/adduction rotation of the leg is commanded
to hold 5.7 degrees outward as shown in Figure 7(a) to
provide postural lateral stability2. However, lateral instability
is still observed due to the small difference of the motor
characteristics and leg kinematics between left and right
legs. Therefore, feedback is added to stabilize lateral motion.
During the double support phase of the left and right leg, as
shown in Figure 7(a), the control authority on lateral motion
obtained from the difference between Fz,L and Fz,R is used
to regulate lateral motion. The objective of the feedback is
to drive following error to zero,

eltr = yL + yR, (17)

where, the subscripts L and R indicate the left and right legs,
respectively. The following feedback given by,

Fltr = −Kp,ltreltr −Kd,ltrėltr (18)

2The motor used for ab/adduction is off-the-shelf servo motor which is
designed for precise position control and not for force control. Hence, it is
not used for lateral and yaw motion control.



Fig. 8. Stance Machine for front and hind legs.

is added onto vertical direction force Fz in (16) as follows,

Fz,L = Fz,L + Fltr

Fz,R = Fz,R − Fltr (19)

By addition of this feedback, when eltr < 0, that is to say, the
mid point of the body is left-sided as shown in Figure 7(a),
the positive force Fltr is added onto Fz,L and subtracted
from Fz,R, resulting in the motion of the mid point of the
body to the right, and vice versa.

The gains for lateral motion control are selected as the
largest values before the system goes unstable due to the
gain values becoming too large,

Kp,ltr = 1200, Kd,ltr = 20. (20)

Rotation about the yaw axis is controlled using the dif-
ference between horizontal left and right forces Fx,L and
Fx,R as illustrated in Figure 7(b). The error to be regulated
is defined as eyaw := xL − xR. The feedback to drive the
error eyaw to zero is given by Fyaw := −Kp,yaweyaw −
Kd,yawėyaw, and added onto the horizontal direction force
Fx in (15) as follows,

Fx,L = Fx,L − Fyaw

Fx,R = Fx,R + Fyaw. (21)

The values of gain for yaw control are chosen as the largest
values until the system goes unstable due to too large gain
values,

Kp,yaw = 1000, Kd,yaw = 10. (22)

As horizontal motion of the robot is not restricted, some
slight drift is observed in the position of the robot during
bounding.

C. Swing Phase Control and Detection of Impact with the
Ground

During swing phase, the vertical length of the leg is
shortened at the beginning of the swing phase to clear the
foot from the ground. The leg then returns to its original
length of 0.5 m to prepare the landing. In order to achieve
this desired vertical motion of the leg, trajectories of the foot
in z direction is designed, and a simple feedback control
based on Cartesian-computed torque controller [26] is used
to track the designed trajectories. Position x direction is held
to zero using feedback.

Impact with the ground is detected by proprioception,
observing the force in z direction created by joint actuators.

Fig. 9. Experimental setup of the MIT Cheetah 2 robot.

Required nominal z direction force to create the desired
swing motion is logged from prior swing leg motion ex-
periments while the robot is hanging in the air. This is used
to create a table of nominal forces to reduce incidents of
false positives. In the bounding experiment, if z direction
force during swing phase is larger than this logged nominal
force by some margin, this additional force is assumed to be
caused from the impact with the ground and touchdown is
declared. However, this could lead to delay in the detection
of ground impact during bounding.

D. Finite State Machine

The last step of the implementation process is to introduce
a state machine to manage the transition between stance
and swing phase for each leg. Two independent finite state
machines for each pair of front and hind legs is proposed
while transition of a pair of left and right legs occurs together.
No synchronization was found to be necessary and there
is only an initial phase offset of Tstance + Tair as shown
in Figure 2. The state machine is illustrated in Figure 8.
Transition from swing to stance occurs when the leg strikes
the ground. Transition from stance to swing takes place when
time reaches at Tstance+ttd where ttd is the touchdown time
when the leg strikes the ground.

IV. EXPERIMENTS

This section documents the experimental implementations
of the controller introduced in Sections II and III. Figure 9
depicts the experimental setup. The robot stood on four legs
until an operator initiates bounding. At the first step, the
time-dependent force profile depicted in Figure 2 is applied,
and once stance phase of the first step is finished (the legs are
airborne), the finite state machine for each pair of legs starts.
Experiments were carried out with desired duty ratios D ∈
{0.377, 0.342, 0.312, 0.288, 0.267, 0.248, 0.233, 0.219}. In
Table I, the experimentally achieved duty cycles and the
percentage errors can be seen. The achieved duty cycles
were averaged over 10 steps.

The results of the experiments are presented in Figure 10-
13. Figure 10 depicts snapshots at 100 msec intervals of



Fig. 10. Snapshots of bounding with duty ratio of 0.36 (Tstance =
80 msec and Tswing = 220 msec) at intervals of 100 msec. The snapshots
progress temporally from top to bottom, and then left to right.

TABLE I
EXPERIMENTALLY ACHIEVED DUTY CYCLES

Desired Duty Cycle Achieved Duty Cycle Percentage Error

0.3774 0.3785 0.3068

0.3419 0.3416 0.0894

0.3125 0.3118 0.2279

0.2878 0.2794 2.9188

0.2667 0.2567 3.7388

0.2484 0.2392 3.7395

0.2326 0.2224 4.3493

0.2186 0.2134 2.3804

bounding with duty ratio of 0.267 (Tstance = 80 msec and
Tswing = 220 msec). The phase sequence depicted in Fig-
ure 11 shows that desired duty ratios 0.377 (on the top) and
0.219 (on the bottom) with Tstance = 133 msec, 61.5 msec
and Tswing = 220 msec are achieved experimentally.

Figure 12 depicts the vertical force applied at the front
(white region) and hind right (grey region) leg with duty
ratios D = 0.377 (on the top) and D = 0.219 (on the
bottom). It is observed that feedback (solid black line) is
significantly smaller than the predefined force profile (solid
blue line), showing that the predefined force profile plays a
major role in providing the bounding gait with the desired
duty ratio. Figure 13 compares the phase plot of body pitch
angle from the simulation and experimental data. Four cases
of duty ratio D ∈ {0.3770.3120.2670.233} are compared.
There is a noticeable offset between the experimental and
simulation data for each plot. This is due to the simulation
model assuming that the center of mass is located in the
middle of the body while the actual robot’s center of mass

2.2 2.4 2.6 2.8 3 3.2 3.4

HR

HL

FR

FL

ddd

2.2 2.4 2.6 2.8 3 3.2 3.4

HR
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Time (sec)

Fig. 11. Phase sequence of the experiments with Tstance = 133 msec
(on the top) and Tstance = 61.5 msec (on the bottom). Black solid line
represents stance phase and the empty space represents swing phase. From
top to bottom, phase sequences for front left leg (FL), front right leg (FR),
hind left leg (HL), hind right leg (HR) are shown.

is located slightly forward (2.3 cm forward from the center).
This asymmetry in the position of center of mass causes
the robot to tend to tip forward, leading to an offset in
pitch. Ripples in the experimental data are caused by cogging
torque in the actuators. Another discrepancy occurs when
the front leg strikes the ground (see left bottom part of each
phase plot). This could be due to the erroneous measurements
caused by flexing of the structure holding IMU sensor during
ground impact.
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Fig. 12. Vertical Forces applied at the right foot due to force profile,
feedback, and a combination of both. White and grey region indicate vertical
forces at the front legs and hind legs, respectively. (a) Tstance = 133 msec.
(b) Tstance = 61.5 msec.

V. CONCLUSIONS

We have successfully demonstrated stable quadruped
bounding gaits with various duty cycles. A prescribed verti-
cal force profile is combined with a low gain PD control on
the height of shoulders, providing stable quadruped bounding
in simulation. Next, scaling of vertical impulse based on
the principles of vertical momentum balance yields multiple
periodic limit cycles with a wide selection of desired duty
cycles. The proposed controller has been successfully vali-
dated in experiments on the MIT Cheetah 2, achieving stable
bounding at different desired duty cycles with regulation of
yaw and lateral motion. Currently, this controller is extended
to forward running by adding a simple forward speed control.
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Fig. 13. Phase plot of body pitch angle θ data from the experiments
(solid line) and from the simulation (dashed-line). Red line represents
front leg stance phase. Black line represents hind leg stance phase. Top
Left: Tstance = 133 msec (D = 0.377) Top Right: Tstance =
100 msec (D = 0.312) Bottom Right: Tstance = 80 msec (D = 0.267)
Bottom Right: Tstance = 66.7 msec (D = 0.233)

Preliminary experimental result of bounding with a forward
speed of 2 m/sec is shown in Figure 14.

Fig. 14. Preliminary forward running experiment using the proposed
controller.
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