
MIT Open Access Articles

Asynchronous failure detectors

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Conrejo, Alejandro, Nancy Lynch, and Srikanth Sastry. “Asynchronous Failure
Detectors.” Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing -
PODC ’12 (2012), July 16–18, 2012, Madeira, Portugal. ACM New York, NY, USA. p.243-252.

As Published: http://dx.doi.org/10.1145/2332432.2332482

Publisher: Association for Computing Machinery

Persistent URL: http://hdl.handle.net/1721.1/90357

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90357
http://creativecommons.org/licenses/by-nc-sa/4.0/

Asynchronous Failure Detectors

Alejandro Cornejo
Computer Science and

Artificial Intelligence Lab, MIT
acornejo@csail.mit.edu

Nancy Lynch
Computer Science and

Artificial Intelligence Lab, MIT
lynch@csail.mit.edu

Srikanth Sastry
Computer Science and

Artificial Intelligence Lab, MIT
sastry@csail.mit.edu

ABSTRACT
Failure detectors — oracles that provide information about
process crashes — are an important abstraction for crash
tolerance in distributed systems. Although current failure-
detector theory provides great generality and expressiveness,
it also poses significant challenges in developing a robust
hierarchy of failure detectors. We address some of these
challenges by proposing a variant of failure detectors called
asynchronous failure detectors and an associated modeling
framework. Unlike the traditional failure-detector frame-
work, our framework eschews real time completely. We
show that asynchronous failure detectors are sufficiently ex-
pressive to include several popular failure detectors. Addi-
tionally, we show that asynchronous failure detectors sat-
isfy many desirable properties: they are self-implementable,
guarantee that stronger asynchronous failure detectors solve
more problems, and ensure that their outputs encode no in-
formation other than process crashes. We introduce the no-
tion of a failure detector being representative of a problem
to capture the idea that some problems encode the same
information about process crashes as their weakest failure
detectors do. We show that a large class of problems, called
finite problems, do not have representative failure detectors.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems; D.4.5 [Operating Systems]: Reliability—
fault-tolerance; F.1.1 [Computation by Abstract De-

vices]: Models of Computation—computability theory

General Terms
Algorithms, Reliability, Theory

Keywords
Asynchronous System, Fault-Tolerance, Asynchronous Fail-
ure Detector, I/O Automata

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’12, July 16–18, 2012, Madeira, Portugal.
Copyright 2012 ACM 978-1-4503-1450-3/12/07 ...$10.00.

1. INTRODUCTION
Failure detectors [5] are a popular mechanism for design-

ing asynchronous distributed algorithms for crash-prone sys-
tems. Conceptually, they provide (potentially unreliable)
information about process crashes in the system. This in-
formation may be leveraged by asynchronous algorithms for
crash tolerance. Technically, failure detectors are specified
by constraints on their possible outputs, called histories, rel-
ative to the actual process crashes in the system, called the
fault pattern. The fault pattern is the ‘reality’, and the his-
tory is an ‘approximation’ of that reality. A failure detector
is a function that maps every fault pattern (the ‘reality’)
to a set of admissible histories (the ‘approximations’). The
stronger a failure detector is, the closer its admissible ‘ap-
proximations’ are to the ‘reality’.

We explore the modeling choices made in the traditional
failure-detector framework, and we focus on a variant of
failure detectors called asynchronous failure detectors. We
also offer an alternative modeling framework to study the
properties of asynchronous failure detectors. Briefly, asyn-
chronous failure detectors are a variant of failure detec-
tors that can be specified without the use of real time, are
self-implementable, and interact with the asynchronous pro-
cesses unilaterally ; in unilateral interaction, the failure de-
tector provides outputs to the processes continually without
any queries from the processes. We show that asynchronous
failure detectors retain sufficient expressiveness to include
many popular and realistic [7] failure detectors while satis-
fying several desirable properties.

1.1 Background and Motivation
The canonical works [5, 4] pioneered the theory of failure

detectors. Results in [5] showed how sufficient information
about process crashes can be encoded in failure detectors to
solve problems in asynchronous systems. Complementary
work in [4] showed that some information about crashes is
actually necessary ; in particular, they showed that Ω is a
“weakest” failure detector to solve consensus in crash-prone
asynchronous systems. Their proposed proof technique has
been used to demonstrate weakest failure detectors for many
problems in crash-prone asynchronous systems (cf. [8, 24,
11, 14]). Recent results have shown that a large class of prob-
lems have a weakest failure detector [17] while yet another
class of problems do not have a weakest failure detector [3].

From a modeling perspective, failure detectors mark a de-
parture from conventional descriptions of distributed sys-
tems. Conventionally, the behavior of all the entities in a
distributed system model — processes, channels, and other

entities — are either all asynchronous or are all constrained
by the passage of real time. In contrast, in the failure-
detector model, only the failure-detector behavior is con-
strained by real time, whereas the behavior of all other enti-
ties is asynchronous. The differences between the two styles
of models have been the subject of recent work [6, 17] which
has brought the theory of failure detectors under additional
scrutiny. We discuss five aspects of failure-detector theory
that remain unresolved: self-implementability, interaction
mechanism, the kind of information provided by a failure
detector, comparing failure-detector strengths, and the rela-
tionship between weakest failure detectors and partial syn-
chrony.

Self-Implementability. Failure detectors need not be
self-implementable. That is, there exist failure detectors
(say) D such that it is not possible for any asynchronous
distributed algorithm to implement an admissible behavior
of D despite having access to the outputs from D. Since a
failure detector D′ is stronger then a failure detector D iff
D′ can implement D, we arrive at an unexpected result that
a failure detector D need not be comparable to itself.

Jayanti et. al. resolve the issue of self-implementability
in [17] by separating the notion of a failure detector from
an implementation of a failure detector. A failure detector
provides outputs to each process at each time instant, but a
failure-detector implementation provides outputs only upon
being queried. An implementation of a failure detector D is
said to be correct if, for every query, the output of the imple-
mentation is a valid output of D for some time in the interval
between the query and the output. In effect, the definition
of “implementing a failure detector” in [17] collapses multiple
classes of distinct failure detectors into a single equivalence
class.1 The broader impact of results from [17] on the land-
scape of failure-detector theory remains unexplored.

Interaction Mechanism. The mechanism proposed in
[17] explicitly requires that failure-detector implementations
interact with processes via a query-based interface. An al-
ternative interface is one in which failure-detector implemen-
tations provide outputs to processes unilaterally and contin-
ually, without queries. To our knowledge, the motivation for
choosing either interface has not been adequately elucidated
despite non-trivial consequences of the choice. For instance,
recall that self-implementability of a failure detector in [17]
depends critically on the query-based interface. Also, the
so-called ‘lazy’ implementations of failure detectors [10] de-
pend on a query-based interface to ensure communication
efficiency; an analogous optimization is not known with a
unilateral interface. Therefore, the significance and conse-
quences of the interaction model merit investigation.

Information About Crashes Alone. Whether or not
failure detectors can provide information about events other
than process crashes has a significant impact on the weakest
failure detectors for problems such as Non-Blocking Atomic
Commit [14, 15] and Uniform Reliable Broadcast [1, 16].
In order to restrict failure detectors to the ones that give

1For example, consider the instantaneously perfect failure
detector P+ [6] which always outputs the exactly the set
of crashed processes and the perfect failure detector P [5]
which never suspects live processes and eventually and per-
manently suspects crashed processes. Under the definition
of “implementing a failure detector” from [17], an implemen-
tation of P+ is indistinguishable from an implementation of
P .

information only about crashes, the authors in [1] consider
failure detectors that are exclusively a function of the fault
pattern. In [14], the authors further restrict the universe of
failure detectors to timeless failure detectors, which provide
information only about the set of processes that crash, and
no information about when they crash. To our knowledge,
the necessary and sufficient conditions for failure detectors
to provide information about crashes alone remains unre-
solved.

Comparing Failure Detectors. Not all information
provided by failure detectors may be useful in an asyn-
chronous system. For instance, if a failure detector provides
the current real-time in its outputs (in addition to other
information), the processes cannot use this information be-
cause passage of real time is not modeled in an asynchronous
system. Suppose we consider two failure detectors D and D′

where D is timeless, andD′ provides all the information pro-
vided by D; additionally D′ provides the current real time
as well. Clearly, D′ is strictly stronger than D. However,
since the asynchronous system cannot use the information
about real time provided byD′, there exist no problems that
can be solved in an asynchronous system with D′, but that
cannot be solved with D. This leads to a curious conclusion:
there exist failure detectors (say) D and D′ such that D′ is
strictly stronger than D, and yet D′ cannot solve a harder
problem than D. This begs the following question: what
does the relative strength of failure detectors tell us about
the relative hardness of problems they solve?

Weakest Failure Detectors and Partial Synchrony.

Failure detectors are often viewed as distributed objects that
encode information about the temporal constraints on com-
putation and communication necessary for their implemen-
tation; the popular perception is that several failure detec-
tors are substitutable for partial synchrony in distributed
systems [19, 21, 20]. Therefore, if a failure detector D is
the weakest to solve a problem P , then a natural question
follows: is the synchronism encoded in the outputs of D
the minimal synchronism necessary to solve P in a crash-
prone partially synchronous system? Work to date suggests
that the answer is affirmative for some problems [19, 22] and
negative for others [6]. To our knowledge, there is no char-
acterization of the problems for which the aforementioned
question is answered in the affirmative or in the negative.

Summary. Based on our understanding of the state of
the art, we see that failure-detector theory is a very general
theory of crash tolerance with important results and novel
methods. These results and methods provide a qualitative
understanding of the amount of information about crashes
necessary and sufficient to solve various problems in asyn-
chronous systems. However, the generality of the theory
makes it difficult to develop a robust hierarchy of failure
detectors and to determine the relative hardness of solving
problems in crash-prone asynchronous systems.

1.2 Contribution
In this paper, we examine a new variant of failure detec-

tors called asynchronous failure detectors (AFDs) and we
show that they satisfy many desirable properties. We define
AFDs through a set of basic properties that we expect any
“reasonable” failure detector to satisfy. We demonstrate the
expressiveness of AFDs by defining many traditional failure
detectors as AFDs. Restricting our focus to AFDs offers
several advantages.

First, AFDs are self-implementable and their specification
does not require real time. Therefore, unlike current failure-
detector models, all the entities in the distributed system
are asynchronous. In order to specify AFDs, we propose a
new modeling framework that completely eschews real time,
which allows us to view failure detectors as problems within
the asynchronous model. This allows us to compare fail-
ure detectors as we compare problems; it also allows us to
compare problems with failure detectors, and vice versa.

Second, AFDs provide outputs to the processes unilater-
ally, without queries. Therefore we preserve the advantages
offered by the framework in [17] while ensuring failure de-
tectors provide information only about process crashes.

Third, the hierarchy of AFDs ordered by their relative
strength induces an analogous hierarchy of problems ordered
by their relative hardness. In fact, if an AFD D is strictly
stronger than another AFD D′, then we show that the set
of problems solvable with D is a strict superset of the set of
problems solvable by D.

Fourth, AFDs clarify a relationship between a weakest
failure detector to solve a problem and the minimal syn-
chronism that is necessary and sufficient to solve the same
problem. We introduce the concept of representative AFDs
for a problem. Briefly, an AFD D is “representative” of a
problem P iff D is sufficient to solve P and D can be ex-
tracted from a (blackbox) solution to P . By construction,
the synchronism encoded by the outputs of a representative
AFD for a problem P is also the minimal synchronism suf-
ficient to solve P . We show that finite problems (such as
consensus and set agreement) do not have a representative
AFD, but they have a weakest failure detector [17].

2. I/O AUTOMATA
We use the I/O Automata framework [18] for specifying

the system model and failure detectors. Briefly, in the I/O
framework each component of a distributed system is mod-
eled as a state machine, where different components inter-
act with each other through input and output actions. This
section provides an overview of I/O-Automata-related defi-
nitions used in this paper. See [18, Chapter 8] for a thorough
description of the I/O Automata framework.

2.1 Definitions
An I/O automaton (or simply, an automaton) is a (pos-

sibly infinite) state machine. Formally, an I/O automaton
consists of five components: a signature, a set of states, a
set of initial states, a state-transition relation, and a set of
tasks. We describe these components next.

Actions, Signature, and Tasks. The state transitions
in an automaton are associated with named actions; the set
of actions of an automaton A is denoted act(A). Actions
are classified as input, output, or internal, and they con-
stitute the signature of the automaton. The set of input,
output, and internal actions of an automaton A are denoted
input(A), output(A), and internal(A), respectively. Input
and output actions are collectively called external actions,
and output and internal actions are collectively called lo-
cally controlled actions. The locally controlled actions of an
automaton are partitioned into tasks.

Internal actions of an automaton are visible only to the
automaton itself whereas external actions are visible to other
automata as well; automata interact with each other through
external actions. Unlike locally controlled actions, input ac-

tions arrive from the outside and are assumed not to be
under the automaton’s control.

States. The set of states of an automaton A is denoted
states(A). A non-empty subset init(A) ⊆ states(A) is des-
ignated to be the set of initial states.

State-Transition relation. The state transitions in an
automaton A are restricted by a state-transition relation, de-
noted trans(A), which is a set of tuples of the form (s, a, s′)
where s, s′ ∈ states(A) and a ∈ act(A). Each such tuple
(s, a, s′) is a transition, or a step, of A.

For a given state s and an action a, if trans(A) has some
step of the form (s, a, s′), then a is said to be enabled in
s. Every input action in A is enabled in all the states of
A. A task C, which consists of a set of locally controlled
actions, is said to be enabled in a state s iff some action in
C is enabled in state s.

Intuitively, each step of the form (s, a, s′) denotes the fol-
lowing behavior: the automaton A, in state s, performs ac-
tion a and changes its state to s′.

2.2 Executions And Traces
Now we describe how an automaton executes. An ex-

ecution fragment of an automaton A is a finite sequence
s0, a1, s1, a2, . . . , sk−1, ak, sk, or an infinite sequence s0, a1,
s1, a2, . . . , sk−1, ak, sk, . . ., of alternating states and actions
of A such that for every k ≥ 0, action ak+1 is enabled in
state sk. An execution fragment that starts with an initial
state is called an execution. Each occurrence of an action in
an execution fragment is said to be an event.

A trace of an execution denotes only the externally ob-
servable behavior. Formally, the trace t of an execution α is
the subsequence of α consisting of all the external actions.
We say that t is a trace of an automaton A if t is the trace
of some execution of A. When referring to specific events
in a trace, we use the following convention: if t contains at
least x events, then t[x] denotes the xth event in the trace t,
and otherwise, t[x] = ⊥. Throughout this article, we assume
that no action is named ⊥.

It is useful to consider subsequences of traces that contain
only certain events. We accomplish this through the notion
of a projection. Given a sequence of actions t and a set of
actions B, the projection of t over B, denoted t|B , is the
subsequence of t consisting of exactly the events from B.

2.3 Composing I/O Automata
A collection of I/O automata may be composed by match-

ing output actions of some automata with the same-named
input actions of others. Specifically, each output of an au-
tomaton may be matched with same-named input of any
number of other automata. Upon composition, all the ac-
tions with the same name are performed together.

2.4 Fairness
When considering executions of a composition of I/O au-

tomata, we are interested in the executions in which all the
automata get fair turns to perform steps; such executions
are called fair executions.

Recall that in each automaton, the locally controlled ac-
tions are partitioned into tasks. An execution fragment α
of an automaton A is said to be a fair execution fragment
iff the following two conditions hold for every task C in A.
(1) If α is finite, then no action in C is enabled in the final
state of α. (2) If α is infinite, then either (a) α contains

infinitely many events from C, or (b) α contains infinitely
many occurrences of states in which C is not enabled.

A trace t of A is said to be a fair trace if t is the trace of
a fair execution of A.

2.5 Deterministic Automata
We define an action a (of an automaton A) to be determin-

istic iff for every state s, there exists at most one transition
of the form (s, a, s′) in trans(A). We define an automaton
A to be task deterministic iff (1) for every task C and every
state s of A, at most one action in C is enabled in s, and (2)
all the actions in A are deterministic. An automaton is said
to be deterministic iff it is task deterministic, has exactly
one task, and has a unique start state.

3. CRASH PROBLEMS
This section provides definitions of problems, distributed

problems, crashes, crash problems and asynchronous failure
detectors.

3.1 Problems
A problem P is a tuple (IP , OP , TP) where IP and OP are

disjoint sets of actions and TP is a set of (finite or infinite)
sequences over these actions.

Distributed Problems. Here, we introduce a fixed fi-
nite set Π of n location IDs; we assume that Π does not
contain the element ⊥.

For a problem P , we define a mapping loc : IP ∪ OP →
Π ∪ {⊥} which associates an action to a location ID or ⊥.
For an action a, if loc(a) = i and i ∈ Π, then a is said to
occur at i. Problem P is said to be distributed over Π if, for
every action a ∈ IP ∪ OP , loc(a) ∈ Π.

For convenience, the location of each action is included
in the name of the action as a subscript; for instance, if an
action a occurs at i, then the action is named ai.

Crash Problems. We posit the existence of a set of
actions {crashi|i ∈ Π}, denoted Î; according to our conven-
tions loc(crashi) = i. A problem P ≡ (IP , OP , TP) that is
distributed over Π, is said to be a crash problem iff, for each
i ∈ Π, crashi is an action in IP ; that is, Î ⊆ IP .

Given a sequence t ∈ TP , faulty(t) denotes the set of lo-
cations at which a crash event occurs in t. Similarly, live(t)
denotes the set of locations for which a crash event does not
occur in t. The locations in faulty(t) are said to be faulty
in t, and the locations in live(t) are said to be live in t.

For convenience, we assume that for any two distinct crash
problems P ≡ (IP , OP , TP) and P ′ ≡ (IP ′ , OP ′ , TP ′), (IP ∪

OP)∩ (IP ′ ∪OP ′) = Î. The foregoing assumption simplifies
the issues involving composition of automata; we discuss
these in Section 5.

3.2 Asynchronous Failure Detectors
Recall that a failure detector is an oracle that provides

information about crash failures. In our modeling frame-
work, we view failure detectors as a special type of crash
problems and are called asynchronous failure detectors. A
necessary condition for a crash problem P ≡ (IP , OP , TP)
to be an asynchronous failure detector is crash exclusivity,
which states that IP = Î ; that is, the actions IP are ex-
actly the crash actions. Crash exclusivity guarantees that
the only inputs to a failure detector are the crash events,
and hence, failure detectors provide information only about

crashes. An asynchronous failure detector also satisfies ad-
ditional properties, but before describing these properties
formally we need some auxiliary definitions.

Let D ≡ (Î, OD, TD) be a crash problem. For each i ∈ Π,
Fi is the set of actions in OD at i; thus, OD = ∪i∈ΠFi. We
begin by defining the following terms. Let t be an arbitrary
sequence over Î ∪OD.

Valid sequences. The sequence t is said to be valid iff
(1) for every i ∈ Π, no event in OD occurs at i after a
crashi event in t, and (2) if no crashi event occurs in t,
then t contains infinitely many events in OD at i.

Sampling. A sequence t′ is a sampling of t iff (1) t′ is a
subsequence t, (2) for every location i ∈ Π, (a) if i is live in
t, then t′|Fi

= t|Fi
, and (b) if i is faulty in t, then i is faulty

in t′ and t′|Fi
is a prefix of t|Fi

.
Constrained reordering. Let t′ be a permutation of

events in t; t′ is constrained reordering of t iff, for every pair
of events e and e′, if (1) e precedes e′ in t and (2) either

loc(e) = loc(e′), or e ∈ Î , then e precedes e′ in t′ as well.
Now we define an asynchronous failure detector. A crash

problem of the form D ≡ (Î, OD, TD) (which satisfies crash
exclusivity) is an asynchronous failure detector (AFD, for
short) iff D satisfies the following properties.

Validity. Every sequence t ∈ TD is valid.
Closure Under Sampling. For every sequence t ∈ TD,

every sampling of t is in TD.
Closure Under Constrained Reordering. For every

sequence t ∈ TD, every constrained reordering of t is in TD.
A brief motivation for the above properties is in order.

The validity property ensures that after a location crashes,
no outputs occur at that location, and if a location does not
crash, outputs occur infinitely often at that location. Clo-
sure under sampling permits a failure detector to ‘skip’ or
‘miss’ any suffix of outputs at a faulty location. Finally, clo-
sure under constrained reordering permits ‘delaying’ output
events at any location.

3.3 Examples of AFDs
Here, we specify some of the failure detectors that are

most widely used and cited in literature, as AFDs.
The Leader Election Oracle. Informally, Ω continu-

ally outputs a location ID at each location; eventually and
permanently, Ω outputs the ID of a unique live location at
all the live locations.

We specify our version of Ω ≡ (Î, OΩ, TΩ) as follows. The
action set OΩ = ∪i∈ΠFi, where, for each i ∈ Π, Fi =
{FD-Ω(j)i|j ∈ Π}. TΩ is the set of all valid sequences t over

Î ∪ OΩ that satisfy the following property: if live(t) 6= ∅,
then there exists a location l ∈ live(t) and a suffix tsuff of t
such that, tsuff |OΩ

is a sequence over the set {FD-Ω(l)i|i ∈
live(t)}.

Perfect and Eventually Perfect Failure Detectors.

Here we specify two popular failure detectors among the
canonical failure detector from [5]: the perfect failure detec-
tor P and the eventually perfect failure detector ✸P . In-
formally, P never suspects any location (say) i until event
crashi occurs, and it eventually and permanently suspects
crashed locations; ✸P eventually and permanently never
suspects live locations and eventually and permanently sus-
pects faulty locations.

We specify our version of P ≡ (Î, OP , TP) as follows. The
action set OP = ∪i∈ΠFi, where, for each i ∈ Π, Fi =
{FD-P(S)i|S ∈ 2Π}. TP is the set of all valid sequences

t over Î ∪ OP that satisfy the following two properties. (1)
For every prefix tpre of t, if i ∈ live(tpre), then for each
j ∈ Π and for every event of the form FD-P(S)j in tpre,
i /∈ S. (2) There exists a suffix tsus of t such that, for every
i ∈ faulty(t), for each j ∈ Π, and for every event of the
form FD-P(S)j in tsus, i ∈ S.

We specify our version ✸P ≡ (Î , O✸P , T✸P) as follows.
The action set O✸P = ∪i∈ΠFi, where, for each i ∈ Π, Fi =
{FD-✸P(S)i|S ∈ 2Π}. T✸P is the set of all valid sequences

t over Î ∪ O✸P that satisfy the following two properties.
(1) There exists a suffix ttrust of t such that, for every pair
of locations i, j ∈ live(t), and for every event of the form
FD-✸P(S)j in ttrust, i /∈ S. (2) There exists a suffix tsus
of t such that, for every i ∈ faulty(t), for each j ∈ live(t),
and for every event of the form FD-✸P(S)j in tsus, i ∈ S.

It is easy to see that Ω ≡ (Î, OΩ, TΩ), P ≡ (Î, Ô, TP)

and ✸P ≡ (Î, Ô, T✸P) satisfy all the properties of an AFD
and the proof of the aforementioned assertion is left as an
exercise for the reader. Similarly, it is straightforward to
specify failure detectors like Ωk and Ψk as AFDs.

4. SYSTEM MODEL AND DEFINITIONS
An asynchronous system is modeled as the composition

of a collection of the following I/O automata: process au-
tomata, channel automata, a crash automaton, and possibly
other automata (including a failure-detector automata).

Process Automata. The system contains a collection
of n process automata: one process automaton at each loca-
tion. Each process automaton is a deterministic automaton
whose actions occur at a single location. A process automa-
ton whose actions occur at i is denoted proc(i). It has an
input action crashi which is an output from the crash au-
tomaton; when crashi occurs, it permanently disables all
locally controlled actions of proc(i). The process automaton
proc(i) sends and receives messages through a set of output
actions {send(m, j)i|m ∈ M∧j ∈ Π\{i}}, and a set of input
actions {receive(m, j)i|m ∈ M∧ j ∈ Π \ {i}}, respectively.
In addition, process automata may interact with the envi-
ronment automaton and other automata through additional
actions.

A distributed algorithm A is a collection of process au-
tomata, one at each location; for convenience, we write Ai

for the process automaton proc(i) at i.
Channel Automata. For every ordered pair (i, j) of

distinct locations, the system contains a channel automaton
Ci,j . The input actions are {send(m, j)i|m ∈ M}, which
are outputs from the process automaton at i. The output
actions are {receive(m, i)j | m ∈ M}, which are inputs to
the process automaton at j. Each such channel automaton
implements a reliable FIFO link.

Crash Automaton. The crash automaton contains the
set {crashi|i ∈ Π} ≡ Î of output actions and no input ac-

tions. Every sequence over Î is a fair trace of the crash
automaton.

Environment Automaton. The environment automa-
ton, denoted E , models the external world with which the
distributed system interacts. The external signature of the
environment matches the input and output actions of the
process automata that do not interact with other automata
in the system. The set of fair traces that constitute the ex-
ternally observable behavior of E specifies “well-formedness”
restrictions, which vary from one system to another.

Figure 1: Interaction diagram for a message-passing

asynchronous distributed system augmented with a

failure detector automaton.

Other Automata. The system may contain other au-
tomata with which the process automata and the crash au-
tomaton interact. Typically, these automata solve a crash
problem, as defined in the next section.

5. SOLVING PROBLEMS
In this section, we define what it means for an automaton

to solve a crash problem and for a distributed algorithm
to solve a crash problem. We also define what it means
for a system to solve a crash problem P using another crash
problem P ′. We use the aforementioned definitions to define
what it means for an AFD to be sufficient to solve a crash
problem, and vice versa.

5.1 Solving a Crash Problem
An automaton U solves a crash problem P ≡ (IP , OP , TP)

in an environment E , if (1) the input actions of U are IP ,
and the output actions of U are OP , (2) the input actions of

E are OP , and the output actions of E are IP \ Î , and (3) the
set of fair traces of the composition of U , E , and the crash
automaton is a subset of TP .

A distributed algorithm A solves a crash problem P in
an environment E (or, A solves P in E), iff the automaton

Â, which is obtained by composing A with the channel au-
tomata, solves P in E . A crash problem P is said to be
solvable in an environment E , iff there exists a distributed
algorithm A such that A solves P in E . If a crash problem
is not solvable in E , then it is said to be unsolvable in E .

5.2 Using One Crash Problem to Solve An-
other

Often, an unsolvable crash problem P may be solvable in
a system that contains an automaton that solves some other
unsolvable crash problem P ′. We describe the relationship
between P and P ′ as follows.

A distributed algorithm A solves a crash problem P us-
ing another crash problem P ′ in an environment E (or suc-
cinctly, A solves P using P ′ in E), iff the following is true.

Let Â be the composition of A with the channel automata,

the crash automaton, and the environment E . For every fair
trace t of Â, if t|I

P ′∪O
P ′

∈ TP ′ , then t|IP ∪OP
∈ TP .

We say that a crash problem P ′ ≡ (IP ′ , OP ′ , TP ′) is suf-
ficient to solve a crash problem P ≡ (IP .OP , TP), in envi-
ronment E , denoted P ′ �E P iff there exists a distributed
algorithm A that solves P using P ′ in E . If P ′ �E P , then
also we say that P is solvable using P ′ in E . If no such distri-
buted algorithm exists, then we state that P is unsolvable
using P ′ in E , and we denote it as P ′ 6�E P .

It is worth noting that in the foregoing definition, the
problems P and P ′ must be distinct in order for automata
composition to be applicable. However, it is useful to con-
sider problems that are “sufficient to solve themselves”; that
is, given a crash problem P and an environment E , it is use-
ful to define the following relation: P �E P . We do so using
the notion of renaming.

5.2.1 Renaming and Self-Implementability
A crash problem P ′ ≡ (IP ′ , OP ′ , TP ′) is said to be a re-

naming of a crash problem P ≡ (IP , OP , TP) iff (1) (IP ∪

OP)∩ (IP ′ ∪OP ′) = Î, and there exist bijections rIO : IP ∪
OP → IP ′ ∪OP ′ and rT : TD → TD′ such that, (1) for each

a ∈ Î, rIO(a) = a, for each a ∈ IP \ Î, rIO(a) ∈ IP ′ \ Î , for
each a ∈ OP , rIO(a) ∈ OP ′ , (2) for each action a ∈ IP ∪OP ,
loc(a) = loc(rIO(a)), and (3) for each t ∈ TP and for each
x ∈ N

+, if t[x] 6= ⊥, then rT (t)[x] = rIO(t[x]).
Now, we can define the solvability of a crash problem P

using itself as follows. We say that a crash problem P is
self-implementable in environment E , denoted P �E P , iff
there exists a renaming P ′ of P such that P �E P ′.

5.3 Using and Solving AFDs
Since an AFD is simply a kind of crash problem, we have

automatic definitions for the following notions. (1) A distri-
buted algorithm A solves an AFDD in environment E . (2) A
distributed algorithm A solves a crash problem P using an
AFD D in environment E . (3) An AFD D is sufficient to
solve a crash problem P in environment E . (4) A distributed
algorithm A solves an AFD D using a crash problem P in
environment E . (5) A crash problem P is sufficient to solve
an AFD D in environment E . (6) A distributed algorithm
A solves an AFD D′ using another AFD D in environment
E . (7) An AFD D is sufficient to solve another AFD D′

in environment E . (8) An AFD D is self-implementable in
environment E .

We remark that when we talk about solving an AFD, the
environment E has no output actions because the AFD has
no input actions except for Î, which are inputs from the
crash automaton. Therefore, we have the following lemma.

Lemma 1. For a crash-problem P , an AFD D, and an
environment E , if P �E D, then for any other environment
E ′ with the same external signature as E , P �E′ D.

Consequently, when we refer to an AFD D being solvable
using a crash problem (or an AFD) P , we generally omit
the reference to the environment automaton and simply say
that P is sufficient to solve D; we denote this relationship by
P � D. Analogously, when we refer to a D being unsolvable
using P , we denote this relationship by P 6� D.

Finally, if an AFD D is sufficient to solve another AFD
D′, then we state that D is stronger than D′, and we denote
that D � D′. If D � D′, but D′ 6� D, then we say that D
is strictly stronger than D′, and we denote that D ≻ D′.

Next, we consider reflexivity of the � relation between
AFDs. We show that for every AFD D, D � D must be
true; that is, every AFD is self-implementable.

6. SELF-IMPLEMENTABILITY OF AFDS
Within the traditional definitions of failure detectors, it is

well known that not all failure detectors self-implementable
(see [6] for a detailed discussion). In contrast we show that
every AFD is self-implementable. Recall that an AFD D
is self-implementable, denoted D � D, iff there exists a
renaming D′ of D such that D � D′.

Algorithm For Self-Implementability. We provide a
distributed algorithm Aself that demonstrates self imple-
mentability of an arbitrary AFD D. First, we fix an arbi-
trary AFD D ≡ (Î, OD, TD). Let D′ ≡ (Î, OD′ , TD′) be a
renaming of D. Let rIO : OD → OD′ and rT : TD → TD′

be the bijections that define the renaming. That is, for each
t ∈ TD and for each x ∈ N

+, if t[x] 6= ⊥, then rT (t)[x] =
rIO(t[x]). The Aself automaton leverages the information
provided by AFD D to solve D′.

The distributed algorithmAself is a collection of automata
Aself

i , one for each location i ∈ Π. Each automaton Aself
i

has the following signature. (1) An input action crashi

which is the output action from the crash automaton. (2)
The set of input actions Fi = {d|d ∈ OD ∧ (loc(d) = i)}
which are outputs of the failure-detector automaton D. (3)
The set of output actions F ′

i = {rIO(d)|d ∈ Fi}.

At each location i, Aself
i maintains a queue fdq of ele-

ments from the range OD; fdq is initially empty. When
event d ∈ Fi occurs at location i, Aself

i adds d to the queue
fdq. The precondition for action d′ ∈ F ′

i at i is that the
head of the queue fdq at i is r−1

IO(d′). When this precondi-
tion is satisfied, and event d′ occurs at i, the effect of this
event is to remove r−1

IO(d′) from the head of fdq. Finally,
when event crashi occurs, the effect of this event is to dis-
able the output actions F ′

i permanently. The pseudocode
for Aself is available in Algorithm 1.

Algorithm 1 Algorithm for showing self-implementability
of asynchronous failure-detector.

The automaton Aself
i at each location i.

Signature:
input di : OD at location i, crashi

output d′i : OD′ at location i
Variables:

fdq: queue of elements from OD, initially empty
failed: Boolean, initially false

Actions:
input crash
effect

failed := true
input d
effect

add d to fdq
output d′

precondition
(¬failed)∧(fdq not empty)∧(r−1

IO(d′) = head(fdq))
effect

delete head of fdq

Correctness. The proof of correctness follows from clo-
sure under sampling and closure under constrained reorder-
ing, but is omitted due to space constraints.

Theorem 2. The distributed algorithm Aself uses AFD
D to solve a renaming of D.

From Theorem 2 we have the following as a corollary.

Corollary 3. Every AFD is self-implementable: for ev-
ery AFD D, D � D.

An immediate consequence of Corollary 3 is that we can
take the union of the relation � between distinct AFDs and
the � relation comparing an AFD and claim that the � re-
lation is transitive. This is captured in the following lemma.

Lemma 4. Given AFDs D, D′, and D′′, if D � D′ and
D′ � D′′, then D � D′′.

7. AFDS AND OTHER CRASH PROBLEMS
In this section, we explore the relative solvability among

AFDs and the consequences of such relative solvability on
other crash problems that can be solved using AFDs. Sec-
tion 7.1 shows that if an AFD D′ is strictly stronger than
another AFD D, then the set of problems that D′ can solve
in a given environment is a strict superset of the set of prob-
lems solvable by D in the same environment. Section 7.2
revisits the traditional notion of a weakest failure detector
for a problem and defines what it means for an AFD to be
a weakest to solve a crash problem in a given set of envi-
ronments. We also introduce the notion of an AFD begin
representative of a problem in a given set of environments.
Section 7.3 shows that a large class of problems, which we
call finite problems, do not have a representative AFD.

7.1 Comparing AFDs
Traditionally, as defined in [4], a failure detector D is

stronger than a failure detector D′ if D is sufficient to solve
D′. This definition immediately implies that every prob-
lem solvable in some environment using D′ is also solvable
in the same environment using D. However, this definition
does not imply the converse; if in every environment every
problem solvable using D′ is also solvable using D, then it
is not necessarily the case that D is stronger than D′.

We demonstrate that in our framework, the converse must
also be true; that is, given two AFDs D and D′, every crash
problem solvable using D′ in a some environment is also
solvable using D in the same environment iff D is stronger
than D′. This is captured by the following theorem:

Theorem 5. For every pair of AFDs D and D′, D � D′

iff for every crash problem P , and every environment E ,
D′ �E P → D �E P .

Proof. The proof is immediate for the case where D =
D′. For the remainder of the proof we fix D and D′ to be
distinct AFDs.

Claim 1: Let D � D′. Fix P to be a crash problem and
E to be an environment. If D′ �E P , then D �E P .

Proof. Assume D′ �E P . There exists a distributed
algorithm AP such that for every fair trace t of the com-
position of AP , with the crash automaton, the channel au-
tomata, and E , if t|Î∪O

D′
∈ TD′ , then t|IP ∪OP

∈ TP .

Since D � D′, there exists a distributed algorithm AD′

such that for every fair trace t of the composition ofAD′

with
the crash automaton and the channel automata, t|Î∪OD

∈

TD ⇒ t|Î∪O
D′

∈ TD′ . Let A be a distributed algorithm

where eachAi at location i is obtained by composingAP
i and

AD′

i . Let TA be the set of all fair traces t of the composition
of A with the crash automaton and the channel automata
such that t|Î∪OD

∈ TD. By the construction of AD′

, we

know that for each such trace t, t|Î∪O
D′

∈ TD′ . Then, by

the construction of AP , we have that t|IP ∪OP
∈ TP , which

immediately implies D �E P .

Claim 2: If, for every crash problem P and every envi-
ronment E , D′ �E P → D �E P , then D � D′.

Proof. Suppose D′ �E P → D �E P , for every crash
problem P and environment E . Specifically, D′ � D′ →
D � D′. Applying Corollary 3, we conclude D � D′.

The theorem follows directly from Claims 1 and 2.

Corollary 6. Given two AFDs D and D′ where D ≻
D′, there exists a crash problem P and an environment E
such that D �E P , but D′ 6�E P ; that is, there exists some
problem P and an environment E such that D is sufficient
to solve P in E , but D′ is not sufficient to solve P in E .

Proof. If D ≻ D′, then D′ 6� D. By the contrapositive
of Theorem 5, there exists a problem P and an environment
E such that D �E P and D′ 6�E P .

7.2 Weakest and Representative AFDs
The issue of weakest failure detectors for problems was

originally tackled in [4] in which a failure detector D is de-
fined as a weakest to solve a problem P if the following two
conditions are satisfied: (1) D is sufficient to solve P , and
(2) any failure detector D′ that is sufficient to solve P is
stronger than D. This definition can be directly translated
to our framework as follows.

An AFD D is weakest for a crash problem P in an envi-
ronment E iff (1) D �E P and (2) for every AFD D′ such
that D′ �E P , D′ � D. An AFD D is a weakest for a crash

problem P in a set of environments Ê iff for every E ∈ Ê , D
is weakest for P in E .

There have been many results that demonstrate weakest
failure detectors for various problems. The proof techniques
used to demonstrate these results have been of two distinct
styles. The first proof technique was first proposed in [4]
and is as follows. To show that DP , which is sufficient to
solve P , is the weakest failure detector to solve problem P
it considers an arbitrary failure detector D that is sufficient
to solve the problem P using an algorithm A. It then con-
structs a distributed algorithm that exchanges the failure
detector D’s outputs and then continually simulates runs
of A using the set of D’s outputs available so far. From
these simulations, an admissible output for DP is extracted.
This proof technique has been used to determine a weakest
failure detector for the so-called one-shot problems such as
consensus [4] and k-set consensus[11].

The second proof technique is simpler and follows from
mutual reducibility. To show that DP , which is sufficient
to solve P , is the weakest failure detector to solve prob-
lem P , it uses a solution to P as a ‘black box’ to design a
distributed algorithm whose outputs satisfy DP . This proof
technique has been used to determine a weakest failure de-
tector for long-lived problems such as mutual exclusion [9,
2], contention managers [12], and dining philosophers [22].

A natural question is, “does the mutual-reducibility based
proof technique work for determining weakest failure detec-
tors for one-shot problems?” We answer this question nega-
tively by introducing the notion of a representative AFD.

Representative AFD. Informally, an AFD is represen-
tative of a crash problem if the AFD can be used to solve
the crash problem and conversely, a solution to the problem
can be used to solve (or implement) the AFD.

Formally, an AFD D is representative of a problem P in
an environment E iff D �E P and P � D. An AFD D is
representative of problem P in a set of environments Ê iff

for every environment E ∈ Ê , D is representative of P in E .
Observe that if an AFD D is representative of a crash

problem P in Ê , then D is also a weakest AFD to solve P

in Ê . However, the converse need not be true. Specifically

if D is a weakest AFD to solve problem P in Ê , it is not

necessary for D to be representative of P in Ê .
In particular, we highlight that the weakest failure detec-

tor results in [23, 22, 13] establish that the eventually perfect
failure detector is representative for eventually fair sched-
ulers, dining under eventual weak exclusion, and boosting
obstruction-freedom to wait-freedom, respectively.

Next, we show that a large class of problems (which we call
finite problems) do not have a representative failure detector
despite having a weakest failure detector.

7.3 Finite Problems and Representative AFDs
In this subsection we define the notion of a finite problem,

which captures what is often referred to as one-shot prob-
lems. Informally speaking, finite problems are those that
have a bounded number of interactions with the environ-
ment. Examples of finite problems include consensus, leader
election, terminating reliable broadcast, and k-set agree-
ment. Examples of problems that are not finite problems
include mutual exclusion, Dining Philosophers, synchroniz-
ers, and other long-lived problems.

Before we define finite problems we need some auxiliary
definitions. A problem P is crash independent if, for every
finite prefix tpre of a trace t ∈ TP , tpre|IP ∪OP \Î is a finite

prefix of some t′ ∈ TP such that t′|Î is empty. In other words,
for every prefix tpre of every trace t ∈ TP , the subsequence
of tpre consisting of exactly the non-crash events is a prefix
of some crash-free trace in TP . For each t ∈ TP , let len(t)
denote the length of the subsequence of t that consists of all
non-crash events. A problem P has bounded length if there
exists a bP ∈ N

+ such that, for every t ∈ TP , len(t) ≤ bP .
If a problem P is crash independent and has bounded

length we say that P is a finite problem.
Before we state the main theorem of this section, recall

that an unsolvable problem is one that cannot be solved in a
purely asynchronous system (i.e. without failure detectors).

Theorem 7. If P is a finite problem that is unsolvable
in an environment E then P does not have a representative
AFD in E .

Proof sketch. Suppose by contradiction that P is a finite
problem that is unsolvable in an environment E , and some
AFD D is representative of P in E . Therefore, there exists
a distributed algorithm AP that uses P to solve D, and
conversely there exists a distributed algorithm AD which
uses D to solve P in E . First we state the following lemma.

Lemma 8. There exists a crash-free finite execution αref

of A having a trace tref such that (1) tref |IP ∪OP
∈ TP , (2)

there are no messages in transit in the final state of αref ,
and (3) for every fair execution α′ that extends αref , the

suffix of α′ following αref has no events in IP ∪OP \ Î.

Before proving Lemma 8, we show why it implies the theo-
rem. From Lemma 8, and crash independence of P , it follows
that for any fair execution α′ (and its associated trace t′) of
A that extends αref then t′|IP ∪OP

∈ TP . Since A solves D
using P we have that t′|ID∪OD

∈ TD.
For each i ∈ Π, let si be the state of process automaton

at i at the end of αref and let fi denote the sequence of
events from OD at location i in αref . Next, we describe
a distributed algorithm A′ which, in every fair execution,
guarantees that each process i will first output the sequence
fi and then behave as AP would behave when starting at
state si.

The distributed algorithm A′ which is identical to AP ex-
cept in the following ways at each i ∈ Π. (1) A′

i has an
additional variable fdqi that is a queue of failure-detector
outputs and its initial value is fi. (2) The initial values of
all other variables in A′

i corresponds to the state si. (3) For
every output action ai ∈ OD at i, A′

i has two actions int(ai)
and ai: (a) int(ai) is an internal action whose associated
state transitions are the same as action ai in AP

i except
that, additionally, int(ai) enqueues the element ai to fdqi.
(b) ai is enabled when element ai is at the head of fdqi .
The effect of ai is to delete the element ai from the head of
fdqi. (4) A

′
i does not contain any action from IP ∪OP \ Î .

By construction and the FIFO property of the queues in
A′ we have the following lemma.

Lemma 9. For every fair execution α (and its trace t)
of A′ with the channel automata and the crash automaton,
there exists a fair execution αAP (and its trace tAP) of the
composition of AP with the crash automaton, and the chan-
nel automaton where tAP |IP ∪OP

∈ TP such that the fol-
lowing is true. (1) αref is a prefix of αAP . (2) t|Î∪OD

is

constrained reordering of a sampling of tAP |Î∪OD
.

Lemma 9 implies that any fair execution α of A′ produces
a trace t such that t|ID∪OD

∈ TD, and therefore A′ solves
D. Therefore, by composing A′

i and AP
i (and their respective

channel automata) at each location i , we obtain a distri-
buted algorithm that solves P in E ; that is, P is solvable in
E . But P is assumed to be unsolvable in E . Thus, we have
a contradiction, and that completes the proof of Theorem
7.

Proof of Lemma 8. Let σ be the set of all fair execu-
tions of A such that for any trace t produced by an execution
in σ it is true that t|IP ∪OP

∈ TP . Let αmax be an execu-
tion in σ which produces the trace tmax that maximizes
len(tmax|IP ∪OP

).
Let αs.pre be the shortest prefix of the execution αmax

which contains all events of IP ∪ OP . Since P is bounded
length it follows that such a prefix exists and is finite, and
furthermore, any extension of αs.pre does not include any

events from IP ∪ OP \ Î because len(tmax|IP ∪OP
) is maxi-

mal. We extend αs.pre to another finite execution αpre by
appending receive events for every message that is in tran-
sit at the end of αs.pre such so that no message is in transit
(and the channels are ‘quiescent’) at the end of αpre

Let ΠC be the set of crashed locations in αpre, and ob-
serve that by assumption after the first crashi event in αpre,

proc(i) does not perform any outputs in αpre. Let αref be
identical to αpre except that all crash events have been re-
moved. For a location i /∈ ΠC the executions αpre and αref

are indistinguishable, and therefore proc(i) must produce
the same output in both executions. For a location i ∈ ΠC

the executions αpre and αref are indistinguishable up to the
point where the first event crashi occurs in αpre, and after
that point there is no other output at i in αpre; therefore
proc(i) must produce the same output in both executions.
Thus, αref is a finite crash-free execution that fulfills the
requirements for the lemma.

8. WEAKEST AFD FOR CONSENSUS
In a seminal result [4], Chandra et. al. established that Ω

is a weakest failure detector to solve crash-tolerant binary
consensus. Recasting the arguments from [4] in our model-
ing framework yields a simpler proof. The proof is split into
two parts, which we discuss separately.

In the first part, as in [4], we construct a tree of possible
executions of an AFD-based solution to consensus. How-
ever, in [4], each edge of such a tree corresponds to a single
event whereas in our framework, each edge corresponds to
a task, which represents a collection of events. Therefore,
we reduce the number of cases for which we have analyze
the tree. Specifically, we look for transitions from a biva-
lent to a monovalent execution.2 Furthermore, the proof
in [4] considers a forest of executions, where each tree in
the forest corresponds to a single configuration of the inputs
to consensus. In contrast, our framework treats inputs for
consensus as events that are performed by the environment
automaton. Therefore, we need analyze only a single tree
of executions. These, two factors simplify the analysis of
AFD-based consensus significantly and yield the following
(paraphrased) claim, which may be of independent interest.

Claim. In the tree of all possible executions of a system
solving consensus using an AFD, the events responsible for
the transition from a bivalent to a univalent execution occur
at a live location.

The second part of the proof uses the above claim to show
that Ω is a weakest AFD to solve consensus. The arguments
are similar to the ones presented in [4], but are simplified by
the above claim.

As in [4], we present a distributed algorithm AΩ which
receives the outputs from the AFD D (which is sufficient to
solve consensus) and solves Ω. The process automata ex-
change the AFD outputs among each other. Based on their
current knowledge of the AFD outputs at various locations,
AΩ

i at each location i continually determines a finite “canon-
ical” FD sequence, denoted ti, which is a prefix of some
sequence in TD. Furthermore, as the execution proceeds,
AΩ

i at each location i obtains increasingly longer sequences
of AFD outputs from other locations. Thus, at each live
location i, AΩ

i constructs increasingly longer canonical FD
sequences ti. Eventually, at each live location i, ti converges
to some unique sequence in tref ∈ TD. More importantly,
for any finite prefix tpre of tref , eventually and permanently,
the canonical sequences ti at each live location i are exten-
sions of tpre.

2Briefly, an execution of the system is v-valent (where v is
either 0 or 1) if the only possible decision at each location,
in the execution or any fair extension of the execution, is v.
A v-valent execution is monovalent. If an execution is not
monovalent, then it is bivalent.

Periodically, at each location i, AΩ
i uses its canonical se-

quence ti to construct a finite tree of executions of depth
di, where di is the length of ti. From this tree, it deter-
mines the “earliest” transition from a bivalent execution to
a monovalent execution of consensus. The location of the
process associated with this transition is provided as the
output of Ω at i. Note that the earliest such transition in
the tree of executions is determined uniquely by the nodes
within some finite depth (say) d of the tree. Let tpre.d be the
prefix of tref of length d. Eventually and permanently, the
canonical sequence ti at each live location are extensions of
tpre.d. Therefore, eventually and permanently, AΩ

i at every
live location i determines the same “earliest” transition from
a bivalent execution to a monovalent execution of consen-
sus. From the claim established in the first part, we know
that the the events responsible for the “earliest” transition
from a bivalent to a univalent execution occur at a some live
location (say) l. Therefore, eventually and permanently, AΩ

i

at every live location i determines l to be the output of the
Ω AFD, which is a unique correct location. Thus AΩ im-
plements the Ω AFD using D. Thus, we show that Ω is a
weakest AFD for consensus.

9. DISCUSSION
Query-Based Failure Detectors. Our framework mod-

els failure detectors as crash problems that interact with
process automata unilaterally. In contrast, many traditional
models of failure detectors employ a query-based interaction
[4, 17]. Since the inputs to AFDs are only the crash events,
the information provided by AFDs can only be about process
crashes. In contrast, query-based failure detectors receive in-
puts from the crash events and the process automata. The
inputs from process automata may “leak” information about
other events in the system to the failure detectors We illus-
trate the ability of query-based failure detectors to provide
such additional information with the following example.

Applying Theorem 7 we know that consensus does not
have representative failure detectors. However, if we con-
sider the universe of query-based failure detectors, we see
that consensus has a representative query-based failure de-
tector, which we call a participant failure detector. A par-
ticipant failure detector outputs the same location ID to all
queries at all times and guarantees that the process automa-
ton whose associated ID is output has queried the failure
detector at least once (observe that this does not imply that
said location does not crash, just that the location was not
crashed initially).

It is easy to see how we can solve consensus using the
participant failure detector. Each process automaton sends
its proposal to all the process automata before querying the
failure detector. The output of the failure detector must be
a location whose process automaton has already sent its pro-
posal to all the process automata. Therefore, each process
automaton simply waits to receive the proposal from the
process automaton whose associated location ID is output
by the failure detector and then decide on that proposal.

Similarly, solving participant failure detector from a solu-
tion to consensus is also straightforward. The failure detec-
tor implementation is as follows. Upon receiving a query, the
process automaton inputs its location ID as the proposal to
the solution to consensus. Eventually, the consensus solution
decides on some proposed location ID, and therefore, the ID
of some location whose process automaton queried the fail-

ure detector implementation. In response to all queries, the
implementation simply returns the location ID decided by
the consensus solution.

Thus, we see that query-based failure detectors may pro-
vide information about events other than crashes. Further-
more, unlike representative failure detectors, a representa-
tive query-based failure detector for some problem P is not
guaranteed to be a weakest failure detector for problem P .
In conclusion, we argue that unilateral interaction for failure
detectors is more reasonable than a query-based interaction.

Future Work. Our work introduces AFDs, but the larger
impact of AFD-based framework on the existing results from
traditional failure-detector theory needs to be assessed. The
exact set of failure detectors than can be specified as AFDs
remains to determined. It remains to be seen if weakest fail-
ure detectors for various problems are specifiable as AFDs,
and if not, then the weakest AFDs to solve these problems
are yet to be determined. We are yet to investigate if the
results in [17] hold true for AFDs and if every problem (as
defined in [17]) has a weakest AFD. The exact characteri-
zation of problems that have a representative AFD and the
problems that do not have a representative AFD is unknown.

10. ACKNOWLEDGMENTS
This work is supported in part by NSF Award Num-

bers CCF-0726514, CCF-0937274, and CNS-1035199, and
AFOSR Award Number FA9550-08-1-0159. This work is
also partially supported by Center for Science of Informa-
tion (CSoI), an NSF Science and Technology Center, under
grant agreement CCF-0939370.

11. REFERENCES
[1] M. K. Aguilera, S. Toueg, and B. Deianov. Revisiting

the weakest failure detector for uniform reliable
broadcast. In Proc. of 13th International Symposium
on Distributed Computing, pages 19–34, 1999.

[2] V. Bhatt, N. Christman, and P. Jayanti. Extracting
quorum failure detectors. In Proc. of 28th ACM
symposium on Principles of distributed computing,
pages 73–82, 2009.

[3] V. Bhatt and P. Jayanti. On the existence of weakest
failure detectors for mutual exclusion and k-exclusion.
In Proc. of the 23rd International Symposium on
Distributed Computing, pages 311–325, 2009.

[4] T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus. Journal
of the ACM, pages 685–722, 1996.

[5] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. J. ACM,
43(2):225–267, 1996.

[6] B. Charron-Bost, M. Hutle, and J. Widder. In search
of lost time. Information Processing Letters, 2010.

[7] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui.
A realistic look at failure detectors. In Proc. of
International Conference on Dependable Systems and
Networks, pages 345–353, 2002.

[8] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui,
V. Hadzilacos, P. Kouznetsov, and S. Toueg. The
weakest failure detectors to solve certain fundamental
problems in distributed computing. In Proc. of 23rd
ACM Symposium on Principles of Distributed
Computing, pages 338–346, 2004.

[9] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and
P. Kouznetsov. Mutual exclusion in asynchronous
systems with failure detectors. Journal of Parallel and
Distributed Computing, pages 492–505, 2005.

[10] C. Fetzer, F. Tronel, and M. Raynal. An adaptive
failure detection protocol. In Proc. of the Pacific Rim
International Symposium on Dependable Computing,
pages 146–153, 2001.

[11] E. Gafni and P. Kuznetsov. The weakest failure
detector for solving k-set agreement. In Proc. of 28th
ACM symposium on Principles of distributed
computing, pages 83–91, 2009.

[12] R. Guerraoui, M. Kapalka, and P. Kouznetsov. The
weakest failure detectors to boost obstruction-freedom.
Distributed Computing, pages 415–433, 2008.

[13] R. Guerraoui, M. Kapalka, and P. Kouznetsov. The
weakest failure detectors to boost obstruction-freedom.
Distributed Computing, pages 415–433, 2008.

[14] R. Guerraoui and P. Kouznetsov. On the weakest
failure detector for non-blocking atomic commit. In
Proc. of 17th IFIP World Computer Congress - TC1
Stream / 2nd IFIP International Conference on
Theoretical Computer Science: Foundations of
Information Technology in the Era of Networking and
Mobile Computing, pages 461–473, 2002.

[15] R. Guerraoui and P. Kouznetsov. The weakest failure
detector for non-blocking atomic commit. Technical
report, EPFL, 2003.

[16] J. Y. Halpern and A. Ricciardi. A knowledge-theoretic
analysis of uniform distributed coordination and
failure detectors. In Proc. of 18th ACM symposium on
Principles of distributed computing, pages 73–82, 1999.

[17] P. Jayanti and S. Toueg. Every problem has a weakest
failure detector. In Proc. of 27th ACM symposium on
Principles of distributed computing, pages 75–84, 2008.

[18] N. A. Lynch. Distributed Algorithms. Morgan
Kaufmann, 1996.

[19] S. M. Pike, S. Sastry, and J. L. Welch. Failure
detectors encapsulate fairness. In 14th International
Conference Principles of Distributed Systems, pages
173–188, 2010.

[20] S. Rajsbaum, M. Raynal, and C. Travers. Failure
detectors as schedulers (an algorithmically-reasoned
characterization). Technical Report 1838, IRISA,
Université de Rennes, France, 2007.

[21] S. Rajsbaum, M. Raynal, and C. Travers. The iterated
restricted immediate snapshot model. In Proc of 14th
International Conference on Computing and
Combinatorics, pages 487–497, 2008.

[22] S. Sastry, S. M. Pike, and J. L. Welch. The weakest
failure detector for wait-free dining under eventual
weak exclusion. In Proc. of 21st ACM Symposium on
Parallelism in Algorithms and Architectures, pages
111–120, 2009.

[23] Y. Song, S. M. Pike, and S. Sastry. The weakest
failure detector for wait-free, eventually fair mutual
exclusion. Technical Report TAMU-CS-TR-2007-2-2,
Texas A&M University, 2007.

[24] N. C. Vibhor Bhatt and and P. Jayanti. Extracting
quorum failure detectors. In Proc. of 28th ACM
Symposium on Principles of Distributed Computing,
pages 73–82, 2009.

