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ABSTRACT 
Simultaneously controlling increasing numbers of robots requires 
multiple operators working together as a team. Helping operators 
allocate attention among different robots and determining how to 
construct the human-robot team to promote performance and 
reduce workload are critical questions that must be answered in 
these settings. To this end, we investigated the effect of team 
structure and search guidance on operators’ performance, 
subjective workload, work processes and communication. To 
investigate team structure in an urban search and rescue setting, 
we compared a pooled condition, in which team members shared 
control of 24 robots, with a sector condition, in which each team 
member control half of all the robots. For search guidance, a 
notification was given when the operator spent too much time on 
one robot and either suggested or forced the operator to change to 
another robot. A total of 48 participants completed the experiment 
with two persons forming one team. The results demonstrate that 
automated search guidance neither increased nor decreased 
performance. However, suggested search guidance decreased 
average task completion time in Sector teams. Search guidance 
also influenced operators’ teleoperation behaviors. For team 
structure, pooled teams experienced lower subjective workload 
than sector teams. Pooled teams communicated more than sector 
teams, but sector teams teleoperated more than pool teams.  

Categories and Subject Descriptors 
J.7 [Computers in Other Systems] 

General Terms 
Experimentation, Human Factors 

Keywords 
Multiple Robots, Teamwork, Communication, Urban Search and 
Rescue 

1. INTRODUCTION 
Enhanced autonomy makes it possible for one operator to control 
multiple robots. It releases an operator from manually controlling 
each robot and makes it possible to do tasks requiring monitoring, 
coordination, and complex decision-making. However, the 
required cognitive load for controlling multiple robots could 

easily exceed that of a single operator, even with higher levels of 
automation. Teams are increasingly called upon to perform 
complex cognitive tasks that are less efficiently done by, and 
sometimes cannot be accomplished by, an individual. Although 
teamwork may impose extra workload related to coordination and 
communication, teams have the potential of offering greater 
adaptability, productivity, and creativity than any one individual 
can offer. Moreover, teams can provide more complex, 
innovative, and comprehensive solutions [5].  

Unfortunately, the benefits of teamwork do not always occur 
naturally, and teams can fail for many reasons [14]. Factors such 
as poor combination of individual efforts, a breakdown in internal 
team processes (e.g., communication), and improper use of 
available information have been identified as potential sources of 
team failure [15]. In addition, when people collaborate with 
autonomous systems, system complexity inevitably increases, and 
automation can change the way people coordinate with each other 
[12]. To enable collaborative human-automation team 
interactions, we must therefore understand the nature of such 
teamwork, including outcomes, processes and dynamics.  

Teaming difficulties in controlling multiple robots lead to the 
following research questions. First, is it possible to design 
automated decision support tools to improve performance and 
reduce workload when controlling multiple robots? Second, how 
does the organization and structure of team members affect 
performance, workload and communication?  

The remainder of the paper proceeds as follows. In Section 2, we 
review related work. In Section 3, we introduce the research 
questions and describe an urban search and rescue experiment, 
including the testbed and experimental procedure. In Section 4, 
we describe the statistical results from the experiment. In Section 
5, we summarize and discuss the results. 

2. RELATED WORK 
2.1 Allocating Attention across Multiple 
Robots  
Controlling multiple autonomous robots is complex. When 
supervising a team of robots in a time-critical situation, the time 
and attention resources of operators are limited since operators are 
known to process complex tasks in a serial fashion [16]. As a 
result, there is a temporal opportunity cost associated with each 
task, and an implicit cost-benefit analysis that operators must 
perform in order to best allocate their attention across competing 
tasks. In the neglect tolerance model [3], an operator interacts 
with one robot for a period called Interaction Time (IT), then 
neglects it for a period called Neglect Time (NT) to interact with 
other robots before the first robot must be revisited to maintain 
performance. The number of independent homogenous robots that 
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a single operator can control is calculated by NT/IT+1. Further 
studies showed that the number of robots an operator can control 
is affected by other factors such as the nonlinear increasing 
complexity [9] and switching cost between robots [2]. 

Previous work in automated visual search task allocation for 
single operator-multiple unmanned vehicle environments by 
Bertuccelli et al. [1] has shown that automated search guidance 
can improve operator performance in terms of overall mission 
probability of detection and lower workload by influencing 
switching times. This form of search guidance was hypothesized 
to be beneficial also in the context of team scenarios, where 
resources were distributed across operators, who could benefit 
from recommendations for when to switch to new search tasks. 

2.2 The Role of Team Structure 
Team structure is another important factor hypothesized to affect 
team effectiveness for the search and rescue setting [8].   Team 
structure can be described as the work assignment and 
communication architecture. Work assignment is the “manner in 
which the task components are distributed among team members” 
[13]. How the team is structured is closely related to 
communication, coordination and team performance. 

The team structure that is suitable for a specific scenario largely 
depends on the task characteristics and resources available [11]. 
For a team of operators working together with multiple 
homogeneous unmanned vehicles, two possible ways to organize 
the vehicles are as Sectors or as a Shared Pool [7]. In the Sector 
condition, each operator controls a portion of all the vehicles. In 
the Shared Pool condition, operators share the control of all the 
robots and service them as needed. Sector assignment, which is 
how modern day air traffic control is architected, can reduce the 
number of robots the operator must monitor and control. 
However, the Shared Pool condition offers a more flexible 
scheduling advantage of load balancing since any operator in the 
team can service any robot as needed. In addition, for monitoring 
applications, the Shared Pool offers a redundant observer 
advantage, such that a second operator with partially overlapping 
perceptual judgments may detect victims missed by the first 
operator. 

Coordinated action lies at the heart of effective team performance. 
Communication is an important method of explicit coordination. 
It also relates to building an accurate understanding of team 

members’ needs, responsibilities, and expected actions [11]. 
Communication also requires cognitive and attention resources, 
and may be hindered because the environment has become 
stressful and team members focus on their individual tasks rather 
than on how those tasks affect other team members [15]. 

Previous research by Lewis and Wang et al. [8] investigated the 
effect of autonomous path planning versus manual control and 
team structure in a Urban Search and Rescue (USAR) setting. 
They found automating path planning improved system 
performance but it may weaken situation awareness. For team 
structure, no significant difference on performance was found, but 
teams that shared the control of all robots had slightly lower 
workload. 

Using a similar experiment setting, we investigated similar issues 
including 1) Understanding the role of automated search guidance 
on operator and team performance, workload and communication 
when controlling multiple robots, and 2) Understanding the role of 
team structure on overall mission performance, subjective 
workload, and working process.  This experiment is detailed in the 
next section. 

3. EXPERIMENT DESIGN 
3.1 Testbed 
USARSim, a robotic simulation performing Urban Search and 
Rescue (USAR) tasks [10], was used to provide the underlying 
simulation for the testbed. MrCS (Multi-robot Control System), a 
multi-robot communications and control infrastructure with an 
accompanying user interface was used as the control interface. 
MrCS provides facilities for starting and controlling robots in the 
simulation, displaying camera and laser range finder output, and 
supporting inter-robot communication through Machinetta, a 
distributed multi-agent system developed at Carnegie Mellon 
University [4]. Figure 1 shows the elements of the MrCS 
displayed on a dual display computer. Thumbnails of robot 
camera feeds are shown on the left screen. A video feed of interest 
is on the top left of the right screen. Under the video feed, a GUI 
element in the bottom left allows teleoperation and camera pan 
and tilt. The right shows the current area map and allows 
operators to mark the location of victims. 

 

 
Figure 1: Interface for operating vehicles 



 

 
Figure 2: Operation procedure 

 

In MrCS, each robot is capable of updating a map, planning their 
routing and sending back video feed to operators. The operators’ 
tasks were to explore the environment and identify as many 
positions of victims as possible. There was little interdependency 
between robots. In this experiment, robots were started in 
different regions and explored the environment automatically. The 
operators guided the robots in the environment in order to find the 
victims. The general workflow of a single operator is shown in 
Figure 2. When a victim appeared in the camera of a robot and 
was detected by the operator, the operator’s task was to select the 
robot, teleoperate the robot to bring the victim back into the 
camera view and mark the location of the victim on the map. This 
was the time the operator devoted to serve the robot, labeled as 
service time/service time out in Figure 2. After that, the operator 
continued monitoring all the robots and guided the robots to 
explore the environment. Most of the time robots were moving 
around using autonomous path planning, and the operator only 
needed to monitor the thumbnails of video feeds. It also happened 
that the operator used teleoperation to manually control the robots 
to send them to a specific unexplored place. This free 
searching/teleoperation period stopped until a new victim 
appeared in a camera view, and the operator selected this robot to 
start a new task.  

3.2 Independent Variables 
The goal of this experiment was to investigate the effect of search 
guidance and team structure on operator and team performance, 
workload and communication in an Urban Search and Rescue task 
with multiple robots.  

A new automated search assistant was designed and inserted into 
the testbed that recommended an appropriate time for operators to 

interrupt their current searches and investigate other imagery. The 
three types of automated schedule assistants were as follows: 

1) In the Off (O) condition, participants received no decision 
support and each participant was tasked to search and mark the 
victims, and teleoperate a selected robot when needed.   

2) The Suggested (S) condition gave a notification when the 
operator spent more than 30 seconds on a robot, and 
recommended that the operator move on to another robot.  

3) The Enforced (E) condition gave a notification when the 
operator spent more than 30 seconds on a robot and switched to 
another robot automatically after 5 seconds.  

Thirty seconds was chosen as the threshold criteria based on 
previous study [1, 8, 9] and pilot test of the experiment. In 
previous studies on visual search tasks [1], the possibility of 
finding a target was shown to decrease as more time was spent on 
the visual search task. The probability was estimated to be 0.8 for 
26 seconds spent on searching. In another experiment for USAR 
tasks [8], the mean time from a robot being selected to a victim 
being marked under autonomous control was approximately 35 
seconds. We selected 30 seconds as the threshold so that an 
operator was given reasonable amount of time to finish the task if 
a victim was successfully located and was prevented from 
spending too much time on a low probability search task if the 
operator failed to locate the victim. This threshold was validated 
in pilot tests as well. 

In this experiment, operators were grouped into two types of team 
structures: 

1) In Sector (S) teams, each participant controlled half of all the 
robots, for a total of 12 robots. Locations of their teammates’ 
robots were shown on the map, but video feed from their 
teammates’ robots could not be seen.   

2) In Pool (P) teams, two operators shared the control of all the 
robots. They were able to see the video feed of all robots and 
control any robot not under control by a teammate.  

3.3 Dependent Variables 
Dependent variables included task performance metrics, 
subjective workload, operator measures and communication as 
team measure. Task performance metrics included number of 
victims found, number of deletes, number of errors in marking 
victims, number of victims missed, and percentage of area 
explored. Number of victims found was evaluated based on the 
distance between the mark position and real position of the victim. 
A mark was correct if the distance was less than one meter, 
otherwise it was an error. Number of deletes was the number of 
marks deleted by the operator. Deletes happened when a victim 
was not accurately marked previously or was marked for more 
than once, and this measure was related to the accuracy of 
marking victims. Subjective workload ratings were obtained 
through the NASA-TLX [6], which measures six sub dimensions. 
Operator measures included display-to-mark time, select-to-mark 
time, teleoperation frequency, duration and total teleoperation 
time. Communication was evaluated based on total 
communication time. All the dependent variables were 
summarized in Table 1 along with their definitions.  

 

 

 



Table 1: Dependent Variables 

Category Dependent Variables 

Task 
performance 
metrics 

Found: number of victims mark in the 
correct position 

Error: number of marks in the wrong 
position 
Deletes: number of marks deleted 
Missed: number of victims that appeared in 
the camera but were not marked 

Percentage of area explored: area 
explored/total area 

Workload NASA-TLX rating 

Operator 
Measures 

Teleoperation duration: length of 
teleoperation period before marking victim 
or robot selection 

Teleoperation frequency: number of 
teleoperation 

Total teleoperation time: total amount of 
time spent on teleoperation 

Display-to-mark time: time from victim 
appearing in the camera to being marked 

Select-to-mark time: time from robot 
selection to victim being marked 

Team Measure: 
Communication 

Communication time: total time spent 
communicating with team member 

3.4 Procedure 
The experiment began with a 15-minute training session prior to 
three 25-minute test sessions. Participants were tested in groups of 
two to facilitate teamwork in performing the USAR task. Each 
participant controlled 12 robots individually in the Sector 
condition, or all 24 robots in the Shared Pool condition. Each pair 
of participants performed all three search guidance conditions. 
The three conditions were randomized and counterbalanced to 
limit any learning effect. Audio and screen recordings were 
collected during the experiment. Subjective workload was rated 
using the NASA-TLX at the end of each session. 

3.5 Participants 
A total of 48 participants, aged 19 to 47 years old, participated in 
the experiment. The average age was 26.6 years, with a standard 
deviation (SD) of 5.5. Among them, 19 were female and 29 were 
male. Thirty-three of the participants were undergraduate or 
graduate students, and 15 had other occupations. Twenty-two of 
the participants did not play video games regularly. The average 
time playing video game per week for the remaining 26 
participants was 4.1 hours (SD = 4.9). The correlation between 
hours spent on video games and average individual performance 
was not significant (p = 0.354). 

4. RESULTS 
Data logged during the experiment were post processed to obtain 
performance and process data. The criterion for a successfully 
marked victim was that the position of the mark was within one 
meter of the true position of the victim, which was the same 
criterion as in the study of Lewis et al. [8] In order to find the time 
when a victim appeared in the camera, we drew the visible areas 

of all victims using ray tracing. If the robot was in the visible area 
for a victim, and its field of view contained the victim, this victim 
was declared visible on this robot’s camera. By calculating these 
quantities, we were able to obtain the number of victims missed, 
and record the display-to-mark time. All the other dependent 
variables were calculated directly from the user interaction log. 
The results were analyzed based on the three experiment sessions 
from four aspects: task performance metrics, subjective workload, 
operator measures and communication as team measure. Data in 
the training session was not included in the analysis. 

4.1 Task Performance Metrics 
The dependent variables of number of victims found, number of 
errors and percentage of area explored were analyzed using 
analysis of variance (ANOVA). The number of marks deleted and 
number of victims missed were analyzed using nonparametric 
tests since they did not satisfy the ANOVA assumptions of 
normality and/or homogeneity. An alpha of 0.05 was used in the 
analysis, and a p-value between 0.05 and 0.1 was defined as 
marginal significant. 

For number of victims found, no significant effect was found for 
either of the primary independent factors. Session order, a 
secondary independent variable that represents the order the three 
search guidance conditions were performed, was shown to have a 
significant effect on number of victims found (Figure 3). After 
removing data from the first session of each experiment due to a 
learning effect, the interaction between team structure and search 
guidance showed a marginally significant effect (F=2.591, 
p=0.087). The Sector team had better performance without 
automated search guidance (Mean = 22.8, SD =3.73), while Pool 
teams worked better with enforced search guidance (Mean = 22.6, 
SD = 4.43), as shown in Figure 4.  

 
Figure 3: Number of victims found versus session order 

 

 
Figure 4: Interaction effect of team structure and search 

guidance on number of victims found 



Although number of victims found was evaluated at the team 
level, operators in teams have difference on victims found by 
individual team members. Operators in Pools teams have 
significant larger difference on individual performance than in 
Sector teams (p=0.036), as shown in Figure 5. 

 
Figure 5: Difference on number of victims found by individual 

team members 
 

For number of marks deleted (Figure 6), a marginally significant 
effect was found for team structure (p=0.066). Search guidance 
did not demonstrate a significant effect. Pool teams (Mean = 8.3, 
SD = 5.49) deleted more than Sector teams (Mean = 6.0, SD = 
3.02), indicating Pool teams corrected themselves more often. 
Deletes also happened when a victim was marked by both 
operators, which could only happen in Pool teams. One interesting 
note is that the standard deviation of deletes with no search 
guidance of Sector teams (SD=1.946) is much lower than in the 
other conditions, as shown in Figure 6. This means the deleting 
behavior was more consistent across different operators under the 
Sector condition, and operators were less affected by their 
teammate.  

 
Figure 6: Number of deletes 

 
No significant main effects were found for number of errors, 
number of victims missed and percentage of area explored across 
either the automated search guidance or structure independent 
factors. Moreover, these performance indicators were correlated 
with each other. Area explored was positively correlated with 
number of victims found by team (r=0.470, p<0.001). This is 

because when larger area was explored, there was a larger chance 
of finding a new victim. The number of victims found was 
expectedly negatively correlated with number of victims missed 
(r=-0.514, p<0.001) and number of errors (r=-0.691, p<0.001). In 
other words, teams that found more victims made fewer errors and 
missed fewer victims. 

4.2 The Effect on Subjective Workload 
Subjective workload using NASA-TLX was analyzed using non-
parametric tests. Box plots of subjective workload under different 
conditions are shown in Figure 7. Mann-Whitney tests for the 
effect of team structure showed a significant effect on workload 
(p=0.042). Operators in Pool teams demonstrated lower workload 
on average than those in Sector teams. When analyzing each 
dimension of workload (mental demand, physical demand, 
temporal demand, performance, effort and frustration) separately, 
team structure had a significant effect on effort (p=0.032) and 
frustration (p=0.005). This was consist with previous study [8], in 
which a slight advantage in workload was observed favoring the 
Pool structure. One reason may be that in the sector team 
conditions, operators felt a lot of pressure because if they missed a 
victim, no one backed them up. Furthermore, in Pool teams, it is 
possible to balance the workload according to operators’ 
individual abilities. When one operator was better at finding 
victims, it is possible he/she could share the burden of the less 
skilled teammate and did not report excessive workload. In Sector 
teams, all the work was split equally regardless of ability. We then 
analyzed subjective workload at the team level by taking the 
maximum, minimum and average of individual team members’ 
subjective workload. Results show that maximum workload of the 
team members in Pool teams is significantly lower than in Sector 
teams (p=0.012), while average workload and minimum workload 
did not significantly differ. This result, combined with the 
significantly larger difference on individual performance in terms 
of number of victims found within Pool teams (Figure 5), suggests 
a workload balancing process or back-up behavior in Pool teams. 

 
Figure 7: Subjective workload 

4.3 The Effect on Operator Measures 
The operator measures included the mean duration of 
teleoperation, frequency and total time of teleoperation, display-
to-mark time and select-to-mark time. Total time of teleoperation 
was analyzed using ANOVA, while all the others were analyzed 
using nonparametric analysis because normality assumptions were 
not satisfied.  



  
(a)                                            (b) 

Figure 8: (a) Average teleoperation duration (seconds) and  
(b) teleoperation frequency 

Search Guidance was found to have a significant effect on the 
duration (p<0.001) and frequency of teleoperation (p<0.001). As 
shown in Figure 8, under the enforced condition, the duration was 
shorter (Mean=21.7, SD=5.31, p=0.001) and the frequency was 
higher (Mean=50, SD=10.77, p<0.001) than under the suggested 
condition. Under the suggested condition, the duration was shorter 
(Mean=29.3, SD=11.55, p=0.025) and the frequency was higher 
(Mean=42.19, SD=13.79, p=0.045) than without search guidance. 
No significant effect of team structure was found for duration 
(p=0.687) and frequency of teleoperation (p=0.184). 

For total time of teleoperation (Figure 9), team structure had a 
significant effect (p=0.001). Sector teams (Mean = 1166.7, SD = 
194.20) spent more time on teleoperation than Pool teams (Mean 
= 1055.4, SD = 236.66) on average. Search guidance had a 
marginal significant effect (p=0.078). Operators expectedly spent 
more time on teleoperation when there was no search guidance 
condition, followed by the suggested condition and the enforced 
condition. 

 
Figure 9: Total teleoperation time (seconds) 

No significant main effect was found for display-to-mark time 
from either team structure (p=0.368) or search guidance (p=0.309). 
However, there was an interaction effect of search guidance and 

team structure. As shown in Figure 10, search guidance 
significantly affected mean display-to-mark time in Sector teams 
(p=0.024). The teams in suggested search guidance condition had 
the lowest mean display-to-mark time (mean=88. 0s, SD=58.9s), 
followed by no guidance (mean=103.2s, SD=59.1s) and enforced 
guidance (mean=128.6s, SD=70.8s). This indicates that suggested 
search guidance helped the operator notice and mark victims 
faster when they appeared in the camera, which is very important 
for such a time-critical task environment. The increase in time in 
enforced guidance condition may be due to the interruption in the 
current operation and extra time to regain situation awareness. In 
Pool teams, the effect of search guidance was insignificant, 
suggesting that display-to-mark time is affected by a more 
efficient team process, i.e., one team member can start working on 
a robot with a victim in view when the other is busy. 

 
Figure 10: Average display-to-mark time (seconds) 

For select-to-mark time (Figure 11), search guidance was found to 
have a significant effect (p=0.000), but no significant effect was 
found for team structure (p=0.331). For search guidance, it 
shortened the time to finish a task as expected. Operators may 
speed up their operations when a notification popped up. The 
change was more meaningful for the difference between Off 
condition and Suggested condition, because under enforced 
condition, this change may result from reselection of the same 
robot when the system switched to another robot automatically. 
For team structure, it did not have a significant effect on the time 
operators spent to serve a single robot. In other words, it didn’t 
affect the task level operations. 

 
Figure 11: Average select-to-mark time (seconds) 

Since teleoperation played an important role in operators’ 
behavior, we analyzed the correlation between total teleoperation 



time of each operator, subjective workload, the number of victims 
found by each individual operator and team performance. Total 
teleoperation time was not significantly correlated with the overall 
subjective NASA TLX workload (r=-0.004, p=0.965). However, 
it was significantly moderately correlated with the dimension of 
mental demand (r=0.372, p=0.001), so not surprisingly, using 
teleoperation was difficult. 

There was a significant but weak correlation between total 
teleoperation time and number of victims marked by each 
operator (r=0.189, p=0.023). The total teleoperation time for the 
team of two operators was combined and analyzed with relation to 
team performance. It was found that total teleoperation time more 
strongly positively correlated with percentage of area explored (r= 
0.431, p=0.000). Since autonomous path planning was used, the 
percentage of area explored largely depended on how much the 
operators changed the behavior of robots by manually redirecting 
them. In many situations, operators were not satisfied with the 
performance of autonomous path planning, so they controlled the 
robots using teleoperation to send them to the places they wanted 
the robots to go.  

Lastly, total teleoperation time moderately correlated negatively 
with number of deletes (r=-0.331, p=0.005). With more 
teleoperation, operators could position the robots nearer to 
victims, which resulted in an increase in accuracy, thus a decrease 
in correcting behavior. No correlation was found between 
teleoperation time and number of victims found, number of errors 
or number of victims missed. 

4.4 The Effect on Communication 
During the experiment, participants were allowed to talk with 
each other. In such a high workload scenario, almost all the 
communication was mission-related. Teams who communicated 
discussed what strategies to use when exploring the area, updated 
his or her status with the teammate, requested his or her 
teammate’s status or shared experiences with controlling the 
robots. In contrast, some teams did not communicate at all. A 
nonparametric analysis of the time spent on communication shows 
that team structure had a significant effect on communication time 
(p=0.004). As shown in Figure 12, Pool teams (Mean = 177.7, SD 
= 198.74) expectedly communicated more than Sector teams 
(Mean = 53.44, SD = 80.97), on average. Search guidance did not 
have a significant effect on communication time (p=0.865). 
Session order was found to have a marginally significant effect 
(p=0.098).  

 
Figure 12: Communication time (seconds) 

Further analyses on the correlation between communication with 
team performance and subjective workload revealed that 
communication time was moderately negatively correlated with 
errors (r=-0.309, p=0.008). In other words, teams that 
communicated more tended to make fewer errors. This negative 
correlation between communication time and number of errors 
exists for Pool teams but not for Sector teams. This result, 
combined with the larger number of deletes in Pool teams, 
suggests that mutual performance monitoring exists such that 
team members correct themselves and their teammates, facilitated 
by communication. Communication time was marginally 
significantly correlated with number of victims marked by teams 
(r=0.202, p=0.088). No significant correlation was found between 
communication time and number of deletes, number of victims 
missed, or subjective workload ratings. 

5. DISCUSSION AND CONCLUSION 
Although automated search guidance did not improve 
performance, it did not decrease it either. For teams under the 
Pool condition, it appeared beneficial to have an enforced search 
guidance to keep them from fixating on a single robot. In Sector 
teams, suggested search guidance helped operators mark victims 
faster when they appeared in the cameras. Furthermore, adding 
automated search guidance to the system changed operators’ 
behavior in terms of teleoperation and select-to-mark time. By 
putting a threshold on time, search guidance shortened the episode 
of operation on teleoperation and select-to-mark. This changed 
behavior may be because operators hastened their operations 
when there was a notification, and partly due to reselection under 
Enforced condition. So in this experiment, spending less time on 
tasks did not significantly affect task performance.  

When answering open-ended questions at the conclusion of the 
experiment, some participates said it was good to have a 
notification but the enforced change was annoying. In addition, 
although all the robots were the same, their importance was 
different according to their position in the environment. Robots 
near an unexplored area were more valuable than those in a 
thoroughly searched area. In this case, improving the automated 
search guidance by including location-related information and 
encouraging the operator to investigate unexplored area could 
increase the overall benefit of such a decision support tool. 

Pool team structure was shown to be better than Sector structure 
in terms of experiencing lower workload but similar task 
performance. Although Pool teams corrected themselves more 
often, they had lower subjective workload. Pool teams also 
communicated more while Sector teams teleoperated more. Pool 
teams appeared to better balance workload among team members 
according to abilities. This conclusion was supported by the lower 
maximum subjective workload and larger difference on individual 
performance in Pool teams. This suggests the reduced subjective 
workload in the Pool condition was because teammates could 
provide back up if needed.  

Teams with different structures did not show a significant 
difference in their task performance, except for number of deletes. 
The reason may be that they used different strategies to cope with 
the situation. Sector teams communicated less and teleoperated 
more, with the opposite generally true for Pool teams. One 
explanation is that in the Sector condition, operators had more 
time to spend on teleoperation since communication was not 
explicitly needed. The increased time spending on teleoperation 
extended the area they explored and increased the chances of 
finding new victims. On the other hand, the shared control of 



robots promoted communication in teams under the Pool 
structure, which was also good for task performance since teams 
with more communication tend to make fewer errors. The reason 
may be that they corrected each other via communication, which 
led to fewer errors. 

Overall in this study, operators tended to be robust to whatever 
structure they were assigned. Moreover, improvements could be 
made to the automated search guidance tool as the threshold for 
suggesting or enforcing a change was rudimentary. With a more 
context-sensitive tool, possibly based on an individual operator’s 
strengths or limitations, it is possible that greater performance 
improvements could have been seen. In addition, an experimental 
confound that necessarily exists is the fixed number of victims in 
the environment, which bounds the performance on number of 
victims found. This also means the chance of finding a new victim 
decreases over time. The advantage of a team that is faster in 
marking victims over slower teams may not be shown on ultimate 
team performance. From this point, process measures are 
important and should be further investigated. We leave these 
issues as areas of future research. 
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