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Figure 1: When stereo content (a; b) is manipulated (c), we quantify the perceived change considering luminance, and disparity (d), whereas
previous work leads to wrong predictions (e) e. g., for low-texture areas, fog, or depth-of-field (arrows).Please note that all images in the paper,
except for disparity and response maps are presented in anaglyph colors.

Abstract

Binocular disparity is one of the most important depth cues used
by the human visual system. Recently developed stereo-perception
models allow us to successfully manipulate disparity in order to
improve viewing comfort, depth discrimination as well as stereo
content compression and display. Nonetheless, all existing models
neglect the substantial influence of luminance on stereo perception.
Our work is the first to account for the interplay of luminance con-
trast (magnitude/frequency) and disparity and our model predicts
the human response to complex stereo-luminance images. Besides
improving existing disparity-model applications (e. g., difference
metrics or compression), our approach offers new possibilities, such
as joint luminance contrast and disparity manipulation or the opti-
mization of auto-stereoscopic content. We validate our results in a
user study, which also reveals the advantage of considering lumi-
nance contrast and its significant impact on disparity manipulation
techniques.
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1 Introduction

The human visual system (HVS) combines information coming from
many different cues [Howard and Rogers 2002] to determine spatial

layout. Binocular disparity, due to differences of the projected retinal
positions of the same object in both eyes, is one of the strongest cues,
in particular for short ranges (up to 30 meters) [Cutting and Vishton
1995]. Current 3D display technology allows us to make use of
binocular disparity, but, in order to ensure viewing comfort, disparity
should be limited to a so-called comfort zone [Rushton et al. 1994;
Lambooij et al. 2009; Shibata et al. 2011]. Smaller screens often
imply a smaller disparity range, auto-stereoscopic displays only
have a reduced depth of field, and artistic manipulations can enhance
certain features [Ware et al. 1998; Jones et al. 2001; Lang et al. 2010;
Didyk et al. 2011]. Whenever such modifications are applied, it is
important to analyze the impact. Furthermore, such a prediction also
leads to a better control of the changes. However, so far, no existing
perception model considers the influence of RGB image content
on depth perception. Intuitively, a certain magnitude of luminance
contrast is required to make disparity visible, while stereopsis is
likely to be weaker for low-contrast and blurry patterns. In this work,
we show that luminance contrast (magnitude/frequency) does have
a significant impact on depth perception and should be taken into
account for a more faithful computational model. One key challenge
of a combined luminance contrast and disparity model is the grow-
ing dimensionality, which we limit to 4D by considering: spatial
frequency and magnitude of disparity, as well as spatial frequency
and magnitude of luminance contrast. We ignore image brightness,
pixel color and saturation, which seem to have a lower impact on
depth perception (Sec. 7). Our model improves the performance
of existing applications [Lang et al. 2010; Didyk et al. 2011] such
as disparity retargeting, difference metrics, compression, and even
enables previously-impossible applications. Precisely, we make the
following contributions:

• A disparity-perception model accounting for image content;

• Measurements of perceived disparity changes for stimuli with
different luminance and disparity patterns;

• New methods to automatically retarget disparity and to manip-
ulate luminance contrast to improve depth perception;

• A user study to validate and illustrate the advantages of our
method.

http://doi.acm.org/10.1145/2366145.2366195
http://portal.acm.org/ft_gateway.cfm?id=2366195&type=pdf
http://people.csail.mit.edu/pdidyk/projects/LuminanceDisparityModel/
http://people.csail.mit.edu/pdidyk/projects/LuminanceDisparityModel/LuminanceDisparityModel.avi
http://people.csail.mit.edu/pdidyk/projects/LuminanceDisparityModel/LuminanceDisparityModel.zip


First, we will discuss previous work (Sec. 2) and survey the psy-
chophysical evidence for the link between depth and contrast per-
ception (Sec. 3). Then, we describe our computational model and
explain how to jointly process disparity and luminance contrast
(Sec. 4). Further, we describe the necessary measurements for our
model. Next, we show several of its applications and compare to
previous work (Sec. 5). Our approach is validated (Sec. 6) and its
limitations discussed (Sec. 7), before we conclude.

2 Previous Work

Since our main goal is perception-informed manipulations of stereo
content, we will give an overview of existing disparity adjustment
methods, which are usually designed to fit the scene’s entire disparity
range into a limited depth range (called comfort zone) where the
conflict between accommodation and vergence is reduced [Lambooij
et al. 2009; Shibata et al. 2011]. Jones et al. [2001] presented
a mathematical framework for stereo-camera parameters, such as
interaxial distance and convergence. Recently, Oskam et al. [2011]
proposed a similar approach for real-time applications to optimize
camera parameters according to control points that assign scene
depth to a desirable depth on a display device. Heinzle et al. [2011]
built a computational stereo camera, which can alter its interaxial-
distance and convergence-plane during stereo acquisition. Other
techniques work directly on pixel disparity to map the scene depth
into the comfort zone [Lang et al. 2010]. Such operations can also be
performed in a perceptually linearized disparity space [Didyk et al.
2011], where the impact of spatial-disparity variations at different
frequency scales can be considered [Tyler 1975; Filippini and Banks
2009].

No current solution considers the influence of arbitrary luminance
patterns on perceived disparity. Stereoacuity thresholds are found by
applying different depth corrugations to carefully-textured images.
However, such conditions hardly reflect real images; band-limited,
or low-magnitude contrast patterns strongly affect stereo vision. Our
goal is to account for such influences in complex images and make
disparity manipulations more effective. We build upon findings in
spatial vision that analyze this link between luminance patterns and
stereoacuity and give a brief overview in the following section.

3 Background

Spatial band-pass channels Although it is often assumed that
correspondence matching in stereo is achieved at the level of lumi-
nance edges, there is direct evidence that band-pass limited channels
in the luminance domain play an important role in disparity process-
ing [Heckmann and Schor 1989]. The observation is not surprising
since contrast processing in the HVS follows such principles and
contrast is required for stereo matching. Hence, one can expect a
strong correlation between stereoacuity and contrast characteristics
such as the compressive contrast nonlinearity at suprathreshold lev-
els [Wilson 1980] and the contrast sensitivity function (CSF) [Barten
1989], which we discuss next.

Luminance contrast magnitude Legge and Gu [1989] and Heck-
mann and Schor [1989] investigated stereoacuity for luminance
sine-wave gratings and found that perceivable disparity thresholds
decrease with increasing luminance contrast magnitude, which can
be modeled using a compressive power function with exponents
falling into the range from −0.5 to −0.7. Similar results have
been obtained for narrow-band-filtered random-dot stereograms by
Cormack et al. [1991]. We rely on their data when modeling the
dependence of stereoacuity on luminance contrast magnitudes. For
low values, they observed a significant reduction of stereoacuity

(below a tenth multiple of the detection threshold), which relates to
the lower reliability of edge localization in stereo matching due to
a poorer signal-to-background-noise ratio in band-pass luminance
channels [Legge and Gu 1989]. For contrast at suprathreshold levels,
stereoacuity is little affected. Luminance contrast also does not alter
the upper disparity limits for comfortable binocular fusion.

Spatial luminance-contrast frequencies Legge and Gu [1989]
measured the necessary luminance-contrast thresholds to detect a
fixed disparity for sine-wave gratings of various spatial corrugation
frequencies. They neglect disparity magnitude, but derive a CSF
for stereopsis, whose shape is similar to the luminance-CSF shape.
Monocular-luminance thresholds are usually assumed to be 0.3–0.4
log units smaller than the luminance contrast needed for stereovi-
sion. We consider suprathreshold luminance contrast, more complex
disparity patterns, and explore, how band-tuned luminance contrast
interacts with corrugated depth stimuli at various spatial frequencies.

Lee et al. [1997] measured the impact of luminance frequency on
disparity perception for band-pass-filtered random-dot stereograms.
They showed that the relationship between disparity sensitivity and
luminance frequency exhibits a band-pass characteristic with the
maximum located at a luminance frequency of 4 cpd, which is shifted
for lower-frequency disparity modulation below 0.25 cpd to around
3 cpd. Their conclusion was that the observed differences in sensi-
tivity result from the stimulation of different visual channels, which
are tuned to different spatial modulations of luminance and dis-
parity. They also observed that there is a mostly weak influence
of luminance frequency on disparity sensitivity at suprathreshold
disparities, except for high luminance frequencies as well as low
disparity frequencies. Lee et al. considered relatively narrow ranges
of luminance frequency 1–8 cpd, disparity corrugation frequency
0.125–1.0 cpd, and disparity magnitudes up to 4 arcmin. In this work,
we significantly expand them to 0.3–20 cpd for luminance frequency,
0.05–2 cpd for disparity corrugation frequency and up to 20 arcmin
for disparity magnitudes. The results by Lee et al. have been
challenged by Hess et al. [1999], who experimented with randomly-
positioned Gabor patches with modulated disparity. Hess et al. found
that low-frequency disparity modulations were detected equally
well for low and high-luminance frequencies. However, for high-
frequency disparity corrugations, perception of depth was enhanced
when a high-frequency luminance pattern was used, which improves
its localization and thus facilitates stereo matching. Our goal is to
elaborate a computational model which accounts for such effects
in the context of complex luminance and depth configurations with
channel-based luminance and disparity processing.

Asymmetry effect An interesting observation is that asymmetry
effects in depth perception can occur (Fig. 2). We consider two
patches, one in front of the other, each with a luminance texture
that we refer to as the support, or say that it supports the disparity.
Limiting the deeper patch to a lower-frequency support, makes the
step between the patches less visible and, finally, disappear. When
swapping the luminance patterns, the depth difference becomes
visible again. This observation has not been reported so far and
needs more investigation. Here, we will give an overview of a few
insights and show how we believe that this aspect can be integrated
into our model.

Our interpretation of the asymmetry effect (see Fig. 3) assumes
that, in the considered depth range, we are more sensitive to binoc-
ular disparity than pictorial cues such as texture density or relative
size [Cutting and Vishton 1995, Fig. 1]. The effect could then relate
to lower frequency luminance patterns being difficult to localize
accurately in space (e. g., a completely white wall does not allow
us to deduce its distance, as our visual system cannot rely on corre-
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Figure 2: Influence of spatial luminance patterns on depth perception. The physical depth of all stimuli is equal, yet the perceived depth
(orange profiles) varies depending on the applied texture patterns. High-frequency removal from the texture on the right/deeper patch leads to
a perceived depth reduction (second and third stimuli). While the third stimulus barely exhibits any perceivable depth, just swapping textures
leads to a strong depth impression for the fourth stimulus. The insets present the strength of perceived disparity, as predicted by our model. In
the additional materials, we provide full-resolution stereo images of the stimuli.

spondence points). Occlusions (such as the step edge) introduce a
sharp boundary which results in a well visible discontinuity. Hereby,
a relative depth localization (with respect to the background) be-
comes easier when occluding a high-frequency luminance pattern.
We will concentrate on this occlusion/correspondence aspect when
integrating the effect into our model. This choice might exclude
other factors that could play an important role (e. g., pictorial depth
cues and other higher level cues) and further investigations will be
needed to fully explain this phenomenon.

One could think that pictorial depth cues overrule the influence of
binocular disparity and might explain the effect. Mather et al. [2002]
showed that when only pictorial cues are considered, the blurred
textures in Fig. 2 should appear as being behind the others. For
the first three stimuli, this finding holds when the figure is viewed
stereoscopically. However, in the fourth, the blurred texture appears
in front. The only relevant difference between our stimuli and the
ones presented by Mather and Smith is that ours contain a binocular
disparity cue. This shows that disparity has a significant impact
on depth perception and can overrule pictorial cues in some cases.
In practice, our model seems to work acceptably and the previous
observation could indicate that our simplifying assumptions are
suitable for our purposes.
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Depth (unsupported) Perceived depth
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Figure 3: Luminance patterns (green) influence the depth perception
(orange) of the same depth profile (blue). Some allow us to well
discriminate depth (solid blue), while others do not (dotted blue).
The frontal-patch edge can benefit from the luminance contrast
between patches (a, arrow). If the luminance pattern of the deeper
patch renders localization difficult the depth step disappears (b).

4 Disparity and Luminance Processing

Here, we explain our perceptual model to predict the HVS response
to a disparity signal in presence of a supporting luminance pattern.
We then illustrate how to use our model to express physical values
in perceptually linear units, which is achieved by constructing so-
called transducer functions and derive the computational model used
in our applications. Finally, we present how to determine the few
remaining parameters in a psychophysical experiment.

4.1 Threshold Function

The first step in deriving a model is to acquire a threshold function
th( fd,md, fl,cl), which for each combination of its parameter val-
ues (disparity frequency fd and disparity magnitude md, luminance
frequency fl, and luminance-contrast magnitude cl,) defines the
smallest perceivable change (i.e., equivalent to 1 JND) in disparity
magnitude (expressed in units of arcmin).

As indicated by Legge and Gu [1989], only low-level luminance-
contrast magnitude affects stereoacuity, while otherwise having little
to no influence. Further, Cormack [1991], presented a correspond-
ing disparity-threshold function for luminance-contrast magnitude.
Consequently, we decided to factor out the luminance-contrast mag-
nitude dimension, leading to the following model:

th( fd,md, fl,cl) = s( fd,md, fl)/Q( fl,cl), (1)

where s is a discrimination-threshold function assuming maximal
luminance-contrast magnitude and Q is a function that compensates
for the increase of the threshold due to a smaller luminance-contrast
magnitude cl.

We model s via a general quadratic polynomial function:

s( fd,md, fl) = p1 log2
10( fd)+ p2 m2

d + p3 log2
10( fl)

+p4 log10( fd)md + p5 log10( fd) log10( fl)+ p6 md log10( fl)

+p7 log10( fd)+ p8 md + p9 log10( fl)+ p10,
(2)

where p := [p1, . . . , p10] is a parameter vector obtained by minimiz-
ing the following error: argminp∈R10 ∑

n
i=1 ((s(oi)−∆mi)/(∆mi))

2 ,
where oi are stimuli with their corresponding thresholds ∆mi, as
determined in our psychophysical experiment (Sec. 4.5). Hereby, we
obtain p = [ 0.3655, 0.0024, 0.2571, 0.0416, −0.0694, −0.0126,
0.0764, 0.0669, −0.3325, 0.2826], which results in the disparity
discrimination function th visualized in Fig. 4. The use of the log
domain is motivated by previous work [Didyk et al. 2011] and leads
to better results. The range of disparity detection thresholds spec-
ified by our model is in good agreement with the data in [Lee and
Rogers 1997] for measured mid-range disparity and luminance fre-
quencies. For more extreme ranges, similar to [Hess et al. 1999],
we observe that, for low-frequency disparity corrugations, a wide
range of luminance frequencies lead to good stereoacuity, while for
higher-frequency disparity corrugations stereoacuity is weak for low
luminance frequencies.

To determine the scaling function Q, we use the data by Cor-
mack [1991], expressed in units of threshold multiples cm, to which
we fit a cubic polynomial in the logarithmic domain:

T (cm) = exp(r1 log3
10(cm)+ r2 log2

10(cm)+ r3 log10(cm)+ r4),
(3)
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Figure 4: Plot visualizing slices of our model of the disparity dis-
crimination function for sinusoidal corrugations. We illustrate three
surfaces corresponding to different luminance frequencies (0.3 cpd,
5 cpd and 20 cpd) and a well visible contrast (above 10 JNDs). The
model is limited by the disparity limit of stereopsis measured by
Tyler et al. [1975]. In the additional materials we provide a plot
which shows our model in a bigger range of disparity magnitude
values such that the disparity limit is visible across whole range of
disparity frequencies.
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Figure 5: Our function fitting to Cormack’s data (marked by empty
circles), as well as our scaling function Q.

where r := [ −0.9468, 4.4094, −6.9054, 4.7294] is a parameter
vector obtained from fitting the above model to the experimental
data of Cormack [1991]. Q is then expressed as:

Q( fl,cl) =

{
T (cl · cs f ( fl))/T (u) if cl · cs f ( fl)≤ u
1 if cl · cs f ( fl)> u , (4)

where cs f is the luminance contrast sensitivity function [Barten
1989] and u := 35.6769 specifies when the luminance contrast has
no further influence on the disparity threshold [Legge and Gu 1989],
meaning T ′(u) = 0. Our fit is illustrated in Fig. 5.

4.2 Transducer

A transducer function relates physically measurable quantities to the
HVS response (in JND units). Typically transducers are specified for
luminance-contrast magnitude [Wilson 1980; Mantiuk et al. 2006],
but, recently, disparity magnitude has also been considered [Didyk
et al. 2011]. Didyk et al. assumed a perfectly visible luminance

pattern and proposed a two-dimensional transducer of disparity fre-
quency and magnitude, which leads to a conservative prediction.
Consequently, perceived disparity is generally overestimated. We ex-
tend their solution to a four-dimensional transducer t( fd,md, fl,cl),
which we build directly from the threshold function th:

t( fd,md, fl,cl) =
∫ md

0
th( fd,x, fl,cl)

−1dx (5)

The function t( fd, · , fl,cl) : R→ R (a partial application of t to
fd, fl,cl) is monotonic, hence, there usually1 exists an inverse trans-
ducer (t( fd, · , fl,cl))

−1. t maps disparity-luminance stimuli to a
perceptually linear space of disparity and t−1 can be used to recon-
struct the stimuli. E.g., for disparity compression, mapping via t
makes removing imperceptible disparities easy and t−1 can be used
to reconstruct the modified disparity map. Similarly, we can build
a transducer to convert luminance contrast to a uniform space. For
more details on constructing transducer functions please refer to
work by Wilson [1980] and Mantiuk et al. [2006].

In practice, a transducer function t can be evaluated by numerical
integration and stored in a table. t−1 can be implicitly defined via
a binary search. Nonetheless, in four dimensions, the memory and
performance costs can be significant. A better solution makes use
of the factorization: t( fd,md, fl,cl) = t ′( fd,md, fl)/Q( fl,cl), where
t ′( fd,md, fl) =

∫ md
0 s( fd,x, fl)−1dx. Functions t ′ (and t ′−1 if wanted)

can be discretized, precomputed, and conveniently stored as 3D
arrays. The inverse transducer for a given fd, fl,cl is then: md =
t ′−1( fd, Q( fl,cl) ·R , fl), where R is a JND-unit response to disparity.

In order to account for the HVS limits of perceivable stereopsis,
we use our threshold function only within the limits measured by
Tyler et al. [1975] (Fig. 4). Beyond this range, transducer functions
should remain flat but stay invertible. We achieve this by enforcing
the functions to be strictly increasing beyond the stereopsis limit,
but keeping their total increase below 1 JND.

4.3 Computational Model

The above transducer is valid for abstract stimuli. For real content,
we decompose the input’s luminance and disparity into correspond-
ing Laplacian pyramids, such as it has been done independently for
luminance [Mantiuk et al. 2006] and disparity [Didyk et al. 2011]
before.

For luminance, we compute a Laplacian pyramid C of the luminance
pattern, which contains Michelson contrast values cl , which are al-
ready required for Q in Eq. 4. Pixel-disparity values are transformed
into vergence (world-space angles) [Didyk et al. 2011], and we build
a Laplacian pyramid D [Burt and Adelson 1983]. The value Di(x)
corresponds to the disparity value at location x ∈ R2 in the i-th
level frequency of the pyramid i. e., α/2i cpd (where α ≈ 20 for our
setup). To convert disparities into JND units, we apply the transducer
function to the values of the Laplacian pyramid. Disparity frequency
as well as disparity magnitude are defined directly in the pyramid D:
fd = α/2i and md = Di(x). To evaluate the transducer, we also need
to know the frequency fl and contrast cl of the supporting luminance
pattern.

To combine luminance and disparity, we follow the independent-
channels hypothesis for disparity processing as proposed by Marr
and Poggio [1979]; stereoacuity is determined by the most sensitive
channel and remains uninfluenced by other channels. Consequently,
given a disparity frequency fd, we assume that the response is the
maximum of all responses for all higher luminance frequencies fl

1only for constant luminance patterns, the function cannot be inverted



in the image region corresponding to half a cycle of fd. This choice
is justified in more detail in Sec. 7.

Formally, the response is then:

D′i(x) = max
j∈(0,...,i−1)

t(α/2i,Di(x),α/2 j,S j(x)), (6)

where S j(x) evaluates the luminance support, defined as the average
of all contrast values C j of the j-th level of the luminance decom-
position that fall into a rectangular region σi(x) = (x− (w,w)T,x+
(w,w)T) of size w = 2i around x (Fig. 6). The values of S can be
pre-computed from C and later accessed in constant time. The re-
sulting structure is a Laplacian pyramid with a MIP map defined on
each of its levels, as visualized in Fig. 6, right. Note, that computing
the maximum of S j over all levels and, then, applying a transducer
independently is not equivalent.

Contrast structure

j = 0 j = 1 j = 3j = 2

Sj(x)Di(x)
j = 2

j = 1
j = 0

j = 3

i = 2
i = 1

i = 0

i = 3
x

Fetch positions
Corresponding single

fetch positions

Luminance
decomposition C

Disparity
decomposition D

Figure 6: For a disparity Di(x) at location x, the model needs to
involve levels j < i in the luminance Laplacian pyramid C. In each
level j, an average contrast S j(x) of a region σi(x) (marked in red)
around x is computed and its impact evaluated. For acceleration,
averages can be pre-computed in MIP maps for each level (right).

4.4 Asymmetries

So far, our computational model does not account for the asym-
metries described in Sec. 3, as it would be necessary to study an
even higher-dimensional space including neighborhood configura-
tions. Nonetheless, we can exploit a few observations to derive a
perceptually motivated model that we verify practically (Sec. 6).

In fact, in order to perceive a sinusoidal depth corrugation, peaks
as well as valleys of the sinusoid need to be well supported by
luminance contrast. The HVS relies on clear correspondences,
which might not always be easy to discern, as illustrated in Fig. 7. To
account for the full wave, a 3 × 3 neighborhood at the given level of
the Laplacian decomposition is evaluated and the minimum response
chosen. Hereby, we ensure that a full cycle is well supported and
visible.

Disparity signal
Luminance signal

Values stored in 
Perceived disparity

D

Figure 7: A weak luminance contrast can attenuate the disparity
response; in the valleys of the sinusoidal depth function the low spa-
tial frequency of the luminance signal weakens the overall perceived
corrugation.

While this extension already explains several cases in Fig. 2, it is
insufficient to explain the entire asymmetry. The texture swap would
not yet be detected to influence depth perception. In order to better
model the response, we need to take disocclusion into account. In
fact, the occluding patch’s edge introduces a high-contrast luminance
edge in superposition with the patch beneath. If they are present in
both views (left and right eye), these high frequencies allow us to
localize the edge in space - we disregard pathological cases where

disparity and luminance frequency perfectly agree. Consequently,
we propose to evaluate the luminance contrast for both views and
use the maximum response. Hereby, a point on the deeper patch will
be disoccluded in one view and reveal its high-frequency luminance
neighborhood, while points on the edge will maintain a high-contrast
edge in both views. Also note, that this effect affects not only the
points directly on the edge, but also in a small neighborhood near
the edge. This relates to findings on backward-compatible stereo
[Didyk et al. 2011]. Similarly to the Cornsweet effect for luminance,
the HVS extrapolates depth information to neighboring locations.
Although heuristic, this solution performs well in practice (Sec. 6).

4.5 Psychophysical Experiment

To derive the parameters of s (Eq. 2), our experiment explores:
disparity frequency fd (measured in cpd), disparity magnitude md
(measured in arcmins), and luminance frequency fl (measured in
cpd).

Stimuli All stimuli are horizontal sinusoidal disparity corrugations
with luminance noise of a certain frequency. First, we create a lumi-
nance pattern by producing a noise of frequency fl and scale it to
match the maximal reproducible contrast on our display. Using such
a texture excludes any external depth cues, such as shading. Next,
we create a disparity pattern – a sinusoidal grating with frequency
fd and magnitude md. Such disparity gratings do not produce oc-
clusions. Finally, the luminance pattern is warped according to the
disparity pattern to produce an image pair for the observer’s left and
right eye [Didyk et al. 2010]. All steps are adjusted to the viewing
conditions, i. e., the screen size and viewing distance. We assume a
standard intra-ocular distance of 65 mm.

Equipment We use a Samsung SyncMaster 2233RZ display
(1680× 1050 pixels, 1000 : 1 contrast), along with NVIDIA 3D
Vision active shutter glasses, observed from a distance of 60 cm, en-
sured by a chin-rest. Measurements were performed in controlled,
office-lighting conditions.

Subjects All subjects in our experiment were naïve, paid and
had normal or corrected-to-normal vision. Before conducting the
experiment, we checked that subjects are not stereo-blind [Richards
1971]. In total there were 24 participants who took part in the
experiment (12 F, 12 M). They were all between 22 and 30 years
old. One participant was discarded due to very high thresholds (on
average 3 times higher than the thresholds of others).

Task In this experiment, we seek measuring a disparity-
discrimination threshold for stimuli defined in three-dimensional
parameter space. For a given stimulus o = ( fd,md, fl), we run a
threshold estimation procedure. In each step, we show two stim-
uli o and o+[0,∆md,0]. One located on the left-hand side of the
screen and the other on the right. The position is randomized. The
task of the participant is to judge which stimulus exhibits larger
depth magnitude and choose using the “left” and “right” arrow keys.
Depending on the answer, ∆a is adjusted in the next step using
the QUEST procedure [Watson and Pelli 1983]. When the standard
deviation of the estimated value is lower than 0.05, the process stops.

Each participant performed 35 adjustment procedures. One ses-
sion took from 30 to 100 min. Subjects were allowed to take a
break whenever they felt tired. In total, we obtained 805 measured
thresholds to which we fit our model.
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Figure 8: Comparison of perceived disparity as predicted by the previously proposed model by Didyk et al. that ignores image content (left)
and our model (right). Responses per frequency band and the combined response are shown for both, as well as the original stereo image with
the multi-band decomposition of the luminance pattern (middle).

5 Applications

Previous work [Didyk et al. 2011] demonstrated a number of appli-
cations for disparity models, including a stereo-image metric and
compression. In this section, we show how our new model improves
these results. We also present new applications such as disparity op-
timization, including the case for a multi-view auto-stereoscopic dis-
play as well as joint (luminance and disparity) manipulations. Most
of those techniques were not possible using luminance-ignoring
models.

5.1 Stereo Image Metric

Our model can be used to predict the perceived difference between
two stereo images: a reference image and a second image which
underwent a distortion, such as compression. Perceptual image
metrics have previously been proposed independently for luminance
contrast [Mantiuk et al. 2006] and disparity [Didyk et al. 2011].

To overcome this limitation, we first use our model to map both
input images into our perceptually linear space. The transducer
function is applied after the phase uncertainty operation, similarly
to previous work [Lubin 1995]. Per-band differences (a simple
subtraction) then indicate the detectability of disparity changes. All
bands can be combined using a Minkowski summation to produce
a spatially varying difference map. We use the same parameters as
those reported in [Didyk et al. 2011] for both—phase uncertainty
and Minkowski summation.

A comparison of our metric and the method of Didyk et al. [2011]
is shown in Fig. 1 and 8. Our approach successfully detects the
human inability to perceive changes of disparity when the luminance
support is not adequate, i. e., low luminance contrast because of
missing texture, fog, or depth-of-field (Fig. 1). Previous metrics are
too conservative and report invisible differences (false positives).

5.2 Stereo Compression

Key to many perceptual compression approaches is to map the
signal into a perceptually linear space, such that the perception of
artifacts can be reliably controlled. This is the idea behind classic
image compression such as JPG [Taubman and Marcellin 2001], but
also disparity compression [Didyk et al. 2011]. All values below
the detection threshold, as predicted by our model, are removed.
Including luminance leads to more compact compression (Fig. 9).

5.3 Disparity Optimization

One of our new applications is perceptual disparity optimization,
which automatically fits the disparity of stereo content into a limited
range by analyzing disparity and luminance contrast via our model.
The objective is to achieve a small difference between the original
and the re-mapped content according to our disparity metric. Due

268 kB 129 kB

45 kB89 kB

(Didyk et.al.)Above 2 JND Original

(Ours)(Ours) Above 4 JND Above 2 JND 

Figure 9: Comparison of disparity compression using our method
and the more conservative technique by Didyk et al. Our method can
account for regions where a poor luminance pattern reduces sensi-
tivity to depth changes. Therefore, it can remove information more
aggressively than previous techniques. The insets show zoomed-in
parts of pixel disparity maps. The size corresponds to the size of our
disparity representation compressed using LZW.

to many non-linearities of human disparity-luminance perception
the optimization is challenging and the search space of all possible
disparity re-mappings is difficult to tackle.

Disparity
re-mapping

Stereo image +
Disparity map

Stereo
metric

Error
function

Figure 10: Our disparity optimization. From left to right: Input is a
stereo image and a disparity map. A disparity mapping P is applied
to the input. Our metric computes the difference between input and
remapped content. The difference is converted into a single error
value, and a new mapping P is chosen. The process is repeated until
the error is low enough or a fixed iteration number is reached.

To make the problem tractable, we restrict the search space to the
subset of all global and piecewise-defined mapping curves, as done
for automatized tone mapping [Mantiuk et al. 2008] (Fig. 10). Such
curves can be defined using a small number of n (we use n = 7) con-
trol points with values at fixed locations P := {(0,y0), . . . ,(1.0,yn)}
combined with a simple (e. g., piecewise-cubic) reconstruction.
Given the original stereo content A and a remapping r(A,P) of A
using the control points P, simulated annealing is used to minimize
the integrated perceived difference over the image domain Ω

min
P∈Rn

∫
Ω

A	 r(A,P)dx,
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Figure 12: Trade-off between the depth range and sharpness on a multi-view auto-stereoscopic display. The insets show disparity mapping
functions and the loss of depth perception due to blur. Left to right: simple mapping that fits entire scene in the depth-of-field region (marked in
white on curve plots), disparity mapping using the entire pixel disparity range, our mapping. Our mapping leads to a good balance between
depth perception and depth-of-field constraints.
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Figure 11: Our optimization compared to linear disparity map-
ping. Insets visualize mapping curves and disparity perception loss
compared to the original stereo image, as reported by our metric.

where the 	 operator denotes our perceptual metric of disparity
difference. By implementing our method on a GPU, the disparity
optimization can be performed at interactive speed e. g., while a user
navigates inside the scene (Fig. 11). In order to maintain temporal
coherence, we use the last frame’s solution as the initial guess for
P in the next frame. We can further smoothly interpolate previous
solutions over a couple of frames to improve the smoothness of the
animation. A similar approach was recently used in [Oskam et al.
2011].

5.4 Multi-view Autostereoscopic Display

Disparity optimization is particularly important for multi-view auto-
stereoscopic displays, where the affordable disparity range is very
shallow. Beyond this range, depth-of-field blur is usually applied
in order to avoid interperspective aliasing [Zwicker et al. 2006].
Therefore, two extreme strategies (Fig. 12, left) are possible. Either,
the whole scene needs to fit into the small range where everything
can be sharp or a bigger range can be used, but then prefiltering
(blur) is necessary. The trade-off between these two solutions is
not obvious. Our metric can predict the strength of perceived depth
in the presence of blur due to depth-of-field. Therefore, using our
optimization scheme along with the metric, leads to an optimal
trade-off between sharpness and depth range. Two modifications
are required: First, based on the display specification, the focal
range (φ0,φ1) has to be computed. Second, a depth of field operator
d(A,φ0,φ1) has to be applied to the luminance content A [Zwicker
et al. 2006]. The solution is given by:

argmin
P∈Rn

∫
Ω

A	d(r(A,P),φ0,φ1))dx

An example of this optimization is presented in Fig. 12, right.

5.5 Joint Disparity and Luminance Manipulations

We can predict the perceived change of distorted disparity, just like
the effect of luminance distortions on perceived depth. Hence, we
can identify image regions, where the stereo impression is weak

due to poor luminance support. We can quantify this effect by
comparing two stereo images with the same disparity pattern but an
assumed-perfect luminance pattern in one of them.

By improving the luminance contrast in areas where the original
support proves insufficient, we re-introduce the impression of depth
as shown in Fig. 13. We also use this technique to illustrate the
successful detection of asymmetries (Fig. 14).
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Figure 13: An insufficient luminance support in the original stereo
image (left), lowers its depth perception (top right). By adding a
hatching pattern, guided by our metric, the resulting stereo image
(middle) shows significantly less stereo loss (bottom right).
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Figure 14: To illustrate the prediction of asymmetries, we show
two cases: hatching on the foreground (left) and the background
(middle). Compared to foreground hatching (right top), background
hatching creates more pronounced differences due to disocclusions,
leading to better depth perception (right bottom), as correctly pre-
dicted by our metric.

6 Evaluation

In order to evaluate model and applications, we conducted an ad-
ditional user study with 17 new participants. The first part verified
how well our metric predicts actual JND values. We used a stereo
image from Fig. 9 and applied a scaling to the disparity in order to
create images that differ in depth perception. One image was modi-
fied to match an average error of 0.5 JND (with minimum 0.4 JND
and maximum 0.8 JND). For a second image the average difference
was 3 JND (with minimum 2.5 JND and maximum 3.5 JND). We
showed the modified images side by side (randomized) with the
original image and asked about perceived differences. Each pair was
shown ten times in randomized order. The 0.5 JND difference image



was detected in 58 % cases, which is close to a random answer, as
expected. For the 3 JND case the probability of the detection was
91 %.

To evaluate our compression, we used the examples in Fig. 9. We
compared the original to images where all disparities below 2 JND
were removed using our model, as well as the conservative model
presented by Didyk et al. [2011]. Again, we employed ten random-
ized repetitions. We asked participants which compression technique
produces images that are closer to the original in terms of depth. In
51 % our new compression method was chosen as the one closer to
the original, suggesting that our technique improves the compression
ratio without introducing artifacts.

To evaluate our disparity optimization, we compared it to existing
techniques in a pair-wise comparison with three different scenes
(Fig.15) and four different techniques: camera-parameter adjustment
[Jones et al. 2001; Oskam et al. 2011] (CAM), perceptual disparity
scaling [Didyk et al. 2011] (PCT), the proposed optimization scheme
of this paper without (OUR-D), as well as with accounting for the
luminance support (OUR-CD). For each method we ensured that the
resulting disparities spanned the same range. In total, 18 pairs of
stereo images were shown in a randomized order to the 17 partici-
pants who were asked to indicate which stereo image exhibits a better
depth impression. In order to analyze the obtained data we computed
scores (the average number of times each method was preferred)
and computed a two-way ANOVA test. To reveal the differences
between the methods, we performed a multiple comparison test.
Detailed results of the study are presented in Fig. 16.

Dinos Comic Gates

Figure 15: Scenes used in our study. For all images used in our
study please refer to the accompanying additional materials.
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Figure 16: Statistical data obtained in our study. The error bars
show 95 % confidence intervals.

The study showed, that for the scenes Dinos (courtesy of [Lee et al.
2009]) and Gates, our optimization was preferred over all other
methods and the effect was significant. The lower performance of
CAM, as well as PCT is due to the inability to effectively compress
disparities in regions that are less crucial for depth perception. In
the Comic scene, the difference between OUR-CD and CAM is not
statistically significant for p = 0.05, but it is when assuming p =
0.1. This observation indicates that in some cases our solution may
perform similarly to others. In the case of the Comic scene, this effect
can be well explained; the biggest depth-range compression can be
obtained in the back, due to the low luminance frequency in the sky,

which is correctly detected by our model. The CAM solution mostly
affects the background, actually even a bit too much. Our solution
more evenly distributes the depth impression (refer to the images in
the additional materials) and while the foreground looks similar,
the background has more depth information. Nonetheless, this
difference is very localized in the scene. Generally, the results show
that including luminance in the model improves the performance of
the disparity optimization significantly.

We also illustrate the usefulness of our metric for autostereoscopic
displays, where depth-of-field and disparity perception are linked
and, hence, no luminance-insensitive metric would work. We used
the examples from Fig. 12. We compared our method separately to
the mapping that linearly fits everything into the depth-of-field region
and the one that uses the full display-disparity range. 13/14 out of 17
participants preferred the depth impression delivered by our method
to using the entire depth-of-field/disparity range. For completeness,
we also tested whether our luminance pattern in Fig.13 improved
depth perception and 16 out of 17 participants chose our solution.
A two-sided binomial statistical test revealed that in both studies
results were statistically significant with p < 0.05.

7 Discussion

The independent-channels hypothesis for disparity processing [Marr
and Poggio 1979], was applied when computing the perceived dis-
parity D′i(x) in Eq. 6. It implies that stereoacuity is determined
by the most sensitive channel and remains uninfluenced by oth-
ers. This hypothesis has been confirmed in psychophysical studies
where stereoacuity has been investigated for independent, as well
as summed up sine-wave stimuli of different luminance-contrast
frequencies and magnitude [Heckmann and Schor 1989]. It turns
out that the phase relationship of sine-wave components, which af-
fects also the local shape of the resulting luminance gradients, is not
utilized in stereoacuity. What matters are mostly peak-to-through
luminance gradients. Even more convincing is that the thresholds
obtained for sinusoidal luminance gratings, for which stereoacuity
is best (in the range of 3–10 cpd), are the same as those obtained
for multi-frequency square-wave luminance stimuli [Legge and Gu
1989, Fig. 3]. In all cases, the same Michelson luminance-contrast
magnitude has been considered.

To reduce dimensionality, we decided to exclude the influence of
luminance-contrast magnitude from our measurements; stereo incre-
ment thresholds per luminance spatial frequency channel actually
increase for low contrast as a power-law function [Rohaly and Wil-
son 1999, Fig. 6]. We considered this influence in a simplified form
by expressing the signal in each luminance channel in JND units
including its normalization via the CSF function. We then compute
stereoacuity per channel using a compressive function (Eq. 4), which
we derived based on the data from [Cormack et al. 1991].

In our perceptual model, we do not consider temporal aspects [Lee
et al. 2007]. It would require adding additional dimensionality to
our experimental data, and we relegate such an extension as future
work. Also, we ignore chromatic stereopsis, which is less contrast
sensitive, leads to weaker stereoacuity, and features a more limited
disparity range with respect to its luminance counterpart [Kingdom
and Simmons 2000].

Finally, we do not consider image brightness because stereoacu-
ity weakly depends on luminance in mesopic and photopic levels
(over 0.1 cd / m2), which are typical for standard stereo 3D displays
[Howard and Rogers 2002, Chapters 19.5.1].

Our disparity space is linear in the same way as CIELUV or CIELAB
color spaces. It is constructed via integration of the threshold func-
tion as it has been done before for luminance [Wilson 1980; Mantiuk



et al. 2006], and similarly, the linearity cannot be global. It is also
important to underline that we do not make absolute depth perceptu-
ally linearized, but disparity, which is defined as in the perceptual
literature [Howard and Rogers 2002, Fig. 19.1].

In order to account for the disparity limit of stereopsis we used the
data provided by Tyler et al. [1975] (Sec. 4.2). Alternatively, the
finding of Burt et al. [1980] could be used. We chose Tyler’s data
because he considered disparity limits for sinusoidal patterns, which
better fit our model, while Burt et al. used points.

Concerning the generality of our model, we did not repeat the experi-
ment for different display technologies (e. g., anaglyph, polarization),
which may result in a slightly different stereoacuity. However, mea-
surements with different equipment are not a problem and our model
and techniques remain valid. For displays with different parameters
(e. g., size, resolution, contrast ratio), our model is directly applica-
ble; it uses physical values which can be computed from the display
specification and viewing conditions. Our evaluation was conducted
on a different group of people than the threshold measurements.
The positive results of the study suggest that, although stereoacuity
varies among people, our model is general enough to be successfully
used in practice.

Comparing our disparity optimization to other enhancement tech-
niques, such as Cornsweet profiles [Didyk et al. 2012] could be
considered. However, these can be used as an additional step atop
any disparity adjustment.

8 Conclusion

We presented a model to capture the interaction of disparity and
luminance contrast, while previous work focused on these aspects
separately. To our knowledge, our model is the first of its kind
and enables effective stereo-content modification. A user study
allowed us to derive a new disparity-sensitivity function and we
explained how we believe that certain neighborhood-related effects,
such as asymmetry, could be integrated as well. While modern
rendering effects (depth of field, lens flare, motion blur, veiling
glare, participating media, as well as poor visibility conditions –
rain, night,...) increase realism or are added for artistic / aesthetic
reasons, they also affect luminance contrast, which in turn influence
the disparity perception. With our technique, adequate disparity
handling becomes possible in all these situations. The same holds
for non-photorealistic rendering such as toon shading, or hatching
techniques. By using our model, we were able to improve existing,
but also develop new compelling applications, such as an image
optimization for multi-view autostereoscopic displays or joint (lu-
minance / disparity) processing. Our novel disparity optimization
method is a good alternative to previous methods for disparity-range
control. We showed that considering luminance significantly im-
proves the results of the proposed mapping technique and showed
the validity of our results in an additional study.

In the future, models such as ours will be crucial for stereo im-
ages and video processing. Many other applications are possible;
combined tone and disparity remapping for HDR stereo content, or
luminance hatching could be combined with other styles of non-
photorealistic rendering. We also believe that our model could be
integrated in a 3D video conference system, as, especially in archi-
tectural environments, regions with weak luminance variations are
common. Further, our way of optimizing 3D content could be used
to consider different viewing conditions or even viewers.
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