
MIT Open Access Articles

OpenFab: A programmable pipeline for multi-material fabrication

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Kiril Vidimce, Szu-Po Wang, Jonathan Ragan-Kelley, and Wojciech Matusik. 2013.
OpenFab: a programmable pipeline for multi-material fabrication. ACM Trans. Graph. 32, 4,
Article 136 (July 2013), 12 pages.

As Published: http://dx.doi.org/10.1145/2461912.2461993

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/90393

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90393
http://creativecommons.org/licenses/by-nc-sa/4.0/

OpenFab: A Programmable Pipeline for Multi-Material Fabrication

Kiril Vidimče Szu-Po Wang Jonathan Ragan-Kelley Wojciech Matusik

Massachusetts Institute of Technology

Figure 1: Three rhinos, defined and printed using OpenFab. For each print, the same geometry was paired with a different fablet—a shader-
like program which procedurally defines surface detail and material composition throughout the object volume. This produces three unique
prints by using displacements, texture mapping, and continuous volumetric material variation as a function of distance from the surface.

Abstract

3D printing hardware is rapidly scaling up to output continuous
mixtures of multiple materials at increasing resolution over ever
larger print volumes. This poses an enormous computational chal-
lenge: large high-resolution prints comprise trillions of voxels and
petabytes of data and simply modeling and describing the input
with spatially varying material mixtures at this scale is challeng-
ing. Existing 3D printing software is insufficient; in particular,
most software is designed to support only a few million primitives,
with discrete material choices per object. We present OpenFab, a
programmable pipeline for synthesis of multi-material 3D printed
objects that is inspired by RenderMan and modern GPU pipelines.
The pipeline supports procedural evaluation of geometric detail and
material composition, using shader-like fablets, allowing models to
be specified easily and efficiently. We describe a streaming archi-
tecture for OpenFab; only a small fraction of the final volume is
stored in memory and output is fed to the printer with little startup
delay. We demonstrate it on a variety of multi-material objects.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representation I.3.8 [Computer Graphics]: Applications

Keywords: fabrication, 3D printing, API, materials

Links: DL PDF WEB

1 Introduction

State-of-the-art 3D printing hardware is capable of mixing many
materials at up to 600 DPI resolution, using, for example, pho-
topolymer phase-change inkjet technology. Each layer of the model
is ultimately fed to the printer as a full-resolution bitmap where
each “pixel” specifies a single material and all layers together de-
fine on the order of 108 voxels per cubic inch. This poses an enor-
mous computational challenge as the resulting data is far too large
to directly precompute and store; a single cubic foot at this resolu-
tion requires at least 1011 voxels, and terabytes of storage. Even for
small objects, the computation, memory, and storage demands are
large.

At the same time, it is challenging for users to specify continuous
multi-material mixtures at high resolution. Current printer software
is designed to process polygon meshes with a single material per
object. This makes it impossible to provide a continuous gradation
between multiple materials, an important capability of the under-
lying printer hardware that is essential to many advanced multi-
material applications (e.g., [Wang et al. 2011]). Similarly, there is
no support for decoupling material from geometry definition, and
thus no ability to specify material templates that can be reused (e.g.,
repeating a pattern that defines a composite material, or defining a
procedural gradation for functionally graded materials).

We think the right way to drive multi-material 3D printers is a pro-
grammable synthesis pipeline, akin to the rendering pipeline. In-
stead of a static mesh per piece of material, OpenFab describes a
procedural method to synthesize the final voxels of material at full
printer resolution, on demand. This provides efficient storage and
communication, as well as resolution independence for different
hardware and output contexts. It also decouples material definition
from geometry. A domain-specific language and pipeline features
specific to 3D printing make it much easier for users to specify
many types of procedurally printed output than they could by writ-
ing standalone programs for every different material or fabrication
application.

http://doi.acm.org/10.1145/2461912.2461993
http://portal.acm.org/ft_gateway.cfm?id=2461993&type=pdf
http://openfab.mit.edu/

The OpenFab pipeline offers an expressive programming model for
procedurally specifying the geometry and material of printable ob-
jects. A scene graph describes geometry and attributes, while fa-
blets procedurally modify the geometry and define material compo-
sition much like shaders in the rendering pipeline. Fablets are writ-
ten in a domain-specific language (OpenFL) and provide a flexible
toolset that supports many common material specification tasks.

We also propose a scalable architecture for implementing the Open-
Fab pipeline. Since the total computational cost is large and it is im-
possible to fit the entire output volume into memory, the pipeline is
designed to progressively stream output to the printer with minimal
up-front precomputation and with only a small slab of the volume
kept in memory at any one time. An OpenFL compiler analyzes
and transforms the procedural computation described by the fablets
as needed for efficient implementation in the fabrication pipeline.

We evaluate the system on a variety of multi-material 3D objects
that have been specified and computed using our pipeline. We dis-
cuss how our system can be used to easily describe meta-materials,
graded-materials, and objects that contain materials with varied ap-
pearance and deformation properties. We print a number of results
using a commercial multi-material 3D printer and evaluate the per-
formance of our prototype implementation.

2 Related Work

While the majority of current 3D printers use only a single mate-
rial at a time, the emerging class of multi-material 3D printers (e.g.,
Objet Connex series [Objet ; Reisin 2009]) is capable of producing
objects with almost arbitrary shape, deformation properties, and ap-
pearance by combining different materials at high resolution within
a single object. Overall, there is substantial progress in the area
of 3D printing hardware and use of multiple materials due to the
efforts from industry, academia, and hobbyists.

Graphics and Printing APIs/File Formats: Traditionally, 3D
printing has synthesized uniform material objects defined by un-
structured surface meshes [3DSystems 1988]. Multiple materials
are supported by statically assigning a single material to each mesh.
Various companies have created proprietary formats to support their
specific equipment. Nevertheless, with current printing software,
it is unclear how the geometric data is translated to machine in-
structions, making the printing process difficult to control from out-
side. Open-source efforts (e.g., RepRap, Fab@Home) largely tar-
get fused deposition modeling (FDM) printing processes, which are
motion vector-based, low-resolution, and low-throughput architec-
tures with limited support for multiple materials (multiple materials
are handled as separate STL files). The recent Additive Manufactur-
ing File Format (AMF) standard [ASTMStandard 2011] allows de-
scription of object geometry, its composition and color. Colors and
materials can be specified with limited proceduralism, using simple
expressions from voxel coordinates to material choices. However,
its per-voxel expressions have limited power, and no architecture
has been proposed to efficiently implement it.

In contrast to the model-oriented descriptions supported by current
3D printing software, standard APIs and formats in 3D rendering
and 2D printing describe how an output device should synthesize
an image [Segal and Akeley 2012; Blythe 2006; Pixar 2005; Adobe
Systems 1985; Hewlett-Packard 1984]. Our programmable pipeline
model takes a similar approach. Our scene description parallels
standard scene graph representations [Bell et al. 1995], with exten-
sions specific to fabrication, and without many complexities neces-
sary for animation and interactivity.

Goal-Based Material Design Recent work has pursued goal-
based fabrication (e.g. [Bickel et al. 2010; Hašan et al. 2010;
Weyrich et al. 2009; Bermano et al. 2012]). These methods allow
specification of a certain goal, such as a desired deformation under a
given force, and then automatically solve for the shape and material
composition of the object. Chen et al. describe a generalized frame-
work that helps with implementing new goal-based methods [Chen
et al. 2013]. The framework consists of an API and novel data struc-
tures used for parameterizing the space of material assignments and
for describing and controlling the optimization process. In contrast,
OpenFab allows the user to directly specify and precisely manipu-
late the geometric and material properties of the printed output.

Scalable Graphics Architectures: Our design is inspired in part
by RenderMan’s Reyes architecture [Cook et al. 1987]. Reyes was
designed to render models with extreme geometric detail and pro-
grammable shading. All geometric primitives are discretized into
micropolygons which provide a uniform representation through the
rest of the pipeline. Reyes manages complexity by processing a
scene in image-space tiles with limited memory footprint. Tile-
based deferred rendering pipelines [Molnar et al. 1994] make a sim-
ilar design choice.

Programmable Rendering Pipelines: Rendering pipelines like
RenderMan, OpenGL, and Direct3D [Cook et al. 1987; Segal and
Akeley 2012; Blythe 2006] provide flexibility, simplicity, and per-
formance by combining a fixed pipeline with user-programmable
stages. Programmable shaders decouple geometry from material
description. Our fabrication pipeline is inspired by the success of
programmable rendering pipelines, and uses shader-like fablets to
describe microgeometry and material composition. However, the
motivation is different: rendering focuses on simulating images of
3D scenes with lighting and surface reflectance, while our pipeline
uses the programmable stages to procedurally synthesize material
and geometric samples for each layer of printing based on coarse
model description. The visibility problems are also different in both
domains.

Procedural Modeling: The procedural geometric and material
modeling aspects of our pipeline are conceptually similar to pre-
vious work on procedural solid modeling by Cutler et al. [2002].
In their work the authors describe a scripting language that allows
volume decomposition of solids into layers and procedural assign-
ment of materials within each layer using embedded code written
in C. Similarly to OpenFab, they provide signed distance function
queries that can be used when evaluating the procedural material
function. Unlike OpenFab, their system is strictly designed as a
modeling and animation tool; we focus on fabrication and describe
a scalable and streaming architecture that can evaluate the object
specification on demand while the object is being printed.

Procedural Shading: Many languages have been defined for
programmable rendering pipelines [Cook 1984; Hanrahan and
Lawson 1990; Mark et al. 2003; Blythe 2006]. A fablet is similar
to a programmable shader used in rendering. A shader procedu-
rally defines the appearance of an object to be rendered in com-
puter graphics; similarly, a fablet procedurally defines the material
content of an object to be fabricated using an additive manufactur-
ing process. Many optimizations and analyses developed for shader
compilers are also important for fablets. Interval analysis for con-
servative bounding of computed values, which has been used for
sampling and culling in traditional renderers [Heidrich et al. 1998;
Hasselgren and Akenine-Möller 2007; Hasselgren et al. 2009; Clar-
berg et al. 2010], is useful for bounding surface displacements and
adaptively sampling the material volume in fabrication.

Functionally Graded Materials: In material science and me-
chanical engineering, functionally graded materials (FGM) are het-
erogeneous materials whose material composition varies over the
volume of a given object. Prior work describes the difficulty of
modeling FGM objects, and proposes a variety of volumetric repre-
sentations based on tetrahedra and voxels [Jackson 2000]. MIT’s
three-dimensional printing group describe a system that uses a
signed distance field to represent geometry while the material com-
position is defined by a composition function. They also define 2D
and 3D dithering methods that consider anisotropic properties of
fluids when 3D printing with an inkjet printhead [Liu et al. 2004;
Zhou et al. 2004].

3 Design Philosophy

Mixing many materials with different optical and mechanical char-
acteristics at inkjet printer resolution allows extremely complex ob-
jects with countless unique and spatially varying properties to be
synthesized directly from a digital description. At the same time,
print volumes and speed are growing, while cost is falling, putting
additive multi-material manufacturing within reach of more and
more applications. These trends led us to several major principles
which guided our design:

• Continuous material definition. To unlock the full capabil-
ities of printer hardware, our system should allow continuous
material definition at full printer resolution.

• Streaming architecture. In order to achieve scalability nec-
essary for printing large build volumes at native resolution,
the OpenFab pipeline should only use local storage and com-
putation wherever possible, streaming over the output volume
in the order required by the printer. It should also require as
little up-front precomputation as possible, to minimize printer
startup delay.

• Procedural synthesis. Expressive tools, especially a shader-
like language and programming model, provide a more nat-
ural way to describe complex optical and mechanical mate-
rial logic than is currently possible with static meshes per ma-
terial. Procedural synthesis also supports scalability, trading
memory for computation: the material composition and geo-
metric detail does not have to be stored explicitly, but can be
computed procedurally, as required by the printer.

• Decoupling material from geometry. Complex material
logic should be defined independently of the mesh geometry,
and be reusable across models.

• Automatic adaptation to hardware. Procedural synthesis of
surface and volume detail provides resolution independence
for different output sizes and resolution. Automatically nor-
malizing and dithering multi-material mixtures, accounting
for physical constraints like different materials expanding or
contracting when cured, dramatically simplifies the develop-
ment of device-independent procedural materials.

4 Programming Model

To meet these design goals, we propose a programmable pipeline
abstraction for 3D printing. The role of the pipeline is to pro-
cess a combination of geometric input, image textures, and fablets
to synthesize device-specific fabrication output. The user controls
the process by defining geometry and textures, setting pipeline at-
tributes and options, and defining fablets. User-programmable fa-
blets procedurally transform and compute attributes at each vertex
of the object mesh, and compute the material mixture output at each
point within the mesh volume.

Our pipeline has a number of logical stages, shown in Fig. 2. Sim-
ilar to rendering pipelines, some of the stages are fixed and others
are programmable by the user. The input to the pipeline is a fab
world, a scene graph-like description that consists of object bound-
ary representations and associated attributes such as transforms, im-
age texture inputs and fablets.

In the first stage of the pipeline, the surface of the input objects
is discretized via tessellation. Tessellation generates micropoly-
gon primitives that constitute the common surface representation
throughout the pipeline. Next, the surface phase of the fablet is
evaluated for all micropolygons. This stage is programmable, has
access to surface user attributes, and can reference external image
textures. It can optionally displace the surface geometry.

The next stage discretizes the volume enclosed by objects via vox-
elization. The volume phase of the fablet is then evaluated over
each voxel. This stage is also programmable and allows the user
to access externally defined resources such as image textures and
material definitions. Its output is a continuously defined mixture of
material quantities. Final volumetric quantization and discretiza-
tion of material quantities is performed in the dither stage. Finally,
the device-specific output is produced via different back-ends.

We now describe our input, pipeline stages, and output in more
detail, highlighting the key elements of our programming model.

4.1 Input specification

The fab world input is akin to an input specification to a renderer
and can be specified via either a C++ API or an accompanying file
format. We give a brief description of each and highlight the im-
portant features specific to 3D printing.

Our API currently supports the definition of geometry in the form
of closed triangle and quadrilateral-based shapes. The shapes pro-
vide a boundary representation of the volume of the object being
printed. Fablets are written in OpenFL and provide surface and ma-
terial definition. Both the shape representation and the fablets can
be reused across different printable objects. Each printable object
couples a geometric shape with a fablet and accompanying data
bindings. Complex objects such as a mechanical assembly may
contain numerous instances of the same geometric shape (e.g., a
bolt or a gear) and thus, we provide an ability to uniquely identify
shapes and instance and transform them.

Given the ability to use the surface phase of the fablet to fine tune
the geometric details at the surface level, the interface between two
objects that are in contact can be very hard to define from a strictly
geometric point of view (e.g., a procedurally displaced object em-
bedded inside another object). Thus, we allow for the specification
of object priorities defined as an integer value. If two or more ob-
jects end up populating the same voxel either by design or as a
result of a displacement, OpenFab gives priority to the object with
a higher priority value. This effectively allows constructive solid
geometry (CSG) operations such as union and difference, but not
intersection and is similar to the precedence operator described by
Cutler et al. [2002].

4.2 Tessellation

The tessellation stage reduces the geometry input to micropolygons,
a common internal surface representation throughout the pipeline.
The tessellator uses the desired output resolution to produce mi-
cropolygons that match the target printer resolution. The tessellator
also interpolates user-defined attributes and makes them available
to the later stages in the pipeline.

fab world tessellate surface stage voxelize volume stage output dither

textures

fablets

materials

Figure 2: The OpenFab pipeline defines a programming model for synthesizing continuous volumetric material mixtures for 3D printing. As
an input (blue) it takes a scene graph describing a set of object boundary representations, textures, printer materials, and user-programmable
fablets—similar to shaders. From this input, it generates a discrete volumetric material definition that is device specific. Some stages are
fixed-function (grey), controlled by high-level parameters and printer characteristics, while fablet stages (red) are programmable by the user.

4.3 Surface phase

The surface phase of the fablet is evaluated over the surface of the
printable object. Conceptually, the surface fablet phase is evaluated
point-wise, similarly to vertex shaders [Mark et al. 2003]. The fa-
blet is given the vertex location and the normal as an input. The
output consists of a list of user-defined attributes and the the dis-
placement of the vertex. The additional surface user attributes will
later be consumed by the volume phase of the fablet. The procedu-
ral displacement allows for increased geometric detail and can be
an especially powerful mechanism for describing surface microge-
ometry that would be unfeasible to explicitly specify in the input.
The fablet also has access to image textures which allow texture-
driven procedural effects. Image textures are explicitly defined as
an input to a particular fablet binding. This allows us to precisely
track data dependencies and perform certain optimizations such as
automatic creation of min-max textures for interval analysis.

4.4 Voxelize

The voxelization stage discretizes the volume enclosed by the tes-
sellated and optionally displaced geometry. In order to voxelize
objects in a consistent fashion, one has to define rules for deter-
mining whether a given voxel is inside or outside at the object’s
boundaries. Consider a multi-part assembly where parts are printed
separately. To ensure the assembly fits together, one must fol-
low consistent rules for defining the part boundaries. We follow
the rules of 26-separating voxelization [Cohen-Or and Kaufman
1995]. Alternative rules can be used as long as they are applied
consistently. Other discretization approaches that result in a dif-
ferent internal volumetric representations can also be used; ex-
amples include tetrahedral meshes or adaptively sampled distance
fields [Frisken et al. 2000].

4.5 Volume phase

The volume phase of the fablet is evaluated over the volume of its
corresponding printable object. The goal is to assign material mix-
tures to all voxels inside the object. This is the part of the pipeline
that allows for a procedural material definition and makes it feasible
to construct heterogeneous materials at the resolution of the printer.
Each available material is given a globally unique id as part of the
input specification. Similarly to image textures, all materials that
the fablet will reference are explicitly defined as part of the object-
fablet binding. The input to the volume phase consists of the voxel
center and size. The output is a list of material-quantity pairs and
is normalized to completely fill the voxel volume. If the output is
empty, the voxel is marked as void.

When defining materials volumetrically, it is often useful to be able
to determine the relative position of a given voxel with respect to
the object boundary [Liu et al. 2004]. Consider the scenario where
we would like to print a textured object. Unlike rendering, we can-
not assign colors simply to the outer layer of the surface. In order
to achieve a particular color, reflectance, and scattering behavior
the printer needs to deposit a certain amount of layered material
to achieve the desired appearance properties. Thus, one of the key
features provided to the volume phase of the fablet is the ability to
query the distance to the nearest point on the surface. Similarly,
the user can query any user-defined surface attribute or any values
generated by the surface phase at the same point.

4.6 Dither

The output of the prior stage consists of a mixture of materials for
each volume element. However, 3D printers typically are only ca-
pable of depositing a single type of material at a given point. There-
fore, we have to transform this description of the material mixture
such that each voxel receives a single material assignment. This is
similar to two dimensional dithering performed for color 2D print-
ing; the key difference is that the number of materials is potentially
much higher and the dithering should ideally be performed in 3D.

4.7 Output

The final output of our pipeline is device-dependent and targets
a specific 3D printer. Different back-ends can be implemented.
We currently implement a streaming raster slice format that’s ap-
propriate for a drop-on-demand 3D printer. We can also generate
per-material geometric meshes that can be used with existing com-
mercial software. Due to the size of the output, we are limited to
printing small build volumes on commercial printers; this can be
remedied by being able to directly provide the raster slices to the
printer.

4.8 Discussion

The OpenFab pipeline bears strong resemblance to a modern pro-
grammable rendering pipeline. This is not surprising since both
process similarly defined 3D input datasets. We note here the key
differences between them and what makes our pipeline distinct.

Volumetric pipeline 3D printing is a process that produces phys-
ical 3D objects rather than images. Thus, our pipeline’s nature is
fundamentally volumetric and has to be able to generate and pro-
cess orders of magnitude more data.

Wide target range Rendering creates images that target a wide
range of displays of disparate sizes, ranging from personal mobile
devices, to large format TVs, to projection screens. However, when
taking resolution into account, rendering across all of these de-
vices have remarkably similar requirements. In contrast, the range
of sizes and resolutions of objects that one can 3D print is much
wider. Recent work on nanoscale 3D printing has demonstrated the
ability to print 3D objects at resolutions as high as 100 nanome-
ters/voxel [Cicha et al. 2011] whereas very large format 3D printers
exist whose build volumes are measured in hundreds of cubic feet.
For instance, the build volume of the VoxelJet VX4000 occupies on
the order of 100 trillion voxels [VoxelJet 2013].

Physical constraints The pipeline has to handle additional con-
straints imposed by the mechanics of the underlying printing pro-
cess. First, most 3D printers print 2D layers sequentially along one
of the world axes. This constrains the order in which the input spec-
ification needs to be interpreted, and the order in which the output
needs to be written. Drop-on-demand 3D printers and traditional
stereolitography both require support material to be placed under-
neath parts of the printed object that do not lie directly on top of
previous physical layers. Our pipeline not only needs to be able to
calculate the form of these support structures but it also needs to be
able to instruct the printer to place them at the very beginning of
the print process regardless of the eventual position of the part that
relies on them.

Visibility Unlike rendering, our pipeline cannot take advantage of
traditional visibility culling, except when calculating placement of
support material. Object priority does impose ordering similarly to
how depth imposes front-to-back ordering in rendering. However,
since the priority is specified per object, we can pre-determine visi-
bility even before fablet execution has occurred. Unlike 3D render-
ing, we perform no clipping and no projection. Finally, the pipeline
has no concept of a viewpoint and thus cannot take advantage of
any view-dependent techniques or representations.

Importance of dithering Recall that the output of the volume fa-
blet phase is a fractional mixture of materials. Most 3D printers
can only deposit one material at any given position of the volume.
Thus, our pipeline needs to be able to transform the abstract repre-
sentation of the output into something that the printer will be able
to directly consume.

5 Fablets and OpenFL

Fablets are written in OpenFL, a C-like programming language.
OpenFL is similar in most respects to shader languages like Cg and
HLSL [Mark et al. 2003; Blythe 2006]. Unlike most shader lan-
guages, OpenFL describes both surface and volume functionality
together, as methods on a single fablet object. Uniform parameters,
including texture and material IDs, are also declared in the object.
OpenFL includes a standard library with common math, texturing,
and other routines. Unique to our domain, the standard library also
includes functions to query the distance to the nearest point on the
surface, as well as any interpolated mesh attributes at that point.

OpenFL is compiled by our LLVM-based fablet compiler [Lattner
and Adve 2004]. Compilation is staged, much like HLSL in Di-
rect3D: the first phase statically compiles fablet source into an in-
termediate representation which is saved to disk; at run-time, this
intermediate representation is loaded and JIT compiled for its use
in the pipeline, potentially with concrete parameters bound.

Using a domain-specific language provides opportunities to both

analyze and transform the computation defining fablets. For ex-
ample, our compiler generates interval versions of each fablet to
facilitate automatic inference of displacement bounds or other run-
time optimization. It is also designed to allow fast data parallel
code generation, as used for real-time shaders, though parallel code
generation remains future work.

5.1 Example

To understand how fablets can be used to define procedural surface
detail and continuous volumetric material variation, consider the
example in Fig. 7. One side is flat and texture-mapped with the
foreground image, while the other side is displaced according to the
desired brightness of the shadow background image. This object is
defined by the following fablet:

fablet MagicPostcard {
@uniform {
float2 border;
float textureDepth, maxThickness;
ImageTexture2D fg, bg;
Material white, black;

}

const int CARD_FRONT = 0, CARD_BACK = 1;

@Surface(@varying {
SurfaceAttributes attr,
float2 uv, int face,
out float2 uvOut, out int faceOut

})
{
// pass through attributes
uvOut = uv;
faceOut = face;
if (face == CARD_BACK) { // back face
float L = bg.Sample1(uv[0], uv[1], 0);
float thickness;
if (uv[0] < border[0] || uv[0] > 1 - border[0] ||

uv[1] < border[1] || uv[1] > 1 - border[1]) {
thickness = maxThickness;

} else {
// material approximation: transmission
// has quadratic falloff with thickness
thickness = sqrt(1 - L) * maxThickness;

}
return attr.n * thickness;

} else {
// no displacement on the front and sides
return 0;

}
}

@Volume(@varying {
VolumeAttributes attr,
@nearest float2 uv,
@nearest int face

})
{
MaterialComposition mc;
if (face == CARD_FRONT && // front face

abs(distance(attr.voxelCenter)) <= textureDepth) {
// surface texture
float L = fg.Sample1(uv[0], uv[1], 0);
mc.Set(white, L);
mc.Set(black, 1 - L);

} else {
// background/border
mc.Set(white, 1);

}
return mc;

}
}

Material and texture handles are declared as attributes of the fablet,
along with parameters for the dimensions of the rectangular border,
maximum thickness as well as the depth into the volume to which
the texture should be deposited on the front face.

The surface phase takes as arguments the position, normal, and
texture coordinates defined over the mesh, as well as a per-vertex
enum-like flag indicating the face of the cube (front, back, or side).
If the currently processed vertex is on the back face, the fablet com-

putes a material thickness based on the luminance of the back-
ground image and displaces the mesh accordingly. It creates a
fixed-depth border in a narrow band around the edges defined by
the border parameter. Outside the back face, it performs no dis-
placement and simply returns the original vertex position.

The volume phase takes as its argument the 3D position of the cen-
ter of the currently-processed voxel. It then uses the face flag from
the nearest surface point to determine if it near the front face. If it
is and the distance to the surface is within textureDepth, it sam-
ples the foreground image texture based on the nearest surface tex-
ture coordinates, and mixes black and white materials based on the
brightness at that point. Note that the texture cannot simply be de-
posited in an infinitesimal layer on the surface. To show up clearly
in real materials, it is usually necessary to deposit colors down from
the surface to some depth inside the interior volume. Elsewhere in
the object, it outputs plain white material.

6 Architecture

The OpenFab pipeline bears resemblance to Reyes and modern real
time rendering APIs such as OpenGL [Segal and Akeley 2012] and
Direct3D [Blythe 2006] (see Figure 3). The pipeline is designed to
facilitate efficient implementation. Specifically, it is designed to al-
low a streaming implementation, starting to produce output quickly
after startup, and driving the printer on-demand within a fixed and
controllable memory footprint. Additionally, the fablet program-
ming model is designed to admit massively data parallel computa-
tion, in the same style as shaders in rendering.

Our reference implementation was built to stream output with a
fixed memory budget and low startup time. It is a scalable foun-
dation for a high performance implementation, but many individual
stages are internally unoptimized. Nonetheless, it is more than fast
enough to keep up with currently-available printers.

The architecture of our implementation is shown in Fig. 3, and pro-
ceeds as follows:

Precompute acceleration structures
for each slab, in printer order:

for each shape overlapping slab:
Compute surface microgeometry and attributes
Compute voxels and material composition

Normalize and dither materials to device capability
Output slab to printer

The individual stages are described in order in more detail below.

6.1 Pipeline Stages

Bounds: We begin by calculating bounds for each shape in the
scene. Users provide maximum displacement bounds but we addi-
tionally use interval arithmetic to automatically infer those bounds
as well [Clarberg et al. 2010]. To infer the maximum displacement,
we execute an interval variant of the surface phase of the fablet
bound to each shape. We pick the minimum of the user-provided
and inferred bound.

Nearest query acceleration: Nearest surface point queries are
expensive to compute on demand. We create acceleration struc-
tures to speed up the queries performed in the volume phase of the
fablet. We build a bounding volume hierarchy (BVH) that spatially
partitions the base primitives of the input mesh. We conservatively
account for possible displacement using the displacement bounds
calculated in the prior stage. We refine the BVH until each sub-
volume contains no more than a given target number of candidate

bound objects

calculate support

z sort objects

build nearest query
acceleration structure

priority sort objects

find objects in slab

foreach
slab

foreach
object

tessellate object

surface fablet phase

voxelize object

volume fablet phase

done
quit

dither

output

done

Figure 3: The architecture of our OpenFab implementation is de-
signed to stream over large, high-resolution print volumes with a
fixed memory budget. The printing volume is divided into slabs
along the primary printer axis, sized to bound memory usage. The
pipeline processes one slab at a time and streams the output to the
printer. Minimizing the amount of precomputation before stream-
ing begins keeps startup time to a minimum, letting the printer start
working almost immediately after OpenFab begins processing. In-
termediate results like tessellated geometry that span slab bound-
aries are cached for reuse, and the caches are also set to a fixed
maximum size.

primitives. This up-front process is fast, since it is performed on
the untessellated base primitives of the input.

Calculate support: If the target printer requires support struc-
tures, we pre-calculate the places where such support is needed.
We use a fast, high-resolution, fixed-point rasterizer to perform an
orthographic render along the print platform movement axis (typi-
cally, the z axis). We dilate each primitive to account for any pos-

Figure 4: A 2D representation of our support generation ap-
proach. Voxels in green and yellow are part of the object being
printed. Voxels in grey are support voxels. Voxels in yellow are part
of the depth map that is generated with a high-resolution, fixed-
point rasterizer. Support voxels are generated for empty voxels iff
there is a voxel in the depth map above them.

sible displacement using the bounds calculated in the first stage.
The resulting depth-map contains the highest point along the z axis
at which material is present for each voxel column represented by
that given depth sample. During the output phase, if a given voxel
is void we output support if and only if the height of that voxel is
lower than the highest populated voxel for that particular voxel col-
umn as recorded in the depth map (see Fig. 4). When printing with
soft materials, one has to additionally create support structures on
the sides; this remains future work.

Z-Sort shapes: To progressively fabricate each shape along the
print (z) axis, we initially sort the candidate shapes into a priority
queue. We use the minimum z value of their bounding boxes as sort
keys. Each shape is then retrieved from this queue when the slab
we process begins to intersect the bounding box of the shape.

Slab processing (outer loop): We subdivide the print volume
into slabs. The size of the slab is dynamically calculated based on
target memory usage, and is a function of the resolution of the print
and the total build volume. As we process each slab we maintain
a working set of shapes whose bounding volume intersects the cur-
rent slab. As we begin the processing of each slab we update the
working set by removing shapes that are now beyond the current
slab and adding ones that are now under the slab’s domain.

Priority sort: Recall that each object has a user-provided priority
that determines which object occupies a given voxel in case of over-
lap. This is similar to Z-buffer visibility in traditional rendering.
However, given that the priority is assigned on a per-object basis,
we can forgo traditional per-visibility sample comparisons and pre-
sort our shapes up front, akin to performing the reverse painter’s
algorithm at the object level. Thus, during this phase we sort all
objects in the working set based on their priority value. When vox-
elizing and populating the voxel buffer, if a given voxel is already
occupied, the newly arriving voxel can be immediately discarded,
giving opportunities for early culling. Culling voxels due to object
overlap makes fablet evaluation efficient: only one fablet (the one
assigned to the highest priority object) gets evaluated per voxel.

Shape processing (inner loop): We iterate over each shape in
our working set in order of priority and perform the next five stages
of the pipeline.

Tessellate shape: The first stage of the loop performs partial tes-
sellation. Similarly to Reyes, regardless of the shape type, we al-
ways tessellate into micropolygons, our common 2D primitive for
the remainder of the pipeline. Tessellated primitives are cached and
reused if the primitive straddles multiple slabs. Primitives can also
be tessellated on demand in order to respond to a distance function
or nearest user attribute query; such tessellations are also cached
and reused. The cache has a set size and entries are evicted using a
simple LRU scheme.

Surface fablet phase: We evaluate the surface phase of the fa-
blet on the resulting tessellated mesh. We evaluate a quad at a time
in order to compute derivatives and thus calculate the filter width
needed for filtered sampling of textures. We use the OpenImageIO
library as our texture engine [Gritz 2012].

Voxelize shape: We perform solid voxelization by using the odd-
even rule (Jordan curve theorem). We cast a ray along one of the
principal axes and for each triangle hit we flip the inside/outside
bit for all voxels behind the hit. For each hit within a given voxel,
we only consider that voxel to be inside the mesh if the center of
the voxel is in front of the hit, thus following rasterization rules
similar to the ones in the OpenGL and DirectX pipeline. More
efficient hierarchical edge-equation based voxelizers exist [Schwarz
and Seidel 2010]. Applying them is future work.

Volume fablet phase: We evaluate the volume phase of the fablet
for each voxel in our grid. The underlying voxel grid is optimized
to store up to 16 materials out of a total of 64 materials that can be
defined in the fab world. Careful consideration is given to keeping
the memory footprint as small as possible.

Surface distance and attribute queries are evaluated on demand by
searching the corresponding acceleration structure. To allow fast
startup, the acceleration structure encodes base mesh primitives
(expanded conservatively to account for displacement bounds). At
search time, candidate base primitives are tessellated and displaced
by the surface fablet, and their microgeometry recursively searched
for the nearest point or attributes. The results of tessellation and fa-
blet evaluation are cached in the post-tessellation surface cache, so
that they are rarely recomputed, but the cache size limits potential
memory overhead at the cost of redundant recomputation of surface
geometry required in multiple places.

Dither: We apply Floyd-Steinberg dithering [Floyd and Steinberg
1976] for each slice when using multiple materials. We use a slid-
ing window to satisfy our fixed memory requirements and reduce
storage pressure for large slabs. We perform the dithering on a grid
of the same resolution as the voxelized grid; any errors due to the
difference in final effective resolution is simply distributed around
the local neighborhood. Error diffusion achieves the right balance:
if the fablet outputs one material, the dithered output matches the
resolution of the printer. If the fablet outputs multiple materials, the
dithered output gracefully reduces resolution in order to to achieve
the requested material ratios. Our current implementation dithers
each slice in 2D. By using a 3D kernel we could diffuse error across
slices instead and avoid streaks [Cho et al. 2003].

Output: We output a custom raster format. When targeting com-
mercial printers that only take STL as input, we generate a set of
boundary meshes for each material used, using a method similar
to marching cubes [Lorensen and Cline 1987]. Given the presence
of multiple coordinate systems and resolutions within a given 3D
printer (e.g., from the motion system, linear encoders, arrays of

Figure 5: Insect embedded in amber. Object priority is used to
embed the procedurally displaced insect mesh inside the outer am-
ber hemisphere. The amber region mixes small amounts of white
material according to procedural noise to model cloudiness and
variation in the amber.

printhead nozzles, variably-sized droplets, different material prop-
erties), our native output is abstract enough that it allows a printer-
specific backend to perform the necessary mapping to low-level
commands that take these various sources of resolution into ac-
count.

7 Results

We have designed and fabricated a variety of different objects that
highlight features of the OpenFab pipeline.

7.1 3D Prints

Our results were printed on an Objet Connex 500, a high-end multi-
material 3D printer that uses photopolymer phase-change inkjet
technology and is capable of simultaneously printing with two pri-
mary materials and one support material. It supports a variety of
polymer-based materials that vary in color, elasticity and optical
qualities. It takes per-material geometry meshes as an input. The
build volume of the results is limited by the maximum number of
primitives allowed by the Objet driver software—at most about 10
million.

Our first result, shown in the teaser (Fig. 1), highlights the ability
to easily apply different fablets to the same base geometry. The ap-
pearance of the rhinos varies significantly, and each uses a variety of
features in OpenFab. For instance, the left rhino uses displacement
mapping in the surface phase of the fablet to create micro-spikes
over the rhino’s skin. The volume phase of the fablet samples from
a zebra-like texture to apply a layer of textured material near the
surface. It uses the ability to query the nearest point to both retrieve
the texture coordinate necessary to sample the texture and to deter-
mine whether to apply the textured material. The center rhino has
holes carved out throughout its body by returning void in the vol-
ume phase of the fablet. We use a distance function to separate the
transparent outer shell of the rhino from the black inner core. The
right rhino achieves its look in a similar fashion.

Our next result, the butterfly (Fig. 5), highlights the use of object
priority to achieve a CSG difference-like operation. The butterfly
is placed within a transparent casing to simulate an amber fossil
(the butterfly geometry has higher priority than the casing). We

procedurally define volumetric cloudiness and particles in order to
increase the appearance realism of the amber.

The bunny and the teddy bear pair (Fig. 6) demonstrate the ability
to reuse the same fablet across different models. The material used
to print these objects is flexible but volume-preserving. The fablet
introduces procedurally-defined and repeated void spaces in order
to achieve a compressible, foam-like material. This demonstrates
the ability to easily define and apply patterned materials. One could
also make the 2D or 3D pattern be texture-driven. OpenFab allows
one to build a library of such fablets similarly to how material and
light libraries are built for image rendering.

The magic postcard (Fig. 7) demonstrates a creative use of texture-
driven displacement mapping in its fablet (code in Sec. 5.1). The
front face of the postcard (shown left) is textured using a foreground
layer of image texture. The back of the postcard (shown right) dis-
places the surface to create a spatially varying transmission effect.
The amplitude of the displacement at each point is driven by the
luminance of the background image. When illuminated solely from
the front, the background layer is not visible. When another illu-
mination source is added from the back, the whole image becomes
visible (shown center). Similarly to other textured objects, the post-
card fablet uses nearest point query and distance from the surface
to perform texture-driven material assignment.

The marble table in Fig. 8 (center) procedurally recreates the ap-
pearance of marble. It uses Perlin noise [Perlin 1985] to define a
solid texture in the volume phase of the fablet. Note that the mate-
rial distribution changes continuously to create a graded material.

The microlens in Fig. 8 (right) demonstrates a working,
procedurally-defined microlens array. The surface phase of the fa-
blet transforms a slab of material into an array of aspherical lenses
by using displacement mapping. The volume phase of the fablet
adds baffles in between the lenslets and assigns the two materials
used (clear for lenses and black for the baffles). The baffles reduce
the light leakage between neighboring lenses.

Finally, in Fig. 8 (left) we show two examples of objects made of
procedurally-defined materials with anisotropic mechanical prop-
erties. The core of the material is made of transparent and elastic
material. We procedurally insert helical (left) or straight (right) rods
made of white and rigid material. These rods influence the mechan-
ical behavior: the helical rods allow twisting motion of the object
in clockwise direction and very little twist in the opposite direction;
the straight rods transform downward side pressure into transverse
motion that causes elongation.

7.2 Performance

We ran a number of simulations to test the scalability of our ini-
tial implementation and its ability to provide fabrication data in
real time to the 3D printer. Despite the lack of optimizations, our
OpenFab implementation meets our design goals and provides sat-
isfactory performance; it can stream the data as fast or faster than
a high-end, multi-material 3D printer can output material (in our
case, an Objet Connex 500).

We used three different models (center rhino shown in Fig. 1, but-
terfly shown in Fig. 5, and marble table shown in Fig. 8) and var-
ied their build volume from as little as 3” to as high as 12” across
their longest dimension. The simulation assumed 300 DPI printer
resolution. The results were collected on an Intel Xeon E5-2650
processor running at only 2.0 GHz.

Performance is summarized in Table 1. We report startup time (time
to first slice delivery), per-slice time, and overall run time perfor-
mance. Note that startup time is always small relative to print time:

Figure 6: A procedurally-defined foam material makes the bunny and bear squishy. Color and squishiness vary procedurally over the models.

Figure 7: The front face of the postcard (left) is texture mapped using a foreground image. The back of the postcard (right) displaces
the surface to create a spatially varying transmission according to a combined foreground and background image. The result is a hidden
background image which only appears when backlit (center).

Figure 8: Left: procedurally-defined materials with anisotropic mechanical properties. Center: Marble-like material generated using Perlin
noise. Right: Procedurally-defined and fully parameterized aspherical microlens array with baffles.

Models 3 inches 6 inches 12 inches
butterfly 3.18 secs / 0.48 secs / 5 mins 4.44 secs / 1.75 secs / 33 mins 9.32 secs / 6.63 secs / 249 mins

(0.22B voxels) (1.8B voxels) (14.2B voxels)

rhino 1.26 secs / 0.46 secs / 7 mins 2.70 secs / 1.89 secs / 56 mins 7.80 secs / 6.99 secs / 417 mins
(0.12B voxels) (0.94B voxels) (7.5B voxels)

marble table 2.44 secs / 0.70 secs / 4 mins 2.99 secs / 1.25 secs / 25 mins 20.52 secs / 12.79 secs / 187 mins
(0.15B voxels) (1.2B voxels) (9.6B voxels)

Table 1: OpenFab computational performance, as print volume increases (time to first slice delivery / computation time per-slice / total time).
All model sizes are printed at 300 DPI (the highest supported by the Object Connex 500 for two materials). Total number of synthesized voxels
is shown below, and ranges from 120M to 14.2B. Startup cost is always negligible relative to print time, and time per-slice is substantially
faster than the printer speed. All results are synthesized with a fixed 1.5GB memory budget on a single processor, while computation time per
voxel grows slightly sub-linearly with print volume, suggesting that our architecture is scalable to large, high resolution prints.

we are able to start providing print data within at worst 20 seconds.
Memory footprint is kept under 1.5 GB, of which 1 GB is reserved
for slab data and the rest for ancillary caches and working set data
structures. Across different sizes of slices, the system is able to
keep up with the printer (e.g., the per-slice print time on the Con-
nex 500 is about 24 seconds for a 12” slice). We observe that a
significant amount of our runtime is spent in nearest distance and
nearest point queries, which is unsurprising given their global na-
ture. Between parallel code generation of fablets and optimization
throughout the individual pipeline stages, we think there is an op-
portunity for at least an order of magnitude performance increase
in the near future.

8 Discussion and Future Work

We have found the programmable pipeline abstraction a surpris-
ingly powerful way to describe complex multi-material 3D prints
with a wide range of mechanical and optical properties. We think
the OpenFab pipeline provides a solid and scalable foundation on
which to build many multi-material fabrication techniques.

The current programming model is powerful, but it is not the most
natural way to describe all possible results. In the future, we think
there is a great opportunity to spread proceduralism throughout the
pipeline. Procedural geometry plugins could be more natural than
the existing fablets for some types of geometry (e.g., synthesiz-
ing L-systems) and would be complementary to the existing stages.
Programmable dithering could also increase the flexibility of the
pipeline and the degree of user control over the exact printed out-
put.

Designing a full ecosystem around this pipeline is a natural direc-
tion for follow-up work. This could include a procedural modeling
tool, a visual fablet authoring tool, and print preview based on mea-
sured material properties. It is also desirable to extend the pipeline
to integrate various mesh optimizations for automatic partitioning
of large prints [Luo et al. 2012] and automatic detection and cor-
rection of structural stability [Stava et al. 2012].

Performance is another area of possible future work. Our current
implementation is more than fast enough to keep up with current
printers. But, as printers get faster, build volumes grow, and fa-
blets become more complex, it will be important to improve perfor-
mance. Fortunately, there is enormous room for optimization and
parallelization in our implementation. Nearest surface queries from
the volume fablet phase are a major component of our program-
ming model, and the single most expensive operation in our imple-
mentation. There is an opportunity to make these queries more effi-
cient. Further, it will be interesting to define more complex surface-
volume attribute relationships, including alternative attribute inter-
polation methods.

Finally, native backends for many types of printer hardware will be
important to realizing the full potential of the OpenFab pipeline.
OpenFab was designed from the outset to drive continuous mate-
rial output at full printer resolution. Current commercial printer
software, however, is limited to STL format input and fails when
given more than a few million polygons. This significantly limits
the scale of spatially varying output we can feed to current com-
mercially available printers. The printer backends, however, take
raw full-resolution bitmaps of each slice. Interacting with printers
at the raster level will allow streaming prints of continuous material
variation at much larger scale.

Given the high-frequency details in dithered multi-material slices,
implementing a back-end for vector path 3D printers (e.g., FDM)
remains a challenge. Recent work on ”multiplexer” extruders that
combine multiple filaments is promising, though. We imagine tar-
geting such printers by using dither masks that map local dither
patterns to linearly-weighted combinations of the input filaments.

Acknowledgements

We would like to thank Jaakko Lehtinen and Mark Leone for pro-
viding seed code for our fixed-point rasterizer and OpenFL com-
piler (respectively), Mark Leone and Frédo Durand for extensive
feedback on our writing, Pitchaya Sitthi-Amorn for providing feed-
back during design discussions, Ye Wang and Moira Forberg for
helping produce our results.

Some of the models were obtained from TurboSquid. The Eiffel
Tower photo was obtained through 123RF.

This work was funded in part by NSF grants CCF-1138967 and IIS-
1116296, and DARPA grant #N66001-12-1-4242. K. Vidimče was
supported by an NSF Graduate Research Fellowship and S. Wang
by the MIT Undergraduate Research Opportunities Program.

References

3DSYSTEMS, 1988. StereoLithography interface specification.

ADOBE SYSTEMS, 1985. PostScript language reference.

ASTMSTANDARD. 2011. Standard specification for additive man-
ufacturing file format (AMF) version 1.1. July.

BELL, G., PARISI, A., AND PESCE, M. 1995. The virtual reality
modeling language version 1.0 specification. Tech. rep.

BERMANO, A., BARAN, I., ALEXA, M., AND MATUSIK, W.
2012. ShadowPix: Multiple images from self shadowing. Com-
puter Graphics Forum 31, 2pt3 (May), 593–602.

BICKEL, B., BÄCHER, M., OTADUY, M. A., LEE, H. R., PFIS-
TER, H., GROSS, M., AND MATUSIK, W. 2010. Design and
fabrication of materials with desired deformation behavior. ACM
Trans. Graph. 29 (July), 63:1–63:10.

BLYTHE, D. 2006. The Direct3D 10 system. ACM Trans. Graph.
25, 3 (July), 724–734.

CHEN, D., MATUSIK, W., SITTHI-AMORN, P., DIDYK, P., AND
LEVIN, D. 2013. Spec2Fab: A reducer-tuner model for translat-
ing specifications to 3D prints. ACM Trans. Graph. 32, 4 (July).

CHO, W., SACHS, E. M., PATRIKALAKIS, N. M., AND TROXEL,
D. E. 2003. A dithering algorithm for local composition control
with three-dimensional printing. Computer-Aided Design 35, 9,
851–867.

CICHA, K., LI, Z., STADLMANN, K., OVSIANIKOV, A.,
MARKUT-KOHL, R., LISKA, R., AND STAMPFL, J. 2011.
Evaluation of 3D structures fabricated with two-photon-
photopolymerization by using FTIR spectroscopy. Journal of
Applied Physics 110, 6, 064911.

CLARBERG, P., TOTH, R., HASSELGREN, J., AND AKENINE-
MÖLLER, T. 2010. An optimizing compiler for automatic shader
bounding. Computer Graphics Forum 29, 4, 1259–1268.

COHEN-OR, D., AND KAUFMAN, A. 1995. Fundamentals of
surface voxelization. Graph. Models Image Process. 57, 6, 453–
461.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
Reyes image rendering architecture. In Proc. SIGGRAPH, ACM,
New York, NY, USA, 95–102.

COOK, R. L. 1984. Shade trees. In Proc. SIGGRAPH, ACM, New
York, NY, USA, 223–231.

CUTLER, B., DORSEY, J., MCMILLAN, L., MÜLLER, M., AND
JAGNOW, R. 2002. A procedural approach to authoring solid
models. In Proc. SIGGRAPH, ACM, New York, NY, USA, 302–
311.

FLOYD, R., AND STEINBERG, L. 1976. An adaptive algorithm
for spatial gray scale. In Proc. Society of Information Display,
vol. 17/2, 75–77.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES,
T. R. 2000. Adaptively sampled distance fields: a general repre-
sentation of shape for computer graphics. In Proc. SIGGRAPH,
ACM, New York, NY, USA, 249–254.

GRITZ, L., 2012. OpenImageIO 1.0. http://openimageio.org.

HANRAHAN, P., AND LAWSON, J. 1990. A language for shad-
ing and lighting calculations. In Proc. SIGGRAPH, ACM, New
York, NY, USA, 289–298.

HASSELGREN, J., AND AKENINE-MÖLLER, T. 2007. PCU: the
programmable culling unit. ACM Trans. Graph. 26, 3 (July).

HASSELGREN, J., MUNKBERG, J., AND AKENINE-MÖLLER, T.
2009. Automatic pre-tessellation culling. ACM Trans. Graph.
28, 2 (May), 19:1–19:10.

HAŠAN, M., FUCHS, M., MATUSIK, W., PFISTER, H., AND
RUSINKIEWICZ, S. 2010. Physical reproduction of materi-
als with specified subsurface scattering. ACM Trans. Graph. 29
(July), 61:1–61:10.

HEIDRICH, W., SLUSALLEK, P., AND SEIDEL, H.-P. 1998. Sam-
pling procedural shaders using affine arithmetic. ACM Trans.
Graph. 17, 3 (July), 158–176.

HEWLETT-PACKARD, 1984. Printer command language.

JACKSON, T. R. 2000. Analysis of functionally graded material ob-
ject representation methods. PhD thesis, Massachusetts Institute
of Technology.

LATTNER, C., AND ADVE, V. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In Pro-
ceedings of the International Symposium on Code Generation
and Optimization: Feedback-directed and Runtime Optimiza-
tion, IEEE Computer Society, Washington, DC, USA, CGO ’04.

LIU, H., MAEKAWA, T., PATRIKALAKIS, N., SACHS, E., AND
CHO, W. 2004. Methods for feature-based design of heteroge-
neous solids. Computer-Aided Design 36, 12, 1141–1159.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A
high resolution 3D surface construction algorithm. In Proceed-
ings of the 14th annual conference on Computer graphics and
interactive techniques, ACM, New York, NY, USA, 163–169.

LUO, L., BARAN, I., RUSINKIEWICZ, S., AND MATUSIK, W.
2012. Chopper: partitioning models into 3D-printable parts.
ACM Trans. Graph. 31, 6 (Nov.), 129:1–129:9.

MARK, W. R., GLANVILLE, R. S., AKELEY, K., AND KILGARD,
M. J. 2003. Cg: a system for programming graphics hardware
in a C-like language. ACM Trans. Graph. 22, 3 (July), 896–907.

MOLNAR, S., COX, M., ELLSWORTH, D., AND FUCHS, H. 1994.
A sorting classification of parallel rendering. IEEE Computer
Graphics and Applications 14, 4, 23–32.

OBJET. Connex 500 multi-material 3D printing system.

PERLIN, K. 1985. An image synthesizer. In Proc. SIGGRAPH,
ACM, New York, NY, USA, 287–296.

PIXAR. 2005. The RenderMan Interface. Tech. rep., 11.

REISIN, Z. B. 2009. Expanding applications and opportunities
with PolyJetTMrapid prototyping technology. Tech. rep., Objet.

SCHWARZ, M., AND SEIDEL, H.-P. 2010. Fast parallel surface and
solid voxelization on GPUs. ACM Transactions on Graphics 29,
6 (Dec.), 179:1–179:10.

SEGAL, M., AND AKELEY, K. 2012. The OpenGL graphics sys-
tem: A specification, version 4.3. Tech. rep., SGI.

STAVA, O., VANEK, J., BENES, B., CARR, N., AND MĚCH, R.
2012. Stress relief: improving structural strength of 3D printable
objects. ACM Trans. Graph. 31, 4 (July), 48:1–48:11.

VOXELJET, 2013. VoxelJet VX4000 – the large-format 3D print
system.

WANG, L., LAU, J., THOMAS, E. L., AND BOYCE, M. C. 2011.
Co-continuous composite materials for stiffness, strength, and
energy dissipation. Advanced Materials 23, 13, 1524–9.

WEYRICH, T., PEERS, P., MATUSIK, W., AND RUSINKIEWICZ,
S. 2009. Fabricating microgeometry for custom surface re-
flectance. ACM Transactions on Graphics 28, 3 (July), 32:1–
32:6.

ZHOU, M., XI, J., AND YAN, J. 2004. Modeling and processing
of functionally graded materials for rapid prototyping. Journal
of Materials Processing Technology 146, 3, 396–402.

http://openimageio.org

