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Abstract—In this paper, we present an empirical rate-distortion
study of a communication scheme that uses compressive sensing
(CS) as joint source-channel coding. We investigate the rate-
distortion behavior of both point-to-point and distributed cases.

First, we propose an efficient algorithm to find the `1-
regularization parameter that is required by the Least Absolute
Shrinkage and Selection Operator which we use as a CS decoder.

We then show that, for a point-to-point channel, the rate-
distortion follows two distinct regimes: the first one corresponds
to an almost constant distortion, and the second one to a rapid
distortion degradation, as a function of rate. This constant
distortion increases with both increasing channel noise level
and sparsity level, but at a different gradient depending on
the distortion measure. In the distributed case, we investigate
the rate-distortion behavior when sources have temporal and
spatial dependencies. We show that, taking advantage of both
spatial and temporal correlations over merely considering the
temporal correlation between the signals allows us to achieve
an average of a factor of approximately 2.5× improvement in
the rate-distortion behavior of the joint source-channel coding
scheme.

I. INTRODUCTION

Compressive sensing (CS) is a novel technique which allows
to reconstruct signals using much fewer measurements than
traditional sampling methods by taking advantage of the
sparsity of the signals to be compressed. Previous works
related to the rate-distortion analysis of CS have been focused
on its performance related to image compressing [1] and
quantized CS measurements [2]. References [3], [4] and [5]
derive bounds for the rate-distortion, while [6] presents a rate-
distortion analysis by representing the compressive sensing
problems using a set of differential equations derived from
a bipartite graph. In a recent work [7], a joint source-channel-
network coding scheme is proposed using compressive sensing
for wireless network with AWGN channels. In this scheme, the
sources exhibit both temporal and spatial dependencies, and
the goal of the receivers is to reconstruct the signals within an
allowed distortion level.

In this paper, we focus on the empirical rate-distortion
behavior of this CS-based joint source-channel coding scheme
using Least Absolute Shrinkage and Selection Operator
(LASSO) [8] as a CS decoder and propose an algorithm to
find the `1-regularization parameter central to the LASSO
optimization. We consider a point-to-point channel and illus-
trate how the rate-distortion varies as a function of channel
noise level and sparsity level of the original signal. We also

investigate a distributed case, which highlights the significant
advantage of taking the spatial and temporal dependencies of
the sources we consider.

Our study shows that the rate-distortion behavior exhibits
two distinct regimes for a point-to-point channel. For a number
of CS measurements greater than some optimal value m?, the
distortion is almost constant. On the other hand, when fewer
measurements than m? are taken, the distortion degrades very
rapidly with respect to the rate. Increased channel noise and
sparsity level both influence the value of the distortion for the
first regime, which increases accordingly.

For the distributed case, we consider a network with sources
that have temporal and spatial dependencies. When both types
of correlations are taken in consideration, we observe that
the rate-distortion behavior of the network is on average 2.5
times better than that when only temporal dependencies are
considered.

II. BACKGROUND AND PROBLEM SETUP

In this section, we review the fundamentals of compressive
sensing (CS), introduce the cross-validation algorithm we use,
and introduce the notation and parameters for our simulations.

A. Compressive Sensing

Let X ∈ RN be a k-sparse vector and let Φ ∈ Rm×N

be measurement matrix such that Y = ΦX is the noiseless
observation vector, where Y ∈ Rm. X can be recovered
by using m � n measurements if Φ obeys the Restricted
Eigenvalue (RE) Condition [7].

We consider noisy measurements, such that the measure-
ment vector is Y = ΦX + Z, where Z is a zero-mean random
Gaussian channel noise vector.

It was shown in [8] that CS reconstruction can be formu-
lated as a Least Absolute Shrinkage and Selection Operator
(LASSO) problem, which is expressed as

X̃ = arg min
X

1

2m
||Y − ΦX||2`2 + λ||X||`1 (1)

where λ ≥ 0 is the `1-regularization parameter. By def-
inition, given a vector X and a solution X̃, the LASSO
problem involves a `1-penalization estimation, which shrinks
the estimates of the coefficients of X̃ towards zero relative
to their maximum likelihood estimates [8]. Equation (1) thus
outputs a solution X̃ that is desired to have a number of non-
zero coefficients close to k, while maintaining a high-fidelity



reconstruction of the original signal. Thus, as λ is increased,
so is the number of coefficients forced to zero.

In the next section, we propose an algorithm to choose λ
using cross-validation, based on work by [9] and [10].

B. Cross-validation with modified bisection

As explained in [11], cross-validation is a statistical tech-
nique which allows to choose a model which best fits a set of
data. It operates by dividing the available data into a training
set to learn the model and a testing set to validate the model.
The goal is then to select the model that best fits both the
training and testing set.

We use a modified version of this algorithm to choose the
value of λ which minimizes the energy of the relative error
between some original signal and its reconstruction. As such,
the m × N measurement matrix Φ in (1) is separated into a
training and a cross-validation matrix, as shown in (2),

Φ ∈ Rm×N →
[

Φtr ∈ Rmtr×N

Φcv ∈ Rmcv×N

]
(2)

where mtr + mcv = m. In order for the cross-validation
to work, Φtr and Φcv must be properly normalized and
have the same distribution as Φ. For the purpose of the
schemes we consider, we fix the number of cross-validation
measurements at 10% of the total number of measurements,
so mcv = round(0.1m), which provide a reasonable trade-off
between complexity and performance of the algorithm [9].

Algorithm 1 summarizes the cross-validation technique used
to find the best value of λ for the rate-distortion simulations.

Algorithm 1 Cross-validation with modified bisection method
1: Ycv = ΦcvX + Zcv
2: Ytr = ΦtrX + Ztr
3: λ = λinit
4: Let ε be an empty vector with coefficients εi
5: while i ≤ MaxIterations do
6: Solve X̃

[λ]
tr = arg min

X

1
2m ||Ytr−ΦtrX||2`2 +λ||X||`1

7: εi ← ||Ycv − ΦcvX̃
[λ]
tr ||`2

8: λ← λ/1.5
9: end while

10: λ? = arg min
λ

ε = arg min
λ
||Ycv − ΦcvX̃

[λ]
tr ||`2

Given an original signal X, the cross-validation and the
training measurement vectors Ycv and Ytr are generated by
taking the CS measurements and corrupting them with zero-
mean Gaussian channel noise, represented by Zcv and Ztr
(Lines and 2). The initial value of λ that is investigated is one
that we know leads to the all-zero reconstructed signal X̃[λ]

tr =
0 (Line 3). For a chosen number of repetitions, an estimation
X̃

[λ]
tr of the reconstructed signal is obtained by decoding Ytr

(Line 6) and the cross-validation error is computed (Line 7).
The next value for λ to be investigated is obtained by dividing
the current value by 1.5. The optimal value λ? is then the one
that minimizes the cross-validation error (Line 10).

In the field of CS, cross-validation mainly used with homo-
topy continuation algorithms such as LARS [12], which iterate
over an equally-spaced range of decreasing values for λ. While
this iterative process allows for better accuracy for smaller
range steps, it comes at the cost of a latency which increases
with the number of values of λ tested, due to the time-
consuming decoding (Line 6). In our scheme, we circumvent
this latency issue by considering a decreasing geometrical
sequence of values of λ, which still guarantees that we find a
solution for λ? of the same order as the one predicted by an
homotopy continuation algorithm, but in a fraction of the time.
Indeed, we are able to obtain a solution after a maximum of
15 iterations of Lines 6 to 8, by using a method comparable
to the bisection method [13] to obtain the values of λ to be
tested. However, in order to improve the accuracy, we choose
a common ratio of 1.5−1 instead of 2−1. By abuse of notation,
we refer to this technique as a “cross-validation with modified
bisection method.”

C. Simulations setup

In this section, we define the signal and measurement matrix
models that were used for the simulations, the distortion
measures used to obtain the rate-distortion results, as well as
the software we use.

1) Signal model and measurement matrix: We consider a
k-sparse signal X of length N = 1024, and define its sparsity
ratio as k/N = α. X is formed of spikes of magnitudes ±1
and ±0.5, where each magnitude has a probability of α/4.

We choose the measurement matrix Φ with a Rademacher
distribution defined as follows

Φij =
1√
m

{
−1 with probability 0.5
+1 with probability 0.5

(3)

where m is the number of measurements taken. It is shown in
[14] that the RE condition holds for this type of matrix.

2) Distortion measures: We consider two distortion mea-
sures: the mean-squared error (MSE) and a scaled version
of the percent root-mean-square difference (PRD) [15] often
used to quantify errors in biomedical signals [15] and defined
as follows:

PRD =

√∑N
n=1 |X− X̃|2√∑N
n=1 |X|2

(4)

where X is the original signal of length N and X̃ its
reconstruction.

The simulations were implemented in MATLAB using the
software cvx [16], a modeling system for convex optimization
which uses disciplined convex programming to solve (1) [17].

III. JOINT CS-BASED SOURCE-CHANNEL CODING FOR A
POINT-TO-POINT CHANNEL

In this section, we evaluate the performance of a joint
source-channel coding scheme using compressive sensing (CS)
proposed in [7]. The signal and measurement models are
defined in Section II-C. The sensing-communication scheme
is performed in the following steps:



a) Step 1 (Encoding): The CS encoding is done by taking
m measurements of the signal X of length N = 1024 using a
measurement matrix Φ ∈ Rm×N distributed as in (3) to obtain
a measurement vector Y = ΦX.

b) Step 2 (Transmission through channel): The measure-
ment vector Y is transmitted through a channel, which is either
noiseless or noisy. If it is noisy, the standard deviation of the
noise level is defined as a percentage of power of the signal Y.
For our simulations, we consider 5% and 10% channel noise.
The signal reaching the receiver is Z = Y +W = ΦX+W,
where W ∈ Rm is additive zero-mean random Gaussian noise.

c) Step 3 (Decoding): At the receiver, the LASSO de-
coder outputs an reconstructed signal X̃ of X by solving the
following complex optimization

X̃ = arg min
X

1

2m
||Z− ΦX||2`2 + λ?||X||`1 (5)

where we use Algorithm 1 to find λ?.
Rate is calculated as m/N and we compare how both the

channel noise level and the sparsity of the original signal affect
the rate-distortion behavior of the scheme, for the PRD and
MSE distortion measures. In these simulations, each point has
been achieved by averaging the distortion values obtained by
running each setting (channel noise, m, and sparsity ratio) 15
times.

A. Rate distortion as a function of noise level

We observe the rate-distortion behavior at 3 channel noise
levels: noiseless, 5% and 10% channel noise. Figure 1 shows
the rate-distortion in terms of PRD and MSE for a sparsity
ratio k/N = 0.075.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distortion

R
a

te

 

 

PRD Noiseless

MSE Noiseless

PRD 5% meas. noise

MSE 5% meas. noise

PRD 10% meas. noise

MSE 10% meas. noise

Fig. 1. Rate-Distortion for sparsity ratio k/N = 0.075

As seen in Figure 1, we can distinguish two regimes in the
rate-distortion curves: the first one corresponds to an almost
constant distortion D? after the number of measurements
exceeds some critical value m?. As expected, both m? and
D? increase slightly with increasing channel noise. However,
we observe that this increase is much more important when
PRD is used a distortion measure.

The second observed regime demonstrates a rapid degra-
dation of the distortion, as the number of measurements is
insufficient to properly reconstruct the original signal. This

rapid degradation corresponds to the settings of the simulations
where the number of measurements is inferior to m?.

B. Rate distortion as a function of sparsity level

We observe the rate-distortion behavior at 4 sparsity ratios
k/N = [0.01, 0.025, 0.05, 0.075] and present the correspond-
ing rate-distortion curves in Figures 2 and 3. Both of these sets
of curves correspond to a level of channel noise of 5%.
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Fig. 2. Rate-Distortion for channel noise level of 5% with MSE as distortion
measure
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Fig. 3. Rate-Distortion for channel noise level of 5% with PRD as distortion
measure

For a given noise level, we observe an upper-right shift of
the curves for increasing sparsity ratio. In particular, we can
see that the value of m? increases almost linearly with the
sparsity ratio. We also notice that the value of m? increases
much sharply when MSE is used as a distortion measure.
As before, we can observe that the changes in rate-distortion
curves are much distinguishable when the distortion measure
is PRD.

IV. JOINT CS-BASED SOURCE-CHANNEL CODING FOR A
DISTRIBUTED CASE

In this section, we evaluate the performance of the compres-
sive sensing-based joint source-channel coding scheme for a
distributed case. We consider a single-hop network depicted in
Figure 4 with two sources s1 and s2, whose samples exhibit
both spatial and temporal redundancies [7]. The temporal
redundancy refers to the fact that each signal is sparse; the



spatial redundancy refers to the fact that the difference between
the two signals at the two sources is sparse.

X2

X1

s2

s1

r (X̃1, X̃2)

Fig. 4. Single-hop network for distributed cases

In our simulations, X1 is k1-sparse and X2 = X1 + E,
where E is a k2-sparse error signal; we assume that k1 � k2.
The goal is to reconstruct both X̃1 and X̃2 at the receiver r.
We present two ways of performing these reconstructions, and
in both cases, the total rate and the distortion were respectively
calculated as following

Rtotal =
m1 +m2

N
(6)

Dtotal = D1 +D2 (7)

where mi is the number of compressive sensing measurements
taken at source si and Di is the distortion measured between
the original and reconstructed signal Xi and X̃i. For both of
the cases, we present the results of the simulations for when
the measurements are subjected to both no noise and 5% noise.

A. Case 1: Only temporal dependency is considered

In this case, we treat s1 and s2 as if there were two
independent sources, that is X1 and X2 are compressed and
decompressed independently. Algorithm 2 summarizes how
this process is done.

Algorithm 2 Distributed case 1
1: Y1 = Φ1X1 + Z1

2: Y2 = Φ2X2 + Z2

3: Decompress Y1 to obtain X̃1 by solving
X̃1 = arg min

X1

1
2m ||Y1 − Φ1X1||2`2 + λ?||X1||`1

4: Decompress Y2 to obtain X̃2 by solving
X̃2 = arg min

X2

1
2m ||Y2 − Φ2X2||2`2 + λ?||X2||`1

The signals that r receives are shown in Lines 1 and 2
of Algorithm 2, where Zi represents an additive zero-mean
Gaussian noise associated with the channel. Φ1 ∈ Rm1×N

and Φ2 ∈ Rm2×N are random matrices similar to (3).
Lines 3 and 4 of the algorithm correspond to the CS LASSO

decoding performed at r to obtain estimates of the original
signals X1 and X2.

B. Case 2: Both spacial and temporal dependencies are
considered

In this case, we take advantage of the spatial correlation
between X1 and X2, as shown in Algorithm 3.

Algorithm 3 Distributed case 2
1: Y1 = Φ1X1 + Z1

2: Decompress Y1 to obtain X̃1 by solving
X̃1 = arg min

X1

1
2m ||Y1 − Φ1X1||2`2 + λ?||X1||`1

3: Y2 = Φ2X2 + Z2

4: Y2 = Φ2(X1 +E)+Z2, and we already have an estimate
for X1

5: Let YE = Y2 − Φ1X̃1

6: Thus YE = Φ2E + ZE

7: Decompress YE to obtain Ẽ by solving
Ẽ = arg min

E

1
2m ||YE − Φ1X̃1||2`2 + λ?||X1||`1

8: Hence X̃2 = X̃1 + Ẽ

Lines 1 and 3 of Algorithm 3 corresponds to the signal
received at r from source s1 and s2 respectively, where as
before Φi ∈ Rmi×N is generated using (3) and Zi is a random
Gaussian noise vector corresponding to the noisy channel
between si and r. We set m1 � m2. The receiver then uses
the LASSO decoder to obtain X̃1 (Line 2). Given the spatial
dependency between X1 and X2, Lines 3 and 4 are equivalent
for Y2. The measurement vector YE can thus be defined (Line
5), and decoded to obtain an estimate for the error E (Line
7). Line 8 shows how X̃2 is computed as the sum X̃1 + Ẽ.

The compared performance of the two algorithms for the
distributed case are shown on Figures 5 to 8 for a noiseless and
5% channel noise settings. We observe that, for the noiseless
channel, at a rate of 0.5, we obtain on average a factor of 2.5×
improvement when using Algorithm 3 over Algorithm 2 with
PRD as a distortion measure. When using MSE, an average
improvement of almost 3× is obtained for the same setting.

When the channel is noisy, the similar average improve-
ments at a rate of 0.5 are respectively factor of 2× and
2.5× for PRD and MSE. These results prove that taking
advantage of the spatial and temporal correlations between the
two signals allows to achieve a much improved rate-distortion
behavior.
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Fig. 5. Distributed Case: Noiseless channel with PRD as distortion measure,
(T) is temporal correlation only case; (T+S) is temporal and spatial correlation
case
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Fig. 6. Distributed Case: Noiseless channel with MSE as distortion measure,
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Fig. 7. Distributed Case: 5% channel noise with PRD as distortion measure,
(T) is temporal correlation only case; (T+S) is temporal and spatial correlation
case
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Fig. 8. Distributed Case: 5% channel noise with MSE as distortion measure,
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V. CONCLUSIONS

In this paper, we empirically evaluated the rate-distortion
behavior of a joint source-channel coding scheme, based on
compressive sensing for both a point-to-point channel and a
distributed case.

We first proposed an efficient algorithm to choose the `1-
regularization parameter λ from the LASSO, which we used
as a compressive sensing decoder. This algorithm, which
combines cross-validation and modified bisection, offers a
reasonable trade-off between accuracy and computation time.

Using the values of λ obtained with this algorithm, we

characterized the rate-distortion behavior of the joint source-
channel scheme in a point-to-point channel using two dis-
tortion measures and showed that there exists an optimal
sampling rate above which the distortion remains relatively
constant, and below which it degrades sharply.

We then studied a single-hop network with two spatially
and temporally correlated sparse sources and a receiver which
uses compressive sensing decoders to reconstruct the source
signals. We observed the effect of these signal correlations
on the rate-distortion behavior of the scheme and showed that
taking both spatial and temporal correlation in consideration
allows us to achieve a factor of 2.5× improvement in rate-
distortion compared to only taking temporal correlation.
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