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Abstract 

Downhole microseismics has gained increasing popularity in recent years as a way to 

characterize hydraulic fracturing and to estimate in-situ stress state. Conventional 

approaches only utilize part of the information contained in the microseismic waveforms 

such as the P/S far-field amplitudes to determine the focal mechanisms and infer stress 

state. The situation becomes more serious for downhole monitoring where only limited 

azimuthal coverage is available. In this study, we developed a full-waveform based 

approach to invert for complete moment tensor. We use the discrete wavenumber 

integration method as the fast forward modeling tool to calculate the full wavefield in the 

layered medium. By matching the waveforms across the array, a stable moment tensor 

solution can be obtained without imposing additional constraints. We show that by using 

full waveforms, the resolution of the full seismic moment tensor is improved even with 

data from a single monitoring well. We also determine the stress drop from the S-wave 
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displacement spectrum. We test our method using a downhole microseismic dataset from 

hydraulic fracturing treatments in East Texas. The results indicate the existence of non-

double-couple components in the moment tensor. The derived fracture plane direction 

also agrees with that derived from multiple event location. 

 

Introduction 

Microseismic downhole monitoring is a valuable tool for fracture mapping. The 

locations of microseismic events, with sufficient resolution, provide information on 

fracture geometry and properties (Warpinski et al., 1998; Phillips et al., 2002). Besides 

location, seismic moment tensor is also derived to understand the microseismic source 

mechanisms and stress state (Nolen-Hoeksema and Ruff, 2001; Baig and Urbancic, 2010). 

Currently, most moment tensor inversion methods rely only on far-field P- and S-wave 

amplitudes. Thus, they normally either require multiple wells at different azimuths or 

make additional double-couple source assumption when data from only one monitoring 

well is available, as is the typical case for hydraulic fracturing (Vavrycuk, 2007; Baig and 

Urbancic, 2010).  

In this paper, we propose a full-waveform approach for moment tensor inversion 

using data from one monitoring well. It uses the discrete wavenumber integration method 

to calculate elastic wave-fields in the layered medium. By matching full waveforms 

across the geophone array, we show that the inversion can be stabilized so that the 

complete moment tensor can be retrieved from data recorded in a single borehole. In this 

paper, we begin by introducing the full-waveform approach and testing the method with 

synthetic data. Then we describe the application to a field dataset from East Texas. We 



~ 3 ~ 
 

invert the complete seismic moment tensor and extract three characteristic parameters: 

seismic moment, fracture orientation, and the isotropic component percentage. The stress 

drop is also derived from the S-wave displacement spectrum based on Madariaga’s model 

(Madariaga, 1976).  

 

Methodology 

Full waveform based complete moment tensor inversion 

The moment tensor of microseismic events can be represented by a 3 by 3 symmetric 

matrix (Aki and Richards, 2002). The complete moment tensor is defined as the 6 

independent components of the moment tensor matrix. To improve the inversion with a 

single borehole coverage, we use all phases that are embedded in the full waveform data. 

Our approach starts from full elastic waveform modeling in the layered medium with 

discrete wavenumber integration method (DWN; Bouchon, 2003). The �-th component 

(North, East, Down) of the observed waveform at geophone � is modeled as:   
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where �����
�, �
 , �� is the observed data, while �����

� , �
, �� is the synthetic data as 

described in equation 1. $� is the duration of observed waveforms at geophone �. In this 
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study we choose $� to include both P and S wave trains and keep it constant for all 

geophones. Time 0 is the origin time, which is obtained by a grid-search around its initial 

estimate within the dominant signal period. The initial estimate of the origin time can be 

found by cross-correlating the synthetic and observed waveforms. To further stabilize the 

inversion, both synthetic data and observed data are band-pass filtered. Based on the 

spectral analysis of field data, a signal frequency band of [200, 900] Hz is used in this 

study.  The moment tensor is solved by minimizing the misfit function in equation 2 as: 

 %���
� = �&'������
�(���
� ,                                     (3) 

Here %� is the �-th component of six independent moment tensor elements: %� = ���, 

%� = ���, %� = ���, %) = ���, %* = ���, %+ = ���, while (� has six independent 

elements, representing the correlation between observed data and synthetic seismograms 

resulting from the six independent moment tensor elements: 
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,�� corresponds to one of the six seismograms defined by: 
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The seismic moment is derived from the moment tensor matrix ��� as: 
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%" = �7�|9�| ,                                                  (10) 

where 9�  is the eigenvalue of the moment tensor matrix. The moment magnitude is 

defined as: 

%: = �

�
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where %" is the seismic moment in N*m.  

The full moment tensor matrix is further decomposed into three parts: isotropic (ISO) 

component, compensated linear vector dipole (CLVD) component and double-couple 

(DC) component (Vavrycuk, 2001). The fracture strike is then derived from the DC 

component (Jost and Hermann, 1989). The ISO component percentage is determined by: 
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Stress drop estimation 

According to (Madariaga, 1976), the radius of a circular source is estimated as:  

N" =  �.��OPQ
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where UV is the corner frequency derived from S-wave displacement spectrum and WX
 is 

the average S-wave velocity of the medium. Stress drop, defined as the average 

difference between the initial and final stress levels over the fault plane, is obtained from: 
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where %" is the seismic moment determined by complete moment tensor inversion as 

shown in equation 10.  
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Synthetic study 

Full waveform fitting and complete seismic moment tensor inversion 

In this section, we study the influence of borehole azimuthal coverage on complete 

moment tensor inversion and compare the full-waveform approach with conventional 

methods using far-field P/S amplitudes. Next, we show an example of full waveform 

source inversion for a double-couple source with additive Gaussian noise. We 

demonstrate the waveform fitting results and compare the inverted source parameters to 

the exact values.  

The 1D velocity model derived from the field experiment, as shown in Figure 1, is 

used throughout this paper to generate synthetics and perform inversion. We assume a 

known velocity model and source location. The justification for these assumptions is 

explained in the field study section.  Firstly, we study the influence of borehole azimuthal 

coverage on the full waveform based complete moment tensor inversion. We limited our 

analysis to the noise free case to investigate the effect of well coverage. The influence of 

noise is discussed afterwards.  

As shown in Figure 2 (a), a tensile earthquake model is used to describe the 

microseismic source. The fault is vertical in the N-S direction (strike value = 00). The slip 

lies in the horizontal plane and slip azimuth ] changes from 00 to 1800. The microseismic 

source, labeled as plus sign in Figure 2 (b), lies in the center of the circle, with 8 

monitoring wells, B1 to B8, spreading from the North direction to the North-West 

direction. The azimuthal difference between two adjacent wells is 450. To mimic the field 

setup, the source is located at a depth of 3975 m (13042 ft) and 101 m (331 ft) away from 
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the monitoring wells. In each well, a six-geophone array is deployed at a depth from 3912 

m (12835 ft) to 3944 m (12940 ft). Figure 3 gives the calculated percentages of the ISO, 

DC and CLVD components for the tensile earthquake model of Figure 2(a) using 

equation (8) of Vavrycuk (2001). If the slip azimuth ] equals to 00 or 1800, the source is 

pure shear with no ISO or CLVD components. When the slip azimuth changes to 900, a 

pure tensile source is generated. The double-couple percentage is zero, and the ISO and 

CLVD components are positive and attain their maximum values. For the other slip 

directions, the source is mixed. All three components exist. 

Four sets of synthetic experiments are conducted: 1) full azimuthal coverage, using all 

eight boreholes, B1 to B8; 2) partial azimuthal coverage, using the two boreholes, B1 and 

B2; 3) a single well coverage using the borehole B1 at an azimuth of 00 east of north; 4) a 

single well coverage using the borehole B2 at an azimuth of 450 east of north. For each 

set of experiment, the full waveform based complete moment tensor inversion is 

conducted on the synthetic data using the exact velocity model and the accurate source 

location. Four characteristic source parameters including strike, seismic moment, ISO 

and DC component percentage are then estimated from inverted moment tensors and 

compared with the exact values. The errors are calculated as the difference between the 

exact values and the estimated values. 

The errors in the inverted source parameters, as a function of the slip direction, are 

plotted in Figure 4 for four cases: (a) eight boreholes, (b) two boreholes at an azimuth of 

00 and 450, (c) one borehole at an azimuth of 00, and (d) one borehole at an azimuth of 

450. Figure 4 indicates that for all slip azimuths, the source parameters can be correctly 

retrieved by the full-waveform based approach even with a single vertical borehole, 
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which is impossible for conventional approaches based only on far field P/S amplitudes 

(Vavrycuk, 2007; Eaton, 2009). A further study suggests that the improvement brought 

by the full-waveform based method is also seen as a decrease in the condition number of 

the matrix &. The improvement may come from two sources: 1) more angular coverage 

of the source is achieved by using full waveforms in the layered medium instead of a 

homogeneous medium, and 2) near field wave-field helps retrieve the moment tensor 

components not recoverable from conventional moment tensor inversion methods.  

Two more observations are made from Figure 4. Firstly, in all cases, the smallest error 

in the inverted source parameters is achieved for pure DC sources, that is, for the slip 

azimuths of 00 and 1800. For pure DC sources, the full-waveform approach loses most of 

its benefits, since the conventional method, which uses far field P/S amplitudes and 

makes additional double-couple source assumption, can also retrieve correct complete 

moment tensor (Vavrycuk, 2007). Secondly, the errors in the strike estimate for a pure 

tensile source (i.e., the slip azimuth of 900) reaches its maximum of around -40 when only 

one borehole at an azimuth of 450 away from the strike direction (N-S direction) is 

available, while the error reduces to -0.40 when one monitoring well is located in the 

strike direction (i.e., at an azimuth of 00). This suggests that when only one monitoring 

well is allowed, it is better to place it close to the strike direction if a-priory information 

on major fault orientation is available. 

Next, we demonstrate the full-waveform approach on a noisy synthetic dataset. In this 

experiment, a double-couple source (strike: 850 degrees, dip: 750, rake: 00), located at a 

depth of 3975 m (13042 ft) and 65 m (213 ft) north, 77 m (254 ft) west away from a six-

geophone downhole array, is assumed. The geophone array is kept at the same location as 
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the previous noise-free experiment. Knowing the layered velocity model, as depicted in 

Figure 1, the source, and the geophone array, DWN is used to generate the noise-free data. 

Next, a 10% Gaussian noise is added to form the synthetics for moment tensor inversion. 

All three-component data are included in the inversion.  

As an example, Figure 5 gives the vertical component fitting between synthetic data 

(in red) and inverted data (in blue). A good agreement is observed for both P- and S-

waves. Moreover, a reasonable fit for the converted wave is also seen. Good agreements 

are also seen on East and North component data. Compared to conventional methods 

using only far-field P and S first-arrival amplitudes, it is found that, the condition number 

of the matrix & is reduced by at least one order of magnitude using data from a single 

vertical well. This explains why we can invert for complete moment tensor from a single 

borehole by using full waveforms. The inverted moment tensor gives a fracture plane 

with strike of 84.9 degrees, dip of 74.5 degrees, and rake of -0.6 degrees, which is close 

to the true orientation. 

Seismic moment estimate 

To evaluate the accuracy of the seismic moment estimated by our method, we 

conduct a Monte Carlo simulation. In this experiment, we fix the source location at (N, E, 

D) = (64.8, 77.3, 3975.3) m and a source mechanism of (strike, dip, rake) = (850, 750, 00). 

We vary the seismic moment from 103 N·m to 108 N·m. For different seismic moment 

values, different realizations of 10% Gaussian noise are added to the synthetic data to 

study the statistical properties of the seismic moment estimator. For each seismic moment 

value, a full-waveform moment tensor inversion as described above is performed to 

retrieve the seismic moment.  



~ 10 ~ 
 

Figure 6 gives the comparison between the true seismic moment used to generate 

synthetics and the estimated seismic moment by full moment tensor inversion. The 

estimated seismic moment values agree well with the true seismic moment values. The 

mean error is around 3.9%, while the standard deviation is about 5.2%. This means that 

true values of %" are within the confidence region of the estimated %" under additive 

Gaussian noise, which is consistent with previous study (Patton and Aki; 1979). The non-

zero bias comes from two parts: 1) the errors propagated into the moment tensor 

inversion solution due to the additive data noise, which is well bounded by the illness of 

matrix &; 2) the numerical errors from the eigenvalue decomposition as described in 

equation 10. In summary, for a broad range of seismic moment values, our method gives 

a good estimate. 

Strike estimate 

A similar Monte Carlo simulation has been conducted to assess the performance of 

strike estimator. For this test, we test two source mechanisms. One is the pure double-

couple mechanism, while the other is a mixed source with a 60% double-couple 

component and a 40% isotropic component. For both scenarios, the dip and rake value is 

set to be 750 and 00, respectively. We also fix the source location same as in previous 

section and use a constant seismic moment of 5*104 N·m. The strike value is changed 

from 00 to 3600. For each strike value, a forward modeling with 10% additive Gaussian 

noise is conducted and a full-waveform moment tensor inversion is performed afterwards 

to invert for the full moment tensor and retrieve the strike. 

The estimated strike is plotted against the true strike for both cases in Figures 7 (a) and 

(b). The estimated strike is in good agreement with the true value. The strike estimate has 
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a mean error of -0.1 degrees from the true value for the pure DC source, while the mean 

error increases to 0.3 degrees for the isotropic plus double-couple source. The increased 

error in strike for the mixed source case is probably due to the decreased deviatoric part 

of the seismic moment tensor, from which the strike is defined. 

Isotropic component percentage estimate 

The isotropic component percentage defined in equation 12 provides a good indicator 

of fracture volumetric strain. It gives some idea about fracture opening and closure. As 

discussed in previous section on strike estimate, it also indicates the uncertainty of strike 

estimates to some degree. The higher the isotropic component percentage is, the less 

accurate the strike estimate can be.  

In this experiment, we change the relative percentage between the DC component and 

ISO component and fix the seismic moment to be 5*104 N·m. All other parameters are 

kept the same as the section on seismic moment estimate. Figure 8 represents the 

comparison between the true isotropic percentage and estimated isotropic percentage. 

The estimated ISO percentage generally agrees well with the true ISO percentage. There 

is some scattering for the estimates due to 10% Gaussian noise. The mean error is around 

-0.2%, while the standard deviation approaches 2.6%. This means the true ISO 

percentage value falls into the confidence region of the estimated isotropic percentage, 

although the maximum absolute error is close to 8%. 

Field study 

Field setup 

A microseismic survey was conducted during the hydraulic fracturing treatment of the 

Bonner sands in the Bossier play at a depth approximately from 3956 m (12980 ft) to 
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3981 m (13060 ft). The microseismic data was collected using a twelve-level, three-

component geophone array deployed in the vertical monitoring well at a depth from 3874 

m (12710 ft) to 3944 m (12940 ft).  The treatment well is approximately 151 m (495 ft) 

away from the monitoring well. The recorded data was analyzed and located for 

hydraulic fracturing mapping as outlined by Griffin et al. (2003), and Sharma et al. 

(2004). The velocity model for location, shown in Figure 1, was derived from the well 

logging data and calibrated using perforation shots (Warpinski et al., 2003). It also 

accommodated the local geology information. Thus, it is reasonable to assume the 

velocity model and location are accurate for source inversion.  

In this study, we test our method on several located microseismic events to invert for 

the complete moment tensor and estimate the stress drop from the full waveforms. The 

microseismic data from the lower six geophones at a depth from 3912 m (12835 ft) to 

3944 m (12940 ft) are selected due to their higher signal-to-noise ratios (SNRs). Figure 9 

shows the horizontal plane view of the monitoring well at the origin and seven selected 

test events in green. A major fracture plane along the N870E direction is clearly seen 

(Sharma et al., 2004). 

In the following section, we will begin with one event, named test event 1, to 

demonstrate the procedure for full-waveform based moment tensor inversion and stress 

drop estimation. After that, we will present and discuss the results for all seven chosen 

events.    

Moment tensor inversion and stress drop estimation 

As described in the methodology section, the complete moment tensor is firstly 

inverted from the full waveforms. Next, three characteristic parameters are extracted: 1) 
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seismic moment, 2) strike, and 3) the isotropic component percentage. Figures 10 a) and 

b) give the waveform fitting for test event 1 between synthetics and observed data. Only 

horizontal components are used because of the poor SNR associated with poor receiver 

coupling in the vertical component. A good agreement of dominant P and S wave trains is 

seen in both Figures 10 a) and b). The un-modeled wave packages are probably due to the 

scattering from the un-modeled lateral heterogeneity.   

The estimated seismic moment, strike and the isotropic percentage for event 1 are 

listed in Table 1. A negative isotropic component indicates some degree of fracture 

closure. The seismic moment for event 1 is around 6.1*104 N·m, suggesting a moment 

magnitude around -2.87. The two strike values estimated from the deviatoric component 

correspond to the orientation of the fracture plane and the auxiliary plane respectively. It 

is hard to distinguish the two planes using only one event. The estimated strike values for 

all seven events are listed in Table 1. The first set of strike values agrees well with the 

strike of N870E derived from multiple event location by Sharma et al. (2004), and gives 

the fracture plane strike. The scattering around N870E is due to the fact that the 

orientation of small local fractures given by individual microseismic events differs from 

the average fracture orientation represented by multiple event location. Moreover, noise 

contamination may also contribute to the scattering through the propagation into the 

inverted moment tensor.  

To estimate the stress drop, Madariaga’s model is adopted to estimate the source radius 

from the S-wave corner frequency (Madariaga, 1976). The recorded voltage data is firstly 

converted to displacement considering the geophone response (Warpinski, 2009). The 

spectral analysis is then applied to the converted S-wave displacement data. For test event 
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1, Figure 11 shows the S-wave displacement spectrum and the best-fit curve determined 

from the kinematic model defined by the following equation: 

^�U� = _L`abcd/fPQgQ

�h�S/ST�i  ,                                                 (15) 

where j is the is the source-receiver distance, Qs = 100 is the S-wave quality factor. In 

the present case of event 1, average values of 2605 m/s and 112 m are accepted for the S-

wave velocity and the source-receiver distance separately. A simple nonlinear-least 

square inversion is deployed to estimate corner frequency kl (Talebi and Boone, 1998). 

Source radius mn is then derived from kl according to equation 13. The stress drop is 

finally determined from previously obtained source radius and seismic moment by 

equation 14. The stress drop values for all seven events are listed in Table 1. It is seen 

from Table 1 that the moment magnitudes of all events fall into the range between -4 and 

-2, which is consistent with previous studies on moment magnitude of hydrofrac events 

from downhole observations (Warpinski, 2009).  

 

Conclusions 

In this paper, we developed a full-waveform based moment tensor inversion approach 

for hydraulic fracture monitoring using downhole microseismic data. By exploring full 

waveform information in a layered medium instead of using only P/S far-field amplitudes, 

we have demonstrated that the complete moment tensor inversion can be stabilized even 

with one single borehole. By synthetic test, we have shown that the fracture geometry can 

be reliably derived from the full waveform analysis approach assuming a known velocity 

model and source location. Synthetic tests also show that additive Gaussian noise does 

not pose difficulties for recovering reliable estimates of the moment tensor. Moment 
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tensor inversion of field data indicates the existence of both double-couple and non-

double-couple components in the source. The strike values, derived by the inversion, for 

all test events agree well with the fracture azimuth determined from multiple event 

location.  

Potential errors in source parameter estimates primarily come from the inaccuracies 

in source locations and velocity models. Future work includes investigating possible 

effects of errors in source locations and velocity models. This full-waveform approach 

has the potential to improve the source properties study of microseismic events monitored 

using borehole sensors even in a single well. 
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North component, b) East component. 

 

Figure 11. S-wave displacement spectrum of test event 1. The observed spectrum is 

shown in blue, and the model fitted result is plotted in red. 
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Figure 1. One-dimensional P- and S-wave velocity model derived from field study. 
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a) 

 

 

 

 

b) 

 

 

 

Figure 2. (a) A model for tensile earthquake. The fault is vertical in the N-S direction 

(strike value = 0). The slip lies in the horizontal plane. Slip azimuth ] changes from 0 to 

180 degrees. (b) The configuration of numerical experiment in the upper-hemisphere 

equal-area projection. The microseismic source, labeled as plus sign, lies in the center of 

the circle, with 8 monitoring wells, B1 to B8, spreading from the North direction to the 

North-West direction. The azimuthal difference between two adjacent wells is 450.  
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Figure 3. The double-couple and non-double-couple components of the moment tensor 

for the tensile earthquake model, described in Figure 2. The percentages of DC (dotted 

line), CLVD (dashed line), and ISO (isotropic) (solid line) components are shown as a 

function of the slip azimuth ].  
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Figure 4. The errors in the inverted source parameters, ISO percentage, DC percentage, 

seismic moment and strike, as a function of the slip azimuth ] under different azimuthal 

coverage: (a) eight boreholes, (b) two boreholes at an azimuth of 0 and 45 degrees, (c)  

one borehole at an azimuth of 0 degree, (d) one borehole at an azimuth of 45 degrees. 

The errors are calculated as the difference between the exact values and the calculated 

values derived from the inverted complete moment tensor. The inversion is performed 

using the exact velocity model and the accurate source location. 
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Figure 5. Synthetic example: vertical component fitting with 10% Gaussian noise added 

to synthetic seismograms shown in red. The fitted data derived from moment tensor 

inversion is plotted in blue.   
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Figure 6. Comparison of the true and estimated seismic moment based on a Monte Carlo 

simulation with 10% additive Gaussian noise.  
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Figure 7. Comparison of the true and estimated strike based on a Monte Carlo simulation 

with 10% additive Gaussian noise, (a) a pure DC source, and (b) a mixed source (60% 

DC component + 40% ISO component). 
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Figure 8. Comparison of the true and estimated isotropic percentage based on a Monte 

Carlo simulation with 10% additive Gaussian noise. 
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Figure 9. Horizontal plane view of microseismic event locations. Seven selected test 

events are shown in green. 
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Figure 10. Comparison between the synthetics and observed data for test event 1: a) 

North component, b) East component. 
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Figure 11. S-wave displacement spectrum of test event 1. The observed spectrum is 

shown in blue, and the model fitted result is plotted in red. 
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Table 1. Results of source parameter determinations. 

Event    %"        %:      Strike       fc        r0       ∆σ   ISO percentage 
 
          104N·m              Degrees    Hz      m       Kpa            % 

 
  1         6.1     -2.87     102  12    481      1.2     15            -26 
  2         2.1     -3.17     80   207   561      1.0     8              29 
  3         8.1     -2.79     73   196   547      1.1     29            31 
  4         45      -2.29     139   39   564      1.0     178          30 
  5         5.3     -2.91     75   197   714      0.8     43            11 
  6         7.5     -2.81     95   211   736      0.8     66            -10 
  7         4.4     -2.96     82   203   744      0.8     40            -4 

 
Note: strike is defined as East of North 
 

 

 

 


