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SUMMARY

Fractures contribute significantly to the permeability of a for-
mation. It is important to understand the fracture distribution
and fluid transmissivity. Though traditional well logs can im-
age fractures intersecting the borehole, they provide little in-
formation on the lateral extent of the fractures, away from the
borehole, or the fluid transmissivity. Experiments in the past
demonstrated that fracture compliance can be a good proxy
to fracture fluid conductivity. We describe a method to es-
timate fracture compliance from the attenuation of Stoneley
waves across a fracture. Solving the dispersion relation in the
fracture, transmission coefficient of Stoneley waves across a
fracture is studied over all frequency ranges. Based on the
observations from the model, we propose that measuring the
transmission coefficient near a transition frequency can help
constrain fracture compliance and aperture. Comparing atten-
uation across a finite fracture to that of an infinitely long frac-
ture, we show that a bound on the lateral extent of the frac-
ture can be obtained. Given the limitation on the bandwidth
of acoustic logging data, we propose using the Stoneley waves
generated during micro-seismic events for fracture characteri-
zation.

INTRODUCTION

Fractures are one of the main conduits for fluid flow in the sub-
surface and characterizing them is important for economic pro-
duction of hydrocarbons or geothermal energy. Borehole tele-
viewer (BHTV) and formation micro imager (FMI) logs are
the most popular tools for characterizing fractures intersecting
boreholes, in-situ. These logs provide the location and orienta-
tion of fractures intersecting the borehole. However, from this
data it is hard to differentiate between fractures with high or
low fluid conductivity, and it is not possible to estimate the lat-
eral extent of the fractures. Some of the fracture like features
seen in the logs could be drilling induced. On the other hand,
pressure transient tests can give an estimate of fluid conduc-
tivity. But, it is a macroscopic measurement averaging over
a conducting region. On a reservoir scale, fracture networks
are characterized by applying methods like amplitude varia-
tion with offset and azimuth (AVOA) (Sayers and Kachanov,
1995) and Scattering Index (Willis et al., 2006). AVOA esti-
mates the anisotropy due to fracture sets, which is a function
of fracture density, fracture compliance and orientation. This
methodology is successful in determining the preferred frac-
ture orientation but falls short in estimating the fracture den-
sity and compliance. Knowing the in-situ fracture compliance
from borehole measurements, we may be able to estimate frac-
ture density. The Scattering index method is suitable for larger
discrete fracture networks and is based on analyzing the scat-
tered coda from the fracture networks. Fang et al. (2012) esti-

mated fracture spacing and orientation using a modified scat-
tering index method. Numerical simulations (Grandi, 2008)
show that intensity of scattering is proportional to the frac-
ture compliance. Knowing the average fracture compliance of
a region from borehole measurements we may be able to as-
sign fracture compliance to regions away from borehole based
on relative scattered energy. Moreover, previous lab studies
(Pyrak-Nolte and Morris, 2000) suggest that fracture compli-
ance and fluid conductivity are influenced by the same micro-
scopic features and are related. In the future, fracture compli-
ance can be a key link to estimate fracture conductivity and
help us predict the permeability of the formation. In addition,
fracture compliance can be a good measure to test the effec-
tiveness of hydro-fracing. We can use compliance values to
estimate the relative fluid transmissivity of different fractured
zones. Thus, it is important to be able to estimate in-situ frac-
ture compliance.

In this paper, we develop a model to study the attenuation of a
Stoneley wave as it passes a fracture intersecting the borehole,
to estimate fracture compliance and aperture, and constrain the
lateral extent of fractures. Attenuation of Stoneley waves was
studied earlier by Mathieu (1984), Hornby et al. (1989), Tang
and Cheng (1993) and Kostek et al. (1998a,b). Mathieu (1984)
assumed Darcy flow in the fracture, a low frequency approxi-
mation, and studied attenuation of Stoneley waves across the
fracture. However, the assumption of Darcy flow is not valid
for typical logging frequencies. Hornby et al. (1989) and Tang
and Cheng (1993) solved the problem under a high-frequency
approximation, which is a valid assumption for kHz range of
frequencies. Later, Kostek et al. (1998b) extended the theory
to include the elasticity of the formation. None of the studies
above accounted for the fracture compliance that plays an im-
portant role in the Stoneley wave attenuation. We study Stone-
ley wave attenuation over all frequency ranges, considering the
effects of fracture compliance.

THEORY

When Stoneley waves in a borehole cross a fracture intersect-
ing the borehole, part of the energy is spent in pushing the
fluid into the fracture and part of the energy is reflected at the
interface. As a result, the transmitted wave is attenuated. The
attenuation of the Stoneley wave depends on the amount of
fluid squeezed into the fracture, which, in turn depends on the
fracture transmissivity and compliance. We consider a circu-
lar horizontal fracture, of radius ‘D’ and intersecting a vertical
borehole of radius R (see Figure 1). Due to the axial symmetry
in the problem, we use cylindrical co-ordinates with ‘r’ de-
noting the radial distance from the center of the borehole, and
z-axis along the borehole. The fracture top surface is located
at z=0.

The pressure due to the incident Stoneley wave at the fracture
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Figure 1: Schematic showing attenuation of Stoneley wave at
a fracture intersecting a borehole.

top, z=0, P;, can be written as (Cheng and Toks6z, 1981)

P(rw) = Al(fr) 1

f =

where, [ is the modified bessel function of the first kind and
order zero, ¢; is the phase velocity of the Stoneley wave, oy is
the acoustic wave velocity in the fluid, @ is the frequency of the
incident Stoneley wave and A is a constant, respectively. The
bar over the symbols denotes that the quantities are in the fre-
quency domain. The variation of the pressure along the radial
direction in the borehole is low for the range of frequencies of
interest and we use the pressure averaged over the borehole ra-
dius as the measure for the remainder of the paper and denote it
as < P; >. Pressure for the reflected Stoneley wave and trans-
mitted Stoneley wave follow the same equation with different
constants. We denote the pressure averaged over borehole ra-
dius for reflected and transmitted waves as < Pg > and < Pr >,
respectively. For continuity of pressure at z=0, we require that

<Pr>=<P>+<P> 2)

Also, conservation of mass requires that the flow due to the
incident wave should be equal to the sum of flow due to the
reflected wave, transmitted wave and the flow into the frac-
ture. Expressing average flow as the product of cross section
area and the average particle velocity, the mass conservation
equation is given by

AR <V >+4+nR*<vr>  (3)
+27RLy < VF(R) >

TR <vi> =

where < vy >,< Vj >,< Vg > are the particle velocities of the
incident wave, reflected wave, and transmitted wave, respec-
tively, averaged over the cross section. < Vg (R) > is the ra-
dial particle velocity in the fracture, at r=R, averaged over the
fracture aperture. We assume that the flow into the fracture is
driven by the pressure of the transmitted wave at the borehole
wall, Pr(R). < Pr > and Pr(R) are related by (Mathieu, 1984)

= JRI(fR)
Pr(R) = 2 Ii(fR)

where [; is the modified bessel function of the first kind and
order one. We further define the acoustic impedance of the

<Pr> 4)

borehole, Zp, and the impedance of the fracture, Zr, as
<P> <Pr> <P>
<vi> <vr> <VR>
<P(R)> _<Pr(R)>
<VF(R)>  <VF(R)>

Zp = (&)

Zr =

Solving equations 2 to 5, simultaneously, Mathieu (1984) ob-
tained the transmission coefficient as

Pr 1
- 6
> (6)

with
_ fLo bh(fR) Zp
2 L(fR)Zr
where, Zg = pyc;. He obtained Zr by estimating flow into the
fracture, assuming Darcy flow in the fracture, a low frequency
approximation, and did not consider the effect of the fracture
compliance. We estimate Zr for arbitrary frequency and ac-
count for fracture complaince.

@)

For simplicity, we assume the fracture to be a parallel plate
with static aperture, Ly, and normal compliance, Z. Here,
we neglect the effect of roughness, tortuosity and actual con-
tact area of fracture on the fluid motion in the fracture. Frac-
ture opening is proportional to the fracture compliance and the
fluid pressure in the fracture, above static equilibrium. Frac-
ture opening due to formation elasticity is negligible compared
to that due to fracture compliance and is neglected. Thus, dy-
namic fracture aperture, L(¢), can be written as (Hardin et al.,
1987)

L(t) = Lo+ ZPr (1) ®)

where Pr(t) is the perturbation in the fracture fluid pressure
due to fluid motion into the fracture. Fluid pressure and flow
in the fracture are averaged over the aperture and only their
radial variation is considered. The net flow out of a volume
element, 27trL(t) dr, between r and r+ dr from the axis of the
borehole, during a time increment dt, should equal the change
in volume of the element, during the same time, due to pertur-
bation in the aperture and the change in the fluid volume due
to compressibility of the fluid. Thus, we arrive at

_(@ g)_dL I aPF (9)
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where 7y is the fluid compressibility and g is the radial flow
per unit length. Flow in the above equation can be related to
the pressure gradient through dynamic conductivity, C. Solv-
ing for the flow field in a rigid fracture, Tang (1990) showed
that the flow averaged over the aperture at any location can be
related to the radial pressure gradient at that location as

_ _dPr — iwL
=—C——,whereC = ——— 1
1 or k%ocj%pf (10)

where py is the fluid density and i is the imaginary unit. k; is
the radial wavenumber of those specific modes that can exist
in the fracture and is obtained by solving the dispersion rela-
tion for the velocity field in the fracture (Tang, 1990). This
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assumption is valid as long as the dynamic aperture is com-
parable to static aperture. After neglecting higher order terms,
using equations 8, 9 and 10, we can write the differential equa-
tion for fluid pressure in the fracture in the frequency domain
as

°P P kog__
LT S iy gy )
or? or aesz

where (xesz =L_1 it boundary conditions:

7 (r+5)

1) At borehole radius(j the pressure in the fracture should be
equal to the transmitted wave, i.e., Pr(R) = Pr(R). 2) At
the fracture tip, r = D, fluid flow is zero and we require that
% = (. The homogenous solutions to equation 11 are Hankel
functions of first and second kind taking complex arguments.
Taking these solutions and satisfying the boundary condition
at the borehole and fracture tip, the pressure in the fracture can
be written as

() — () | PRCOHRED) —H DN ]
Hj (CR)H(ED) — H{ ((D)HG (CR)
where, § = % and H}! is the Hankel function of the nth kind
and order m.

However, Tang (1990) showed that viscous or inertial forces
dominate depending on the magnitude of the viscous skin depth,
o

the kinematic viscosity of the fluid. Under the high frequency
approximation ( L% < 1), the differential equation for pres-
sure takes the form of a wave equation as the inertial forces
dominate. Under the low frequency approximation ( % > 1),
the pressure follows a diffusion equation as the viscous forces
dominate. For the frequencies of interest (0.5-2 kHz) in Full
Waveform Acoustic Logging (FWAL) and for the range of nat-
ural fracture apertures (0.1-0.5 mm), the high frequency ap-
proximation is valid. However, Stoneley waves generated in a
VSP setting can have lower frequency content. This motivates
us to study the attenuation over the entire range of frequen-
cies. In the transition zone, between the low and high fre-
quency approximations, pressure has both wave and diffusive
components. To address this, for an arbitrary frequency, we
solved the dispersion relation numerically. The fundamental
mode converged to the solutions predicted by Tang (1990) at
high and low frequency limits. Taking this numerical solution
for k,, equation 12 encapsulates both diffusion and propaga-
tion. The contribution to flow by higher modes is negligible
and only fundamental mode is considered in this study.

0=/ 2V relative to the fracture aperture, Ly, where, V is

Knowing the distribution of pressure in the fracture from equa-
tion 12 and using equation 10, the radial flow into the fracture
is given by

_ 5 ioLy

qR) = PT(R)gk%a%pf 13)
H{ (CR)H} ({D) — H| ({D)H} ({R)
Hy (CR)H ({D) — H{ ({D)HG (CR)

Thus, the impedance of the fracture can be written as
<P(R)> _<P(R)>
<Vr(R)>  q(R)/Lo
krazpy
ing
HY(CR)H({D) — H) (ED)H3 (L)
H{ ((R)H ({D) — H{ ({D)H} ({R)

Zp =

From equations 6, 7 and 14 the transmission coefficient can be
estimated.

To look at the effect of the finite size of fracture on the trans-
mission coefficient, we compare the solution for a finite frac-
ture with the solution for an infinitely long fracture. As D — oo,

H| (D)
> H{({D)
finitely long fracture, Z, is given by

the ratio approaches zero and the impedance of an in-

KZaZps HY(CR)

= Tl HICR)

5)

Taking zero fracture compliance and under the high frequency
approximation, this solution matches the solutions given by
Hornby et al. (1989) and Tang and Cheng (1993). The trans-
mission coefficient, for an infinitely long fracture, is plotted
against frequency for a given compliance and aperture in Fig-
ure 2(a). For comparison, the transmission coefficients under
the low and high frequency approximation are plotted as well.
At the low frequency limit, the transmission coefficient tends
towards unity. With increasing frequency, the transmission co-
efficient decreases and reaches a minimum at the transition
from low to high frequency and then increases with further
increase in frequency. However, in high frequency regime, the
transmission coefficient reaches a constant value. In general,
as compliance increases, the transmission coefficient decreases
over the entire frequency band (see Figure 2(b) ). Thus, the
transmission coefficient can be indicative of fracture compli-
ance. For a given compliance, the location of the frequency
having the minimum in the transmission coefficient depends
on the viscosity of the fluid and the fracture aperture. Increas-
ing viscosity pushes the minimum towards higher frequencies
and larger aperture moves the minimum towards lower fre-
quencies (see Figure 2(c)). Figure 2(d) shows transmission
coefficients for a finite fracture case. The effect of the finite
length of the fracture is to cause oscillations on top of the
infinite fracture response. The period of these oscillations in
the finite fracture case is dependent on the fracture compli-
ance, fracture aperture and the length of the fracture and varies
with frequency. The amplitude of these oscillations is larger
at lower frequencies and approaches zero towards higher fre-
quencies. At lower frequencies, the fluid pressure is perturbed
deep into the fracture and the transmission coefficient is ef-
fected by the length of the fracture. At higher frequencies, the
perturbation doesn’t go deep into the fracture and we cannot
differentiate between finite and infinite fracture cases. Thus,
the frequency at which the finite length of the fracture effects
the transmission coefficient depends on the length of the frac-
ture. For this reason, in Figure 2(d), as D is increased from
0.5 m to 8 m, the finite fracture response matches the infinite
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fracture response increasingly towards lower frequencies. Zg
H|({D)
) - HEED)L " .
ratio, we can show that this condition is satisfied at frequencies
such that

and Zp are within 1%, when | | < 0.01. Simplifying the

Lo ety

o> 2.53 D (16)
In other words, to be able to estimate the length of a finite
fracture, the data should have frequency content lower than
that given by 16. For example, taking values for aperture as
500 pm and compliance as 10719 m/Pa (all other parameters
correspond to Figure 2), we need frequencies lower than 400
Hz, 17 Hz and 4 Hz to be able to detect finite fractures of
length 1 m, 5 m and 10 m, respectively. Since the data are
band limited we have constraints on how long a fracture we
can detect.
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Figure 2: Transmission coefficient (|Pr/F;|) is plotted against
frequency. (a) High and low frequency approximation solu-
tions are shown when Ly = lmm and Z = 10’10m/Pa. (b)
Compliance is varied keeping aperture constant at 1 mm. (c)
Aperture is varied for a constant compliance of 10*10m/Pa.
(a),(b),(c) are obtained for an infinitely long fracture. (d) So-
lution for finite fracture case when the size of the fracture, D,
is varied. Here, Ly = Imm and Z = 10~ '%m/Pa. All other pa-
rameters for the above studies are taken as 2R=15 cm, oy =
1300m/s,a = 4500m /s, = 2650m/s, py = 900kg/m>,p; =
2400kg/m>, v = 107>m? /s. The fluid properties correspond
to crude oil.

FRACTURE CHARACTERIZATION

We observe that the transition frequency of the transmission
coefficients depends only on fracture aperture and fluid vis-
cosity. Since the fluid viscosity is known, by determining the
transition frequency from the field data we can constrain the
fracture aperture. Fixing the fracture aperture, we can esti-
mate the compliance value that fits the observed transmission
coefficient in the high frequency regime. As we discussed, fi-
nite fracture effects are suppressed at higher frequencies and

we need not know the fracture length to estimate compliance.
Knowing fracture aperture and compliance, we can simulate
the transmission coefficients for the infinite fracture case and
compare it with the data. The frequency at which the data de-
viates from the expected infinite fracture response by a given
margin, based on the accuracy of measurements, can be used to
estimate fracture length by using an equation similar to 16. In
the absence of data spanning over a range of frequencies from
10s of Hz to 1 kHz, the transmission coefficients observed in
the high frequency regime can be explained by a range of pos-
sible combinations of aperture and compliance. However, if
we assume a large aperture, we can constrain the minimum
compliance required to have the observed attenuation as de-
scribed in Bakku et al. (2011).

Currently, we can record at most as low as 500 Hz in a FWAL
setting. This sets some limitations on the application of this
theory to well log data. However, we could collect low fre-
quency data when tube waves are excited in the borehole in a
VSP setting (Bakku et al., 2011). Micro-seismic events accom-
panying hydraulic fracturing are reported to have a frequency
band ranging from as low as 30 Hz (Fehler and Phillips, 1991)
to kHz (Song and Toksoz, 2011). Similarly, micro-seismic
events generated during production have low frequency con-
tent (on the order of 10s of Hz). We propose that the Stone-
ley waves excited in the boreholes during micro-seismic events
can be used to characterize the fractures. This information can
also be used to evaluate the performance of hydraulic fractur-
ing procedures.

The effect of fracture compliance on attenuation of Stoneley
waves is not negligible and conclusions from previous models
should be revisited. A compliant single fracture can explain
low transmission coefficients without demanding unrealistic
apertures as reported by Hornby et al. (1989).

CONCLUSIONS

Attenuation of Stoneley wave across a fracture in a borehole
is modeled accounting for the intrinsic fracture stiffness of the
fracture. The pressure field in the fracture was solved with-
out any low/high approximations on frequency. Thus, trans-
mission coefficients over a range of frequencies and fracture
compliances were analyzed. The transmission coefficient has a
minimum at a transition frequency that decreases with increas-
ing compliance. It is observed that measurements taken near
the transition frequency can constrain compliance and aperture
better. Under the high frequency approximation we can find
a lower bound on compliance. Finite length of the fracture
causes frequency dependent deviation in the transmission co-
efficient from the infinite fracture response. This observation
allows the lateral extent of a finite fracture to be estimated.
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