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Abstract

The ubiquity of cloud clusters and their role in modulating radiative cooling and
the moisture distribution underlines the importance of understanding how and why
tropical convection organizes. In this work, the fundamental mechanism underlying
the self-aggregation of convection is explored using a cloud resolving model. The
objective is to identify and quantify the interactions between the environment and the
convection that allow the convection to spontaneously organize into a single cluster.
Specifically, the System for Atmospheric Modeling is used to perform 3-d cloud system
resolving simulations of radiative-convective equilibrium in a non-rotating framework,
with interactive radiation and surface fluxes and fixed sea surface temperature.

Self-aggregation only occurs at sea surface temperatures above a certain threshold.
As the system evolves to an aggregated state, there are large changes to domain aver-
aged quantities important to climate, such as radiative fluxes and moisture. Notably,
self-aggregation begins as a dry patch that expands, eventually forcing all the con-
vection into a single clump. Thus, when examining the initiation of self-aggregation,
we focus on processes that can amplify this initial dry patch.

Sensitivity tests suggest that wind-dependent surface fluxes and interactive long-
wave radiative fluxes are important for permitting self-aggregation. A novel method
is introduced to quantify the magnitudes of the various feedbacks that control self-
aggregation within the framework of the budget for the spatial variance of column
- integrated frozen moist static energy. The absorption of shortwave radiation by
atmospheric water vapor is found to be a key positive feedback in the evolution of
aggregation. In addition, there is a positive wind speed - surface flux feedback whose
role is to counteract a negative air-sea enthalpy disequilibrium - surface flux feed-
back. The longwave radiation - water vapor feedback transitions from positive to
negative in the early and intermediate stages of aggregation. The longwave radiation
- cloud feedback is the dominant positive feedback that maintains the aggregated
state once it develops. Importantly, the mechanisms that maintain the aggregated
state are distinct from those that instigate the evolution of self-aggregation. These
results and those of a companion study suggest that the temperature dependence of
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self-aggregation enters through the longwave feedback term.

Thesis Supervisor: Kerry Emanuel
Title: Cecil & Ida Green Professor of Atmospheric Science
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Chapter 1

Introduction

1.1 Motivation

Moist convection in the tropical atmosphere is often organized into clusters contain-

ing many individual convective cells. This organized convection spans a range of

scales, from squall lines (∼10 km) (e.g., Houze, 1977), to mesoscale convective com-

plexes (∼100 km) (e.g., Maddox, 1980), to tropical cyclones (∼1000 km) (e.g., Lee,

1989; Challa and Pfeffer, 1990; Simpson et al., 1997) to the Madden-Julian Oscillation

(∼10,000 km)(e.g., Madden and Julian, 1971). Clusters of organized convection are

ubiquitous in the tropics (Machado and Rossow, 1993; Mapes and Houze Jr., 1993;

Nesbitt et al., 2000; Houze Jr., 2004; Futyan and Del Genio, 2007; Mapes et al., 2009)

and have important impacts on weather and climate. For instance, convective cloud

clusters are responsible for much of the rainfall and cloudiness over the tropics, with

approximately 50% of tropical rainfall due to mesoscale convective systems (Nesbitt

et al., 2000). Tropical cloud clusters modulate the radiative heating of the surface

and atmosphere and influence the large-scale circulation and moisture distribution

of the atmosphere. In idealized modeling studies (e.g., Bretherton et al., 2005), the

development of large-scale convective organization alters the mean vertical profiles of

temperature, moisture, and radiative fluxes, highlighting the potentially important

effect of organized convection on variables important to climate. Tobin et al. (2012)

found a systematic dependence of water vapor, turbulent surface fluxes, and radiation
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on the degree of convective aggregation in observations. They found that aggregated

convection is associated with lower free tropospheric humidity in the non-convecting

environment, enhanced turbulent surface fluxes within and outside convective areas,

and reduced low- to mid-level cloudiness in the environment. If the degree of aggre-

gation changes as climate warms, these effects could have important consequences for

the water vapor feedback and climate sensitivity.

The value of understanding how convection organizes cannot be overstated. First,

investigating tropical convective organization has direct relevance to improving our

knowledge of tropical cyclone genesis, which has implications both for operational

forecasting and predictions of the response of tropical cyclones to climate change.

Tropical cyclogenesis is one of the most intriguing yet poorly understood problems

in tropical meteorology. The human and economic impacts of tropical cyclones give

heightened significance to understanding and predicting their behavior. Second, un-

derstanding the mechanisms by which convection self-organizes may lead to insights

into the Madden - Julian Oscillation, which can be considered convective organization

on a large scale. The MJO has a direct impact on weather in the Indian and western

Pacific Oceans, modulates tropical cyclone activity, and influences weather at extra-

tropical latitudes through atmospheric teleconnections, yet, a complete theory for

its existence and propagation characteristics remains elusive. Finally, tropical cloud

clusters modulate the radiative balance and moisture distribution in the tropics and

therefore influence the large-scale circulation, making them a potentially vital part of

the climate system that is not well understood. Understanding how and why tropical

convection organizes is important for understanding both tropical and global climate

variability.

Tropical convection is often viewed as a quasi-equilibrium process in which con-

vective clouds consume convective available potential energy at the same rate it is

supplied by large-scale processes (Arakawa and Schubert, 1974). The simplest form

of such an equilibrium is radiative-convective equilibrium (RCE), in which radiative

cooling is balanced by convective heating. On large enough space and time scales,

the tropics can be thought of as in RCE, although RCE is not observed locally due
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Figure 1-1: Snapshot of outgoing longwave radiation (OLR) at day 10 (panel a) and
day 80 (panel b) of a radiative-convective equilibrium simulation at 305 K.

to the presence of large-scale atmospheric circulations. Nevertheless, RCE is a good

starting point for understanding tropical dynamics. Simulations of convection in RCE

using three-dimensional cloud system resolving models often produce distributions of

convection that are nearly random in space and in time (Islam et al., 1993). However,

when certain conditions are met, the convection becomes organized into a single, in-

tensely convecting moist cluster surrounded by a broad region of dry subsiding air

(e.g., Bretherton et al., 2005; Nolan et al., 2007). Figure 1-1 shows an example of

a three-dimensional RCE simulation that transitions from disorganized convection

in the beginning of the simulation (Figure 1-1a) to a single cluster (Figure 1-1b) 70

simulated days later. The details of that simulation will be given in Chapter 2.

Convection is often thought of as being organized by external influences such as

large-scale sea surface temperature (SST) gradients or wind shears (e.g., Robe and

Emanuel, 2001). However, in the case shown in Figure 1-1, there are no such external

influences. Convection is instead self-organizing through interactions between the en-

vironment and the convection and radiation, which is referred to as “self-aggregation”.

Insights from previous work on tropical cloud clusters and self-aggregation are re-

viewed in the remainder of this chapter.
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1.2 Review of Previous Work

1.2.1 Observational Studies

It has long been known that convection in nature sometimes organizes and that clus-

ters of convection can possess a distinctive mesoscale structure (e.g., Houze, 1977;

Maddox, 1980). In midlatitudes, cloud clusters with mesoscale organization are often

called mesoscale convective systems (MCS). There is an extensive literature detail-

ing the climatology and life cycles of these systems (as well as mesoscale convective

complexes, or MCC’s, which are a subset of MCS’s). In the tropics, such systems

are sometimes referred to as “cloud clusters” or “convective systems”, but they ex-

hibit similar characteristics to their midlatitude brethren (e.g., Machado et al., 1998).

Many of the studies on cloud cluster observations focus on MCS’s or MCC’s, (the

criteria for being classified as such will be reviewed later), (e.g., Miller and Fritsch,

1991; Laing and Fritsch, 1993a,b; Velasco and Fritsch, 1987; Laing and Fritsch, 1997),

while comparatively fewer focus on cloud clusters/deep convective systems in general

(Machado and Rossow, 1993; Mapes and Houze Jr., 1993; Futyan and Del Genio,

2007; Peters et al., 2009; Hennon et al., 2013).

Laing and Fritsch (1997) compiled a global population of mesoscale convective

complexes characterized by a large ( 105m2), long-lasting( 6hr), quasi-circular cold

cloud shield. Figure 1-2 shows the global distribution of MCC’s from their survey.

As evident in the Figure 1-2, the vast majority of MCC’s occur over land. Laing

and Fritsch also determined that the global population of MCC’s is primarily noc-

turnal, although oceanic MCC’s end much later in the morning than land ones. The

oceanic systems were also larger and longer lasting than other systems, and there

was a general tendency for larger systems to persist longer. They also noted that

the population shifts with the seasonal cycle and the size, location, and frequency of

MCC’s is sensitive to the larger scale pattern and its interannual variability, although

the total number of MCC’s occurring did not vary greatly from year to year. Velasco

and Fritsch (1987), whose study on MCC’s in the Americas was a member of the

Laing and Fritsch survey, noted that the most active areas were ones in which warm
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Figure 1-2: Global distribution of mesoscale convective complexes and regions of
widespread frequent deep convection as inferred by OLR minima (light shading). OLR
measurements obtained from Earth Radiation Budget Experiment for July (above
the line) and January (below the line), 1985-1986. From Laing and Fritsch (1997),
Copyright c©1997 Royal Meteorological Society.

water, orographic lifting, and large scale, low-level convergence combine to focus and

enhance deep convection.

While the study of Laing and Fritsch focused on MCC’s, Machado and Rossow

(1993) examined the structural characteristics and radiative properties of, more gen-

erally, tropical cloud clusters, which they define as all tropical high cloud systems

including both the small individual deep convective plumes and the larger MCS’s.

Like MCC’s, they found that all convective systems are more numerous over land

than ocean, but the oceanic systems are larger and longer-lived. Figure 1-3 shows the

frequency of convective systems in the tropics, which is broadly consistent with Figure

1-2 1. Machado and Rossow (1993) also used a radiative transfer model to evaluate

the local radiative effects of convective systems with average cloud properties, find-

ing that they caused a decrease in radiative cooling, primarily through the effects of

the mesoscale anvil cloud. There is also evidence that cloud clusters span a some-

what lognormal size distribution (Mapes and Houze Jr., 1993). Mapes and Houze Jr.

(1993) noted that there is also a pronounced diurnal variation in the total number of

and area covered by large clusters, peaking in the early morning. The overall diurnal

1It should be noted that the MCC’s plotted in Figure 1-2 were defined by a strict size criterion,
whereas Machado and Rossow did not have a size criterion, thus identifying many more small
convective systems.
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Figure 1-3: Maps of the average number per day of convection systems occuring in
5◦x 5◦ latitude-longitude regions in the tropics for summer (July-August 1987 and
1988) (top panel) and winter (January-February 1987 and 1988) (bottom panel).
Lowest contour is 2 per day. From Machado and Rossow (1993) c©American Meteo-
rological Society. Used with permission.
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variation in very cold cloudiness is dominated by the large-cluster variation, but the

moderately cold cloud area differs and has a peak in the afternoon. Mapes et al.

(2009) examined the life cycles of maritime tropical mesoscale convective systems 2

in microwave and scatterometer satellite observations. They determined that the life

cycle evolution is universal for all non-tropical cyclone convective cloud clusters. All

the MCS populations (subdivided into dry, humid, moderately rotating, tropical cy-

clone) showed a similar evolution in vorticity, divergence, precipitable water, and IR

brightness temperature (Figure 1-4). The peak in precipitation leads the minimum in

brightness temperature by a few hours. Finally, Peters et al. (2009) emphasized the

importance of water vapor in their study of precipitation clusters 3 identified from

TRMM precipitation radar data. They found that the size distribution changes dra-

matically as a function of water vapor, with most large clusters occurring at or near

critical water vapor values. They also noted that for values of water vapor near and

above criticality, the cluster generally exists in a dryer environment.

The role of tropical cloud clusters as precursors to tropical cyclones motivated

Hennon et al. (2011) to develop an objective algorithm for detecting and tracking

tropical cloud clusters, including identifying whether a cluster has developed into a

tropical cyclone. Figure 1-5 shows the density of global tropical cloud cluster activ-

ity from 1988 to 2007, indicating that the highest concentrations of tropical cloud

clusters occur in the ITCZ, South Pacific Convergence Zone, in the eastern North

Indian Ocean associated with the monsoon, and in the eastern Atlantic associated

with African Easterly Waves. This figure, which includes only oceanic cloud clus-

ters, is qualitatively similar to the spatial distribution of convective systems found

by Machado and Rossow (1993) (Figure 1-3). Hennon et al. (2013) analyzed the

interannual and interdecadal variability of tropical cloud clusters as well as genesis

productivity in the Hennon et al. (2011) database. They found that globally, 6.4 %

of tropical cloud clusters develop into tropical cyclones per year. The annual tropical

cloud cluster frequency was strongly correlated to sea surface temperatures in some

2Although they use the term MCS, they include systems smaller than often considered a MCS;
cloud systems with a time-mean size of two pixels (0.5 square degrees) or larger).

3Defined as any collection of adjacent radar pixels indicating precipitation (reflectivity ≥ 20dBz).
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Figure 1-4: Normalized composite time series for centered 5◦ boxes. Solid: one pixel
systems in weak rotation; dotted: dry; dashed: humid; dashed-dotted: moderate ro-
tation; dashed-triple dotted: tropical cyclone. From Mapes et al. (2009) c©American
Meteorological Society. Used with permission.
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Figure 1-5: The number of tropical cloud clusters per year (for the 10-yr period of
1998-2007) that tracked within 55 km of a grid point. From Hennon et al. (2011)
c©American Meteorological Society. Used with permission.

basins.

As alluded to in Section 1.1, there is observational evidence for a dependence

of the climate state on the degree of clustering in convection (Tobin et al., 2012,

2013). Tobin et al. (2012) used several metrics of aggregation of convection on the

synoptic scale, including the number of cloud clusters in a given area and the clumping

of those clusters, to show that the area-averaged humidity is reduced. This was

primarily because of the dryness in the non-convecting environment. They also found

that when there were fewer clusters (a more aggregated state), there were enhanced

surface fluxes both within and outside convecting areas. In areas with a higher degree

of aggregation, the outgoing longwave radiation and reflected shortwave radiation

were also reduced, primarily due to reduced deep convective cloudiness. Tobin et al.

(2013) performed a similar analysis examining mesoscale convective aggregation and

found consistent results, except regarding surface fluxes, which did not vary with the

aggregation state.

Infrared and visible images from geostationary satellites are the primary source

of data for these observation-based studies (e.g., Velasco and Fritsch, 1987; Miller

and Fritsch, 1991; Laing and Fritsch, 1993a,b; Machado and Rossow, 1993; Mapes

and Houze Jr., 1993; Machado et al., 1998; Tobin et al., 2012, 2013). The extensive

database created by Hennon et al. (2011) used GridSat, a global, gridded, IR satellite

dataset spanning 28 years. Other recent studies have used other types of satellite
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data, such as rainfall data from the TRMM satellite (Futyan and Del Genio, 2007;

Peters et al., 2009) , QuikScat scatterometer winds and microwave-based precipitable

water estimates (Mapes et al., 2009; Tobin et al., 2012) to supplement traditional IR

brightness temperature.

1.2.2 Modeling Studies

Numerous studies over the last two decades have investigated self-organization of

convection in numerical models. In a two-dimensional simulation, Held et al. (1993)

found a localization of convection in which convective moistening of the atmosphere

made the same location favorable for future convection. Tompkins (2001b) also found

that water vapor played an important role in the organization of convection in simu-

lations with a three-dimensional channel domain. Specifically, a cluster of convection

moistened its local environment while drying more distant regions, due to the dif-

ferent time scales associated with the moistening and drying of the atmosphere by

convective activity.4 Craig and Mack (2013) advocated that this moisture-convection

feedback would inevitably produce organization on increasingly larger scales through a

coarsening process. Their simple model of the tropospheric moisture budget exhibited

self-organization which was qualitatively comparable to cloud-resolving model simula-

tions, such as those by Bretherton et al. (2005). Bretherton et al. (2005) found that, in

a 100-day radiative-convective equilibrium simulation with a three-dimensional cloud

resolving model, convection self-aggregated into a single cluster. They interpreted

this phenomenon as driven by convection-water vapor-radiation feedbacks which dry

the drier air columns and moisten the moister air columns. The radiative part of the

feedback is such that there is enhanced longwave cooling of the driest columns and

decreased longwave cooling of the moistest columns. Other processes have also been

suggested to play a role in convective organization, such as cold pools (e.g., Tomp-

kins, 2001a) and gravity waves (e.g., Mapes, 1993; Stechmann and Majda, 2009).

Self-aggregation is also observed in conditionally unstable moist Rayleigh-Bénard con-

4Drying is due to environmental subsidence which spreads out at the propagation speed of gravity
waves, while moistening due to detrainment progresses at slower advection speeds (Tompkins, 2001b).
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vection (Pauluis and Schumacher, 2011), suggesting that it is a fundamental property

of moist convection.

While most of the studies of self-aggregation have been performed with no rota-

tion, if sufficient rotation is added, the convective clusters in the aggregated state can

take the form of tropical cyclones (Bretherton et al., 2005; Nolan et al., 2007; Held

and Zhao, 2008; Khairoutdinov and Emanuel, 2012, 2013; Zhou et al., 2014). Brether-

ton et al. (2005) found that simulations with a larger Coriolis parameter aggregated

more quickly into an intense tropical cyclone. Nolan et al. (2007) found that simu-

lations initiated with random convection sometimes underwent spontaneous tropical

cyclogenesis, caused by radiative-convective feedbacks that generate aggregation; the

circulation associated with the self-aggregated state then intensifies and contracts

into a tropical cyclone. Khairoutdinov and Emanuel (2013) studied the characteris-

tics of RCE on an f-plane by increasing the Coriolis parameter; this allowed them to

simulate multiple tropical cyclones in the same domain. They found that when the

SST was increased, the intensity and size of the tropical cyclones and the spacing

between them increased. Held and Zhao (2008) and Zhou et al. (2014) found quali-

tatively similar sensitivities in large domain simulations of rotating RCE with coarse

resolution (between 25 and 220 km) and GCM column physics (including convective

and cloud parameterizations). As the domain size is increased, the equilibrium state

transitions from a weak tropical depression, to a single sustained storm, to a flow

dominated by closely packed tropical cyclones (Zhou et al., 2014).

Held et al. (1993) and Nolan et al. (2007) noted that the localization of convec-

tion and spontaneous typical cyclogenesis, respectively, proceeded much more slowly

when the SST was lowered. Similarly, it has been found that self-aggregation only

occurs above a temperature threshold (Khairoutdinov and Emanuel, 2010; Wing and

Emanuel, 2012). No explanation has been offered for the SST threshold of self-

aggregation found in simulations. Nevertheless, it may have important consequences.

For example, Khairoutdinov and Emanuel (2010) hypothesized that the temperature

dependence of aggregation could lead to a self-organized critical state, in which the

system is attracted to the transition between aggregated and disaggregated states.
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There is some evidence that observed moist convection may exhibit self-organized

critical behavior (Peters and Neelin, 2006; Muller et al., 2009; Yuan, 2011). However,

aggregation in numerical models displays strong hysteresis, such that it remains ag-

gregated even if the SST is reduced below the threshold (Khairoutdinov and Emanuel,

2010; Muller and Held, 2012).

Self-aggregation is sensitive to the domain size and horizontal resolution of the

simulations, with aggregation being favored by large domains and relatively coarse

resolution (Muller and Held, 2012; Jeevanjee and Romps, 2013). Regarding explana-

tions for the domain size dependence of self-aggregation, there are conflicting results

in the literature. Muller and Held (2012) explain this sensitivity by the dependence of

low clouds on domain size, while Jeevanjee and Romps (2013) find that cold pools are

responsible for the domain size threshold (in the absence of cold pools, self-aggregation

occurs at all scales and only weakens as the domain size decreases). Jeevanjee and

Romps (2013) found that in small domains, a shallow circulation that weakens aggre-

gation dominates. Cold pools transport moisture to the dry patch boundary layer,

which is followed by convection that moistens the free troposphere (Tompkins (2001a)

found a similar mechanism by which cold pools trigger new convection). Jeevanjee

and Romps postulate that cold pools are not able to homogenize moisture and con-

vection in large domains because the boundary layer in the dry patch is drier and the

cold pools must travel a further distance to get there. In contrast, Muller and Held

(2012) argue that a shallow circulation driven by longwave cooling at the top of low

clouds provides up-gradient energy transport that is important for aggregation. The

role of circulation in providing up-gradient energy transport for aggregation was also

highlighted by Bretherton et al. (2005). Muller and Held find that there are more

low clouds in the dry regions for simulations with larger domains and/or coarser res-

olutions, allowing this circulation to form. It is not clear, however, why near surface

relative humidity and cloudiness should increase with domain size.

Previous studies have investigated various feedback mechanisms for self-aggregation

primarily by performing mechanism denial experiments in which they attempt to re-

move the various feedbacks by preventing certain interactions. Tompkins and Craig
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(1998) found that using a wind-independent surface flux calculation destroyed the

aggregation (which was characterized by an alignment of convection into a band

structure) in their simulations. Bretherton et al. (2005) found that horizontally

homogenizing the surface fluxes prevented self-aggregation, while Muller and Held

(2012) found that it did not in all cases. Sensitivity studies performed to determine

the conditions under which aggregation does or does not occur, have also indicated

that if radiative heating rates are horizontally homogenized, self-aggregation does not

occur (Tompkins and Craig, 1998; Bretherton et al., 2005). The importance of inter-

active radiation was also highlighted by Stephens et al. (2008), who found that the

banded nature of convective organization in their simulations was established by gra-

dients in radiative heating that are determined by differences in high clouds between

wet and dry regions, which are in turn controlled by the convection. Muller and Held

(2012) also found that radiation-cloud interactions were key by performing sensitivity

experiments in which they successively turned off various mechanisms. They found

that self-aggregation still occurred with homogenized surface fluxes and homogenized

shortwave radiative heating, but did not occur with homogenized longwave radiative

cooling. Specifically, they argued that the mechanism causing self-aggregation is the

longwave radiative cooling from the top of low (liquid water) clouds in the dry regions.

1.3 Objectives of Thesis

While strides have been made identifying the physical mechanisms causing self-

aggregation of convection, there has not been a systematic quantification of the

various feedbacks essential to it. This study works towards closing this gap in our un-

derstanding of the physics of self-aggregation. To that end, a new analysis technique

is applied to radiative-convective equilibrium simulations performed with a cloud re-

solving model; the details of these simulations are described in the next chapter.

The overarching goal is to determine the underlying physics of self-aggregation and

improve our understanding of mechanisms by which convection organizes.

Three key questions related to self-aggregation are addressed:
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1. How does self-aggregation evolve?

2. What physical feedback mechanisms are important and what are their magni-

tudes?

3. How and why does self-aggregation depend on sea surface temperature?

Following this introductory chapter, Chapter 2 describes the evolution to a self-

aggregated state, including the effect of aggregation on domain averaged quantities.

In Chapter 3, the results of sensitivity tests are presented. These simulations were

performed to test the robustness of self-aggregation and provide guidance as to the

relevant physical mechanisms. In Chapter 4, the analysis framework for the quan-

tification of self-aggregation feedbacks, which is a budget for the spatial variance of

vertically integrated frozen moist static energy, is introduced. The results of that

analysis and an explanation of the most important physical mechanisms are also dis-

cussed in Chapter 4. An overview of the mechanisms determining the temperature

dependence of self-aggregation is provided; a more detailed exploration can be found

in a companion paper (Emanuel et al., 2013). Chapter 5 concludes with a summary

of the key findings of this work, a discussion of their implications, and suggestions for

future work.
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Chapter 2

Evolution of Self-Aggregation

c©2013 American Geophysical Union. All Rights Reserved. 1

2.1 Model Simulations

The model used is the System for Atmospheric Modeling, version 6.8.2, henceforth

referred to as SAM (Khairoutdinov and Randall, 2003). SAM was used by Bretherton

et al. (2005), Khairoutdinov and Emanuel (2010), Muller and Held (2012), and Wing

and Emanuel (2012) for investigating self-aggregation. SAM is a three-dimensional

cloud resolving model that employs the anelastic equations of motion. The prognostic

thermodynamic variables are total non-precipitating water, total precipitating water,

and the liquid water/ice static energy, hL

hL = cpT + gz − Lv(qc + qr)− Ls(qi + qs + qg), (2.1)

where qc is the cloud water mixing ratio, qr is the rain mixing ratio, qi is the cloud

ice mixing ratio, qs is the snow mixing ratio, qg is the graupel mixing ratio, Lv is

the latent heat of evaporation, and Ls is the latent heat of sublimation. The total

non-precipitating water mixing ratio is the sum of the mixing ratios of water vapor,

1Section 2.1, portions of Sections 2.2 -2.3, Figure 2-1, Figures 2-9 and 2-10, and Table 2.1 were
published as part of Wing and Emanuel (2013), in the Journal of Advances in Modeling Earth
Systems. The published version of the text and figures have been adapted with a few additions for
clarification, in accordance with the Creative Commons Attribution License.
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cloud water, and cloud ice, while the total precipitating water mixing ratio is the

sum of the mixing ratios of rain, snow, and graupel. The diagnosed cloud condensate

and total precipitating water are partitioned into hydrometeor mixing ratios at every

time step as a function of temperature. The subgrid-scale fluxes are computed using

a Smagorinsky-type parameterization, as in Bretherton et al. (2005) and Muller and

Held (2012). As in previous studies of self-aggregation with SAM, we use the 1-

moment microphysics package. Further details about the model can be found in

Khairoutdinov and Randall (2003).

Longwave and shortwave radiative fluxes are computed using the RRTM radia-

tion scheme (Mlawer et al., 1997; Clough et al., 2005; Iacono et al., 2008) in which

the radiative transfer is computed at each individual grid column using the instan-

taneous model temperature, water vapor, and cloud fields. The solar constant is

set to 650.83 W/m2 with a zenith angle of 50.5 degrees (following Bretherton et al.

(2005)), resulting in a constant solar insolation of 413.98 W/m2; there is no diurnal

cycle. The surface sensible and latent heat fluxes are computed interactively, using

an iterative procedure to compute the exchange coefficients. A minimum wind speed

of 1 m/s is used to calculate the surface fluxes. The simulations discussed here are

performed with a domain size of 768 × 768 km2 with 64 vertical levels and rigid lid

at 28 km, unless otherwise indicated. A doubly periodic lateral boundary condition

is employed. The model grid is a fully staggered Arakawa C-type grid with a uniform

horizontal resolution of 3 km and a stretched vertical grid. The lowest model level

is at 37 m and the grid spacing is 75 m near the surface, increasing to 500 m above

3.5 km. Newtonian damping is applied to all prognostic variables in a sponge layer

covering the upper third of the model domain to reduce gravity wave reflection and

build-up. A standard simulation is run for 100 days, with a variable time step of 12

s or less (to satisfy the CFL condition). The model is initialized with a sounding

from the domain average of a simulation of radiative-convective equilibrium on a 96

× 96 km2 domain at the same sea surface temperature. There is no mean wind, no

rotation, and no external forcing imposed. Motion is initialized by adding white noise

to the initial hL field at the five lowest grid levels, with an amplitude that is 0.1 K
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Figure 2-1: Evolution of the domain averaged outgoing longwave radiation (OLR).
Each curve is a simulation performed at a different fixed SST. The data are hourly
averages. The non monotonic dependence on SST is an artifact of limited domain
size.

at the lowest model level and decreases linearly to 0.02 K at the fifth model level.

The simulations are performed at fixed sea surface temperature (SST), with values

between 295 K and 312 K; but most of the results shown in this thesis are for the 305

K case.

2.2 Evolution of Domain-Averaged Quantities

2.2.1 Radiative Fluxes and Moisture

We first compare the evolution of domain averaged outgoing longwave radiation

(OLR) in each of the simulations performed at different values of SST (Figure 2-

1). The simulations are identical except for the SST (and its corresponding initial

sounding). An obvious feature in some of the simulations is a dramatic increase in

the OLR, which marks the transition to self-aggregation. OLR increases when con-

vection is aggregated because the domain mean free troposphere is significantly drier

when convection is aggregated. Simulations at SST values of 301 K, 303 K , 305 K

and 307 K self-aggregate between 50 and 70 days; simulations at colder and higher

values of SST do not aggregate during the period of integration (Figure 2-1, Table
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Table 2.1: Summary of domain average statistics at different fixed SSTs. OLR is
outgoing longwave radiation, CRH is column relative humidity. The “i” subscript
indicates an average from day 10 to 20, while the “f” subscript indicates an average
from day 85 to 100. All quantities are horizontal means.

SST Self-Aggregates? OLRi (W/m2) OLRf (W/m2) CRHi CRHf

295 K No 248.68 248.60 0.6942 0.6936
297 K No 253.37 253.54 0.6978 0.6961
298 K No 253.93 253.86 0.7047 0.7018
300 K No 257.38 258.36 0.7111 0.6964
301 K Yes (circular) 259.90 286.57 0.6981 0.4102
303 K Yes (band) 264.18 296.22 0.7064 0.3345
305 K Yes (circular) 266.46 302.30 0.7165 0.3195
307 K Yes (band-circular) 270.75 307.69 0.7073 0.3124
310 K No 269.92 271.92 0.7582 0.7435
311 K No 272.10 271.64 0.7521 0.7503
312 K No 272.18 272.09 0.7528 0.7507

2.1). Table 2.1 provides additional information about the simulations shown in Figure

2-1. The table indicates, for each SST, a representative initial and final value for two

domain average indicators of self aggregation: OLR and column relative humidity

(CRH). The four simulations that self-aggregated all feature an increase of more than

30 W/m2 in the OLR between the initial and final periods. There is a corresponding

large decrease in the CRH.

Based on previous work (Khairoutdinov and Emanuel, 2010), we expected that

self-aggregation would not occur at the coldest SST’s (295 K - 300 K), but it is sur-

prising that self-aggregation does not occur at the highest SST’s (310 K - 312 K).

Experiments extending the 310 K and 312 K runs by 40 days still fail to aggregate.

The apparent non-monotonicity of self-aggregation with respect to SST turns out to

be an artifact of limited domain size. Indeed, when the 310 K simulation was rerun

with a domain size of 1536 x 1536 km2 in the horizontal (four times the area of the

original domain), self-aggregation occurred. The relationship between domain size

and temperature will be discussed in more detail in Chapter 3. In this set of simu-

lations, the critical SST necessary for self-aggregation is near 300 K; the mechanism

behind this threshold will be explored in Chapter 4.
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Figure 2-2: Evolution of domain averaged net top of atmosphere (TOA) shortwave
radiative flux (W/m2), for simulations at different SSTs. This flux is downward.

Tobin et al. (2013) found that the observed OLR was increased by 20 - 30 W/m2

in more aggregated regimes, which is comparable to the increases in our simulations.

However, they found that this effect was canceled by reduced reflected shortwave

radiation at the top of the atmosphere (TOA), such that the net TOA radiative flux

remained approximately the same. This is not the case in our simulations. The net

TOA shortwave radiative flux, which is downward, decreases slightly with aggregation

(Figure 2-2). The TOA downward shortwave flux is fixed (constant solar insolation),

but the TOA upward shortwave flux increases. This change is of the wrong sign to

offset the OLR changes, and is not nearly as large a magnitude. As a result, the

net TOA radiative flux, which is downward, decreases in magnitude (becomes less

negative) (Figure 2-3a). This disagreement with observations results from differences

in the how cloud fraction changes with aggregation, which determines albedo. In our

simulations, the cloud fraction increases with aggregation. For example, in the 305

K simulation, the high cloud fraction remained approximately constant, the middle

cloud fraction decreased slightly from 0.07 to 0.03, but the low cloud fraction increased

from 0.12 to 0.20. This is in contrast to the results of Tobin et al. (2013), who

found a decrease in deep, middle, and shallow clouds in the environment under more

aggregated conditions. While all the middle and high clouds are confined to the

cluster in our simulations, there are low clouds that extend out from the cluster into

the drier regions. It is these low clouds that are responsible for the small increase in
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Figure 2-3: Evolution of domain averaged net top of atmosphere (TOA) radiative
flux (a) and net surface radiative flux (b), in W/m2. A negative sign indicates a
downward flux.

the TOA upward shortwave flux.

In addition to the changes in the TOA radiative fluxes with aggregation, there are

dramatic changes in the domain averaged net surface radiative fluxes. The domain

average net surface longwave flux increases with aggregation (Figure 2-4b). That is,

the surface loses more energy to longwave radiation when the convection is aggregated.

This is because the domain average downward longwave flux at the surface decreases,

since the domain average is drier, while the upward longwave flux at the surface is fixed

(constant SST). Tobin et al. (2013), on the other hand, found that the net longwave

flux at the surface did not change with the degree of aggregation. The domain average

net surface shortwave flux, which is downward, increases as the system evolves toward

aggregation. However, for most of the simulations, it then decreases to near its original

value (Figure 2-4a). As was the case with the TOA radiative fluxes, the change in

the longwave fluxes dominates and the overall net surface radiative flux decreases in

magnitude with aggregation (Figure 2-3b). The net surface radiative flux becomes

less negative, thus, the surface gains less energy (in the domain mean). This disagrees

with the results of Tobin et al. (2013), who found that the surface gained more energy

when convection was more aggregated in observations. We speculate that the lack of

agreement between our results and those of Tobin et al. (2013) stems from the cloud
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changes discussed above, as well as the fact that the sea surface temperature is fixed

in our simulations, whereas in observations, it is free to evolve.

While Tobin et al. (2013) found that the TOA energy budget was not significantly

affected by the degree of aggregation in observations of convection, they did note that

there was a vertical redistribution of energy such that there was enhanced tropospheric

radiative cooling. We calculate the net column radiative flux convergence according

to Equation (2.2):

NetRad = LWsfc − LWTOA + SWTOA − SWsfc. (2.2)

The longwave fluxes are defined to be positive upwards while the shortwave fluxes

are defined to be positive downwards. We find that the domain averaged net column

radiative flux convergence becomes more negative (Figure 2-5a). The atmosphere

loses more energy when convection is aggregated, which is consistent with Tobin

et al. (2013).

Finally, we examine the evolution of the domain average surface enthalpy fluxes.

Since our simulations employ a fixed SST, the surface enthalpy fluxes only depend

on the surface wind speed, the near-surface air temperature, and the near-surface

water vapor mixing ratio. In the simulations that aggregate, the domain average
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Figure 2-6: Domain average outgoing longwave radiation (OLR) for simulations in
which the random noise used to initialize the model is varied, at 305 K (a) and 307
K (b). There are 5 ensemble members for each SST.

surface enthalpy fluxes increase with time (Figure 2-5b). This increase in surface flux

with aggregation is also found in synoptic-scale observations by Tobin et al. (2012),

who noted that surface fluxes were enhanced both within and outside convecting

areas. Tobin et al. (2013), however, did not find any change in surface fluxes in their

analysis of mesoscale convective aggregation. We speculate that the domain average

surface fluxes increase with aggregation because the domain mean is dominated by

the non-convecting area. Outside the convecting area, the boundary layer water

vapor decreases, which increases the air-sea enthalpy disequilibrium and therefore

the surface fluxes. We investigate the response of the surface enthalpy fluxes to

aggregation in more detail in subsequent sections.

2.2.2 Time Scale of Aggregation

The time to aggregation, as approximated by when the domain average OLR stops

increasing, does not vary monotonically with SST (Figure 2-1). This indicates a

possibly large stochastic component of self-aggregation. Sensitivity tests in which,

for a given SST, we vary the random noise used to initialize the simulations seem

to confirm the stochastic nature of self-aggregation, with the time to aggregation

varying by about twenty days (Figure 2-6). The location of the cluster and its spatial

orientation (i.e. whether it is an elongated band or a circular cluster) also vary with
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Figure 2-7: Evolution of domain mean spatial variance of vertically integrated frozen
moist static energy (FMSE) (J2/m4). The y-axis is on a logarithmic scale. (a)
shows results from simulations at different SSTs (solid lines). Exponential fit with
the coefficients given in Table 2.3 is shown in dashed lines, legend indicates e-folding
time. (b) shows results from an ensemble of simulations at 305 K (bold solid lines).
Exponential fit with the coefficients given in Table 2.3 is plotted in thin lines. The
thin solid lines are a fit based on data from Day 1 - 40, while the thin dashed lines
are a fit based on data from Day 2-50.

the initial random noise. In some of the simulations, the convection aggregates into

an elongated band and stays in this state for 10s of days before collapsing further

into a circular cluster. The evolution to aggregation is always characterized by the

expansion of a dry patch (as we will examine in the next section), although there are

sometimes several dry patches that then merge. The type of cluster obtained in the

simulations that self-aggregate is indicated in Table 2.1.

Another signature of self-aggregation is an increase in the domain average of the

spatial variance of vertically integrated frozen moist static energy (FMSE). In Chapter

4, we construct a budget for the spatial variance of the vertically integrated FMSE

in order to quantify feedback mechanisms. Here, we simply use this quantity to

characterize the time scale of aggregation. When plotted on a logarithmic scale, it is

evident that the increase in the FMSE variance is exponential during the evolution

to aggregation before reaching a quasi-steady state (Figure 2-7). By eye, the rate

of increase appears to be similar between the simulations at different values of SST

(Figure 2-7a). To confirm this, we fit a simple exponential (Equation (2.3)) over the
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Table 2.2: Exponential fit of domain average FMSE variance for simulations at dif-
ferent SSTs. Dayi is the range of days used for the start of the fit, Dayf is the range
of days used for the end of the fit. The amplitude (a) and exponent (b), and the r2

value for the fit using those coefficients, are given from the calculation using the first
day in each range for Dayi and Dayf . τ indicates the time scale calculated from the
exponent coefficient (1/b).

SST Dayi Dayf a1 (1013 J2/m4) b1
(
days−1

)
τ1 (days) r2

301 K 2:7 45:55 2.3697 0.0782 12.79 0.9933
303 K 2:7 50:50 4.8805 0.0853 11.73 0.9933
305 K 2:7 50:60 2.9572 0.0796 12.57 0.9917
307 K 3:8 50:60 4.0099 0.0811 12.33 0.9863
310 K 1:6 45:55 1.4535 0.0933 10.72 0.9938

first half of the simulation (shown by the dashed lines in Figure 2-7a):

f(t) = aebt. (2.3)

The range of days used in the fit and the coefficients obtained are given in Table 2.2.

All the simulations included in Figure 2-7 and Table 2.2 have a horizontal domain

size of 768 x 768 km2, except the one at 310 K, which has a horizontal domain size

of 1536 x 1536 km2. For the four simulations with a 768 x 768 km2 domain size,

the exponent for each curve is near 0.08 days−1, which corresponds to a timescale

(τ) of 12.5 days. This is roughly consistent with the 9 day time scale of aggregation

calculated by Bretherton et al. (2005). There is some variation in this time scale

with SST, but it is not systematic. The r2 values indicate that the exponential fit is

quite good. However, we find that the value of the exponent, b, is sensitive to the

precise range of days used in the exponential fit. Figure 2-8 shows b as a function of

the choice of initial and final day for the fit (Table 2.2). The value of the exponent

coefficient varies more strongly with the choice of the final day of the fit than with

the choice of initial day. Notably, the variation in the exponent coefficient in Figure

2-8 is larger than its variation with SST. For example, the exponent coefficient for

the 303 K simulation varies between 0.065 and 0.084 days−1, which corresponds to a

time scale between 15.28 days and 11.90 days. Similarly, the time scale varies from
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Figure 2-8: Exponent coefficient, b (days−1), as a function of the initial and final days
used in the fit of the domain average spatial variance of FMSE.

14.93 days to 12.82 days for the 301 K simulation, 13.42 days to 12.66 days for the

305 K simulation, and 14.71 to 11.62 days for the 307 K simulation. In addition

to this sensitivity to the range of data used in the fit, the slope of the exponential

also varies when we vary the random noise used to initialize the simulation. We fit

a simple exponential to each of the ensemble members shown in Figure 2-6a. The

variation in the exponential fit between ensemble members at a given SST is as large,

if not larger, than the variation between simulations at different SSTs (Figure 2-7b,

Table 2.3). This again highlights the stochastic component of self-aggregation and

suggests that the differences in time scale to aggregation at different SSTs are not

meaningful. Indeed, without the labels in Figure 2-7, it would be difficult to tell

which panel featured simulations at different SSTs (Figure 2-7a) and which featured
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Table 2.3: Exponential fit of domain average FMSE variance for ensemble of simula-
tions at 305 K. The exponent of the fit is computed using two ranges of data: days
2:50 (b1) and days 1:40 (b2). τ indicates the time scale calculated from the exponent
coefficient (1/b).

Ensemble Member b1
(
days−1

)
τ1 (days) b2

(
days−1

)
τ2 (days)

1 0.0796 12.56 0.0906 11.04
2 0.0986 10.14 0.1093 9.15
3 0.0797 12.55 0.0952 10.50
4 0.0793 12.61 0.0869 11.51
5 0.0815 12.17 0.1012 9.88

an ensemble of simulations at the same SST (Figure 2-7b).

The large domain (1536 x 1536 km2) simulation at 310 K (pink curve in Figure

2-7a) has a rate of aggregation that is somewhat faster than in the smaller domain,

lower SST simulations. The e-folding time of domain mean FMSE variance in the 310

K simulation is 10.72 days, while the e-folding times of the other simulations are near

12 days. This result points out the limitations of domain size. One might expect a

faster approach to aggregation at higher temperatures, but as SST is increased, it is

increasingly difficult for the cluster to fit in the prescribed domain (further discussed

in Chapter 3). This might decrease the rate of aggregation as SST is increased

with a fixed domain size. These two competing effects may explain why the time to

aggregation does not vary systematically with SST in the 301 - 307 K simulations.

The factors that set the scale of the cluster and therefore the necessary domain size

for aggregation remain unknown.

Finally, we note that an exponential fit of the spatial variance of precipitable water

compares well with that of the FMSE variance. Precipitable water is easier to obtain

from observations than vertically integrated FMSE, so examining its spatial variance

may be a way to diagnose and characterize the degree of aggregation in observations.

2.3 Development and Expansion of Dry Patch

In simulations in which self-aggregation occurs, the domain averaged OLR gradually

increases over the first 50 to 70 days of the simulation (Figure 2-1). To further explore
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Figure 2-9: Daily average precipitable water (PW, in mm) for days 1 (panel a), 10
(panel b), 30 (panel c), 50 (panel d), 70 (panel e), and 90 (panel f). The data are
from a simulation at 305 K.

what happens as self-aggregation evolves, we examine the simulation at 305 K as a

case study. This temperature is firmly above the threshold for aggregation in our set

of simulations but is not so warm that aggregation requires a larger domain. Plan

views of daily mean precipitable water (PW) throughout the simulation at 305 K are

shown in Figure 2-9.

The day 1 average precipitable water (PW) field in the 305 K simulation is fairly

homogeneous (Figure 2-9a). By day 10 (Figure 2-9b), a small area near X = 200

km and Y = 500 km has become drier than the rest of the domain. Over the next

20 days, the small dry patch amplifies and expands and by day 30 (Figure 2-9c) it

covers nearly a quarter of the domain. This process continues, and at day 50 (Figure

2-9d) the areas of the domain not in the dry patch have become moister than they

were initially. At day 70 (Figure 2-9e), the expanding dry region has confined all the

moist air (which is now much moister than anywhere earlier in the simulation) to

one band. This band evolves into a single circular cluster in which high PW values

are concentrated, as seen at day 90 (Figure 2-9f). Outside the moist cluster, the rest
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of the domain has very low values of PW. These results show that self-aggregation

begins as a dry patch that expands. Convection is suppressed in the dry patch and

becomes increasingly localized into a single cluster. Our goal is to understand the

feedback mechanisms that allow the dry patch to amplify and expand.

We further characterize the development of the dry patch by examining height-

time cross sections of quantities averaged over the area in the domain that is the

driest at day 10 (in the 305 K simulation). Figure 2-10 displays the relative humidity

anomaly from the initial relative humidity and indicates that the upper troposphere

dries out first. These anomalies are calculated as the difference between the current

relative humidity in the dry patch and the initial relative humidity profile. By day

5, some degree of drying has occurred throughout the entire troposphere. Over the

first thirty days of the simulation, this particular area in the domain continues to dry

out (we only plot the first thirty days to focus on the initial development of the dry

patch). By day thirty, the relative humidity through out the lower 10 km of the free

troposphere is 20% of what it was initially. We also note that, although the largest

magnitude of the relative humidity decrease is in the free troposphere, the boundary

layer (lowest 1 km) also experiences drying.

Associated with the decrease in humidity, convection in the dry patch quickly

shuts down. As a proxy for convective activity, we examine the mixing ratios of

cloud condensate and precipitating water in the dry patch. Most of the clouds and

precipitation dissipate by day 5 (Figure 2-11), and by day 10 the cloud condensate

mixing ratio is zero at all levels. This leads us to speculate that cloud feedbacks are

not important for the amplification and expansion of the dry patch, for the simple

reason that the dry patch is very quickly devoid of clouds. We also note that persistent

subsidence throughout the troposphere develops in the dry patch around day 5 (not

shown). The combination of the subsidence and the decrease in humidity act to

prevent convection from re-developing. As will be described in Chapter 4, as the

dry patch forms, the radiative heating rates change in such a way as to amplify the

drying. The co-evolution of humidity, convection, subsidence, and radiative heating

in the dry patch hint at the nature of self-aggregation. As will be shown in the
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Figure 2-10: Height-time cross section of the relative humidity anomaly from the
initial relative humidity profile over the first thirty days of the simulation at 305 K.
The relative humidity anomaly plotted is from an average over the 48 × 48 km2 block
that is the driest (according to column relative humidity) at day 10. White shading
indicates positive values.

subsequent sections and chapters, it truly depends on the interplay of radiation,

convection, moisture, and circulation.

2.4 Moisture Sorted Fields

2.4.1 Moisture Sorting Procedure

Self-aggregation is characterized by an increasing gradient between the moist and dry

regions. Therefore, we employ a moisture-sorting procedure, following Bretherton

et al. (2005), in our analysis. For each variable we examine, we take a daily average,

and then a horizontal average over 48 x 48 km2 blocks to focus on the mesoscale

organization. An example of a daily and block averaged field is shown in Figure 2-

12a, where the cloud cluster is easily identifiable as the region of high column relative

humidity. Here, column relative humidity (CRH) is defined as the precipitable water
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Figure 2-11: Height-time cross section of cloud condensate qn (a) and precipitating
water qp (b) over the first thirty days of the simulation at 305 K. qn and qp are
averaged over the 48 × 48 km2 block that is the driest (according to column relative
humidity) at day 10. White shading indicates a value of 0

(PW) divided by the saturated water vapor path (SWP).2 We then sort the blocks

according to their column relative humidity, from driest to moistest (Figure 2-12b).

The lowest ranks represent the driest blocks. We recalculate the sorting function

every day, so the CRH of any given block, and the ordering of the blocks, may change

in time. Once we have calculated the sorting function, we can apply it to other

fields, such as the daily averaged vertical velocity, temperature, water vapor mixing

ratio, and radiative heating rates. When there is a mature cluster, moisture space is

analogous to actual distance from the center of the cluster. Using moisture sorting

enables an examination of contrasts between dry and moist regions at all times, not

just when there is a mature cluster.

There are several features of note in Figure 2-12b, which shows the actual CRH

values corresponding to ranks at each time. Initially, there is not much gradient in

CRH between the driest block and the moistest block; this gradient increases with

time. As expected, the lowest ranked columns get drier, while the highest ranks get

moister (a new “dry get drier, moist get moister” paradigm). The moist columns

(higher ranks) do not get moister until the second half of the simulation, however.

2PW =
∫ ztop
0

qvρair/ρH2O(l)
dz and SWP =

∫ ztop
0

q∗ρair/ρH2O(l)
dz, where q∗ is the saturation

water vapor mixing ratio.
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Figure 2-12: Block averaged daily mean column relative humidity (CRH) for simula-
tion at 305 K.

This reinforces our characterization of self-aggregation as a dry patch that amplifies

and expands.

2.4.2 Streamfunction and FMSE

We calculate a streamfunction using the CRH-sorted vertical velocity by integrating

from the dry to moist columns (following Bretherton et al. (2005)):

ψi(z) = ψi−1(z) + Σiρ(z)wi−1(z). (2.4)

The streamfunction represents the vertical mass flux accumulated over the i driest

columns. Negative values represent circulations in a counterclockwise sense, positive

values represent circulations in a clockwise sense. In addition, we sort the block-

averaged frozen moist static energy and cloud condensates by column relative humid-

ity, and display those fields, along with the streamfunction, as a function of height

and moisture space. The frozen moist static energy is given by

h = cpT + gz + Lvqv − Lfqice, (2.5)
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Figure 2-13: Frozen moist static energy (kJ kg−1, shading), negative values of the
streamfunction (kg m−2 s−1, solid black contours), positive values of the streamfunc-
tion (kg m−2 s−1, dotted black contours), 0.01 g/kg ice cloud condensate contour
(white contours), and 0.01 g/kg liquid cloud condensate contour (blue contours). All
quantities are averaged over each day and over 48 x 48 km2 blocks, from the simula-
tion at 305 K. On the x-axis, dry regions are on the left and moist regions are on the
right.

where Lf is the latent heat of fusion, qv is the water vapor mixing ratio, and qice

represents all ice phase condensates. It is exactly conserved by the model’s governing

equations following moist adiabatic displacements. The moisture sorted streamfunc-

tion for the simulation at 305 K is shown in Figure 2-13. Again, these plots should

be interpreted as going from dry areas (on the left) to moist areas (on the right), and

all fields are daily averages. At day 10, the frozen moist static energy is fairly ho-

mogeneous and there are clouds throughout the domain. There is a counterclockwise

circulation, indicated by the streamfunction, in the mid to upper troposphere. By day

50, the circulation has strengthened and extended to the surface, with a secondary

circulation in the low levels. The circulation transports frozen moist static energy up

gradient from the dry to moist regions (consistent with previous studies, and will be

discussed in more detail in Chapter 4). In concert with this, the gradient of frozen

moist static energy between the dry and moist regions has strengthened, including

at the lowest levels. At day 80, the cluster is mature with the ascent and clouds

confined to the moistest regions and a strong gradient in frozen moist static energy

between the moist and dry regions. In simulations that do not aggregate (not shown),

a circulation in the middle-upper troposphere may develop, but it never extends all
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the way to the surface and there is no development of a frozen moist static energy

gradient that enables the circulation to persist and self-amplify.

2.4.3 Temperature and Humidity

We briefly examine the temperature and humidity distribution at day 90 of the 305 K

simulation, (a time at which there is a mature cluster), sorted according to CRH. The

temperature does not vary much in the free troposphere (not shown) between moist

and dry regions. It is, however, cooler in the boundary layer in the moist convecting

regions, which is associated with downdraft-driven cold pools. Despite this, the virtual

temperature is actual higher in the boundary layer in the moist region (Figure 2-14a),

due to the large positive moisture anomalies there. Elsewhere, the virtual temperature

is less than the domain mean, again reflecting moisture anomalies. The moisture

anomalies are shown in Figure 2-14b, for the simulation at 305 K. There is a massive

drying of the dry regions and moistening of the moist regions. The largest anomalies

are in the lower troposphere, although the very moistest columns are quite a bit

moister throughout a substantial portion of the column. These are huge anomalies,

with the dry regions losing nearly all their water vapor (anomalies of -15 g/kg). The

development of these moisture anomalies suggests a role for the moisture-convection

feedback; since moist regions favor convection and convection causes local moistening,

it is a positive feedback that would favor self-aggregation.

2.4.4 Radiative Heating

One of the mechanisms often proposed as important for self-aggregation is a radiative

feedback. We address this more fully in Chapter 4, but briefly examine the moisture-

sorted radiative heating rates here. Figure 2-15 shows an example of how radiative

heating rates vary between moist and dry regions during the intermediate stage of

aggregation (day 50 in the simulation at 305 K). The vertically averaged radiative

heating rate is smaller in magnitude (less cooling) in the moist regions than in the

dry regions (bottom panel of Figure 2-15a). Shortwave heating is enhanced in the

56



H
ei

gh
t (

km
)

Rank of vertical column by CRH (lowest to highest)

Day 90 Virtual Temperature Anomaly

 

 

50 100 150 200 250

2

4

6

8

10

12

14

V
irt

ua
l T

em
pe

ra
tu

re
 A

no
m

al
y 

(K
)

−1

−0.5

0

0.5

1

1.5

2

(a) Tv anomaly from domain mean.

H
ei

gh
t (

km
)

Rank of vertical column by CRH (lowest to highest)

Anomaly of daily mean q
v
 from initial

 

 

50 100 150 200 250

2

4

6

8

10

12

14

W
at

er
 V

ap
or

 M
ix

in
g 

R
at

io
 (

g/
kg

)

−15

−10

−5

0

5

(b) qv anomaly from initial (shading). Con-
tours are moisture-sorted stream function.

Figure 2-14: Day 90 mean virtual temperature anomaly anomaly from domain mean
(a) and water vapor mixing ratio anomaly from initial (b), from simulation at 305 K.
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Figure 2-15: Moisture-sorted vertically averaged radiative heating rate (a) and ra-
diative heating rate anomaly from the day 10 domain mean (b), at day 50 of the
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moist regions (top panel of Figure 2-15a) while longwave cooling is reduced (although

not compared with the driest regions) (middle panel of Figure 2-15a). Both of these

effects contribute towards a less negative vertically averaged total radiative heating

rate in the moist regions. This gradient in radiative heating between the dry and

moist regions increases as the simulation progresses. In fact, during the time there

is a mature cluster, the vertically averaged radiative heating rate is nearly zero in

the moistest columns where the clouds are concentrated, but there is strong radiative

cooling over the rest of the domain (not shown). We can also examine the radiative

heating rates as a function of both height and moisture-rank (Figure 2-15b). In

this case, rather than examining the actual radiative heating rates at day 50, we

examine their anomaly from the day 10 domain mean to determine which areas are

cooling more or less than the spatial average. In the moist regions, there are positive

anomalies throughout most of the troposphere, which indicates less radiative cooling

(or more radiative heating). In the dry regions, there is less radiative cooling in the

upper troposphere (positive anomalies), but more radiative cooling throughout most

of the lower troposphere and boundary layer (negative anomalies). The fact that there

are opposite signed radiative heating rate anomalies at different heights in the dry

regions turns out to be important for determining the sign of the longwave radiative

feedback and explaining the temperature dependence of self-aggregation (see Chapter

4).

2.5 Size/Strength of Cluster

2.5.1 Strength of Cluster

We examine how the strength of the self-aggregated cluster depends on the SST of the

simulation. Figure 2-16 shows the evolution of the strength of the cluster with time,

for the four runs that self-aggregated. In Figure 2-16a the strength of the cluster

is defined as the difference between the 95th and 25th percentiles of column relative

humidity. Two things are notable from this figure. First, there is a huge increase in the
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Figure 2-16: Evolution of the strength of the cloud cluster for the runs that self-
aggregated.

column relative humidity difference as aggregation occurs. In the aggregated state,

there is a much larger gap in the column relative humidity of the moister and dryer

areas. Second, the CRH difference in the aggregated state is roughly independent of

temperature, with all four runs converging.

This is not the case if an absolute metric of cluster strength is used, such as the

difference between the 95th and 25th percentiles of total precipitable water. In that

case (Figure 2-16b), the strength of the cluster appears to be stronger at higher SSTs,

presumably due to the exponential increase of water vapor with temperature following

the Clausius-Clapeyron relation. The 95th percentile of TPW increases much more

with higher SST than the 25th percentile does. However, when we normalize by

the saturated water vapor path and use column relative humidity as our metric,

this normalized strength metric does not vary much with temperature, as shown

by Figure 2-16a. Another absolute metric of the strength of the aggregation is the

domain mean spatial variance of the vertically integrated frozen moist static energy.

This also increases with SST (Figure 2-7a), confirming that the gradient between

moist and dry regions is larger at higher temperatures.

While the system achieves a quasi-steady state once it has aggregated into a single

cluster, there are some interesting high frequency oscillations in the strength of the

cluster. These regular pulsations are most prominent when viewing animations of the
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Figure 2-17: Amplitude spectrum of surface precipitation rate (mm/day) averaged
over the cluster area (from x = 300 km to x = 429 km and y = 150 km to y = 276
km.

cluster; for example, plotting brightness temperature or an isosurface of cloud conden-

sate. This variability also appears as oscillations in various cluster-average quantities,

such as surface precipitation rate, surface enthalpy flux, or outgoing longwave radi-

ation. To characterize the time scale of this variability, we calculate the amplitude

spectrum of the cluster mean surface precipitation rate for the simulation at 305 K

(Figure 2-17). We review how we define the ”cluster area” in the next section. The

peak in amplitude occurs at a period of 10.9 hours. We find the same spectral peak

when considering cluster mean OLR or surface enthalpy fluxes. We speculate that

this variability results from gravity waves excited by the convection propagating back

around through the doubly periodic domain, reinforcing the convection at regular

intervals. To test this hypothesis, we calculate a rough estimate of the gravity wave

speed in our simulation.

The horizontal phase speed for a gravity wave in a continuously stratified nonro-

tating fluid is

cx =
N

m
, (2.6)

whereN is the Brunt-Väisälä frequency (Equation (3.4)) and m is the vertical wavenum-

ber. However, if we assume the tropopause behaves like a rigid lid, then the vertical
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wavelength must be an integer (n) fraction of twice the tropospause height (zT ), and

Equation (2.6) becomes

cx =
NzT
nπ

. (2.7)

We estimate that the tropopause is at a height of 15.5 km and that 0.0105 s−1 is a

characteristic value for N (Table 3.2) in our simulation at 305 K. Using Equation

(2.7), we find values of 52 m/s, 26 m/s, and 17 m/s for the phase speeds of the

first three gravity wave modes. Given a domain size of 768 km, these phase speeds

correspond to time scales of approximately 4 hours, 8 hours, and 12 hours. The latter

two are on the same order of magnitude as our observed period of 10.9 hours. An

analysis of the amplitude spectrum of the cluster mean surface enthalpy flux for the

large domain (1536 x 1536 km2) simulation at 310 K indicates a peak at a period of

16.0 hours. This is very close to the time scale of 15.8 hours that would be expected

from the third gravity wave mode in that simulation. While this analysis suggests

that gravity waves are a plausible explanation for the pulsations, the evidence is far

from conclusive. 3

2.5.2 Size of Cluster

An unresolved question regarding self-aggregation is what sets the size of the cluster.

Regardless of the SST or the domain size, there is only ever one cluster. This sug-

gests that the size of the domain constrains the size of the cluster. Muller and Held

(2012) did not find any correlation between the area of the aggregated region and the

domain size or resolution. Defining the area of the aggregated region is somewhat

subjective, as it may vary somewhat with time and requires the choice of a threshold

value. Here, we define the size of the cluster as the region contained by a surface

3There are numerous assumptions in our calculation; it is only meant as a rough estimate. We
estimated the tropopause height using the cold point; a different definition may be more suitable.
We calculated N from the domain mean of the small domain simulations at 305 K and 310 K;
to be more accurate we should have calculated it for the non-cluster area in the self-aggregating
simulation. The assumption that the tropopause behaves like a rigid lid and the use of Equation
(2.7) may not be valid. Finally, it may be necessary to take the size of the cluster into account when
calculating how long it will take a gravity wave of a given phase speed to propagate through the
domain back to the cluster.
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Figure 2-18: Metrics to define the size of the cluster. Averaged over the last 15 days
of the simulation at 305 K. (a) shows the mean vertical velocity at 500 mb (color
shading, white represents w ≤ 0 ) and the 50 mm/day mean surface precipitation
rate contour (red contour). (b) shows the mean surface precipitation rate, where the
color scale saturates at 50 mm/day.

precipitation rate contour that encloses the area of time-mean ascent. We choose the

appropriate precipitation rate value by subjectively determining which contour best

encloses a contiguous area of time-mean ascent. We define time-mean ascent as the

positive values of the vertical velocity at 500 mb averaged over the last 15 days of

the simulation (an example for the 305 K simulation is shown in Figure 2-18). We

average the surface precipitation rate over the same time period. This metric is meant

to contain the core of the cluster; there may be light precipitation or cloud cover that

extends further. The results of this analysis are shown in Figure 2-19. Note that the

locations of the clusters have been shifted such that they all can be viewed on the

same plot. We do not find a correlation between the size of the cluster and the SST.

This is also true for other definitions of the size of the cluster, such as a threshold

value of precipitable water. In Table 2.4, the cluster size is defined as the area where

the precipitable water is greater than one standard deviation above the domain mean

value. Using this definition, the cluster covers 15-17 % of the horizontal area of the

domain. It is likely that the domain size is constraining the size of the cluster, which

is discussed further in Chapter 3.
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Figure 2-19: Size of cluster at different SSTs. The contour of mean surface precipi-
tation rate that contains the region of mean ascent is plotted, based on an average
over the last 15 days of simulation.

Table 2.4: Cluster size, defined as area where PW > PWmean+PW1σ, for simulations
at different SSTs. The 310 K simulation has horizontal dimensions of 1536 x 1536
km2; the other simulations have dimensions of 768 x 768 km2. The values shown are
averages over the final 10 days of the simulation.

SST Cluster Area Fraction of Total Area
301 K 10.4 x 104 km2 17.6 %
303 K 9.2 x 104 km2 15.6 %
305 K 9.3 x 104 km2 15.7 %
307 K 8.9 x 104 km2 15.2 %
310 K 38.2 x 104 km2 16.2 %
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Chapter 3

Sensitivity Tests

3.1 Experiment Design

The results of the moisture sorted analysis in Chapter 2 as well as insights from

previous studies, as reviewed in Chapter 1, have identified several feedbacks that

may control self-aggregation. Previous work has indicated that cloud-water vapor-

radiation feedbacks that dry the drier air columns and moisten the moister air columns

are essential to the self-aggregation process (Tompkins, 2001b; Bretherton et al.,

2005; Muller and Held, 2012). Deep convection can more easily develop where the

middle-troposphere is already moist and then tends to keep the middle and upper

troposphere moist where it is convecting. This moisture-convection feedback has also

long been recognized as important for convective organization (Held et al., 1993;

Tompkins, 2001b). Surface flux feedbacks are a third contender, although there are

somewhat conflicting results in the literature as to their necessity for self-aggregation

(Bretherton et al., 2005; Muller and Held, 2012). As a first step towards identifying

the mechanisms of aggregation in our simulations, we perform a series of sensitivity

tests. These tests are designed to test the robustness of self-aggregation. They

will also be used to put our set of simulations in the context of previous studies.

It is possible that the dominant mechanism at play depends on the precise model

parameters, therefore, it is important to confirm that the mechanisms suggested by

previous studies are also the relevant ones in our set of simulations. The results of the
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sensitivity tests will inform our analysis of the physical mechanisms of self-aggregation

in Chapter 4, as well as suggest candidates for explaining the temperature dependence

of aggregation.

We first test the sensitivity of self-aggregation to aspects of the radiation calcu-

lation, including the radiation scheme used and the presence of a diurnal cycle. We

perform a series of mechanism denial experiments in which the longwave and short-

wave radiation feedbacks are successively removed. Next, we examine the importance

of surface flux feedbacks in both simulations that do and do not aggregate. We also

test the robustness of self-aggregation to the microphysics scheme. In the penultimate

section, we investigate the role of cold pools by eliminating the low-level evaporation

of precipitation. Finally, we examine how domain size modulates the temperature

dependence of self-aggregation. The primary set of mechanism denial experiments,

carried out for the simulation at 305 K (which, as shown in Chapter 2, aggregates),

is summarized in Table 3.1.

3.2 Radiation

3.2.1 Radiation Scheme

Interactive radiation, that is, a calculation of radiative fluxes that depends on the

temporal and spatial distribution of temperature, water vapor, and cloud condensate

calculated by the model, has been viewed as essential to self-aggregation (Tompkins

and Craig, 1998; Bretherton et al., 2005; Stephens et al., 2008; Muller and Held, 2012).

Therefore, it is possible that self-aggregation is sensitive to the precise formulation of

the radiative calculation. We test the robustness of self-aggregation to the radiation

scheme used (Figure 3-1).

As mentioned in Chapter 2, we use the RRTM radiation scheme to compute the

longwave and shortwave radiative fluxes. Muller and Held (2012), however, used the

radiation code from the National Center for Atmospheric Research (NCAR) Commu-

nity Atmosphere Model version 3 (CAM3) (Collins et al., 2006). Therefore, we test
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Table 3.1: Summary of mechanism denial experiments at 305K.

Experiment Aggregates? Run Description
Rad-Homog No Radiative heating rate homogenized horizontally

at each time step and height
Rad-Fix No Radiative heating rate prescribed as a profile that

is fixed horizontally and in time
LWRad-Fix No Longwave radiative heating rate prescribed as a

profile that is fixed in space and time
SWRad-Fix Yes Shortwave radiative heating rate prescribed as a

profile that is fixed in space and time
LWqv-Fix No Water vapor used in longwave radiation calcula-

tion prescribed as a profile that is fixed in space
and time

SWqv-Fix Yes Water vapor used in shortwave radiation calcula-
tion prescribed as a profile that is fixed in space
and time

SfcFlux-Homog No Surface fluxes homogenized horizontally at each
time step

Wind-Homog No Wind speed that enters surface flux calculation
homogenized horizontally at each time step

Disequil-Homog Yes Air-sea enthalpy disequilibrium that enters surface
flux calculation homogenized horizontally at each
time step

0 20 40 60 80 100240

250

260

270

280

290

300

310

320

Time (days)

O
LR

 (W
/m

2 )

RRTM
CAM

(a) RRTM vs. CAM3

0 20 40 60 80 100230

240

250

260

270

280

290

300

310

Time (days)

O
LR

 (W
/m

2 )

CAM
CCM

(b) CAM3 vs. CCM3

Figure 3-1: Domain averaged outgoing longwave radiation (OLR, W/m2), with dif-
ferent radiation schemes. (a) Simulations with SAM Version 6.8.2 at 305 K, 768 x
768 km2 domain. (b) Simulations with SAM Version 6.7.5 at 301 K, 576 x 576 km2

domain.
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the sensitivity of our ”standard run” to this choice of radiation scheme (Figure 3-1a).

The results indicate that, at least in terms of the evolution of the domain averaged

OLR, this simulation is not particularly sensitive to the radiation scheme. Both sim-

ulations aggregate, although the domain average OLR in equilibrium is several W/m2

higher with CAM3 radiation than with RRTM.

Our first attempt at simulating self-aggregation was modeled after Bretherton

et al. (2005), who used the radiation code from the NCAR Community Climate Model

version 3 (CCM3) (Kiehl et al., 1998) in an earlier version of SAM. Their simulation

was performed at 301 K with a 576 x 576 km2 doubly periodic domain. The results

of our attempt to replicate their simulation, using version 6.7.5 of SAM, are shown

in Figure 3-1b. Self-aggregation occured when CCM3 radiation was used, and it

occurred much more quickly than in our other simulations (see Chapter 2). However,

when we repeated the same experiment with CAM3 radiation, aggregation did not

occur. We speculate that the sensitivity to radiation scheme in this case is due to the

simulation being performed near the temperature threshold for aggregation, as well

as on a smaller domain than in Figure 3-1a. Indeed, simulations of self-aggregation

near the critical SST have proven very sensitive to physical and numerical details

(Muller and Held, 2012) so it is not surprising that the choice of radiation scheme

matters. However, it is somewhat reassuring that self-aggregation in the particular

simulation we focus much of our analysis on (768 x 768 km2, 305 K) is robust to the

choice of radiation scheme (Figure 3-1a).

3.2.2 Radiation Mechanism Denial

We perform a series of experiments that test the sensitivity of self-aggregation to ra-

diation feedbacks. All are performed at an SST of 305 K. The results are summarized

in Table 3.1. First, we remove local radiation feedbacks by horizontally homogeniz-

ing the radiative heating rate at each time step before it is applied as a temperature

tendency (Rad-Homog). We use the term “homogenize” to mean uniformly applying

the horizontal mean radiative heating profile to all grid columns. As indicated by

Figure 3-2a, this prevents self-aggregation, which is consistent with previous studies
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Figure 3-2: Hourly average precipitable water (mm) at day 83.3 for radiation mech-
anism denial experiments. The color bar is between 10mm and 100mm.

(Bretherton et al., 2005). This experiment does allow for the possibility of feedbacks

associated with the time tendency of the horizontal mean radiative heating, so to

completely eliminate feedbacks associated with interactive radiation, we perform a

second test in which the radiative heating rate is externally prescribed (Rad-Fix). In

Rad-Fix, the interactive radiation scheme is replaced with horizontally uniform non-

interactive radiative heating rates that are fixed in time. We derive this profile from

the horizontal and time mean over the first five days of the control simulation at 305

K (that is, before it aggregates) (Figure 3-3). Figure 3-2b shows that aggregation does

not occur with fixed radiative heating. We perform two additional sensitivity tests,

one in which the longwave is fixed but the shortwave is still calculated interactively

(LWRad-Fix) and one in which the shortwave is fixed but the longwave is calculated

interactively (SWRad-Fix). LWRad-Fix does not aggregate, but SWRad-Fix does

(Figure 3-2c,d). This indicates that interactive longwave radiation is essential for the

initiation of self-aggregation, while interactive shortwave radiation is not. This does

not mean that shortwave feedbacks are negligible, but any role they play would be of

secondary importance. These results are consistent with the sensitivity experiments
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Figure 3-3: Horizontal mean and day 1-5 mean radiative heating rate profile from con-
trol 305 K simulation. Total radiative heating rate (black), longwave radiative heating
rate (blue) and shortwave radiative heating rate (red), used in Rad-Fix, LWRad-Fix,
and SWRad-Fix, respectively.

performed by Muller and Held (2012), although they uniformly applied the horizontal

mean longwave and shortwave radiative heating rates at each time step, rather than

fixing them at a profile that was constant in both space and time.

Radiative feedbacks are thought to be important for self-aggregation because of

the dependence of radiative heating on water vapor and clouds. Water vapor is a

strong absorber of both longwave and shortwave radiation; therefore, the radiative

heating rates are modulated by spatial variations in the water vapor profile. Here

we test the importance of water vapor-radiation interactions for self-aggregation by

prescribing the water vapor profile that is used in the radiation calculation. This

water vapor profile is fixed in space and time, and is derived from the horizontal

mean over the first five days of the control simulation at 305 K (Figure 3-4). In

the LWqv-Fix experiment, we prescribe the water vapor profile used in the longwave

calculation, but allow the shortwave calculation to use the actual water vapor values

calculated by the model. We note that in this experiment, both the longwave and

shortwave radiation calculations still use the model-calculated cloud water and ice

concentrations. Fixing the water vapor used by the longwave calculation prevents

self-aggregation (Figure 3-2e). Conversely, aggregation still occurs when we fix the
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Figure 3-4: Horizontal mean and day 1-5 mean water vapor profile from control 305
K simulation. Used in LWqv-Fix and SWqv-Fix.

water vapor used by the shortwave calculation (and allow the longwave to use the

actual water vapor from the model) (Figure 3-2f). This result provides additional

evidence that feedbacks resulting from the shortwave radiation are not essential for

self-aggregation. Longwave radiation that depends on the variable water vapor is nec-

essary, however. Retaining the cloud-radiation interactions is apparently not sufficient

for the instigation of aggregation, although they may be important for maintaining

the cluster once it has formed. Our finding contradicts the results of Muller and Held

(2012); in their study, aggregation still occurred when the water vapor that entered

the longwave calculation was homogenized. Their experiment was not quite the same

as ours, as they homogenized the water vapor at each time step instead of prescribing

a fixed profile and additionally homogenized the shortwave radiative heating and sur-

face fluxes. Muller and Held (2012) also used a lower SST for their mechanism denial

experiments. The only actions that prevented aggregation in their simulations were

zeroing or homogenizing the amount of liquid condensates entering the computation

of longwave radiation, leading to their conclusion that radiative cooling from low

clouds was responsible for aggregation. Our radiation mechanism denial experiments

instead suggest that it is the water vapor - longwave radiation interaction that is

essential for the initial aggregation.
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3.2.3 Diurnal Cycle

The previous investigations of self-aggregation have all used simulations with con-

stant solar insolation. For example, Bretherton et al. (2005) removed the diurnal

cycle by reducing the solar constant to 650.83 W/m2 and fixing the solar zenith angle

at 50.5 ◦. This results in a solar insolation of 413.9766 W/m2. It is not obvious how

diurnally varying solar insolation would affect self-aggregation. With a fixed surface

temperature, the impacts of shortwave radiation are limited to atmospheric absorp-

tion and reflection from clouds. Furthermore, the sensitivity tests in the previous

section suggest that feedbacks involving shortwave radiation are not essential for self-

aggregation. However, with a diurnal cycle, at night there is no shortwave heating to

partially offset longwave cooling. There would be enhanced radiative cooling of the

atmosphere across the entire domain at night (compared to the case with no diurnal

cycle), which could disrupt the longwave radiation feedbacks.

We test the sensitivity of self-aggregation to diurnally varying solar insolation by

repeating the simulation at 305 K and calculating the solar insolation, rather than

externally prescribing it. We use a latitude of 19.45 ◦ and begin the simulation at

day 80.5, enforcing a perpetual equinox. These specifications result in a time mean

solar insolation of 413.5924 W/m2, which is nearly the same as the value of 413.9766

W/m2 in the fixed insolation case. We find that the diurnal cycle simulation does self-

aggregate. In fact, the evolution of the domain average OLR is very similar between

the diurnal cycle simulation and the fixed insolation simulation (Figure 3-5). The

process of self-aggregation, which takes tens of days, is seemingly unaffected by the

higher frequency diurnal variability. Also, just as in the fixed insolation case, varying

the white noise that initializes motion varies the spatial orientation of the cluster.

Of the two diurnal cycle simulations we performed, one achieved a band structure

(Figure 3-6) while one aggregated into circular cluster.

It is difficult to observe a diurnal signature in the convection in animations because

of additional, higher frequency pulsations (that also occur in simulations with fixed

insolation). Figure 3-7 shows the amplitude of the Fourier transformed cluster mean
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Figure 3-6: Surface precipitation rate (mm/day) averaged over the last 16 days of the
diurnal cycle simulation at 305 K (red curve in Figure 3-5).
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Figure 3-7: Amplitude spectrum of surface enthalpy flux averaged over the cluster
area (from x = 0 km to x = 768 km and y = 450 km to y = 504 km, see Figure 3-6).

surface enthalpy flux, as an example. The largest spectral peak occurs at a period

of 9.1 hours, while the second peak is a result of the diurnal cycle and has a period

of 24.4 hours. The 9 hour peak also occurs in simulations with fixed insolation. In

Chapter 2, we speculated that these pulsations of the cluster result from gravity waves

excited by the convection propagating back around through doubly periodic domain.

We perform diurnal composites of cluster mean quantities to objectively determine

the modulation of the cluster by the diurnal cycle of solar radiation (Figure 3-8).

The cluster mean precipitation peaks just before sunrise and has a minimum near

noon (Figure 3-8a). This is broadly consistent with the observed diurnal variation in

tropical oceanic precipitation, although the observed precipitation has its minimum

later in the afternoon (Liu and Zipser, 2008). We will show in Chapter 4 that, while

the column shortwave flux convergence is overall enhanced in the moist regions, in

the center of the cluster it is reduced due to the reflection by clouds. This reduction

of shortwave heating is not favorable for maintaining convection in the center of

the cluster. One possible explanation for the diurnal variation in the cluster mean

precipitation is that, at nighttime, this negative feedback is no longer present and

convection is able to intensify. We also note that the 9 hour peak in power from

Figure 3-7 is not apparent in the diurnal composite, providing additional evidence
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that those pulsations are not a harmonic of the diurnal cycle. The diurnal composite

of the cluster mean surface enthalpy fluxes is similar to that of the precipitation, but

phase lagged such that they peak just after sunrise and have a minimum in the late

afternoon (Figure 3-8b). Note that the cluster mean enthalpy fluxes are less than

those in the rest of the domain. This is because the air-sea disequilibrium is reduced

because the boundary layer in the cluster region is so moist, thereby suppressing the

surface enthalpy fluxes (this will be reviewed in more detail in Chapter 4). There is

only a slight diurnal variation in the cloud fraction of the cluster (not shown).

3.3 Surface Fluxes

3.3.1 Gust Factor

We indirectly test the importance of turbulent surface enthalpy fluxes in self-aggregation

by varying the minimum wind speed in the surface flux calculation. The surface sensi-

ble and latent heat fluxes are computed according to the bulk aerodynamic formulae.

The wind speed that enters this formulation in the model calculation is given by

U = max

(
Umin,

√
u2bot + v2bot

)
, (3.1)

where ubot and vbot are the winds at the lowest model level. Umin is the minimum

wind speed, which we refer to as the gust factor. We find that a smaller gust factor

in the surface flux calculation favors self aggregation. As an example, we consider

the 301K run. With a gust factor of 1m/s, the model self-aggregates and a cluster

forms, as indicated by the blue line in Figure 3-9 and the left panel of Figure 3-10.

However, when the gust factor is increased to 4m/s, which is represented by the cyan

line in Figure 3-9, self-aggregation does not occur.

We note that increasing the gust factor does not completely prevent self-aggregation,

as the right panel of Figure 3-10 indicates a dry patch forming, but causes it to proceed

much slower. If run for longer than 100 days, perhaps that simulation would even-

tually self-aggregate. The mechanism at play is two-fold. With a lower gust factor,
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Figure 3-8: Diurnal composites of the precipitation rate (a) and surface enthalpy
fluxes (b), over the last 16 days of the diurnal cycle simulation at 305 K (red curve
in Figure 3-5). The cluster area is defined as from x = 0 km to x = 768 km and y =
450 km to y = 504 km (see Figure 3-6).
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Figure 3-10: Day 100 precipitable water (mm) at SST of 301K.

one needs a larger air-sea enthalpy disequilibrium to get a strong surface flux, making

wind-related surface flux feedbacks more active. Second, with a lower gust factor,

it takes less real gustiness to differentiate between convecting and non-convecting

regions. The gusts are thus more effective at amplifying the surface fluxes in the

convective regions.

We interpret these results as suggesting that surface flux feedbacks are favorable,

but perhaps not necessary, for self-aggregation. This is consistent with the conclusion

of Muller and Held (2012), who found that homogenizing the surface fluxes prevented

aggregation in some, but not all, of their simulations. These results also suggest that

applying a mean surface wind would suppress aggregation, since the addition of a

constant background wind everywhere would make it more difficult for real gustiness
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to differentiate between convective and non-convecting regions.

3.3.2 Mean Wind

Most of our simulations have no mean wind; that is, there is no background wind

and no nudging of the domain mean wind. To test the sensitivity of self-aggregation

to the presence of a mean wind, we perform three simulations at 305 K with mean

background winds of 2.5 m/s, 5 m/s, and 10 m/s. In each case the domain mean

wind is nudged, with a time scale of 2 hours, to a westerly wind constant with height.

This background wind is also added to the modeled surface wind in the surface flux

calculation. We find that the simulation with a mean wind of 2.5 m/s still aggregates,

but the cluster is slightly elongated in the x-direction, and drifts from west to east

with time. The time to aggregation is greater than in the control simulation, but given

the large degree of variability in the time to aggregation (Chapter 2), it is difficult to

attribute this the presence of the mean wind. The simulation with a mean wind of 5

m/s does not fully aggregate, but the domain average OLR does gradually increase,

as if it is tending towards aggregation. Plan views of precipitable water indicate that

it evolves into a broad, moist band, but the contrast between the moist and dry areas

is not as large as is found in a fully aggregated simulation. Finally, a mean wind of

10 m/s completely suppresses aggregation during the time period of the simulation.

The presence of a mean wind suppresses aggregation due to its effect on the surface

fluxes (the same mechanism by which the gust factor affects the surface fluxes, as

described in Section 3.3.1). The sensitivity of self-aggregation to the presence of a

mean wind suggests that aggregation is unlikely to occur in nature (where there can

be significant mean winds) exactly as it occurs in these idealized model simulations.

3.3.3 Homogenize Surface Flux Feedbacks

To ascertain the importance of surface flux feedbacks for our particular self-aggregation

simulation, we perform a series of mechanism denial experiments at 305 K. The results

are summarized in Table 3.1. First, as has been done in previous studies (Bretherton
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Figure 3-11: Hourly average precipitable water (mm) at day 83.3 for surface flux
mechanism denial experiments. The color bar is between 10mm and 100mm.

et al., 2005; Muller and Held, 2012), we horizontally homogenize the surface fluxes of

sensible and latent heat at each time step (SfcFlux-Homog). This simulation fails to

aggregate, which is consistent with Bretherton et al. (2005) (Figure 3-11a). We do

two additional experiments to determine which part of the surface flux feedback is

necessary for self-aggregation. The surface latent and sensible heat fluxes are given

by the standard bulk formulae:

LHF = ρcELvU
(
q∗Ts − qbot

)
(3.2)

SHF = ρcHcpU (Ts − Tbot) . (3.3)

Spatial variations in the surface fluxes therefore arise from variations in the surface

wind speed, U , or the air-sea disequilibria, ∆q = q∗Ts− qbot and ∆T = Ts−Tbot 1. The

surface flux feedback is made up of a wind speed - surface flux feedback (often referred

to as WISHE) and an air-sea disequilibrium surface flux feedback. There is also a

part of the surface flux feedback that is due to the product of wind and disequilibrium

variations; we do not address this here but do so in our feedback analysis in Chapter

4. We remove the WISHE feedback by horizontally homogenizing the wind speed, U ,

that enters the surface flux calculation at each time step (Wind-Homog). We remove

the air-sea disequilibrium feedback by horizontally homogenizing ∆q and ∆T at each

time step before using them in the surface flux calculation (Disequil-Homog). Wind-

1U is given by Equation (3.1). qbot and Tbot are the water vapor and temperature at the lowest
model level, respectively.
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Homog fails to aggregate, but Disequil-Homog does (Figure 3-11b,c). Therefore, it is

the removal of the wind part of the surface flux feedback that prevents aggregation

in SfcFlux-Homog. We repeat Wind-Homog at 303 K and find that the removal of

the WISHE feedback prevents aggregation in that simulation as well (not shown).

This result is consistent with Tompkins and Craig (1998), who found that using a

wind-independent surface flux calculation destroyed aggregation in their simulations.

They tested the importance of wind-sensitive fluxes by calculating the surface fluxes

as a Newtonian relaxation towards the sea surface state, rather than horizontally

homogenizing the wind speed entering the surface flux calculation as was done here.

The fact that Disequil-Homog still aggregates could indicate that the effect of vari-

ations in the air-sea disequilibrium on surface fluxes is not relevant to self-aggregation.

It could also indicate that air-sea disequilibrium variations cause a negative feedback

on self-aggregation. Removal of this negative feedback by homogenizing the air-sea

disequilibrium could allow a simulation to aggregate that otherwise would not. To

test this hypothesis, we repeat Disequil-Homog at 300 K, which is just below the SST

threshold of aggregation in our simulations (Figure 2-1). However, the simulation still

fails to aggregate. This does not necessarily mean that the disequilibrium - surface

flux feedback is not negative, just that its removal is not sufficient for aggregation

to occur at 300 K. Indeed, the analysis in Chapter 4 does indicate that the air-sea

disequilibrium - surface flux feedback is negative, so we use this as an example of

how mechanism denial experiments can be misleading, or at least may not tell the

entire story. In actuality, all the 300 K simulation needs to aggregate is more time;

when extended for an additional 40 days, a cluster forms. This is likely because the

300 K simulation is very close to the critical SST for aggregation. Restarting the

300 K simulation and also homogenizing the air-sea disequilibrium allows the cluster

to form sooner than if it was restarted normally, but given the variation in time to

aggregation that occurs randomly (see Chapter 2), it is difficult to draw a conclusion

from this result. We performed a final sensitivity test in which the 297 K simulation

was extended for an additional 40 days, with the air-sea disequilibrium homogenized,

and it still failed to aggregate.
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In sum, the results of the sensitivity tests in which various aspects of the surface

flux feedback are homogenized indicate that, at least in our simulations, interactive

surface fluxes are necessary for aggregation to occur. In particular, the dependence

of the surface fluxes on a spatially varying surface wind is the key interaction.

3.4 Microphysics

Bretherton et al. (2005) found that self-aggregation was profoundly affected by changes

in the microphysics scheme. Specifically, they found that changing the threshold mix-

ing ratio for auto conversion from cloud ice to snow from 0 to 0.1 g/kg, slowed down

self-aggregation by enhancing the radiative impact and longevity of cirrus clouds in

the dry regions. This result shows the potential for self-aggregation to be sensitive

to the details of the microphysics parameterization. As stated in Chapter 2, we use

a one-moment bulk microphysics package described in Khairoutdinov and Randall

(2003). In this scheme, there are two prognostic microphysical variables: total non-

precipitating water and total precipitating water, which are then partitioned into five

classes of hydrometeors as a function of temperature. We perform one sensitivity test

in which we replace this scheme with the Morrison et al. (2005) two-moment, five-

class bulk microphysics scheme. In the Morrison et al. (2005) scheme, the five classes

are total water (vapor plus cloud liquid), cloud ice, rain, snow, and graupel. For each,

there are two prognostic variables; a mass mixing ratio and a number concentration.

We find that the 305 K simulation with this scheme aggregates in a qualitatively

similar manner to our control simulation with the default one-moment microphysics.

One difference is that the domain average OLR in the final, aggregated state is lower

than with the one-moment microphysics (285 W/m2 versus 302 W/m2), although the

domain average column relative humidity is comparable. A detailed investigation of

the effect of changed microphysics is deferred to future work; we only wish to point

out that self-aggregation still occurs when a more complex microphysics scheme is

used.
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3.5 Cold Pools

Cold pools generated by convective downdrafts have long been associated with the

triggering of new convection (e.g., Emanuel, 1994). Tompkins (2001a) found that

the mechanism by which cold pools organized tropical deep convection was ther-

modynamic; new convection was generated from the moist, high θe air just inside

the boundary of the spreading cold pools. However, the role of cold pools in gen-

erating new convective events may be different than their role in self-aggregation.

Indeed, Jeevanjee and Romps (2013) found that cold pools inhibited self-aggregation

in small domains. They speculated that in small domains, cold pools are effective

in homogenizing moisture and inhibiting self-aggregation because they don’t need to

travel far to transport moisture into the dry patch. When they eliminated cold pools,

self-aggregation occurred at all domain sizes.

These findings motivate us to investigate whether the elimination of cold pools

allows self-aggregation to occur at temperatures below the threshold for spontaneous

self-aggregation (see Chapter 2). We perform a simulation at 300 K in which cold

pools are prevented from developing by turning off the evaporation of precipitation

below 1 km. Jeevanjee and Romps (2013) found that this cutoff height was sufficiently

high to prevent cold pools. This modification allows the simulation to quickly self-

aggregate (Figure 3-12). The evolution of precipitable water is characterized by the

merger of moist blobs into progressively larger patches, until there is a single cluster.

This is in contrast to the usual evolution of self-aggregation, in which a dry patch am-

plifies and expands until it forces all the convection to a single area (Figure 2-9). The

response to moist and dry anomalies must be equivalent in the linear instability phase

of aggregation; the fact that development via a dry patch is favored suggests non-

linear effects are important. Although Jeevanjee and Romps (2013) hypothesized that

the underlying physics of self-aggregation was the same with or without cold pools,

the preference for moist instead of dry anomalies with no cold pools may reflect a

fundamentally different instability. The evolution to a single cluster in the simulation

without cold pools (Figure 3-12) resembles the coarsening process described by Craig
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Figure 3-12: Daily average precipitable water (PW, in mm). The data are from
the simulation at 305 K in which cold pools have been suppressed by eliminating
evaporation of precipitation below 1 km.

83



and Mack (2013), which was driven by the moisture-convection feedback. However,

the moisture-convection feedback pays a secondary role in the instability of the simple

model developed by Emanuel et al. (2013) to describe self-aggregation.

Under normal circumstances, downdrafts driven by the evaporation of precipita-

tion reduce the entropy of the sub-cloud layer and, assuming convective neutrality,

the free tropospheric temperature. Without downdrafts, there is nothing to cool the

sub-cloud layer and free troposphere, thereby reducing the effective static stability.

There is therefore no resistance to large scale ascent, favoring aggregation. We pro-

pose that self-aggregation occurs quickly when cold pools are eliminated, even at a

temperature below the threshold for aggregation, because we have removed the stabi-

lizing effect of downdrafts. Furthermore, prohibiting the evaporation of precipitation

in the low levels increases the precipitation efficiency. As we will review in Chapter

4, in a simple model representing the physics of aggregation, instability is favored by

high precipitation efficiency (i.e., low evaporation of precipitation) (Emanuel et al.,

2013).

3.6 Domain Size and Temperature

In Chapter 2, we showed that simulations at values of SST colder than 301 K and

higher than 307 K did not aggregate during the period of integration (Figure 2-1,

Table 2.1).2 Experiments extending the 310 K and 312 K SST runs by 40 days still

fail to aggregate (Figure 3-13). It has been shown that self-aggregation requires a

large domain (Muller and Held, 2012), so one explanation for the apparent failure

to aggregate at very high temperatures is that the domain size of 768 x 768 km2 is

not large enough at those temperatures. We speculate that the high SST simulations

require a larger domain size, perhaps because of the large values of dry static stability

that occur at high temperature. In the tropical troposphere, the temperature profile is

approximately given by a moist adiabiat (Xu and Emanuel, 1989) and a moist adiabat

2Preliminary analysis of a simulation at 298 K with a large domain (1536 x 1536 km2) suggests
that it may aggregate. Therefore, the critical SST for aggregation may itself depend on domain size.
An explanation for this is deferred to future work.
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Figure 3-13: Domain averaged outgoing longwave radiation (OLR, W/m2) for two
simulations at 310 K, one with a horizontal domain size of 768 x 768 km2 (blue), one
with a horizontal domain size of 1536 x 1536 km2.

is more stable at higher surface temperatures. We characterize the increase in the dry

static stability with temperature in our simulations by computing the Brunt-Väisälä

frequency, N (Equation (3.4)), from small domain (non-aggregating) simulations in

radiative-convective equilibrium (Table 3.2).

N =

√
g

θv

∂θv
∂z

(3.4)

In a self-aggregated state, ascent in the cluster is balanced by subsidence throughout

the rest of the domain. With a larger static stability at higher temperatures, the

compensating subsidence is weaker (in spite of enhanced radiative cooling), and thus

requires a proportionally larger area to balance the same updraft. This mechanism

is speculative and would obviously require rigorous analysis to be persuasive (such as

a determination of how the mass flux in the cluster area changes with temperature).

Nevertheless, when we reran the 310 K simulation with a domain size of 1536 ×

1536 km2 in the horizontal (4 times the area of our original domain), self-aggregation

occurred (Figure 3-13). This indicates that there is a lower bound on the domain

size required for aggregation that is temperature dependent. A plan view of the

mature cluster in this large simulation is shown in Figure 3-14. Despite the large
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Table 3.2: Dry static stability at different SSTs. Computed from the day 60 - 100
mean of small domain (96 x 96 km2, 1 km horizontal resolution) simulations, averaged
over the troposphere.

SST N
295 K 0.0094 s−1

297 K 0.0095 s−1

298 K 0.0095 s−1

300 K 0.0096 s−1

301 K 0.0099 s−1

305 K 0.0105 s−1

307 K 0.0113 s−1

310 K 0.0130 s−1

311 K 0.0131 s−1

312 K 0.0132 s−1

domain size, there is still only one cluster and its size relative to the domain size

is comparable to the relative size of the cluster in the lower temperature, smaller

domain simulations. We note in passing that aggregation did not occur at 312 K in

a 1536 × 1536 km2 domain; evidently, an even larger domain is necessary at that

high temperature (or perhaps a higher model top). One potential way of getting

around the limiting domain size issue would be to replace the doubly periodic lateral

boundaries with open boundaries, but that is left for future work.

The question of what determines the limiting domain size for aggregation, or,

equivalently, what sets the scale of the cluster, remains unanswered. In rotating fluid

dynamics, the Rossy deformation radius is a natural length scale that arises from

geostrophic adjustment theory. In rotating radiative-convective equilibrium, the ag-

gregated cluster may take the form of a tropical cyclone. Chavas and Emanuel (2014)

found that, at equilibrium in axisymmetric RCE, the overall size of a tropical cy-

clone scales nearly linearly with Vp/f , which is the theoretical scaling for the upper

bound on tropical cyclone size from Emanuel (1986). Chavas (2013) and Khairout-

dinov and Emanuel (2013) noted that the size of spontaneously generated tropical

cyclones in three-dimensional rotating RCE followed the same scaling reasonably well.

Khairoutdinov and Emanuel (2013) additionally found that the spacing between the

cyclones scaled with the deformation radius. However, in non-rotating RCE, as is
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Figure 3-14: Day 90 mean precipitable water (PW, mm) for the large domain simu-
lation at 310 K.

being examined here, there is no known natural length scale other than the size of

the domain itself. Khairoutdinov and Emanuel (2012) compared self-aggregation in

domains of 600 km and 1500 km (at the same SST) and found that the size of the

cluster relative to the domain size was comparable, suggesting that self-aggregation

does not have a limiting horizontal scale. Over a range of domain sizes and horizontal

resolutions, the area of the cluster3 is found to increase with domain size such that

it is generally about 20 % of the total domain area (Caroline Muller, 2014, personal

communication).

3Defined as the region where precipitable water is greater than one standard deviation above the
domain mean value. The precise area is likely to be sensitive to this definition.
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Chapter 4

Physical Mechanisms of

Self-Aggregation

c©2013 American Geophysical Union. All Rights Reserved. 1

4.1 Analysis Framework

4.1.1 Budget for Spatial Variance of FMSE

As shown in Chapter 2, the evolution of self-aggregation is characterized by the de-

velopment of a dry patch that amplifies and expands to isolate convection in a single,

moist cluster. In this chapter,the physical mechanisms that are responsible for that

evolution will be determined. The results of the sensitivity tests described in Chapter

3 indicated that the water vapor - longwave radiation and wind speed - surface flux

feedbacks were the most important for the initiation of self-aggregation. An analysis

of the various feedback terms is now performed to determine the importance of each

throughout the difference stages of aggregation, as well as quantify their magnitudes.

The analysis is framed in terms of the budget of the spatial variance of vertically

integrated frozen moist static energy. The frozen moist static energy (FMSE) is

1Sections 4.1-4.3, Figure 4-1a, and Figures 4-4 to 4-10 were published as part of Wing and
Emanuel (2013), in the Journal of Advances in Modeling Earth Systems. The published version of
the text has been adapted with a few additions for clarification, in accordance with the Creative
Commons Attribution License.
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conserved during moist adiabatic processes in the model, including the freezing and

melting of precipitation, and is given by

h = cpT + gz + Lvqv − Lfqice, (4.1)

where Lf is the latent heat of fusion, qv is the water vapor mixing ratio, and qice

represents all ice phase condensates. The FMSE is a desirable diagnostic of self-

aggregation because its variance increases as aggregation progresses, and because

its mass-weighted vertical integral can only be changed by radiation, surface fluxes,

and advection. Convection redistributes FMSE but cannot change its mass-weighted

vertical integral. This is useful because it would be difficult to explicitly calculate

anomalies in convective heating, but we can compute the other sources and sinks of

vertically integrated FMSE. We begin with the budget equation for vertically inte-

grated frozen moist static energy, ĥ:

∂ĥ

∂t
= SEF + NetSW + NetLW −∇h · ~̂uh, (4.2)

where SEF is the surface enthalpy flux and NetSW and NetLW are the column short-

wave and longwave radiative flux convergences, respectively. The “ ̂ ” notation

indicates a density-weighted vertical integral,
∫ ztop
0

[ ]ρdz. The surface enthalpy flux,

SEF, is defined as the sum of the latent and sensible heat fluxes, (LHF and SHF,

respectively), which are given by the standard bulk formulae:

LHF = ρcELvU
(
q∗Ts − qv

)
(4.3)

SHF = ρcHcpU (Ts − Ta) (4.4)

SEF = LHF + SHF. (4.5)

In Equations (4.3) - (4.4), ρ is the air density at the lowest model level, cE is the

latent heat exchange coefficient, U is the surface wind speed, q∗Ts is the saturation

water vapor mixing ratio at the surface temperature, qv is the water vapor mixing

ratio at the lowest model level, cH is the sensible heat exchange coefficient, Ts is
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the surface temperature, and Ta is the air temperature at the lowest model level.

Hereafter, we will refer to q∗Ts − qv as ∆q and Ts − Ta as ∆T . The column longwave

radiative flux convergence is defined as

NetLW = LWsfc − LWtop, (4.6)

where LWsfc and LWtop are the net longwave fluxes at the surface and top of atmo-

sphere, respectively, where a positive flux is defined to be upward. In the results

shown here, the column longwave flux convergence is negative everywhere, indicating

that more longwave radiation is exiting the column at the top than entering it at the

bottom. The column shortwave radiative flux convergence is defined as

NetSW = SWtop − SWsfc, (4.7)

where SWtop and SWsfc are the net shortwave fluxes at the top of the atmosphere and

surface, respectively, where a positive flux is defined to be downward. The column

shortwave flux convergence is positive everywhere, indicating that more shortwave

radiation is entering the column at the top than is exiting it from the bottom.

For an arbitrary variable A, we denote the horizontal mean as {A} and the

anomaly from the horizontal mean as A′. We subtract the horizontal mean of Equa-

tion (4.2) from the full form of the equation to obtain an equation for the time rate of

change of the anomaly of vertically integrated FMSE, ĥ′. Finally, multiplying that re-

sult by ĥ′ results in a budget equation for the spatial variance of vertically integrated

frozen moist static energy:

1

2

∂ĥ′2

∂t
= ĥ′SEF′ + ĥ′NetSW′ + ĥ′NetLW′ − ĥ′∇h · ~̂uh, (4.8)

in which ĥ′ indicates the anomaly of the density weighted vertical integral of FMSE

and ∇h · ~̂uh is the horizontal divergence of the density weighted vertical integral of the

flux of FMSE. ĥ′SEF′, ĥ′NetSW′, and ĥ′NetLW′ represent the correlations of ĥ′ with

anomalies in the three diabatic sources and sinks of FMSE: surface enthalpy fluxes,
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column shortwave convergence, and column longwave convergence, respectively.

4.1.2 Partitioning of Surface Enthalpy Flux Anomalies

Surface enthalpy fluxes are affected primarily by variations in surface wind speed and

by the thermodynamic disequilibrium between the ocean and the overlying atmo-

sphere. We can formally decompose SEF′ into a part due solely to variations in the

surface wind speed, a part due solely to variations in the air-sea enthalpy disequil-

brium, and an eddy term representing variations due to the product of the two. In the

model’s surface flux calculation, the exchange coefficients, cE and cH , are calculated

iteratively and vary in both space and time. An offline calculation using the surface

flux code over the range of surface air temperatures, water vapor mixing ratios, and

wind speeds observed in the simulations indicated that the exchange coefficients vary

strongly with the surface wind speed but only weakly with the air-sea disequilib-

rium over the range explored. Therefore, the exchange coefficients are combined with

the surface wind speed when calculating horizontal means and anomalies from those

means. Each of the four variables in Equations (4.3) - (4.5), (cEU , cHU , ∆q, ∆T ), are

separated into a mean and an anomaly. Substituting these definitions into Equations

(4.3) - (4.5) and solving for SEF′, we find that the surface enthalpy flux anomaly can

be written as

SEF ′ =

(i)︷ ︸︸ ︷
ρLv (cEU)′ {∆q}+ ρcp (cHU)′ {∆T}

+

(ii)︷ ︸︸ ︷
ρLv{cEU}∆q′ + ρcp{cHU}∆T ′

+

(iii)︷ ︸︸ ︷
ρLv (cEU)′∆q′ + ρcp (cHU)′∆T ′ − ρLv{(cEU)′∆q′} − ρcp{(cHU)′∆T ′} .

(4.9)

Term (i) in Equation 4.9 represents the part of the SEF anomaly due solely to vari-

ations in the surface wind speed. Term (ii) represents the part of the SEF anomaly

due solely to variations in the air-sea enthalpy disequilibrium. Term (iii) represents
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the part of the SEF anomaly due to the product of variations in the surface wind

speed and variations in the air-sea enthalpy disequilibrium, which we refer to as the

“eddy term”.

4.1.3 Application to Self-Aggregation

Because self-aggregation is associated with an increase in the variance of vertically

integrated FMSE, processes that increase ĥ′2 favor self-aggregation. It is then clear

from Equation (4.8) that if the correlation between the anomaly of a diabatic term

and ĥ′ is positive, there is either an anomalous source of FMSE in a region of already

high FMSE, or an anomalous sink of FMSE in a region of low FMSE. Both of these

processes represent a positive feedback on self-aggregation. The four diabatic terms in

Equation (4.8), including the decomposition of SEF′ according to Equation (4.9), are

calculated explicitly in the model at each time step and output as hourly averages, as

is ĥ′2. We calculate the horizontal convergence term, the last term in Equation (4.8),

as a residual from the rest of the budget (as was done for FMSE budget calculations

in Bretherton et al. (2005) and Muller and Held (2012)). We then average each term

over a day and over 48 × 48 km2 blocks to focus on the mesoscale organization.

We sort the blocks according to their column relative humidity (from low to high),

allowing us to examine how the terms evolve in moisture-time space. Because of weak

temperature gradients in the free troposphere, this is essentially equivalent to ranking

blocks according to ĥ′.

This analysis framework allows us to quantify and compare the feedbacks that

play a role in self-aggregation. Examining each term in Equation (4.8) as a function

of time and column humidity allows us to investigate both the evolution to a self-

aggregated state and its maintenance. We can also explain the anomalies of each

diabatic term and thereby give a physical description of each relevant mechanism.

Additionally, partitioning the surface flux anomalies allows us to isolate the wind

surface flux feedback from the air-sea enthalpy disequilbrium surface flux feedback.

We will then be able to clearly delineate the role of surface flux feedbacks in self-

aggregation. One limitation of this analysis framework is that, in calculating the
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Figure 4-1: Sum of all diabatic correlation terms in vertically integrated FMSE spatial
variance budget, normalized at each time by {ĥ′2}. Plotted as a function of time (y-
axis) and moisture space (x-axis), where each term has been averaged over a day and
a 48 × 48 km2 block, has units of days−1, and has been sorted according to block-
averaged column relative humidity (CRH). On the x-axis, dry regions are on the left
and moist regions are on the right, displayed as rank by CRH value from low to high
(a) or the CRH value itself (b). Results are from the simulation at 305 K. The black
line is the ĥ′ = 0 contour. Note that the color bar saturates.

horizontal convergence term as a residual, we are not able to separate vertical from

horizontal advection. Additionally, this framework does not explicitly quantify the

moisture-convection feedback.

4.2 Results

4.2.1 Feedback Terms

In order to determine which physical mechanisms are important for both the evolu-

tion and maintenance of self-aggregation, we investigate the evolution of the various

feedback terms of Equation (4.8) in both moisture and time space. First, we examine

a Hovmuller plot of the sum of all the diabatic correlation terms, ĥ′SEF′+ĥ′NetSW′+

ĥ′NetLW′, for the simulation at 305 K (Figure 4-1). For each day, we have normal-

ized the diabatic correlation terms by the horizontal mean of the vertically integrated

FMSE variance ({ĥ′2}). Because ĥ′2 increases with time, normalizing in this manner
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makes it easier to interpret what is happening in the early stage of aggregation, when

both the vertically integrated FMSE anomalies and forcing terms are small. Note

that the color bar in Figure 4-1 saturates; the maximum value in the dry regions at

the beginning of the simulation is 2.3 days−1. The sum of all the diabatic correla-

tion terms is positive during the first twenty days of the simulation. The strongest

positive values occur in the driest regions over the first ten days. With time, these

positive values diminish and propagate toward moister regions, expanding the dry

patch. This evolution is consistent with our earlier observation that the dry regions

expand and eventually force all the convection into one cluster. In the moist regions,

positive correlations persist through the simulation.

As an aside, we point out that there are two options for displaying moisture-sorted

data: as a function of the rank of the column by column relative humidity (CRH)

value from low to high (Figure 4-1a) or as a function of the CRH value itself (Figure 4-

1b). When plotted against CRH itself, it is obvious that the range of humidity values

found in the domain increases with time. During the first half of the simulation,

this is dominated by the dry regions getting drier; it so only after day 50 that the

moistest regions (right edge of the Figure 4-1b) shift to higher values of CRH. For

the remainder of our analysis, we display moisture-sorted data as a function of the

rank of the column, as it is easier to asses what is going on at the beginning of the

simulation when the range in CRH is small. Hovmuller plots of the individual terms

in the ĥ′2 budget in terms of CRH itself may be found in Appendix B.

We also note from Figure 4-1 that the sum of all the diabatic correlation terms is

negative at times and places throughout the simulation; competition between positive

and negative feedbacks may explain why it takes so long for the cluster to fully form.

In particular, the diabatic feedback terms are negative in the dry regions from day

30 to 50, but ĥ′2 is still increasing in those regions over that time period (Figure

4-2). This indicates that the kinematic term, involving the horizontal convergence

of the vertically integrated flux of FMSE, must be playing a role. Currently, we

calculate this term as a residual from the rest of the ĥ′2 budget due to the difficulties

of calculating it directly from infrequent output. The evolution of the convergence
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Figure 4-2: Vertically integrated FMSE spatial variance, ĥ′2, with units of J2/m4.
Plotted as a function of time (y-axis) and moisture space (x-axis), where it has been
averaged over a day and a 48 x 48 km2 block. On the x-axis, dry regions are on the
left and moist regions are on the right, sorted according to block-averaged column
relative humidity (CRH). Results are from the simulation at 305 K.

term in moisture space is shown in Figure 4-3, where it has been normalized by the

horizontal mean FMSE variance ({ĥ′2}). A 5-day smoother has been applied, as this

term is quite noisy. The convergence feedback term is comparable in magnitude to

the sum of the diabatic terms (Figure 4-1) in the ĥ′2 budget. It is positive in the

dry regions from day 20 to 50 and in the moist regions from 45 to 60. The FMSE

flux convergence by the circulation thus acts as an important positive feedback in the

intermediate stages of aggregation, once the dry patch has developed, by transporting

FMSE from the dry regions to the moist regions. The overturning circulation between

dry and moist regions is represented by the moisture-sorted streamfunction in Figure

2-13. The convergence feedback term is noisy in the moist regions during the time

that there is a mature cluster (day 70-100), but it does appear to be negative in the

very moistest columns (Figure 4-3). This indicates that the circulation is transporting

FMSE out of the moistest columns when there is a mature cluster. The finding that

the convergence term plays an important role is consistent with Bretherton et al.

(2005) and Muller and Held (2012), who found that mesoscale circulations intensify
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Figure 4-3: −ĥ′∇h · ~̂uh, the term in the ĥ′2 budget involving the convergence of
the vertically integrated flux of FMSE. Calculated as a residual from the rest of the
budget, this term has been normalized by {ĥ′2} and smoothed with a 5-day running
mean. Plotted as a function of time (y-axis) and moisture space (x-axis), where it
has been averaged over a day and a 48 x 48 km2 block. On the x-axis, dry regions
are on the left and moist regions are on the right, sorted according to block-averaged
column relative humidity (CRH). Results are from the simulation at 305 K.

the later stages of self-aggregation via an up gradient transfer of moist static energy,

and will not be explored further here.

The individual terms on the right side of Equation (4.8), with the surface en-

thalpy flux broken down into wind- and disequilbrium - dependent parts according

to Equation (4.9), are shown in Figure 4-4. We have again normalized each term by

{ĥ′2}. The color bar in each of the plots is the same (between -1.18 days −1 and 1.37

days −1) to allow for easy comparison, but note that the color scale saturates in a

few places. Figures 4-4a-b reinforce the notion of competition between positive and

negative feedbacks, as the correlations of vertically integrated FMSE anomalies with

the column radiative flux convergence anomalies are mostly positive during the first

sixty days of the simulation (when the cluster is developing), while the correlations

with the surface enthalpy flux anomalies are predominantly negative from day 20

to day 60. The total surface flux feedback (Figure 4-4b) is positive during the first
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ĥ N etLW + ĥ N etSWa)
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Figure 4-4: Left column: correlation between vertically integrated FMSE anomalies
and column radiative flux convergence anomalies (a: column radiative flux conver-
gence, c: column longwave convergence, e: column shortwave convergence). Right col-
umn: correlation between vertically integrated FMSE anomalies and surface enthalpy
flux anomalies (b: total surface enthalpy flux anomaly, d: anomaly due to surface
wind speed anomalies, f: anomaly due to air-sea enthalpy disequilibrium anomalies).
All terms have been averaged over each day and over 48 × 48 km2 blocks, normalized
by {ĥ′2}, are from the simulation at 305 K, and have units of days−1. On the x-axis,
dry regions are on the left and moist regions are on the right, sorted according to
block-averaged column relative humidity (CRH). The black line is the ĥ′ = 0 contour,
plotted as a reference. Note that the color bar saturates in a few places.
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twenty days of the simulation and is largest in the driest regions. One unexplained

feature is the relatively abrupt transition around days 60 to 70.

In Figures 4-4c-f, the correlations are further decomposed. First, we examine

the correlation between the vertically integrated FMSE anomalies and the column

shortwave flux convergence anomalies (Figure 4-4e). This term is positive nearly

everywhere, reflecting negative anomalies in NetSW in the dry regions (where ĥ′ < 0)

and positive anomalies in NetSW in the moist regions (where ĥ′ > 0). This occurs

simply because water vapor is, after ozone, the most important shortwave absorber

in the atmosphere.

The sign of the correlation term involving column longwave flux convergence

anomalies (Figure 4-4c) varies. In the first twenty days, the longwave term is positive,

helping to amplify the developing dry patch. The column longwave flux convergence

therefore must be more negative (more of a sink of energy) in the driest regions than

elsewhere during that time period. Later, the longwave term is negative in the dry

regions, indicating that at that time, the column longwave flux convergence must be

less negative than average (less of a sink of energy) in the dry regions. Conversely,

once the cluster is established (day 60 onward), the longwave term is a strong posi-

tive feedback in the moistest regions, and is the dominant contributor to the overall

positive radiative feedback (Figure 4-4a) there. The physical mechanisms causing the

longwave term to be a positive or negative feedback will be discussed in more detail

in Section 4.3.2.

In regard to the surface flux term, we note that the correlation between vertically

integrated FSME anomalies and the portion of the surface enthalpy flux anomalies

that are due to wind speed anomalies (Figure 4-4d) is mostly positive. However,

while the surface flux-wind feedback is a positive feedback for aggregation in our

simulations, it is strongly counteracted by a negative surface flux feedback due to

variations in the air-sea enthalpy disequilibrium (Figure 4-4f). Finally, while not

shown here, the “eddy term” involving the correlation between vertically integrated

FMSE anomalies and the product of wind speed and air-sea disequilibrium anomalies

reflects that the wind speed and disequilibrium anomalies are anti-correlated. It is

99



Table 4.1: Dominant positive feedbacks at each stage of aggregation

Stage Day Feedback Term(s)
Early 0-20 Longwave Radiation, Surface Fluxes
Intermediate 20-30 Shortwave Radiation
Intermediate 30-60 Shortwave Radiation, Horizontal Convergence
Mature 60-100 Longwave Radiation

overall a negative feedback in the moist regions (where ĥ′ > 0) and a positive feedback

in the dry regions (where ĥ′ < 0), and is the same order of magnitude but weaker

than the other terms. Summing these components yields a total surface flux feedback

that is positive in the early stages of aggregation, but negative most of the remainder

of the simulation (Figure 4-4b).

Finally, we note that all of these components of the diabatic terms have compa-

rable magnitude, indicating that each physical process discussed above is important

for self-aggregation. Analyzing these mechanisms in the framework of an ĥ′2 budget

allows us to quantify each process throughout the entire evolution of self-aggregation.

Notably, the mechanisms that amplify the initial dry patch and control the evolution

to an aggregated state are not necessarily the same as those that maintain the cluster

once it is established, as was also suggested by Muller and Held (2012). For example,

the longwave radiative feedback is the strongest positive feedback from day 60 to 100,

when there is a mature cluster. Shortwave radiation is the dominant positive diabatic

feedback throughout the intermediate stage of aggregation, while longwave radiation

and surface fluxes are the strongest positive feedbacks in the earliest stage (Figure

4-4). The strongest positive feedbacks in each stage of aggregation are summarized

in Table 4.1.

4.2.2 Domain Mean FMSE Variance Budget

The analysis in the previous section indicated which feedbacks were amplifying or

damping anomalies in a given part of the domain. In addition to examining the

terms in the ĥ′2 budget as a function of moisture space, we can also examine the

domain mean budget (Figure 4-5). This allows us to determine which processes are
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Figure 4-5: Time evolution of domain mean of terms in the ĥ′2 budget, each nor-
malized by {ĥ′2}, with units of days−1. Plotted is the sum of all diabatic correlation
terms (black) and correlation between vertically integrated column FMSE anomalies
and column longwave flux convergence (blue), column shortwave flux convergence
(red), surface enthalpy flux (green), and horizontal convergence of flux of FMSE
(pink dashed). A 5-day running average is applied to the horizontal convergence
term to provide a smoothed version (solid pink). The black dashed line is the zero
line, plotted as a reference.

contributing to the overall increase in domain mean FMSE variance as the system

evolves to a self-aggregated state. During the instigation of self-aggregation (days 0-

20), the surface flux term (green curve in Figure 4-5) contributes the largest positive

tendency. It transitions to a relatively constant negative tendency in the intermediate

stages before remaining close to zero during the final 20 days of simulation. Like the

surface flux term, the longwave radiation term (blue curve in Figure 4-5) is large and

positive in the early part of the simulation. Its magnitude decreases with time before

oscillating about zero during the second half of the simulation. This is an interesting

contrast to the results of the previous section, in which the longwave term was clearly

the largest positive term in the moist regions when there was a mature cluster. Here,

it is instead the shortwave radiation term that contributes a positive tendency to

the domain mean ĥ′2. In fact, the shortwave term is remarkably constant through

out the entire simulation (red curve in Figure 4-5). The sum of the diabatic terms
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Figure 4-6: Height-time cross section of the longwave (panel a), shortwave (panel b),
and total radiative heating (panel c) anomalies (K/day) over the first thirty days of
the simulation at 305 K. The anomalies plotted are from an average over the 48 × 48
km2 block that is the driest (according to column relative humidity) at day 10, and
are anomalies from the profiles of longwave (a), shortwave (b), and total (c) radiative
heating rates, respectively, in that block at day one.

is given by the black curve, while the contribution of the convergence term to the

domain averaged ĥ′2 budget is shown by the pink curves in Figure 4-5. The term

involving the convergence of the vertically integrated flux of FMSE by the circulation

is comparable in magnitude to the diabatic terms in the ĥ′2 budget. In particular,

the convergence term is positive from day 25 to 60, in the intermediate stages of self-

aggregation. During this time, it amplifies vertically integrated FMSE anomalies,

whereas in the early and late stages of aggregation it acts as a damping term.

4.3 Discussion of Physical Mechanisms

4.3.1 Shortwave Radiation

To focus on processes that amplify the initial dry patch, we examine time-height cross

sections of the evolution of the driest block. It was shown in the previous section

that the diabatic contribution to the intermediate stages of aggregation is dominated

by the shortwave radiation term in the vertically integrated FMSE variance budget

(Equation (4.8)), due to reduced atmospheric absorption of shortwave radiation by

water vapor in the dry regions compared to the moist regions. The evolution of the

shortwave heating rates in the developing dry patch is shown in Figure 4-6b. Recall

that the upper troposphere dries out first (Figure 2-10). The shortwave heating rate
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Figure 4-7: The total column shortwave(a)/longwave (b) radiative flux convergence
(red) and clear sky shortwave (a)/longwave (b) column radiative flux convergence
(blue). The quantities plotted have been block-averaged and sorted according to
column relative humidity. The results shown here are from the day 10 mean of a
simulation at an SST of 305 K.

is clearly reduced in the developing dry patch compared to its value at day one. Note

that the shortwave heating rate is increased in the lower levels; this is because the

reduced shortwave absorption aloft allows more of the shortwave radiative flux to

reach the lower atmosphere.

Clouds are capable of modulating the response of the shortwave heating rate to

the development of the dry patch. However, the clear sky column shortwave flux

convergence increases nearly as much as the total column shortwave flux convergence

between dry and moist regions (Figure 4-7a), which indicates that the positive short-

wave feedback is mostly a clear sky effect. The same is true in the mature phase of

aggregation (Figure 4-8a). In the regions where there are low clouds at day 90 (Figure

4-9), the clouds act to increase the column shortwave flux convergence, as indicated

by the locations in Figure 4-8a where the value of the red curve exceeds that of the

blue curve. This is likely due to atmospheric absorption of reflected shortwave radi-

ation. In contrast, the deep clouds in the very moistest regions block solar radiation

from passing through much of the atmosphere, decreasing the column shortwave flux

convergence. A calculation of the shortwave feedback term, ĥ′NetSW′, using the clear

sky shortwave fluxes explicitly shows that the shortwave feedback is dominated by

clear sky effects throughout the evolution of aggregation (Figure 4-10a). The clear

sky shortwave feedback monotonically increases towards the moister regions in the
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Figure 4-8: The total column shortwave (a)/longwave (b) radiative flux convergence
(red) and clear sky shortwave (a)/longwave (b) column radiative flux convergence
(blue). The quantities plotted have been block-averaged and sorted according to
column relative humidity. The results shown here are from the day 90 mean of a
simulation at an SST of 305 K.

mature phase, so the decrease in the shortwave feedback in the moistest regions in

Figure 4-4e is due to clouds.

4.3.2 Longwave Radiation

The physical mechanisms controlling the longwave radiative feedback are less intu-

itive. Ignoring clouds for the moment, the column longwave flux convergence varies

between dry and moist regions because variations in atmospheric water vapor deter-

mine variations in the longwave emissivity. To demonstrate the effect of decreasing

the water vapor content of the atmosphere, we consider the behavior of the longwave

radiative fluxes in a simple two-layer representation of the atmosphere (Figure 4-11a).

We assume that convection maintains a constant lapse rate of 6 K/km; this, com-

bined with a fixed surface temperature, fixes the temperatures of the two atmospheric

layers. The lower layer has an emissivity ε1, which we take to be larger than that of

the upper layer (ε2) because water vapor decreases exponentially with altitude. The

net upward longwave flux at the top of the atmosphere in this representation is

LWTOA = ε2σT4
2 + (1− ε2) ε1σT4

1 + (1− ε2) (1− ε1)σT4
s , (4.10)
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Figure 4-9: Anomalies from horizontal mean of relative humidity (shading) as a
function of height and rank of column by CRH (low to high). Also plotted are the
0.01 g/kg contours of cloud ice condensate (yellow) and the 0.01 g/kg contours of
cloud water condensate (black). The quantities plotted have been block-averaged
and sorted according to column relative humidity. The results shown here are from
the day 90 mean of a simulation at an SST of 305 K.

where σ is the Stefan-Boltzmann constant, Ts is the surface temperature, T1 is the

temperature at which the lower layer emits longwave radiation, and T2 is the temper-

ature at which the upper layer emits longwave radiation. The first term in Equation

(4.10) is the flux upward from the second atmosphere layer. The second term is the

flux upward from the first layer that is not absorbed by the second layer. The third

term is the flux upward from the surface that is not absorbed by the first and second

layers. The net upward longwave flux at surface is

LWsfc = σT4
s − ε1σT4

1 − (1− ε1) ε2σT4
2. (4.11)

The first term in Equation (4.11) is the flux upward from the surface. The second

term is the flux downward from the first atmosphere layer. The third term is the flux

downward from the second layer that is not absorbed by the first layer. Subtracting

Equation (4.10) from Equation (4.11) gives the equation for the column longwave flux
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ĥ
′
NetLW

′ Clear Sky

 

 

50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

−1

−0.5

0

0.5

1

(b) Clear Sky LW Feedback

Figure 4-10: Same as Figure 4-4c and Figure 4-4e, but for clear sky shortwave (a)
and longwave (b) radiative feedbacks.

convergence:

NetLW = σT4
1 (ε1ε2 − 2ε1) + σT4

2 (ε1ε2 − 2ε2) + σT4
s (ε1 + ε2 − ε1ε2) . (4.12)

Figure 4-11b shows the dependence of Equation (4.12) on the emissivities of the upper

and lower layers. The temperatures used in the calculation are 305 K, 275 K, and 245

K, for Ts, T1, and T2, respectively. The arrow from point A to point B is an example

of a reduction in ε1 and ε2 that results in a decrease in the magnitude of column

longwave cooling. The arrow from point C to point D also indicates a reduction in ε1

and ε2, but in this case, it results in an increase in the magnitude of column longwave

cooling. Even in this very simple model the column longwave cooling is sensitive

to how ε1 and ε2 are changed and what their value was initially. To understand the

physical reason for this behavior, consider the opposing effects of decreasing the water

vapor content of the upper troposphere. One effect is that decreasing the water vapor

decreases the concentration of longwave emitters in the upper troposphere, which is a

tendency towards less column longwave cooling. However, a decrease in the longwave

emissivity of the upper troposphere also has a remote effect on the lower tropospheric

longwave cooling. There is a decrease in the downward longwave flux to the lower

troposphere, which reduces a source of energy for the lower troposphere and is thus a
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Figure 4-11: Panel a is a schematic representation of the longwave fluxes in a simple
two-layer model of the atmosphere. Solid arrows represent fluxes from the indicated
layer, dashed arrows represent the part of those fluxes that is transmitted through
the adjacent layer(s). Panel b shows the column longwave radiative flux convergence
(color contours, in W/m2) calculated based on the schematic in panel a, as a function
of the lower level and upper level emissivities. The area of the graph where the
upper level emissivity is larger than the lower level emissivity is omitted because it is
unphysical. The black contours also indicate the column longwave convergence, but
are plotted only every 10 W/m2 to aid in visual interpretation. The points indicated
by “A”, “B”, “C”, and “D” and the arrows connecting them show the response to a
hypothetical perturbation of the emissivities.

tendency toward more longwave cooling. Additionally, more of the longwave radiation

emitted by the surface and lower troposphere can escape to space through the more

transparent upper troposphere, contributing to increased column longwave cooling.

The balance of these opposing effects in the column integral as both the lower and

upper layer emissivities change determines whether the longwave term is a positive

or a negative feedback (Figure 4-4c).

During the initial stages of aggregation, the longwave feedback is positive in the

driest regions. Figure 4-6a shows that there is anomalous longwave heating in the

middle and upper troposphere in the dry patch compared to its value at day one,

which corresponds to decreased upper tropospheric water vapor (Figure 2-10). This

response is opposed by anomalous longwave cooling in the lower troposphere which is

evidently large enough to cause the longwave feedback to be slightly positive initially

(analogous to path C → D in Figure 4.12). Note that a positive anomaly indicates
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an decrease in the magnitude of longwave cooling because the longwave heating rate

has a negative value. The longwave heating rate anomalies in the dry patch (Figure

4-6a) are larger in magnitude than the shortwave heating rate anomalies (Figure

4-6b), so the total radiative heating rate anomalies tend to follow the pattern of

the longwave anomalies (Figure 4-6c). The increased magnitude of clear sky column

longwave convergence in the dry regions is similar to that of the total column longwave

convergence, indicating it is primarily a clear sky, not cloud, effect (Figure 4-7b).

Later in the simulation, as the dry perturbation amplifies and the lower troposphere

also becomes drier, there is anomalous longwave heating of the lower levels due to the

decreased low-level emissivity such that the total column longwave cooling is reduced

in the dry regions (analogous to path A → B in Figure 4.12). This is represented in

Figure 4-4c as a transition (around day thirty) from positive to negative values of the

longwave feedback in the driest columns. A more complete description of this process,

including the response of deep convection, can be found in Emanuel et al. (2013). A

calculation of the longwave feedback term, ĥ′NetLW′, using the clear sky longwave

fluxes reveals that a large part of the positive longwave feedback at the beginning

of the circulation (Figure 4-4c) is captured by the clear sky processes (Figure 4-

10b). This is in contrast to the results of Muller and Held (2012), who claimed

that longwave cooling at the top of low clouds in the dry region was responsible

for self-aggregation. The clear sky longwave feedback does switch from positive to

negative sooner than the total longwave feedback, so clouds may be important after

the initiation of aggregation.

Regarding the maintenance of the cluster once it exists, the longwave feedback

is strongly positive in the very moistest regions where all the deep clouds are con-

centrated (Figure 4-9), primarily because the column longwave cooling is strongly

reduced by the longwave opacity and low temperature of high clouds. The clear sky

column longwave flux convergence (Figure 4-8b) also indicates slightly reduced long-

wave cooling in these regions, but is not nearly as large in magnitude as the reduction

of longwave cooling by high clouds. A comparison of the clear sky longwave feedback

term (Figure 4-10b) to the total longwave feedback term (Figure 4-4c) emphasizes
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that the positive longwave feedback maintaining the cluster is overwhelmingly a cloud

effect.

4.3.3 Surface Enthalpy Fluxes

We noted in section 6 that the surface flux feedback due to variations in the surface

wind speed (Figure 4-4d) was positive. The mechanism for this wind-induced surface

heat exchange (“WISHE”) feedback is that larger surface winds due to convective

gustiness in the moist, intensely convecting regions enhance the surface fluxes there.

The WISHE feedback in the early stages of aggregation is strongest in the driest

regions, while from day 70 onward it is strong near the periphery of the mature

cluster, (columns 200-240, in Figure 4-4b), which corresponds to the location of the

strongest surface winds. In each of these two areas, the positive WISHE feedback

is able to overcome the negative air-sea enthalpy disequilibrium feedback and cause

the total surface flux feedback to be positive. The mechanism governing the negative

air-sea enthalpy disequilbrium feedback (Figure 4-4f) is straightforward. Because the

simulations have a fixed, uniform sea surface temperature and the surface enthalpy

flux is dominated by the latent heat component, the air-sea enthalpy disequilibrium

primarily depends on the boundary layer water vapor mixing ratio. The boundary

layer water vapor mixing ratio is larger in the moist regions, where ĥ′ is positive,

than the dry regions. The air-sea disequilibrium is anomalously negative in the moist

regions, suppressing surface fluxes there.

4.4 Temperature Dependence

4.4.1 Insights from Feedback Analysis

The feedback analysis, as described in the preceding sections, was repeated for the

other simulations that self-aggregated (301K, 303 K, 305 K, 307 K, and 310 K on a

large domain). The results are qualitatively similar to those presented for the 305 K

case. The magnitudes of the feedback terms, when normalized by the domain average
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FMSE variance, {ĥ′2}, are also comparable. For completeness, versions of Figure 4-4

(evolution of feedback terms in moisture space) for the simulations at 301 K, 303 K,

307 K, and 310 K are shown in Appendix C. There are differences in the timing of

the aggregation transitions amongst the simulations at different temperatures, such

as the switch of the longwave feedback term from positive to negative in the driest

regions. These differences in timing are not monotonic with temperature, and as we

noted in Chapter 2, random noise causes the timing of aggregation to vary as much

as changing the temperature does. Therefore, comparing the results of the feedback

analysis at different temperatures does little to help us understand the temperature

dependence of aggregation.

It is also difficult to use this analysis framework to determine which mechanism

is responsible for the temperature threshold for self-aggregation because it cannot be

applied to the simulations at colder temperatures which do not aggregate. However,

these results do provide several insights which, combined with the results of Emanuel

et al. (2013), point to the longwave radiation feedback as the culprit. First, the sen-

sitivity tests described in Chapter 3 indicate that the shortwave radiation feedback

is not essential for self-aggregation to occur. The simulation in which the shortwave

heating rate was given by a prescribed profile fixed in space in time still aggregated,

as did the simulation in which the water vapor used in the shortwave radiation cal-

culation was a fixed profile rather than the model-calculated values. Conversely,

the simulations in which the longwave heating rate is fixed or the water vapor used

in the longwave radiation calculation is a fixed profile do not aggregate. When we

analyzed the anomalies in radiative heating rates in the developing dry patch, the

anomalies in the longwave heating rates dominated the anomalies in the shortwave

heating rates. Additionally, our feedback analysis showed that the longwave feed-

back term was larger than the shortwave feedback term in the very initial stages of

aggregation. The surface flux feedback term is also an important positive feedback

in the early stages of aggregation, but it is not obvious why it should be sensitive

to temperature. The radiative feedbacks, on the other hand, occur because of inter-

actions with water vapor, which depends exponentially on temperature through the
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Clausius-Clapeyron equation. In particular, the fact that the longwave feedback can

be positive or negative depending on the balance of opposing responses to a moisture

perturbation suggests it as a candidate for explaining the temperature dependence of

self-aggregation.

Emanuel et al. (2013) performed simulations with a single column model that

provide further evidence that longwave radiation, rather than shortwave, is responsi-

ble for the temperature dependence of self-aggregation. They ran the single-column

model into radiative-convective equilibrium with prescribed surface temperature, then

ran the model in WTG (weak temperature gradient) mode. The RCE state with a

humidity perturbation was used as an initial condition for the WTG run. If the WTG

simulation reached a different equilibrium state than the original RCE state, the RCE

state was deemed to be unstable. They performed these experiments at a range of

SSTs and found that instability occurred in the simulations above 303 K. Emanuel

et al. (2013) then examined the perturbation shortwave and longwave radiative heat-

ing rates in response to a reduction of specific humidity at each model level, at the

different temperatures. In all cases, drying led to reduced shortwave heating. At low

SST, drying led to increased longwave cooling, but at high SST, there was instead re-

duced longwave cooling at low-levels. The change in sign of the net radiative heating

perturbation at low levels is thus due to the longwave response, not the shortwave.

They also noted that the perturbation longwave cooling rates change much more than

the perturbation shortwave rates do as one changes temperature, so the shortwave

feedback is fractionally less important at higher temperature.

4.4.2 Linear Two-Layer Model

Emanuel et al. (2013) developed a simple theory for the RCE instability, which is

manifested as self-aggregation. This simple theory consists of a two layer model that

expands on the two-layer representation of longwave radiative fluxes described in

Section 4.3.2. The simple model is briefly reviewed here, along with a discussion of

its implications for the temperature dependence of self-aggregation.

A schematic of the two-layer model of Emanuel et al. (2013) is shown in Figure 4-
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Figure 4-12: The two-layer model. Surface temperature and temperatures of each
layer are specified and constant. The emissivities, ε, updraft and downdraft mass
fluxes, Mu andMd, large-scale vertical velocities, w, and specific humidities q, are vari-
able. The vertical arrows depict the convective and radiative fluxes. From Emanuel
et al. (2013). c©2013. American Geophysical Union. All Rights Reserved.

12. This model represents the longwave radiative fluxes in the same way as was done

in Section 4.3.2, in which the surface temperature and temperatures of each layer

are specified and constant. The emissivities of each of the two layers are variable

and assumed to depend on the water vapor concentrations (although the form of

this dependence is not specified). As discussed in the previous section, the longwave

radiative fluxes, rather than the shortwave, are expected to be responsible for the

temperature dependence of self-aggregation. Therefore, shortwave radiative fluxes

are neglected. We showed in Section 4.2 that the wind speed variation and air-sea

disequilbrium variation components of the surface flux feedback tend to cancel; for

simplicity, surface flux variations are neglected in this model. This is a somewhat

questionable assumption, since the overall surface flux feedback is large and positive

during the early stages of aggregation, but the two-layer model is able to become

unstable without this feedback. We also showed in Section 4.4 that the radiative

feedbacks in the early stages of aggregation were dominated by clear-sky effects;

therefore, clouds are neglected in the simple model. In addition to radiative fluxes,

the two-layer model contains convective updraft and downdraft mass fluxes, which are

represented according to boundary layer quasi-equilibrium theory (Raymond, 1995;
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Emanuel, 1995). In the simplest version of the model, the convective mass fluxes are

taken to be the same in both layers and depend on the vertical velocity and surface

enthalpy fluxes. The convective mass flux also increases with tropospheric moisture.

Finally, the perturbation-scale vertical velocities are defined in each layer and are

calculated according to the weak temperature gradient (WTG) approximation. In

the WTG approximation, the vertical velocity is that which is necessary to hold the

temperature constant at each level above the boundary layer.

The above described two-layer model is used to determine whether the feedback

to an initial moisture perturbation is positive, zero, or negative corresponding to

instability, neutrality, or stability. The time dependence enters through the moisture

budget, which is developed through the budget of moist static energy. This is then

linearized about the RCE state. This results in a linear matrix eigenvalue equation

that can be solved for the linear growth or decay rate of the moisture perturbation

(Equation 4.13).

Lv
∂q′i
∂t

= −
(
∂h̄

∂z

)
i

∑
j

∂wi
∂qj

q′j −
∑
j

∂2Fci
∂z∂qj

q′j +
∑
j

∂Q̇

∂qj
q′j. (4.13)

The details of the derivation can be found in Emanuel et al. (2013). Using the

assumptions described above, the resulting matrix equation is

Lv

∂q′1
∂t

∂q′2
∂t

 =

c11 c12

c21 c22

q′1
q′2

 , (4.14)

where the coefficients are

c11 ≡
∂Q̇1

∂q1

c12 ≡
∂Q̇1

∂q2

c21 ≡ εp
S2

S1

∂Q̇1

∂q1
+
∂Q̇2

∂q1
(1− εp)

c22 ≡ εp
S2

S1

∂Q̇1

∂q2
+
∂Q̇2

∂q2
(1− εp) . (4.15)
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The perturbations to the radiative heating depend exclusively on the dependences

of the emissivities on specific humidity. All the radiative heating dependencies are

negative except for the dependence of the heating of the first layer on the moisture

content of the second. εp is the precipitation efficiency and Si is the dry static stability

of the RCE state (for each layer). The solutions have a growth rate of

ν =
1

2Lv

(
c11 + c22 ±

√
(c11 − c22)2 + 4c12c21

)
, (4.16)

where the growth rate is positive if c11 + c22 > 0 or c12c21 > c11c22. Instability cannot

occur by the second criterion, but instability by the first criterion depends on the

sensitivity of the radiative cooling of the lower layer on the emissivity (and therefore

water vapor concentration) of the upper layer. This is the only positive term in the

instability criterion, and is indicated by the brackets in Equation (4.17)).

¯̇Q1

ε1

∂ε1
∂q1

+ (1− εp)
¯̇Q2

ε2

∂ε2
∂q2

+ εp
S2

S1

︷ ︸︸ ︷
σε1T2

4

ρ1H

∂ε2
∂q2

> 0. (4.17)

Instability is favored by a large dependence of the emissivity of the upper layer on its

humidity and small dependence of the emissivity of the lower layer on its humidity.

It is also favored by high precipitation efficiency and high emissivity of the lower

layer. It is this last point that pertains to the temperature dependence. In the high

temperature limit, the lower layer is opaque such that ε1 → 1 and ∂ε1/∂q1 → 0, in

which case the instability criterion becomes

εp >
2−

(
T1
T2

)4
S2

S1

ρ2
ρ1

+ 2−
(
T1
T2

)4 . (4.18)

The right side of Equation (4.18) is small and positive, since T1 > T2. Therefore, in the

high temperature limit, the instability criterion is easy to satisfy, which explains why

self-aggregation occurs at high temperature. The instability of the two-layer model

results when downward motion dries both layers. In the high temperature limit,

the lower layer emissivity does not change, but the upper layer emissivity decreases.
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This leads to enhanced radiative cooling of the lower layer, through the mechanism

discussed in Section 4.3.2. Also, note that if only the upper layer emissivity decreases

(as is true at high temperature when ∂ε1/∂q1 → 0), the column longwave cooling

increases and there is a positive longwave - water vapor feedback (Figure 4.12). The

enhanced radiative cooling in the lower layer diminishes convection, leading to the

cooling of both layers and reinforcing the initial downward motion and drying. In this

particular model, although convection is sensitive to the free tropospheric water vapor,

that sensitivity ends up canceling out and thus plays no role in the instability. In a

slightly different version of the simple model, however, the sensitivity of convection

to water vapor boosts the instability but cannot destabilize the model on its own.

Finally, we note that as this is a linear model, the instability arise in the same manner

for both drying and moistening. In our CRM simulations, the evolution of self-

aggregation clearly favors the development of a dry patch, indicating the importance

of non-linear effects.
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Chapter 5

Conclusions and Future Directions

5.1 Summary of Results

In this work, 3-D cloud system resolving simulations of radiative-convective equilib-

rium were performed in a non-rotating framework, with interactive radiation and sur-

face fluxes and fixed SST. In these simulations, interactions between the environment

and convection allow convection to spontaneously organize into a single, intensely pre-

cipitating moist cluster. This process is known as “self-aggregation”. Self-aggregation

is found to occur only at sea surface temperatures above a certain threshold. Notably,

aggregation at very high temperatures requires a larger domain size. Aggregation is

characterized by several robust changes in domain-averaged quantities, including a

dramatic increase in OLR and a corresponding large decrease in the column relative

humidity (CRH). Unlike observations of aggregated convection in which the TOA

energy budget is not significantly affected, in the simulations examined here the net

TOA radiative flux decreases in magnitude (a reduction in the net downward flux).

This disagreement with observations may be an artifact of the fixed SST (and resul-

tant lack of surface energy balance) in the simulations. There is a large stochastic

component of self-aggregation, with the time to aggregation varying by about twenty

days when the random noise used to initialize the simulation is varied.

The evolution of the system to an aggregated state was examined. Importantly,

self-aggregation begins as a dry patch that expands, eventually forcing all the con-
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vection into a single clump. In particular, the upper troposphere begins drying first,

but after several days the humidity throughout the troposphere in the dry patch is re-

duced. In the amplifying dry patch, convection quickly shuts down, clouds dissipate,

and persistent subsidence develops.

Sensitivity tests suggest that wind-dependent surface fluxes and interactive long-

wave radiative fluxes are important for permitting self-aggregation. The dependence

of the longwave radiative fluxes on spatially and temporally varying water vapor is

the essential interaction. The presence of a diurnal cycle does not significantly affect

self-aggregation, while the presence of a mean wind suppresses aggregation. When

cold pools are eliminated by preventing low-level evaporation of precipitation, ag-

gregation can occur below the critical SST. However, the evolution to an aggregated

state is characterized by the merger of moist blobs, rather than the expansion of a dry

patch, so aggregation with no cold pools may reflect a fundamentally different insta-

bility. As in previous studies (e.g., Muller and Held, 2012), we find that simulations

of self-aggregation near the critical SST are sensitive to physical details such as the

choice of radiation scheme. The sensitivity of aggregation to physical and numerical

details may be reduced by conducting simulations with SSTs well above the threshold

value, although this would compete against domain size limitations. As was shown

here, a larger domain is necessary for aggregation to occur at high temperatures.

A novel approach was introduced to analyze the various physical mechanisms that

play a role in the self-aggregation. Since the column radiative flux convergence and

surface enthalpy fluxes are diabatic sources and sinks of vertically integrated frozen

moist static energy, using a budget of the spatial variance of vertically integrated

FMSE (ĥ′2) enables a quantification of the radiative and surface flux feedbacks in a

simulation that self-aggregated. Additionally, partitioning the surface enthalpy flux

anomalies into a part due to surface wind speed anomalies, a part due to air-sea

enthalpy disequilibrium anomalies, and an eddy term involving the product of the

wind speed and air-sea disequilibrium anomalies permits a determination of the role

of each separately in the surface flux feedback.

A key finding is that all the terms in the ĥ′2 budget are of similar magnitude, so
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shortwave radiative feedbacks, longwave radiative feedbacks, and surface flux feed-

backs are all important for self-aggregation. Multiple mechanisms work together to

permit the convection to aggregate; it is truly an interplay between convection, radi-

ation, moisture, and circulation. The shortwave radiative feedback is a key positive

feedback throughout the evolution of self-aggregation and is due to increased absorp-

tion of water vapor by atmospheric water vapor in the moist regions compared to the

dry regions. The longwave radiative feedback is initially a positive feedback in the

dry regions, but is later negative (in both cases, due mostly to clear sky effects). This

is because the response of longwave cooling to a dry perturbation has two opposing

effects, the net result of which varies in both space and time in our simulations. The

positive longwave feedback in the early stages of aggregation is primarily a clear sky

effect, in which decreased humidity causes enhanced longwave cooling of the atmo-

sphere, which suppresses convection in the dry regions. The surface flux feedback

is negative throughout much of the simulation, due to a strongly negative surface

flux-enthalpy disequilibrium feedback, which is only partially counteracted by a pos-

itive surface flux-wind (WISHE) feedback. Without the WISHE feedback, which is

of comparable magnitude to the radiative feedbacks, the total surface flux feedback

would be very strongly negative (perhaps negative enough to prevent, or at least, slow

down, self-aggregation). In the early stages of aggregation, however, the negative dis-

equilbrium feedback does not develop as quickly as the positive WISHE feedback

does, leading to a positive overall surface flux feedback. In the intermediate stages of

aggregation, the column integrated convergence of the FMSE flux by the circulation

also plays an important role. In contrast to the evolution of self-aggregation, during

which all the different feedbacks are relevant, the longwave radiation-cloud feedback

dominates in maintaining the cluster once it is formed. This important distinction

between feedbacks that maintain a cluster, and feedbacks that establish one, point

to the limitations of mechanism denial studies. The approach taken here is valuable

because it elucidates the relevant feedbacks during all stages of aggregation.

The sensitivity tests and results of the feedback analysis point to the longwave

radiation, rather than shortwave, as the most likely cause of the temperature depen-
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dence of self-aggregation. Indeed, these results combined with those of a companion

study (Emanuel et al., 2013) reveal that the temperature dependence is due to the

longwave feedback term and enters through the longwave opacity of the lower tro-

posphere. This is a function of the lower tropospheric water vapor which, in turn,

depends on temperature. Radiative-convective equilibrium becomes unstable at high

surface temperatures, which is demonstrated in a simple two-layer model by Emanuel

et al. (2013). The instability results because, at high temperature, the emissivity of

the lower troposphere is large enough (due to high water vapor concentration) that

variations of its radiative cooling depend primarily on variations in upper tropospheric

water vapor. This fundamental instability is manifested as the self-aggregation of con-

vection in 3D simulations. Our results also suggest that, while moisture-convection

feedbacks may enhance the instability, they may not be sufficient by themselves to

cause it.

5.2 Implications and Directions for Future Research

5.2.1 Climate Models and Convective Parameterizations

Organized tropical convection is responsible for much of the rainfall and cloudiness

in the tropics, yet is poorly represented in climate models. To the extent that the

physics of self-aggregation is important to phenomena such as tropical cyclones and

the Madden-Julian Oscillation, inaccurate treatment of such physics may affect the

ability of models to properly simulate these phenomena. Furthermore, the degree

of convective aggregation has a dramatic impact on the cloudiness, humidity, and

radiative fluxes over the surrounding environment, in both cloud resolving simulations

and observations. Therefore, the lack of organized convection in climate models

may compromise their simulation of cloud and water vapor feedbacks and climate

sensitivity. In particular, if the degree of aggregation increases as the climate warms,

the consequent reduction in relative humidity would weaken the water vapor feedback.

A change in the degree of aggregation could also impact the large-scale circulation,
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as hypothesized by Tobin et al. (2013).

The ability of different models to simulate self-aggregation of convection depends

on their representation of the physics underlying the RCE instability. We showed

that the initiation of self-aggregation was driven by feedbacks between water vapor

and radiation, and that these feedbacks were primarily clear-sky effects. These in-

teractions should be easily simulated by the radiation schemes used in weather and

climate models. However, the surface flux feedback was also an important positive

feedback in the early stages of aggregation, and this depends on the inclusion of con-

vective gustiness in the models surface flux calculation. Some convective schemes do

not include this effect and therefore may be missing an important positive feedback.

The Emanuel and Zivkovic-Rothman (1999) convection scheme, which was used in

the single-column model experiments of Emanuel et al. (2013), is an example of a

scheme that does produce a gustiness factor that is incorporated into the surface flux

calculation. Finally, the instability also depends on the response of deep convection

to drying, which is likely to vary across different convection schemes. Tobin et al.

(2013) suggest that the inclusion of a prognostic variable describing the aggregation

state of convection may be necessary for convective parameterizations to reproduce

the modulation of environmental variables by aggregated convection. To implement

this, more research is needed on how aggregation modulates the interaction between

convection and the environment (for example, the modification of entrainment rates

or precipitation efficiency by the amount of aggregation).

5.2.2 Climate Sensitivity

Another potential implication of self-aggregation is regarding climate sensitivity. If

increased aggregation in a warmer climate were to decrease the relative humidity, this

could weaken the water vapor feedback and reduce climate sensitivity. Additionally,

Tobin et al. (2013) proposed that convective aggregation may act as a “convective

regulating mechanism”, by affecting couplings between convection, radiation, and

large-scale ascent and between convection and moisture. While our results indicate

that self-aggregation is favored by increased surface temperature, it is not known how
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global aggregation statistics would change with warming. A dramatic decrease in the

humidity of the environment is seen in cloud resolving simulations that aggregate, but

these limited domain, homogeneous simulations do not have much horizontal mixing

of water vapor. Horizontal mixing of water vapor in the real atmosphere by wave

disturbances, wind shear, and the large scale circulation might reduce the sensitivity

of humidity to convective aggregation. Running global models in radiative-convective

equilibrium (as in, for example, Held et al. (2007)) may be a useful way of investigating

these issues.

In rotating RCE simulations, Khairoutdinov and Emanuel (2012) found that the

presence of tropical cyclones decreases the climate sensitivity of the RCE state. They

estimated climate sensitivity by computing the change of the net TOA flux for a given

change in SST, for simulations that spontaneously formed tropical cyclones and those

that did not. Similarly, examining the change in domain average OLR (Figure 2-1))

with SST for the simulations performed here indicates that OLR increases more with

SST for the aggregated simulations than the disaggregated ones. It is not clear what

exact mechanism would cause a decrease in climate sensitivity with aggregation; it

could be related to a decreased water vapor feedback because of the relative humidity

reduction, or perhaps a change in the lapse rate feedback. More research is needed to

determine the link between aggregation and climate sensitivity; as of now, it is highly

speculative.

5.2.3 Madden-Julian Oscillation

The Madden-Julian Oscillation is one of the more likely real-world phenomenon in

which self-aggregation physics could be playing a role. SST gradients and wind shear

are weak over the Indian Ocean/ western Pacific warm pool, where the MJO is the

dominant disturbance, so there is an opportunity for other organizing mechanisms to

occur. Numerous studies have suggested that processes that alter the column inte-

grated moist static energy are essential to the MJO (e.g., Raymond and Fuchs, 2007;

Sobel et al., 2008; Maloney, 2009). Such processes include surface enthalpy fluxes

(e.g., Sobel et al., 2008) and interactions between moisture and radiative heating
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(e.g., Bony and Emanuel, 2005). These are the exact same processes that control

self-aggregation. Self-aggregation could be described as the result of feedbacks be-

tween moist convection and sources of column moist static energy that cause the

atmosphere to be unstable to perturbations in the column moist static energy. Sobel

and Maloney (2012) proposed an idealized framework for modeling the MJO that

resonates with this description of self-aggregation. They hypothesized that the MJO

was a moisture mode in which thermodynamic feedbacks involving sources and sinks

of column moist static energy were important energy sources. In a modified frame-

work, Sobel and Maloney (2013) found that eastward propagating modes (as the MJO

is) can only be unstable because of cloud-radiative feedbacks, which are also impor-

tant in the maintenance of self-aggregation. It is therefore possible that the MJO

is self-aggregation on an equatorial beta plane. The potential for self-aggregation

physics to be important in the initiation and maintenance of the MJO is one of the

most promising applications of this work to tropical convective variability in the real

world.

5.2.4 Finite Amplitude Perturbation

The radiative-convective instability described here and in Emanuel et al. (2013) could

be characterized as a subcritical bifurcation of the RCE state. In such a regime,

the RCE state is stable to small amplitude perturbations below the critical SST.

Sufficiently large perturbations, however, may transition the state to a state with

upward motion and deep convection in one part of the domain and dry, subsiding

air in the rest of the domain. The existence of multiple equilibria of RCE was first

pointed out by Raymond and Zeng (2000) and subsequently described by Sessions

et al. (2010) and Sobel et al. (2007). Above the critical SST, the RCE state is unstable

and the transition is spontaneous, corresponding to self-aggregation. A subcritical

bifurcation of the RCE state was first proposed by Emanuel and Nolan (2004). We

have focused on what happens above the critical SST, but have not investigated

the subcritical state. As noted in Chapter 1, when rotating dynamics are enabled,

the self-aggregated cluster may take the form of a tropical cyclone. Nolan et al.
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Figure 5-1: Relative humidity as a fraction of the relative humidity profile at day 1,
averaged over the area that is the driest 48 x 48 km2 block at day 10 of the 305 K
simulation.

(2007) demonstrated that tropical cyclogenesis occurs below the critical temperature

if a finite amplitude perturbation is introduced. Whether the same occurs for non-

rotating aggregation is an unanswered question.

The hypothesis that self-aggregation represents a subcritical bifurcation of the

RCE state could be tested by inserting a finite amplitude moisture perturbation

into a simulation that is below the critical SST. Self-aggregation has been shown to

exhibit hysteresis (Khairoutdinov and Emanuel, 2010; Muller and Held, 2012). Muller

and Held (2012) found that when initialized with a moist bubble rather than white

noise, the horizontal resolution dependence of aggregation disappears. This approach

assumes an aggregated state from the beginning. In order to capture the instability

process that leads to self-aggregation, one could insert a dry patch into a simulation

below the critical SST. This would mimic the evolution of self-aggregation discussed

in Chapter 2. The structure of this dry patch would be inspired by the dry patch

that develops in the simulations that do aggregate. For example, Figure 5-1 shows the

relative humidity averaged over the area that is the driest 48 x 48 km2 block at day 10

of the 305 K simulation, as a fraction of the relative humidity profile at day 1. Large

relative humidity reductions develop early in the simulation and are initially largest

in the upper troposphere before amplifying and shifting downwards. By day 10, the
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Figure 5-2: Anomaly of relative humidity at day 10 from the initial relative humidity
profile, for the 305 K simulation. A cross section at X = 200 km of the RH anomaly
at 3.5 km is plotted in the blue curve. The cyan, pink, and green curves are Gaussians
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humidity perturbation is relatively uniform with height in the troposphere (which

motivated the uniform humidity reduction experiments of Emanuel et al. (2013)).

The relative humidity perturbation that is inserted into a non-aggregated simulation

would be inspired by these profiles, but would be a simpler function of height, so that

the sensitivity to the shape of the profile can be easily tested. It is preferable to apply

the relative humidity perturbation in terms of a fraction of the existing humidity,

(rather than a difference), to avoid accidentally causing a negative specific humidity.

A simple Gaussian would be an appropriate horizontal structure for the moisture

perturbation, based on the dry patch in the self-aggregating simulations (Figure 5-2).

This moisture perturbation could be applied to the existing water vapor field part

way through non-aggregating simulation. Applying the perturbation several days

into the simulation rather than initializing with it will make it easier to quantify the

feedback processes that cause the perturbation to decay or grow, using the analysis

framework described in Chapter 4. Sensitivity tests in which the magnitude of the

perturbation is varied could yield insights regarding how large of a perturbation is

necessary to push the system into the aggregated state, and whether the necessary

magnitude depends on temperature. These simulations could also help determine the
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lower limit of the subcritical bifurcation and if there is a lower SST threshold below

which transition to the aggregated state is impossible.

5.2.5 Tropical Cyclogenesis

One particularly dramatic example of the importance of cloud clusters is their role as

precursors of tropical cyclones. The problem of tropical cyclogenesis remains poorly

understood. In recent years, however, the marsupial pouch paradigm has emerged as

a promising theoretical framework for tropical cyclogenesis. In this paradigm, genesis

tends to occur near the critical layer of a tropical wave (Dunkerton et al., 2008). The

wave critical layer is a region of closed circulation that is favorable for the development

of a tropical cyclone, as the incipient disturbance is protected from potentially adverse

conditions in the surrounding environment. Dunkerton et al. (2008) point out that

the pouch region is a preferred region for genesis not only because it is protected

from the entrainment of dry air from the environment but also that convection in the

pouch repeatedly moistens the column. The idea of preservation of a moist area that

is favorable for convection is also fundamental to the phenomenon of self-aggregation.

This suggests that the mechanisms underlying self-aggregation may also be relevant

to understanding tropical cyclogenesis.

One direction for future work is to investigate the role of convective self-aggregation

in spontaneous tropical cyclogenesis by extending the analysis framework established

here to cloud resolving simulations in rotating radiative-convective equilibrium. Pre-

vious studies of rotating radiative-convective equilibrium have examined the sensi-

tivity of tropical cyclogenesis and tropical cyclone intensity, size, and frequency to

environmental parameters (Nolan et al., 2007; Held and Zhao, 2008; Khairoutdinov

and Emanuel, 2013). Nolan et al. (2007) suggested that the initial development of a

broad circulation in a case of spontaneous tropical cyclogenesis was due to the same

radiative-convective feedbacks that cause non-rotating self-aggregation. Performing

the feedback analysis as described in Chapter 4 would allow comparison between

the spontaneous genesis of a tropical cyclone and the development of a non-rotating

self-aggregated cluster.
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5.2.6 Self-Aggregation in an Inhomogeneous Environment

The simulations studied here were constructed in a very idealized manner; there was

no large scale forcing and no mean wind. This was by design because we sought to

eliminate any external factors and isolate the effect of convection interacting with

the environment. However, these idealizations limit the applicability of our results

to the real world, since in nature there are large-scale circulations and asymmetries

that affect convective organization. Therefore, one extension of this work would be

to study the mechanisms of convective organization in more realistic cloud resolving

simulations with asymmetries such as forcing a wave disturbance to pass through the

domain and imposing vertical wind shear.

A wave disturbance passing through the domain may help generate convective

organization; for example, Frank and Roundy (2006) showed that tropical waves play

a significant role in the formation of tropical cyclones by enhancing low-level conver-

gence and low-level rotation. The same frozen moist static energy variance analysis as

described above may be used to analyze the feedbacks under these circumstances and

determine what role, if any, the radiative-convective feedbacks that drive spontaneous

aggregation play when there is external forcing applied.

Rappin et al. (2010) studied tropical cyclogenesis in rotating radiative-convective

equilibrium with shear and noted that shear suppressed aggregation. Regarding non-

rotating radative-convective equilibrium, Robe and Emanuel (2001) demonstrated

that vertical wind shear causes convection to become organized into lines. However,

they used a specified, constant radiative cooling rate, which prevented the type of

aggregation examined here. It would be interesting to investigate how the feedbacks

that lead to self-aggregation are modified when wind shear is applied. If wind shear

does suppress self-aggregation, an potential avenue of research would be to apply shear

to a simulation that has already aggregated and examine the physical mechanisms

controlling the break up of the aggregated cluster under those circumstances. In

previous studies, self-aggregation has been found to exhibit strong hysteresis (Muller

and Held, 2012; Khairoutdinov and Emanuel, 2010), so it would be informative to
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determine what is required to disaggregate an existing cluster.
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Appendix A

Surface Flux Exchange Coefficients

The surface fluxes of sensible and latent heat between the sea surface and atmosphere

in SAM (Khairoutdinov and Randall, 2003) are computed using Monin-Obukhov sim-

ilarity. The sensible and latent heat exchange coefficients, cH and cE, respectively,

are calculated iteratively and vary in both space and time. The surface flux calcu-

lation depends on the bottom level pressure, bottom level wind speed, bottom level

specific humidity, bottom level temperature, bottom level height above surface, and

sea surface temperature. Of these, bottom level height above surface and sea surface

temperature are external parameters that are constant. The bottom level pressure

that is used in the surface flux calculation varies only slightly. This leaves bottom

level wind speed, bottom level specific humidity, and bottom level temperature as the

variables that control the variation in the exchange coefficients.

We vary these quantities over a reasonable range of values in an offline calculation

using SAM’s surface flux code. From a snapshot at day 100 of the simulation at

305 K, we estimate reasonable values for each variable needed as an input to the

surface flux code (Table A.1). Note that although bottom level wind speeds as low

as 0.0104m/s are found in this snapshot, the model uses a minimum wind speed of

1m/s in its surface flux calculation. We successively vary Tbot, qbot, and U , while

holding one out of the three fixed at its horizontal mean. The results are shown in

Figure A-1. Although it is qbot and Tbot that we vary, we plot cH and cE as a function

of ∆q and ∆T . It is these air-sea disequilbria that are relevant in our surface flux
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Figure A-1: Variation in sensible and latent heat exchange coefficients (cH and cE,
respectively). Top row: Tbot and U varied, qbot held fixed. Middle row: qbot and U
varied, Tbot held fixed. Bottom row: Tbot and qbot varied, U held fixed.
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Table A.1: Inputs to Surface Flux Calculation

Variable Value(s) Description
SST 305 K Sea Surface Temperature
zbot 37m Bottom level height above surface
Ps 1007.8mb Bottom level pressure
Tbot 300 K : 304 K Bottom level temperature
qbot 0.008 g/g : 0.03 g/g Bottom level specific humidity
U 0.01m/s : 10m/s Bottom level wind speed

partitioning (see Chapter 4). It is evident that the exchange coefficients depend

strongly on the surface wind speed (Figure A-1a-d)1. When ∆q and ∆T are varied,

the exchange coefficients vary over a much smaller range of values. Note that if the

sea surface temperature was allowed to vary, we might expect a stronger dependence

on ∆T (i.e., if the air-sea temperature disequilibrium changed sign). cH and cE differ

slightly and cH is generally smaller than cE (compare left and right columns of Figure

A-1). Figure A-2 shows the difference between cH and cE as U , Tbot, and qbot are

varied. This difference is between one and two orders of magnitude smaller than the

values of cH and cE themselves, and is largest at low wind speeds.

Based on these results, we ignore the dependence of cH and cE on the air-sea

disequilibrium. We combine cH and cE with the surface wind speed when calculating

the surface flux anomalies (see Equation (4.9)). Although the above results show

that cH and cE are close in magnitude, we calculate the sensible and latent heat flux

anomalies separately, and thus take into account the difference between cH and cE.

1Despite the axis on the plot ranging between 0 and 9 m/s, because the minimum wind speed in
the surface flux calculation is 1 m/s, there is no variation of the exchange coefficients plotted below
that value.
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Figure A-2: Difference between sensible and latent heat exchange coefficients when
U , Tbot, and qbot are varied.
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Appendix B

FMSE Variance Budget as a

Function of CRH

In Chapter 4, we introduced a novel method for quantifying the magnitudes of the

feedbacks that control self-aggregation within the framework of the budget for the

spatial variance of column-integrated frozen moist static energy
(
ĥ′2
)

. We averaged

each term over a day and 48 x 48 km2 blocks, and then sorted those blocks according

to their values of column relative humidity (CRH). We analyzed each feedback term

in moisture-time space by plotting them as a function of the rank of each column,

according to its CRH value. However, it is also informative to plot each term against

the actual CRH values that correspond those ranks. Therefore, as a complement to

Figure 4-4, the individual terms in the ĥ′2 budget are displayed as a function of time

and CRH in Figure B-1. We re-calculate the moisture-sorting function for each day;

therefore, the CRH value of any given rank changes with time, as does the ordering of

the columns. While this is hidden in Figure 4-4, it is obvious in Figure B-1. Plotting

against CRH itself emphasizes the expansion of the dry patch. Figure 4-4, however,

better indicates the amount of area covered by positive or negative feedbacks, in

addition to emphasizing the early stages of aggregation when the range in CRH is

small.
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ρcp {cHU }∆T ′

 

 

0.2 0.4 0.6 0.8
0

10

20

30

40

50

60

70

80

90

−1

−0.5

0

0.5

1

(f)

Figure B-1: Terms in the ĥ′2 budget, plotted against column relative humidity (CRH).
All terms have been averaged over each day and over 48 × 48 km2 blocks, normalized
by {ĥ′2}, are from the simulation at 305 K, and have units of days−1. On the x-axis,
dry regions are on the left and moist regions are on the right, sorted according to
block-averaged CRH. The black line is the ĥ′ = 0 contour, plotted as a reference.
Note that the color bar saturates in a few places.
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Appendix C

FMSE Variance Budget at Other

SSTs

The feedback analysis in terms of the budget for the spatial variance of vertically

integrated frozen moist static energy is repeated for the simulations that aggregate

at 301 K, 303 K, 307 K, and 310 K. The 301 K, 303 K, and 307 K simulations are

performed with a domain size of 768 x 768 km2, the same as in the 305 K simulation

that was analyzed in Chapter 4. The 310 K simulation uses a larger domain of 1536 x

1536 km2. As discussed in Chapters 2 and 3, a larger domain size is needed for higher

temperature simulations to aggregate. In all cases, the terms have been averaged over

each day and over 48 x 48 km2 blocks. Because of the larger domain size of the 310

K simulation, there are 1024 such blocks, rather than 256. The results at different

temperatures are very similar to those presented for the 305 K case.

The magnitudes of the normalized 1 feedback terms tend to increase slightly with

SST but are generally quite comparable. The magnitude of the non-normalized feed-

back terms increases with SST, but {ĥ′2} also increases with SST to compensate.

The range of column relative humidity values achieved are similar for the different

simulations, as is the tendency for the dry regions to get drier before the moist regions

get moister. The zero anomaly contour (ĥ′2 = 0) stabilizes at approximately the same

rank, indicating the moist and dry regions cover similar fractions of the domain at

1Normalized by the domain mean FMSE variance, {ĥ′2}.
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different temperatures.

As in the 305 K simulation, the LW feedback term (panel c of Figures C-1 - C-4)

and surface flux feedback term (panel b of Figures C-1 - C-4) transition from being

positive in the early stages of aggregation to negative in the intermediate stages.

The timing of these transitions varies somewhat between simulations at different

SSTs. For example, the LW feedback in the 307 K simulation (Figure C-3c) switches

from positive to negative in the driest regions around day 20, while in the 310 K

simulation (Figure C-4c), it doesn’t change signs until day 30. The different timing

of the surface flux feedback transition is related to the development of the negative

air-sea disequilbrium feedback (panel f of Figures C-1 - C-4). In the 310 K simulation,

the disequilibrium feedback is actually positive until day 20 (Figure C-4f), while in

the 307 K simulation, a negative feedback is established right away. The longer

it takes the negative disequilbrium feedback to become established, the longer the

total surface flux feedback can remain positive. However, these differences in timing

between the simulations at different SSTs should not be over-interpreted, since they

don’t depend monotonically on temperature and there are also large differences in the

timing of self-aggregation in an ensemble of simulations at the same SST (Chapter

2).

The simulation at 301 K exhibits more variability during the mature phase of

aggregation than the other simulations. Over periods of several days, the cluster

disperses, then contracts. This variability is reflected in the feedback terms as os-

cillations in their strength, as well as in the spatial extent of the feedbacks in the

moist region. The cause of this variability is unknown. A final notable difference be-

tween the feedback analysis at different SSTs is that the positive shortwave feedback

is weaker in the 310 K simulation (Figure C-4e) than in the others. In particular, it

is weaker and less widespread in the moist regions during the mature phase of aggre-

gation. It is unknown whether this is a robust feature of self-aggregation at higher

temperature, or simply random noise.
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Figure C-1: Terms in the ĥ′2 budget. All terms have been averaged over each day
and over 48 × 48 km2 blocks, normalized by {ĥ′2}, are from the simulation at 301 K,
and have units of days−1. On the x-axis, dry regions are on the left and moist regions
are on the right, sorted according to block-averaged CRH. The black line is the ĥ′ =
0 contour, plotted as a reference. Note that the color bar saturates in a few places.
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Figure C-2: Same as Figure C-1, but for simulation at 303 K.
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Figure C-3: Same as Figure C-1, but for simulation at 307 K.
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Figure C-4: Same as Figure C-1, but for simulation at 310 K.
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