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Long-term monitoring is of great clinical relevance. Accelerometers are often used to pro-
vide information about activities of daily living. The median frequency (fm) of acceleration
has recently been suggested as a powerful parameter for activity recognition. However,
compliance issues arise when people need to integrate activity recognition sensors into
their daily lives. More functional placements should provide higher levels of conformity,
but may also affect the quality and generalizability of the signals. How fm changes as a
result of a more functional sensor placement remains unclear. This study investigates
the agreement in fm for a sensor placed on the back with one in the pocket across a range
of daily activities. The translational and gravitational accelerations are also computed to
determine if the accelerometer should be fused with additional sensors to improve agree-
ment. Twelve subjects were tested over four tasks and only the ‘‘vertical’’ x-axis showed a
moderate agreement (Intraclass Correlation Coefficient of 0.54) after correction for outliers.
Generalizability across traditional and functional sensor locations might therefore be lim-
ited. Differentiation of the signal into a translational and gravitational component
decreased the level of agreement further, suggesting that combined information streams
are more robust to changing locations then singular data streams. Integrating multiple sen-
sor modalities to obtain specific components is unlikely to improve agreement across sen-
sor locations. More research is needed to explore measurement signals of more user
friendly sensor configurations that will lead to a greater clinical acceptance of body worn
sensor systems.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The challenges related to the ageing population are
widely recognized. Although it may seem attractive to live
longer, a good quality of life during those extra years is not
guaranteed. Obtaining accurate information about the
activities in everyday environments is therefore of great
clinical relevance and could lead to further improvements
in both preventative and rehabilitation approaches. There
is currently a huge drive to develop mobile health systems,
as a result of the many benefits associated with long-term
monitoring of individuals in their home, and indeed com-
munity and work settings [1]. Mobile sensing devices pro-
vide the opportunity for clinicians and researchers to
measure behaviour outside the laboratory and enhance
ecological validity [2]. This is particular relevant for
observing changes in activities of daily living (ADL), as
these are an essential part of clinical frameworks. The
International Classification of Functioning, Disability and
Health (ICF) is the World Health Organization’s framework
for measuring health and disability at both individual and
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population levels. Dysfunctions in ADL are considered to
directly affect functioning and are seen as an important
rehabilitation focus within the medical field.

However, monitoring devices used to measure ADL
should not affect the normal daily behaviour of people, as
this will influence their acceptance within the medical
field [3]. Clinical technologies can only be sustainable if
they adapt to users and interact with them in an intuitive
manner. User preferences have often been overlooked at
the early stages of device testing, especially in clinical re-
search, despite the fact that they can fundamentally
change the utility or design of the investigated system
[4]. One possible option to improve patient compliance
with novel measurement technologies is to integrate them
with existing devices that have already been accepted and
adopted by a wide range of people. Research has now
slowly started moving into the realm of commercially
available devices, such as smartphones. However, the
motivation of applying smartphones in clinical research
is still often related to the relative low-cost and high qual-
ity of the embedded electrical components. The arguably
more important feature of allowing unobtrusive data col-
lection is regularly neglected. Smartphones have the po-
tential to measure performance continuously, without
the need for changing normal daily behaviour [5]. The mo-
bile phone has the added benefit that they are more dis-
crete than a dedicated monitor device, which will reduce
rejection due to the device’s poor aesthetic value and
intrusiveness [6]. Recent evidence indicates that 48% of
people in the USA that are aged above 75 years own a mo-
bile phone [7], indicating the high level of acceptance al-
ready reached by these mobile devices.

Currently most smartphones contain one or more sen-
sors. Several smartphones come with a built in tri-axial
accelerometer, which can potentially be used to measure
essential clinical parameters. Accelerometry has been used
on a small scale to assess balance and attempts have also
been made to investigate balance during functional tasks
[8–11]. Dedicated accelerometers are more frequently
worn to monitor activities of daily living and can be used
as a measurement of general health [12]. Many research
groups still place wireless accelerometers approximately
at the level of the centre of mass, located on the lower back
at the S2 level of the Sacrum, as well as at the chest or
thigh [13–15]. However, the placements of these acceler-
ometers do not coincide with the location in which the mo-
bile phone is normally kept. Information about how a more
functional position would relate to a conventional place-
ment is lacking. Determining how traditional and func-
tional placements agree will help in generalizing
outcomes and interpretations across sensor locations.

A literature review showed that very little information
is available regarding the optimal sensor location for activ-
ity recognition or to what extent they agree (Appendix 1).
One paper showed that sensor placement across four dif-
ferent locations indicated that the ankle yielded the high-
est activity recognition rate [16]. However, a study
conducted with double the amount of subjects showed
that the optimal placement for monitoring mobility was
found to be on the upper leg [17]. Feature extraction and
data mining algorithms were used in both these studies.
A study that focused just on walking found that the most
accurate location across a range of body types was place-
ment of the accelerometer in the pocket [18]. They did
compare ‘‘functional’’ placements of the belt, pocket and
around the neck, but only focused on a step count param-
eter. Another study that looked at more gait parameters
found that a head location provided a better outcome than
placement on the legs [19]. None of these studies investi-
gated an ecological placement of the sensor for activity
recognition.

Different aspects of the acceleration signal can be ex-
plored, but this study will focus on the frequency domain,
as the median frequency has recently been recognized as a
promising method for activity recognition [20]. The ease at
which median frequency can be calculated and the robust-
ness of the analysis means this is a potentially important
clinical parameter. The first aim of this explorative study
is to determine how the median frequency of a traditional
accelerometer placement (the back) compares with a more
functional one (the front pocket). The hypothesis is that
the direction of change in the median frequency of the
accelerometer is independent of sensor placement. Subse-
quently, the question arises if the accelerometer should be
the only sensor integrated into the system. There is an op-
tion to fuse together additional sensor modalities, such as
gyroscopes and magnetometers [21]. An accelerometer
will record translational and rotational inertial accelera-
tions, as well as gravitational acceleration, as long as parts
of these acceleration vectors are in line with the acceler-
ometer’s axis of sensitivity [22]. The accelerometer will
only provide the sum of these components making it hard
to determine if the translational components should be ob-
tained separate from the rotational components. A further
partition between rotational and translation components
can be performed by fusing several sensors together [21].
Gravitational, translational and the summed product of
these two accelerations were computed using an optical
tracking system to establish if separation between the
components would increase agreement. It was hypothe-
sized that the summed acceleration signal yielded an equal
level of agreement, as the individual components.
2. Methods

2.1. Participants

Twelve healthy adults, seven men and five women, with
a mean (range) age of 24 years (21–31) and a mean height
and weight of 172 (152–185) cm and 70 (53–93) kg, volun-
tarily participated in this study. The protocol was approved
by the College Research Ethics Committee and all subjects
gave written informed consent previous to the experiment.
2.2. Activities

Participants were asked to stand still for 30 s, walk 4 m
and climb a flight of stairs consisting of three steps. Only
standing was timed, as the other tasks were measured
for the duration it took to complete the activity. Subjects
were asked to walk, ascend and descend the stairs at a self
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selected speed. The stair had a rise of 17 cm and a length of
20 cm from step to step. The width of each step was set at
60 cm. Each condition was measured three times per
subject.
Fig. 2. Experimental setup used including local (sensor based) and global
coordinate frames.
2.3. Apparatus

A wired triaxial accelerometer (Vernier Labpro, Oregon,
US) was placed either on the back or the pocket during a
range of functional tasks. Each of the sensitive axis of the
accelerometer was calibrated beforehand using the rota-
tional calibration method described by Krohn et al. [23].
However, instead of just orienting each axis to the earth’s
gravity centre, several different orientations were explored
and all measurements were repeated four times to obtain a
more robust linear calibration equation.

A passive optical tracking system (Vicon, Oxford, UK)
was used to explore the potential changes in median fre-
quency for each acceleration component separately. A cus-
tom-made coordinate frame consisting of four optical
tracking markers was physically aligned with the acceler-
ometer (Fig. 1). Each axis was initially represented by a
3D unit vector derived from a pair of markers.

Data were collected at a 100 Hz for both systems. The
two devices were synchronized through a block pulse gen-
erated by the MX module of the Vicon.

The local coordinate frames were constructed in Matlab
(MathWorks, Inc., Natick, MA, USA) during which the axes
were redefined to align the coordinate system of the back
with that of the pocket (Fig. 2). In short, the signs of the
acceleration signal obtained from the z and y-axis on the
accelerometer were inverted in order to align all local coor-
dinate frames.

The marker cluster and sensor were placed directly on
the back and on the outside of the pocket, as the passive
markers needed to be visible to the cameras A stiff polymer
case was placed in the pocket to mimic the smartphone.
Displacement between case and sensor were checked be-
fore and after each trial.
Fig. 1. Marker cluster placed on the wired accelerometer. The markers
were used for the construction of a local coordinate frame.
Although, the marker frame was constructed with all
arms perpendicular to one another, small alignment errors
can be expected. To increase the accuracy of the represen-
tation of the local coordinate frame further computations
were performed. Firstly, the dot product of each plane, that
consisting of two vectors was calculated. The plane that
yielded a dot product that was closest to zero was selected
and the vector that was not part this plane was virtually re-
established by calculating the cross product of the two
remaining axes. The plane with the second lowest dot
product outcome, which would include the previous com-
puted axis, was identified and another new vector was cal-
culated based on the two vectors that defined that plane.
Finally, the two newly calculated vectors were used to
determine the last vector by means of cross product com-
putation. This method provided us with a coordinate frame
that was truly perpendicular.

2.4. Gravitational acceleration

A vector was generated that represented the gravity
vector. It started at the origin of the local coordinate frame,
while running parallel to the vertical axis of the global ref-
erence frame. Subsequently, the amount of gravity mea-
sured by each of the sensitive axis was defined by the in
plane angle between the gravity vector and each of the
sensitive axes separately. A simple verification was per-
formed by ensuring the summed accelerations of the axis
produced a constant outcome of 9.81 m/s2.

2.5. Translational inertial acceleration

Translational accelerations were computed by a double
differentiation of the origin of the local coordinate frame,
within the global coordinate frame. Marker position data
were low-pass filtered with a 4th order Butterworth [24]
using a cut-off frequency of 10 Hz, before calculating the
derivative. The same filtering was applied for the obtained
velocity data before differentiation was performed. The
amount of translational acceleration that ended up at each
sensitive axis was established in utilizing the same method
described for the gravitational acceleration. The rotational



Fig. 3. Example data illustrating the acceleration trajectories obtained from the two measurement systems. Data were collected at the pocket during a
walking trial. The total accelerations obtained from the sensor (Accel Tot Sensor) and optical tracking systems (Accel Tot Optical), as well as computed
translational accelerations (Accel Trans) are shown for each axis (x, y and z).
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acceleration was not modelled as pilot data showed it to be
very low for the range of tasks that were explored in this
study.

2.6. Total acceleration

The gravitational and translational acceleration were
added for each sensitive axis to obtain a total acceleration
measure that could be compared to the values obtained by
the accelerometer. A root mean square error (RMSE) be-
tween systems was calculated [2] for each trial.

2.7. Median frequency

The median frequency (fm) was calculated using a mov-
ing window method. The windows encompassed 3 s and
they were shifted by one data point at each iteration, over
the full length of the signal. A duration of 3 s was selected
to allow this technique to be applied in future free living
studies. It also covered a time period that fits patients
whom pace might be lower than those of the healthy group
presented in this study. All signals were offset against the
mean of the first 50 data points, as subjects were requested
not to move during this period. Apart from a short time
interval (�1 s) at the beginning and the end of the signal,
the majority of the signal related to the task that was per-
formed. Features in the frequency domain were investi-
gated using the power spectral density [20] derived from
the periodogram function in Matlab. The periodogram
was chosen, since it is a computationally economic
way of estimating the power spectrum. A one-sided
(in frequency) power spectral density was calculated in
units of power per radians per sample. The fm was com-
puted by firstly dividing the summed power of the win-
dowed signal by two and subsequently determining the
frequency at which the cumulative power exceeds the pre-
vious determined threshold value. The median value over
all windows was obtained per trial, to ensure frequencies
relating to the waiting element at the start and the end of
each measurement did not affect the final result. The aver-
age value over all three trials was calculated and the con-
cluding value obtained was then used for further analysis.

2.8. Statistical analysis

Agreement of fm between the sensor locations was as-
sessed using Intraclass Correlation Coefficients (ICCs) [25]
and Bland and Altman analyses [26]. The ICCs were com-
puted for the gravitational, translational and total acceler-
ation. Bland and Altman plots were constructed to examine
the difference between the two placements against the
average value. The 95% limits of agreement were calcu-
lated and plotted using GraphPad Prism 5.0 (GraphPad
Software, San Diego, California, USA). Indications of agree-
ment, such as poor or moderate, were taken from [25].

3. Results

Accelerations between the two systems showed good
correspondence (Fig. 3), as was expected based on results
from other studies using similar techniques to determine
accelerations from optical tracking data [24].



Fig. 4. Graph A represents acceleration recorded from a sensor placed on the back. Data are shown for the x-axis only during a single walking trial. Graph B
is the related power/frequency plot using a 3 second moving window.
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An example of a walking trial and associated power/fre-
quency using a moving window is given in Fig. 4. It shows
the identification of the walking activity in the time–fre-
quency plot devised using the previously described analy-
sis method. It can be observed that the frequencies are
rounded to the nearest discrete Fourier transform bin,
which matches to the resolution of the signal. In this exam-
ple the computed median frequency was 6.45 Hz over the
whole duration.

The total acceleration had a moderate agreement be-
tween sensor placements for the x-axis (Table 1). The
y- and z-axis had a fair and poor concurrence across the
activities. An almost perfect agreement was found for the
translational acceleration in x direction, but became fair
after correction for outliers. The y and z directions only
yielded a poor correlation for this component. The gravita-
tional component yielded a poor relationship across all axes.
The Bland and Altman plots (Fig. 5) showed that for the
total acceleration output, the variation of the sensor loca-
tion is dependent on the magnitude of the measurement.
This was found across all axes. An outlier, as defined by
[27], was identified for the z direction. Another outlier
was observed for the y-axis of translational acceleration.
No other systematic differences were observed across both
the translational and gravitational accelerations.
4. Conclusions

Higher levels of agreement, between functional and con-
ventional placements, will make it easier to compare out-
comes across different assessment methods and patients.
The aim of this study was to determine how the fm of a tra-
ditional sensor placement compared to a more functional
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one. The ICCs value showed that after corrections for outli-
ers, a moderate agreement was found for acceleration in the
x-axis. Assessing these values on an ordinal scale showed
that the median frequency between the two locations re-
mained similar. This indicates that the direction that the
median frequency shifts is independent of placement and
strengthened the possibility of using more functional place-
ments for activity monitoring or functional mobility tests.

Partitioning the signal into separate components
diminished the overall agreement. This suggests that
applying sensor fusion [21] to assess specific orientations
and translations minimizes the generalizability of the ob-
tained values across sensor locations. Applying multiple
sensors will provide a richer dataset, but also allows
for greater divergence between sensor locations. The
overall recognition rate for activity monitoring is likely
to increase by combining several sensors, but a fixed
sensor placement might be needed to ensure this level
accuracy. A single sensor system seems to provide a
more robust method if locations are variable during
activity monitoring. A single sensor device has the addi-
tional benefit that it will speed up data mining, decrease
storage requirements and minimizes cost.

The fm found by other researchers were similar to those
obtained in this study. Chung et al. [20] reports a fm during
walking of 3.107 Hz (±0.534) for their research participant,
which is similar to the findings for some of our participants,
e.g. subject number 10 showed an fm of 3.22 Hz (±1.03). De-
spite the positive association between these studies it still
has to be noted that fm differences between the optical track-
ing and accelerometer are probable. The optical tracking
data has been filtered in order to obtain the acceleration sig-
nal, while the accelerometer signal has been kept original.
This difference is likely to affect the fm outcome, especially
for the standing still task. Further deviations can be expected
between the two systems, due to the motion artefacts of the
optical tracking system that were not filtered out. Despite
these limitations, the gathered data still classified well on
an ordinal scale. Subsequently, the kind of accelerometer
and processing techniques used will also affect outcomes,
as it is known that the frequency responses depends on sen-
sor type [28]. The accelerometer used in this study is a piezo-
electric accelerometer with a similar frequency response
and resolution as e.g. the LIS302DL MEMS iPhone acceler-
ometer [29].

The placement of the sensor on top of the pocket might
also provide slightly altered outcomes compared to a sen-
sor placed in the pocket. However, displacement was
checked and the displacements between the case placed
inside the pocket and the sensor on top was very low. This
was particular true for garments that fitted the leg more
tightly. This suggests that the sensor closely mimicked
the movements of the case (representing the phone) that
was located in the pocket. The pocket placement was se-
lected as a common location to place an everyday object.
It has been shown previously that the pocket location has
greater step count validity for a range of body types com-
pared to placement on the belt or around the neck [18].
Another study that focused on activity detection found that
the placement of a sensor on the upper leg yielded good re-
sults [17]. However, in that particular study the sensor was



Fig. 5. Bland and Altman plots given for the total acceleration (Accel Tot), translational (Accel Trans) and gravitational (Accel Grav) acceleration per
sensitive axis.
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placed below the pocket and a strap was used to hold it in
place.

The implementation of long-term monitoring tech-
niques that utilize devices that are widely used and ac-
cepted are desirable from a user compliance point of
view. Unobtrusive sensing has also been highlighted with-
in the medical field as an essential feature to improve user
acceptance of body sensor networks [3]. The mobile phone
has the added benefit that it is more discrete than a dedi-
cated monitor device, thus increasing user acceptance [6].
Patients may favour carrying the sensor device in their
pocket, as it is less visible and more familiar. Smartphones
have the potential to become a crucial tool for activity
monitoring. Smartphones have been implemented to track
a persons’ location, as well as to determine their level of
activity [30]. In that particular study, physical activity
was measured using an activity count method. This tech-
nique provides a more general overview of activity com-
pared to the fm based ADL detection. However, both
methods could be combined to create a system with the
ability to assess an individual in detail, as well as on a more
generic level. It will even allow for GPS tracking to deter-
mine subsets of activities, such as driving.

This work demonstrated that more functional place-
ments of sensors can yield acceptable agreement levels
with traditional sensor locations. It suggests that everyday
objects, such as smartphones, can be used to perform
clinical relevant assessments. The study highlights the
need of a more evidence-based approach for selecting sen-
sor location, in which flexibility and ease of use are
imperative.
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