
MIT Open Access Articles

Testing Closeness of Discrete Distributions

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White.
2013. Testing Closeness of Discrete Distributions. J. ACM 60, 1, Article 4 (February 2013), 25
pages.

As Published: http://dx.doi.org/10.1145/2432622.2432626

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/90630

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90630
http://creativecommons.org/licenses/by-nc-sa/4.0/

ar
X

iv
:1

00
9.

53
97

v2
 [

cs
.D

S]
 4

 N
ov

 2
01

0

Testing Closeness of Discrete Distributions∗

Tuğkan Batu† Lance Fortnow‡ Ronitt Rubinfeld§ Warren D. Smith¶

Patrick White

November 5, 2010

Abstract

Given samples from two distributions over an n-element set, we wish to test whether these dis-
tributions are statistically close. We present an algorithm which uses sublinear in n, specifically,
O(n2/3ǫ−8/3 logn), independent samples from each distribution, runs in time linear in the sample
size, makes no assumptions about the structure of the distributions, and distinguishes the cases
when the distance between the distributions is small (less than max{ǫ4/3n−1/3/32, ǫn−1/2/4})
or large (more than ǫ) in ℓ1 distance. This result can be compared to the lower bound of
Ω(n2/3ǫ−2/3) for this problem given by Valiant [54].

Our algorithm has applications to the problem of testing whether a given Markov process is
rapidly mixing. We present sublinear algorithms for several variants of this problem as well.

∗A preliminary version of this paper [9] appeared in the 41st Symposium on Foundations of Computer Science,
2000, Redondo Beach, CA.

†Department of Mathematics, London School of Economics and Political Science, London, UK. Email:
t.batu@lse.ac.uk.

‡Department of Electrical Engineering and Computer Science, Northwestern University, Chicago, IL, USA. Email:
fortnow@eecs.northwestern.edu. Research done while at NEC Research Institute.

§CSAIL, MIT, Cambridge, MA, USA and the Blavatnik School of Computer Science, Tel Aviv University. Email:
ronitt@csail.mit.edu. Research done while at NEC Research Institute.

¶Center for Range Voting, 21 Shore Oaks Drive, Stony Brook, NY, USA. Email: warren.wds@gmail.com. Research
done while at NEC Research Institute. Research done while at NEC Research Institute. In the 2000 version of this
paper, Smith objected to several things, including (a) the choice of what theorems to include, and (b) the choice of
what proofs to present for those theorems. In particular, re the present 2010 paper’s upper and lower bound theorems
9 and 20, Smith believed he’d proven an improved result in which the two bounds met. Smith also believed the lower
bound proofs presented in the 2000 paper contained lacunae and had wanted those proofs replaced with alternative
proofs of his own devising. Those moves were rejected by 4-1 vote. Although Smith created, in whole or part, some
of the theorems or lemmas here, he bears zero responsibility for the 2010 paper since he had zero influence, affecting
not even a single word, of it – except for this footnote!

http://arxiv.org/abs/1009.5397v2

1 Introduction

Suppose we have two distributions over the same n-element set, such that we know nothing about
their structure and the only access we have to these distributions is the ability to take independent
samples from them. Suppose further that we want to know whether these two distributions are
close to each other in ℓ1 norm.1 A first approach, which we refer to as the naive approach, would
be to sample enough elements from each distribution so that we can approximate the distribution
and then compare the approximations. It is easy to see (see Theorem 23 in Section 3.2) that this
naive approach requires the number of samples to be at least linear in n.

In this paper, we develop a method of testing that the distance between two distributions
is at most ǫ using considerably fewer samples. If the distributions have ℓ1 distance at most
max{ǫ4/3n−1/3/32, ǫn−1/2/4}, then the algorithm will accept with probability at least 1 − δ. If
the distributions have ℓ1 distance more than ǫ then the algorithm will accept with probability
at most δ. The number of samples used is O(n2/3ǫ−8/3 log(n/δ)). In contrast, the methods of
Valiant [54], fixing the incomplete arguments in the original conference paper (see Section 3), yield
an Ω(n2/3ǫ−2/3) lower bound for testing ℓ1 distance in this model.

Our test relies on a test for whether two distributions have small ℓ2 distance, which is consider-
ably easier to test: we give an algorithm with sample complexity independent of n. However, small
ℓ2 distance does not in general give a good measure of the closeness of two distributions according
to ℓ1 distance. For example, two distributions can have disjoint support and still have ℓ2 distance
of O(1/

√
n). Still, we can get a very good estimate of the ℓ2 distance, say to within O(1/

√
n)

additive error, and then use the fact that the ℓ1 distance is at most
√
n times the ℓ2 distance.

Unfortunately, the number of queries required by this approach is too large in general. Because of
this, our ℓ1 test is forced to distinguish between two cases.

For distributions with small ℓ2 norm, we show how to use the ℓ2 distance to get an efficient test
for ℓ1 distance. For distributions with larger ℓ2 norm, we use the fact that such distributions must
have elements which occur with relatively high probability. We create a filtering test that partitions
the domain into those elements with relatively high probability and all the other elements (those
with relatively low probability). The test estimates the ℓ1 distance due to these high-probability
elements directly, using the naive approach mentioned above. The test then approximates the
ℓ1 distance due to the low-probability elements using the test for ℓ2 distance. Optimizing the
notion of “high probability” yields our O(n2/3ǫ−8/3 log(n/δ)) algorithm. The ℓ2 distance test uses
O(ǫ−4 log(1/δ)) samples.

Applying our techniques to Markov chains, we use the above algorithm as a basis for construct-
ing tests for determining whether a Markov chain is rapidly mixing. We show how to test whether
iterating a Markov chain for t steps causes it to reach a distribution close to the stationary distri-
bution. Our testing algorithm works by following Õ(tn5/3) edges in the chain. When the Markov
chain is dense enough and represented in a convenient way (such a representation can be computed
in linear time and we give an example representation in Section 4), this test remains sublinear in
the size of the Markov chain for small t. We then investigate two notions of being close to a rapidly
mixing Markov chain that fall within the framework of property testing, and show how to test that
a given Markov chain is close to a Markov chain that mixes in t steps by following only Õ(tn2/3)
edges. In the case of Markov chains that come from directed graphs and pass our test, our theorems
show the existence of a directed graph that is both close to the original one and rapidly mixing.

1Half of ℓ1 distance between two distributions is also referred to as total variation distance.

1

1.1 Related Work

Testing Properties of Distributions The use of collision statistics in a sample has been pro-
posed as a technique to test whether a distribution is uniform (see, for example, Knuth [40]).
Goldreich and Ron [32] give the first formal analysis that using O(

√
n) samples to estimate the

collision probability yields an algorithm which gives a very good estimate of the ℓ2 distance be-
tween the given distribution and the uniform distribution. Their “collision count” idea underlies
the present paper. More recently, Paninski [45] presents a test to determine whether a distribution
is far from the uniform distribution with respect to ℓ1 distance using Θ(

√
n/ǫ2) samples. Ma [42]

also uses collisions to measure the entropy of a distribution defined by particle trajectories. After
the publication of the preliminary version of this paper, a long line of publications appeared re-
garding testing properties of distributions including independence, entropy, and monotonicity (see,
for example, [8, 10, 7, 12, 5, 54, 49, 48, 51, 1]).

Expansion, Rapid Mixing, and Conductance Goldreich and Ron [32] present a test that they
conjecture can be used to give an algorithm with O(

√
n) query complexity which tests whether a

regular graph is close to being an expander, where by close they mean that by changing a small
fraction of the edges they can turn it into an expander. Their test is based on picking a random node
and testing whether random walks from this node reach a distribution that is close to the uniform
distribution on the nodes. Our tests for Markov chains are based on similar principles. Mixing and
expansion are known to be related [53], but our techniques only apply to the mixing properties
of random walks on directed graphs, since the notion of closeness we use does not preserve the
symmetry of the adjacency matrix. More recently, a series of papers [22, 37, 43] answer Goldreich
and Ron’s conjecture in the affirmative. In a previous work, Goldreich and Ron [31] show that
testing that a graph is close to an expander requires Ω(n1/2) queries.

The conductance [53] of a graph is known to be closely related to expansion and rapid-mixing
properties of the graph [38, 53]. Frieze and Kannan [27] show, given a graph G with n vertices

and α, one can approximate the conductance of G to within additive error α in time n · 2Õ(1/α2).
Their techniques also yield an 2poly(1/ǫ)-time test that determines whether the adjacency matrix of
a graph can be changed in at most ǫ fraction of the locations to get a graph with high conductance.
However, for the purpose of testing whether an n-vertex, m-edge graph is rapid mixing, we would
need to approximate its conductance to within α = O(m/n2); thus, only when m = Θ(n2), would
the algorithm in [27] run in O(n) time.

We now discuss some other known results for testing of rapid mixing through eigenvalue com-
putations. It is known that mixing [53, 38] is related to the separation between the two largest
eigenvalues [4]. Standard techniques for approximating the eigenvalues of a dense n×n matrix run
in Θ(n3) floating-point operations and consume Θ(n2) words of memory [33]. However, for a sparse
n× n symmetric matrix with m nonzero entries, n ≤ m, “Lanczos algorithms” [46] accomplish the
same task in Θ(n(m+logn)) floating-point operations, consuming Θ(n+m) storage. Furthermore,
it is found in practice that these algorithms can be run for far fewer, even a constant number, of
iterations while still obtaining highly accurate values for the outer and inner few eigenvalues.

Streaming There is much work on the problem estimating the distance between distributions
in data streaming models where space rather than time is limited (cf., [28, 3, 24, 26]). Another
line of work [15] estimates the distance in frequency count distributions on words between various
documents, where again space is limited. Guha et al. [35] have extended our result to estimating

2

the closeness of distribution with respect to a range of f -divergences, which include ℓ1 distance.
Testing distributions in streaming data models has been an active area of research in the recent
years (see, for example, [11, 16, 36, 34, 17, 18, 13, 14]).

Other Related Models In an interactive setting, Sahai and Vadhan [52] show that, given
distributions p and q generated by polynomial-size circuits, the problem of distinguishing whether
p and q are close or far in ℓ1 norm is complete for statistical zero knowledge. Kannan and Yao [39]
outlines a program checking framework for certifying the randomness of a program’s output. In
their model, one does not assume that samples from the input distribution are independent.

Computational Learning Theory There is a vast literature on testing statistical hypotheses.
In these works, one is given examples chosen from the same distribution out of two possible choices,
say p and q. The goal is to decide which of two distributions the examples are coming from. More
generally, the goal can be stated as deciding which of two known classes of distributions contains
the distribution generating the examples. This can be seen to be a generalization of our model
as follows: Let the first class of distributions be the set of distributions of the form q × q. Let
the second class of distributions be the set of distributions of the form q1 × q2 where the ℓ1
difference of q1 and q2 is at least ǫ. Then, given examples from two distributions p1,p2, create a
set of example pairs (x, y) where x is chosen according to p1 and y according to p2 independently.
Bounds and an optimal algorithm for the general problem for various distance measures are given
in [19, 44, 20, 21, 41]. None of these give sublinear bounds in the domain size for our problem. The
specific model of singleton hypothesis classes is studied by Yamanishi [56].

1.2 Notation

We use the following notation. We denote the set {1, . . . , n} with [n]. The notation x ∈R [n]
denotes that x is chosen uniformly at random from the set [n]. The ℓ1 norm of a vector v is
denoted by ‖v‖1 and is equal to

∑n
i=1 |vi|. Similarly, the ℓ2 norm is denoted by ‖v‖2 and is equal

to
√∑n

i=1 v
2
i , and ‖v‖∞ = maxi |vi|. We assume our distributions are discrete distributions over

n elements, with labels in [n], and will represent such a distribution as a vector p = (p1, . . . , pn),
where pi is the probability of outputting element i.

The collision probability of two distributions p and q is the probability that a sample from each
of p and q yields the same element. Note that, for two distributions p,q, the collision probability
is p · q =

∑
i piqi. To avoid ambiguity, we refer to the collision probability of p and p as the

self-collision probability of p. Note that the self-collision probability of p is ‖p‖22.

2 Testing Closeness of Distributions

The main goal of this section is to show how to test whether two distributions p and q are close
in ℓ1 norm in sublinear time in the size of the domain of the distributions. We are given access to
these distributions via black boxes which upon a query respond with an element of [n] generated
according to the respective distribution. Our main theorem is:

Theorem 1 Given parameters δ and ǫ, and distributions p,q over a set of n elements, there is a

test which runs in time O(n2/3ǫ−8/3 log(n/δ)) such that, if ‖p− q‖1 ≤ max(ǫ4/3

32 3
√
n
, ǫ
4
√
n
), then the

3

test accepts with probability at least 1− δ and, if ‖p− q‖1 > ǫ, then the test rejects with probability
at least 1− δ.

In order to prove this theorem, we give a test which determines whether p and q are close in
ℓ2 norm. The test is based on estimating the self-collision and collision probabilities of p and q.
In particular, if p and q are close, one would expect that the self-collision probabilities of each are
close to the collision probability of the pair. Formalizing this intuition, in Section 2.1, we prove:

Theorem 2 Given parameter δ and ǫ, and distributions p and q over a set of n elements, there
exists a test such that, if ‖p − q‖2 ≤ ǫ/2, then the test accepts with probability at least 1 − δ and,
if ‖p− q‖2 > ǫ, then the test rejects with probability at least 1− δ. The running time of the test is
O(ǫ−4 log(1/δ)).

The test used to prove Theorem 2 is given below in Figure 1. The number of pairwise self-collisions
in multiset F ⊆ [n] is the count of i < j such that the ith sample in F is same as the jth sample
in F . Similarly, the number of collisions between Qp ⊆ [n] and Qq ⊆ [n] is the count of (i, j) such
that the ith sample in Qp is same as the jth sample in Qq.

ℓ2-Distance-Test(p,q,m, ǫ, δ)
Repeat O(log(1/δ)) times

1. Let Fp and Fq be multisets of m samples from p and q, respectively. Let rp and rq
be the numbers of pairwise self-collisions in Fp and Fq, respectively.

2. Let Qp and Qq be multisets of m samples from p and q, respectively. Let spq be the
number of collisions between Qp and Qq.

3. Let r = 2m
m−1(rp + rq). Let s = 2spq.

4. If r − s > 3m2ǫ2/4, then reject the current iteration.
Reject if the majority of iterations reject, accept otherwise.

Figure 1: Algorithm ℓ2-Distance-Test

We use the parameter m to indicate the number of samples needed by the test to get constant
confidence. In order to bound the ℓ2 distance between p and q by ǫ, setting m = O(1

ǫ4
) suffices. By

maintaining arrays which count the numbers of times, for example, Np(i) for Fp, that each element

i is sampled and summing
(Np(i)

2

)
over all sampled i in the domain, one can achieve the claimed

running time bounds for computing an estimate of the collision probability. In this way, essentially
m2 estimations of the collision probability can be performed in O(m) time.

Since ‖v‖1 ≤ √
n · ‖v‖2, a simple way to extend the above test to an L1 distance test is by

setting ǫ′ = ǫ/
√
n. This would give the correct output behavior for the tester. Unfortunately, due

to the order of the dependence on ǫ in the ℓ2 distance test, the resulting running time is quadratic
in n. It is possible, though, to achieve sublinear running times if the input distributions are known
to be reasonably evenly distributed. We make this precise by a closer analysis of the variance of
the estimator in the test in Lemma 5. In particular, we analyze the dependence of the variances
of s and r on the parameter b = max(‖p‖∞, ‖q‖∞). There we show that given p and q such that
b = O(n−α), one can call ℓ2-Distance-Test with an error parameter of ǫ√

n
and achieve running

time of O(ǫ−4(n1−α/2 +n2−2α)). Thus, when the maximum probability of any element is bounded,
the ℓ2 distance test can in fact yield a sublinear-time algorithm for testing closeness in L1 distance.

4

In the previous paragraph, we have noted that, for distributions with a bound on the maximum
probability of any element, it is possible to test closeness with time and queries sublinear in the
domain size. On the other hand, when the minimum probability element is quite large, the naive
approach that we referred to in the introduction can be significantly more efficient. This suggests
a filtering algorithm, which separates the domain of the distributions being tested into two parts
– the big elements, or those elements to which the distributions assign relatively high probability
weight, and the small elements, which are all other elements. Then, the naive tester is applied to
the distributions restricted to the big elements, and the tester that is based on estimating the ℓ2
distance is applied to the distributions restricted to the small elements.

More specifically, we use the following definition to identify the elements with large weights.

Definition 3 (Big element) An element i is called big with respect to a distribution p if pi >
(ǫ/n)2/3.

The complete test is given below in Figure 2. The proof of Theorem 1 is presented in Section 2.2.

ℓ1-Distance-Test(p,q, ǫ, δ)

1. Let b = (ǫ/n)2/3.

2. Sample p and q for M = O(ǫ−8/3n2/3 log(n/δ)) times.

3. Let Sp and Sq be the sample sets obtained from p and q, respectively, by discarding
elements that occur less than (1− ǫ/26)Mb times.

4. If Sp and Sq are empty,
ℓ2-Distance-Test(p,q, O(n2/3/ǫ8/3), ǫ

2
√
n
, δ/2)

else
i. Let ℓpi (resp., ℓqi) be the times element i appears in Sp (resp., Sq).

ii. Reject if
∑

i∈Sp∪Sq |ℓpi − ℓqi | > ǫM/8.

iii. Define p′ as follows: Sample an element from p. If this sample is not in Sp∪Sq,
output it; otherwise, output an x ∈R [n]. Define q′ similarly.

iv. ℓ2-Distance-Test(p′,q′, O(n2/3/ǫ8/3), ǫ
2
√
n
, δ/2)

Figure 2: Algorithm ℓ1-Distance-Test

2.1 Closeness in ℓ2 Norm

In this section, we analyze Algorithm ℓ2-Distance-Test and prove Theorem 2. The statistics rp,
rq and s in Algorithm ℓ2-Distance-Test are estimators for the self-collision probability of p, of
q, and of the collision probability between p and q, respectively. If p and q are statistically close,
we expect that the self-collision probabilities of each are close to the collision probability of the
pair. These probabilities are exactly the inner products of these vectors. In particular, if the set
Fp of samples from p is given by {F 1

p , . . . , F
m
p }, then, for any pair i, j ∈ [m], i 6= j, we have that

Pr
[
F i
p = F j

p

]
= p ·p = ‖p‖22. By combining these statistics, we show that r− s is an estimator for

the desired value ‖p− q‖22.
In order to analyze the number of samples required to estimate r−s to a high enough accuracy,

we must also bound the variance of the variables s and r used in the test. One distinction to

5

make between self-collisions and collisions between p and q is that, for the self-collisions, we only
consider samples for which i 6= j, but this is not necessary for the collisions between p and q. We
accommodate this in our algorithm by scaling rp and rq appropriately. By this scaling and from the
above discussion we see that E [s] = 2m2(p · q) and that E [r − s] = m2(‖p‖22 + ‖q‖22 − 2(p · q)) =
m2(‖p− q‖22).

A complication which arises from this scheme is that the pairwise samples are not independent.
We use Chebyshev’s inequality (see Appendix A) to bound the quality of the approximation, which
in turn requires that we give a bound on the variance, as we do in this section.

Our techniques extend the work of Goldreich and Ron [32], where self-collision probabilities are
used to estimate ℓ2 norm of a vector, and in turn the deviation of a distribution from uniform. In
particular, their work provides an analysis of the statistics rp and rq above through the following
lemma.

Lemma 4 ([32]) Consider the random variable rp in Algorithm ℓ2-Distance-Test. Then, E [rp] =(m
2

)
· ‖p‖22 and Var (rp) ≤ 2(E [A])3/2.

We next present a tighter variance bound given in terms of the largest weight in p and q.

Lemma 5 There is a constant c such that

Var (rp) ≤ m2‖p‖22 +m3‖p‖32 ≤ c(m3b2 +m2b),

Var (rq) ≤ m2‖q‖22 +m3‖q‖32 ≤ c(m3b2 +m2b), and

Var (s) ≤ c(m3b2 +m2b),

where b = max(‖p‖∞, ‖q‖∞).

Proof: Let F be the set {1, . . . ,m}. For (i, j) ∈ F × F , define the indicator variable Ci,j = 1
if the ith element of Qp and the jth element of Qq are the same. Then, the variable from the
algorithm spq =

∑
i,j Ci,j. Also define the notation C̄i,j = Ci,j − E [Ci,j]. Given these definitions,

we can write

Var

 ∑

(i,j)∈F×F

Ci,j

 = E

(

∑

(i,j)∈F×F

C̄i,j)
2

= E

 ∑

(i,j)∈F×F

(C̄i,j)
2 + 2

∑

(i,j)6=(k,l)∈F×F

C̄i,jC̄k,l

≤ E

 ∑

(i,j)∈F×F

Ci,j

+ 2 · E

 ∑

(i,j)6=(k,l)∈F×F

C̄i,jC̄k,l

= m2(p · q) + 2 · E

 ∑

(i,j)6=(k,l)∈F×F

C̄i,jC̄k,l

To analyze the last expectation, we use two facts. First, it is easy to see, by the definition of
covariance, that E

[
C̄i,jC̄k,l

]
≤ E [Ci,jCk,l]. Secondly, we note that Ci,j and Ck,l are not independent

6

only when i = k or j = l. Expanding the sum, we get

E

∑

(i,j),(k,l)∈F×F

(i,j)6=(k,l)

C̄i,jC̄k,l

 = E

∑

(i,j),(i,l)∈F×F

j 6=l

C̄i,jC̄i,l +
∑

(i,j),(k,j)∈F×F

i 6=k

C̄i,jC̄k,j

≤ E

∑

(i,j),(i,l)∈F×F

j 6=l

Ci,jCi,l +
∑

(i,j),(k,j)∈F×F

i 6=k

Ci,jCk,j

≤ cm3
∑

ℓ∈[n]
pℓq

2
ℓ + p2ℓqℓ ≤ cm3b2

∑

ℓ∈[n]
qℓ ≤ cm3b2

for some constant c. Next, we bound Var (r) similarly to Var (s) using the argument in the proof
of Lemma 4 from [32]. Consider an analogous calculation to the preceding inequality for Var (rp)
(similarly, for Var (rq)) where Xij = 1 for 1 ≤ i < j ≤ m if the ith and jth samples in Fp are the
same. Similarly to above, define X̄ij = Xij − E [Xij]. Then, we get

Var (rp) = E

 ∑

1≤i<j≤m

X̄ij

2

=
∑

1≤i<j≤m

E
[
X̄2

i,j

]
+ 4

∑

1≤i<j<k≤m

E
[
X̄i,jX̄i,k

]

≤
(
m

2

)
·
∑

t∈[n]
p2t + 4 ·

(
m

3

) ∑

t∈[n]
p3t

≤ O(m2) · b+O(m3) · b2.

Thus, we get the upper bound for both variances. 2

Corollary 6 There is a constant c such that Var (r − s) ≤ c(m3b2+m2b), where b = max(‖p‖∞, ‖q‖∞).

Proof: Since variance is additive for independent random variables, we get Var (r − s) ≤ c(m3b2+
m2b). 2

Now using Chebyshev’s inequality, it follows that if we choose m = O(ǫ−4), we can achieve an
error probability less than 1/3. It follows from standard techniques that with O(log 1

δ) iterations
we can achieve an error probability at most δ.

Finally, we can analyze the behavior of the algorithm.

Theorem 7 For two distributions p and q such that b = max(‖p‖∞, ‖q‖∞) and m = Ω((b2 +
ǫ2
√
b)/ǫ4), if ‖p− q‖2 ≤ ǫ/2, then ℓ2-Distance-Test(p,q,m, ǫ, δ) accepts with probability at least

1 − δ. If ‖p − q‖2 > ǫ then ℓ2-Distance-Test(p,q,m, ǫ, δ) accepts with probability less than δ.
The running time is O(m log(1/δ)).

Proof: For our statistic A = (r − s), we can say, using Chebyshev’s inequality and Corollary 6,
that for some constant c,

Pr [|A− E [A]| > ρ] ≤ c(m3b2 +m2b)

ρ2
.

7

Recalling that E [A] = m2(‖p − q‖22), we observe that the ℓ2-Distance-Test can distinguish
between the cases ‖p − q‖2 ≤ ǫ/2 and ‖p − q‖2 > ǫ if A is within m2ǫ2/4 of its expectation. We
can bound the error probability by

Pr
[
|A− E [A] | > m2ǫ2/4

]
≤ 16c(m3b2 +m2b)

m4ǫ4
.

Thus, for m = Ω((b2 + ǫ2
√
b)/ǫ4), the probability above is bounded by a constant. This error

probability can be reduced to δ by O(log(1/δ)) repetitions. 2

2.2 Closeness in L1 Norm

The ℓ1-Distance-Test proceeds in two phases. The first phase of the algorithm (lines 1–3 and
4(i)–(ii)) determines which elements of the domain are the big elements (as defined in Definition 3)
and estimates their contribution to the distance ‖p− q‖1. The second phase (lines 4(iii)–(iv))
filters out the big elements and invokes the ℓ2-Distance-Test on the filtered distribution with
closeness parameter ǫ/(2

√
n). The correctness of this subroutine call is given by Theorem 7 with

b = 2ǫ2/3n−2/3. With these substitutions, the number of samples m is O(ǫ−8/3n2/3). The choice
of threshold b in ℓ1-Distance-Test for the weight of the big elements arises from optimizing the
running-time trade-off between the two phases of the algorithm.

We need to show that by using a sample of size O(ǫ−8/3n2/3 log(n/δ)), we can estimate the
weights of each of the big elements to within a multiplicative factor of 1 + O(ǫ), with probability
at least 1− δ/2.

Lemma 8 Let b = ǫ2/3n−2/3. In ℓ1-Distance-Test, after taking M = O(n
2/3 log(n/δ)

ǫ8/3
) samples

from a distribution p, we define p̄i = ℓpi /M . Then, with probability at least 1 − δ/2, the following
hold for all i: (1) if pi ≥ (1 − ǫ/13)b, then |p̄i − pi| < ǫ

26 max(pi, b), (2) if pi < (1 − ǫ/13)b, then
p̄i < (1− ǫ/26)b.

Proof: We analyze two cases; we use Chernoff bounds to show that, for each i, the following
holds: If pi > b, then

Pr [|p̄i − pi| > ǫpi/26] < exp(−O(ǫ2Mpi)) < exp(−O(ǫ2Mb)) ≤ δ

2n
.

If pi ≤ b, then

Pr [|p̄i − pi| > ǫb/26] ≤ Pr

[
|p̄i − pi| >

ǫb

26pi
pi

]
< exp(−O(ǫ2b2M/pi)) ≤ exp(−O(ǫ2Mb)) ≤ δ

2n
.

The lemma follows by the union bound. 2

Now we are ready to prove our main theorem.

Theorem 9 For ǫ ≥ 1/
√
n, ℓ1-Distance-Test accepts distributions p,q such that ‖p− q‖1 ≤

max(ǫ4/3

32 3√n
, ǫ
4
√
n
), and rejects when ‖p− q‖1 > ǫ, with probability at least 1− δ. The running time

of the test is O(ǫ−8/3n2/3 log(n/δ)).

8

Proof: Suppose items (1) and (2) from Lemma 8 hold for all i, and for both p and q. By Lemma 8,
this event happens with probability at least 1− δ/2.

Let S = Sp ∪ Sq. By our assumption, all the big elements of both p and q are in S, and no
element that has weight less than (1−ǫ/13)b in both distributions is in S. Let ∆1 be the ℓ1 distance
attributed to the elements in S; that is,

∑
i∈S |pi − qi|. Let ∆2 = ‖p′ − q′‖1 (in the case that S is

empty, ∆1 = 0, p = p′ and q = q′). Note that ∆1 ≤ ‖p− q‖1. We can show that ∆2 ≤ ‖p− q‖1,
and ‖p− q‖1 ≤ 2∆1 +∆2.

Next, we show that the algorithm estimates ∆1 in a brute-force manner to within an additive
error of ǫ/9. By Lemma 8, the error on the ith term of the sum is bounded by

ǫ

26
(max(pi, b) + max(qi, b)) ≤

ǫ

26
(pi + qi + 2ǫb/13),

where the last inequality follows from that pi and qi are at least (1− ǫ/13)b. Consider the sum over
i of these error terms. Notice that this sum is over at most 2/((1 − ǫ/13)b) elements in S. Hence,
the total additive error is bounded by

∑

i∈S

ǫ

26
(pi + qi + 2ǫb/13) ≤ ǫ

26
(2 + 4ǫ/(13 − ǫ)) ≤ ǫ/9

since ǫ ≤ 2.
Note that max(‖p′‖∞, ‖q′‖∞) ≤ b+ n−1 ≤ 2b for ǫ ≥ 1/

√
n. So, we can use the ℓ2-Distance-

Test on p′ and q′ with m = O(ǫ−8/3n2/3) as shown by Theorem 7.

If ‖p− q‖1 < ǫ4/3

32 3
√
n
, then so are ∆1 and ∆2. The first phase of the algorithm clearly accepts.

Using the fact that, for any vector v, ‖v‖22 ≤ ‖v‖1 · ‖v‖∞, we get ‖p′ − q′‖2 ≤ ǫ
4
√
n
. Therefore, the

ℓ2-Distance-Test accepts with probability at least 1− δ/2. Similarly, if ‖p− q‖1 > ǫ, then either
∆1 > ǫ/4 or ∆2 > ǫ/2. Either the first phase of the algorithm or the ℓ2-Distance-Test will reject.

To see the running time bound, note that the time for the first phase is O(n2/3ǫ−8/3 log(n/δ))
and that the time for ℓ2-Distance-Test is O(n2/3ǫ−8/3 log 1

δ). It is easy to see that our algorithm
makes an error either when it makes a bad estimation of ∆1 or when ℓ2-Distance-Test makes an
error. So, the probability of error is bounded by δ. 2

The next theorem improves this result by looking at the dependence of the variance calculation
in Section 2.1 on L∞ norms of the distributions separately.

Theorem 10 Given two black-box distributions p,q over [n], with ‖p‖∞ ≤ ‖q‖∞, there is a test

requiring O((n2‖p‖∞‖q‖∞ǫ−4 + n
√
‖q‖∞ǫ−2) log(1/δ)) samples that (1) if ‖p− q‖1 ≤ ǫ2

3
√
n
, it

accepts with probability at least 1 − δ and (2) if ‖p− q‖1 > ǫ, it rejects with probability at least
1− δ.

2.3 Testing ℓ1 Distance from Uniformity

A special case of Theorem 2 gives a constant-time algorithm which provides an additive approx-
imation of the ℓ2 distance of a distribution from the uniform distribution. For the problem of
testing that p is close to the uniform distribution in ℓ1 distance (i.e., testing closeness when q is
the uniform distribution), one can get a better sample complexity dependence on n.

Theorem 11 Given ǫ ≤ 1 and a black-box distribution p over [n], there is a test that takes O(ǫ−4 ·√
n · log (1/δ)) samples, accepts with probability at least 1 − δ if ‖p− U[n]‖1 ≤ ǫ/

√
3n, and rejects

with probability at least 1− δ if ‖p− U[n]‖1 > ǫ.

9

The proof of Theorem 11 relies on the following lemma, which can be proven using techniques from
Goldreich and Ron [32] (see also Lemma 5 in this paper).

Lemma 12 Given a black-box distribution p over [n], there is an algorithm that takes O(ǫ−2 ·√n ·
log (1/δ)) samples and estimates ‖p‖22 within an error of ǫ‖p‖22, with probability at least 1− δ.

Proof: [of Lemma 12] Consider the random variable rp from the ℓ2-Distance-Test. Since E [rp] =(
m
2

)
· ‖p‖22, we only need to show that it does not deviate from its expectation too much with high

probability. Again, using Chebyshev’s inequality and Lemma 5,

Pr [|rp − E [rp] | > ǫE [rp]] ≤
O(m2‖p‖22 +m3‖p‖32)

ǫ2m4‖p‖42
≤ 1

4
,

where the last inequality follows for m = O(ǫ−2√n) from the fact that ‖p‖2 ≥ n−1/2. The confi-
dence can be boosted to 1− δ using O(log(1/δ)) repetitions. 2

We note that, for an additive approximation of ‖p‖2, an analogous argument to the proof above
will yield an algorithm that uses O(ǫ−4) samples.

Proof: [of Theorem 11] The algorithm, given in Figure 3, estimates ‖p‖22 within ǫ2‖p‖22/5
using the algorithm from Lemma 12 and accepts only if the estimate is below (1 + 3ǫ2/5)/n.

Uniformity-Distance-Test(p,m, ǫ, δ)

1. Accept if GR-Uniformity-ℓ2-Distance-Test(p, ǫ2/5) returns an estimate at most (1 +
3ǫ2/5)/n.

2. Otherwise, reject.

Figure 3: Algorithm Uniformity-Distance-Test

First, observe the following relationship between the ℓ2 distance to the uniform distribution and
the collision probability.

‖p− U[n]‖22 =
∑

i

(pi −
1

n
)2 =

∑
p2i −

2

n
·
∑

pi +
1

n
= ‖p‖22 −

1

n
(1)

If ‖p− U[n]‖1 ≤ ǫ/
√
3n, then ‖p−U[n]‖22 ≤ ǫ2/3n. Using (1), we see that ‖p‖22 ≤ (1 + ǫ2/3)/n.

Hence, for ǫ ≤ 1, the estimate will be below (1+ ǫ2/5)(1+ ǫ2/3)/n ≤ (1+3ǫ2/5)/n with probability
at least 1− δ.

Conversely, suppose the estimate of ‖p‖22 is below (1 + 3ǫ2/5)/n. By Lemma 12, ‖p‖22 ≤
(1 + 3ǫ2/5)/((1 − ǫ2/5)n) ≤ (1 + ǫ2)/n for ǫ ≤ 1. Therefore, by (1), we can write

‖p− U[n]‖22 = ‖p‖22 −
1

n
≤ ǫ2/n.

So, we have ‖p−U[n]‖2 ≤ ǫ/
√
n. Finally, by the relation between ℓ1 and ℓ2 norms, ‖p− U[n]‖1 ≤ ǫ.

The sample complexity of the procedure will beO(ǫ−4·√n·log (1/δ)), arising from the estimation
of ‖p‖22 within ǫ2‖p‖22/5. 2

10

3 Lower Bounding the Sample Complexity

In this section we consider lower bounds on the sample complexity of testing closeness of distribu-
tions. In a previous version of this paper [9], we claimed an almost matching Ω(n2/3) lower bound
on the sample complexity for testing the closeness of two arbitrary distributions. Although it was
later determined that there were gaps in the proofs, recent results of [54] have shown that the
in fact the almost matching lower bounds do hold. Although new proof techniques were needed,
certain technical ideas such as “Poissonization” and the characterization of “canonical forms of
testing algorithms” that first appeared in the earlier version of this work did in fact turn out to be
useful in the correct lower bound proof of [54]. We will outline those ideas in this section.

We begin by discussing a characterization of canonical algorithms for testing properties of
distributions. Then we describe a pair of families of distributions that were suggested in the earlier
version of this work, and were in fact used by Valiant [54] in showing the correct lower bound. Next,
we investigate the required dependence on ǫ. Finally, we briefly consider naive learning algorithms,
which can be defined as algorithms that, given samples from a distribution, output a distribution
with small distance to the input distribution. We show that naive learning algorithms require
Ω(n) samples. We also note that, more recently, the dependency of testing uniformity on distance
parameter ǫ and n has been tightly characterized to be Θ(

√
n/ǫ2) by Paninski [45].

3.1 Characterization of Canonical Algorithms for Testing Properties of Distri-

butions

In this section, we characterize canonical algorithms for testing properties of distributions defined
by permutation-invariant functions. The argument hinges on the irrelevance of the labels of the
domain elements for such a function. We obtain this canonical form in two steps, corresponding to
the two lemmas below. The first step makes explicit the intuition that such an algorithm should
be symmetric, that is, the algorithm would not benefit from discriminating among the labels. In
the second step, we remove the use of labels altogether, and show that we can present the sample
to the algorithm in an aggregate fashion. Raskhodnikova et al. [48] use this chararecterization of
canonical algorithms for proving lower bounds on the sample complexity of distribution support
size and element distinctness problems.

Characterizations of property testing algorithms have been studied in other settings. For ex-
ample, using similar techniques, Alon et al. [2] show a canonical form for algorithms for testing
graph properties. Later, Goldreich and Trevisan [29] formally prove the result by Alon et al. In
a different setting, Bar-Yossef et al. [6] show a canonical form for sampling algorithms that ap-
proximate symmetric functions of the form f : An → B where A and B are arbitrary sets. In the
latter setting, the algorithm is given oracle access to the input vector and takes samples from the
coordinate values of this vector.

Next, we give the definitions of basic concepts on which we build a characterization of canonical
algorithms for testing properties of distributions. Then, we describe and prove our characterization.

Definition 13 (Permutation of a distribution) For a distribution p over [n] and a permuta-
tion π on [n], define π(p) to be the distribution such that for all i, π(p)π(i) = pi.

Definition 14 (Symmetric Algorithm) Let A be an algorithm that takes samples from k dis-
crete black-box distributions over [n] as input. We say that A is symmetric if, once the distributions
are fixed, the output distribution of A is identical for any permutation of the distributions.

11

Definition 15 (Permutation-invariant function) A k-ary function f on distributions over [n]
is permutation-invariant if for any permutation π on [n], and all distributions (p(1), . . . ,p(k)),

f(p(1), . . . ,p(k)) = f(π(p(1)), . . . , π(p(k))).

Lemma 16 Let A be an arbitrary testing algorithm for a k-ary property P defined by a permutation-
invariant function. Suppose A has sample complexity s(n), where n is the domain size of the dis-
tributions. Then, there exists a symmetric algorithm that tests the same property of distributions
with sample complexity s(n).

Proof: Given the algorithm A, construct a symmetric algorithm A′ as follows: Choose a random
permutation of the domain elements. Upon taking s(n) samples, apply this permutation to each
sample. Pass this (renamed) sample set to A and output according to A.

It is clear that the sample complexity of the algorithm does not change. We need to show that
the new algorithm also maintains the testing features of A. Suppose that the input distributions
(p(1), . . . ,p(k)) have the property P. Since the property is defined by a permutation-invariant
function, any permutation of the distributions maintains this property. Therefore, the permutation
of the distributions should be accepted as well. Let Sn denote the set of all permutations on [n].
Then,

Pr
[
A′ accepts (p(1), . . . ,p(k))

]
=

∑

π∈Sn

1

n!
Pr

[
A accepts (π(p(1)), . . . , π(p(k)))

]
,

which is at least 2/3 by the accepting probability of A.
An analogous argument on the failure probability for the case of the distributions (p(1), . . . ,p(k))

that should be rejected completes the proof. 2

In order to avoid introducing additional randomness in A′, we can try A on all possible permu-
tations and output the majority vote. This change would not affect the sample complexity, and it
can be shown that it maintains correctness.

Definition 17 (Fingerprint of a sample) Let S1 and S2 be multisets of at most s samples taken
from two black-box distributions over [n], p and q, respectively. Let the random variable Cij, for
0 ≤ i, j ≤ s, denote the number of elements that appear exactly i times in S1 and exactly j times
in S2. The collection of values that the random variables {Cij}0≤i,j≤s take is called the fingerprint
of the sample.

For example, let sample sets be S1 = {5, 7, 3, 3, 4} and S2 = {2, 4, 3, 2, 6}. Then, C10 = 2
(elements 5 and 7), C01 = 1 (element 6), C11 = 1 (element 4), C02 = 1 (element 2), C21 = 1
(element 3), and for remaining i, j’s, Cij = 0.

Lemma 18 If there exists a symmetric algorithm A for testing a binary property of distributions
defined by a permutation-invariant function, then there exist an algorithm for the same task that
gets as input only the fingerprint of the sample that A takes.

Proof: Fix a canonical order for Cij ’s in the fingerprint of a sample. Let us define the following
transformation on the sample: Relabel the elements such that the elements that appear exactly
the same number of times from each distribution (i.e., the ones that contribute to a single Cij in

12

the fingerprint) have consecutive labels and the labels are grouped to conform to the canonical
order of Cij ’s. Let us call this transformed sample the standard form of the sample. Since the
algorithm A is symmetric and the property is defined by a permutation-invariant function, such a
transformation does not affect the output of A. So, we can further assume that we always present
the sample to the algorithm in the standard form.

It is clear that given a sample, we can easily write down the fingerprint of the sample. Moreover,
given the fingerprint of a sample, we can always construct a sample (S1, S2) in the standard form
using the following algorithm: (1) Initialize S1 and S2 to be empty, and e = 1, (2) for every Cij

in the canonical order, and for Cij = kij times, include i and j copies of the element e in S1 and
S2, respectively, then increment e. This algorithm shows a one-to-one and onto correspondence
between all possible sample sets in the standard form and all possible {Cij}0≤i,j≤s values.

Consider the algorithm A′ that takes the fingerprint of a sample as input. Next, by using
algorithm from above, algorithm A′ constructs the sample in the standard form. Finally, A′ outputs
what A outputs on this sample. 2

Remark 19 Note that the definition of the fingerprint from Definition 17 can be generalized for a
collection of k sample sets from k distributions for any k. An analogous lemma to Lemma 18 can be
proven for testing algorithms for k-ary properties of distributions defined by a permutation-invariant
function. We fixed k = 2 for ease of notation.

3.2 Towards a Lower Bound on the Sample Complexity of Testing Closeness

In this section, we present techniques that were later used by Valiant [54] to prove a lower bound on
the sample complexity of testing closeness in ℓ1 distance as a function of the size n of the domain
of the distributions. We give a high-level description of the proof, indicate where our reasoning
breaks down and where Valiant [54] comes in.

Theorem 20 ([54]) Given any algorithm using only o(n2/3) samples from two discrete black-box
distributions over [n], for all sufficiently large n, there exist distributions p and q with ℓ1 distance
1 such that the algorithm will be unable to distinguish the case where one distribution is p and the
other is q from the case where both distributions are p.

By Lemma 16, we may restrict our attention to symmetric algorithms. Fix a testing algorithm
A that uses o(n2/3) samples from each of the input distributions.

Let us assume, without loss of generality, that n is a multiple of four and n2/3 is an integer. We
define the distributions p and q as follows: (1) For 1 ≤ i ≤ n2/3, pi = qi =

1
2n2/3 . We call these

elements the heavy elements. (2) For n/2 < i ≤ 3n/4, pi =
2
n and qi = 0. We call these element

the light elements of p. (3) For 3n/4 < i ≤ n, qi =
2
n and pi = 0. We call these elements the light

elements of q. (4) For the remaining i’s, pi = qi = 0. Note that these distributions do not depend
on A.

The ℓ1 distance of p and q is 1. Now, consider the following two cases:

Case 1: The algorithm is given access to two black-box distributions: both of which output
samples according to the distribution p.

Case 2: The algorithm is given access to two black-box distributions: the first one out-
puts samples according to the distribution p and the second one outputs samples
according to the distribution q.

13

To get a sense of why these distributions should be hard for any distance testing algorithm, note
that when restricted to the heavy elements, both distributions are identical. The only difference
between p and q comes from the light elements, and the crux of the proof is to show that this differ-
ence will not change the relevant statistics in a statistically significant way. For example, consider
the statistic which counts the number of elements that occur exactly once from each distribution.
One would like to show that this statistic has a very similar distribution when generated by Case 1
and Case 2, because the expected number of such elements that are light is much less than the
standard deviation of the number of such elements that are heavy.

Our initial attempts at formalizing the intuition above were incomplete. However, completely
formalizing this intuition, Valiant [54] subsequently showed that a symmetric algorithm with sample
complexity o(n2/3) can not distinguish between these two cases. By Lemma 16, the theorem follows.

Poissonization For simplifying the proof, it would be useful to have the frequency of each element
be independent of the frequencies of the other elements. To achieve this, we assume that algorithm
A first chooses two integers s1 and s2 independently from a Poisson distribution with the parameter
λ = s = o(n2/3). The Poisson distribution with the positive parameter λ has the probability mass
function p(k) = exp(−λ)λk/k!. Then, after taking s1 samples from the first distribution and s2
samples from the second distribution, A decides whether to accept or reject the distributions. In
the following, we give an overview of the proof that A cannot distinguish between Case 1 and Case 2
with success probability at least 2/3. Since both s1 and s2 will have values larger than s/2 with
probability at least 1−o(1) and the statistical distance of the distributions of two random variables
(i.e., the distributions on the samples) is bounded, it will follow that no symmetric algorithm with
sample complexity s/2 can.

Let Fi be the random variable corresponding to the number of times the element i appears in
the sample from the first distribution. Define Gi analogously for the second distribution. It is well
known that Fi is distributed identically to the Poisson distribution with parameter λ = sr, where
r is the probability of element i (cf., Feller ([25], p. 216). Furthermore, it can also be shown that
all Fi’s are mutually independent. Thus, the total number of samples from the heavy elements and
the total number of samples from the light elements are independent.

Canonical Testing Algorithms Recall the definition of the fingerprint of a sample from Sec-
tion 3.1. The random variable Cij, denotes the number of elements that appear exactly i times in
the sample from the first distribution and exactly j times in the sample from the second distribu-
tion. We can then assume that the algorithm is only given the fingerprint of the sample, and apply
Lemma 18.

Arguing in this way can lead to several subtle pitfalls, which Valiant’s proof [54] circumvents by
developing a body of additional, very nontrivial, technical machinery to show that the distributions
on the fingerprint when the samples come from Case 1 or Case 2 are indistinguishable.

3.3 Other Lower Bounds

In this section, we first give two lower bounds for the sample complexity of testing closeness in
terms of the distance parameter ǫ. Then, we show that a naive learning algorithm for distributions
require Ω(n) samples.

By appropriately modifying the distributions p and q from the proof, we can give a stronger
version of Theorem 20 with a dependence on ǫ.

14

Corollary 21 Given any test using only o(n2/3/ǫ2/3) samples, there exist distributions a and b of
ℓ1 distance ǫ such that the test will be unable to distinguish the case where one distribution is a and
the other is b from the case where both distributions are a.

We can get a lower bound of Ω(ǫ−2) for testing the ℓ2 distance with a rather simple proof.

Theorem 22 Given any test using only o(ǫ−2) samples, there exist distributions a and b of ℓ2
distance ǫ such that the test will be unable to distinguish the case where one distribution is a and
the other is b from the case where both distributions are a.

Proof: Let n = 2, a1 = a2 = 1/2 and b1 = 1/2 − ǫ/
√
2 and b2 = 1/2 + ǫ/

√
2. Distinguishing

these distributions is exactly the question of distinguishing a fair coin from a coin of bias Θ(ǫ)
which is well known to require Θ(ǫ−2) coin flips. 2

The next theorem shows that learning a distribution using sublinear number of samples is not
possible.

Theorem 23 Suppose we have an algorithm that draws o(n) samples from some unknown distri-
bution b and outputs a distribution c. There is some distribution b for which the output c is such
that b and c have ℓ1 distance close to one.

Proof: (Sketch) Let AS be the distribution that is uniform over S ⊆ {1, . . . , n}. Pick S
at random among sets of size n/2 and run the algorithm on AS . The algorithm only learns o(n)
elements from S. So with high probability the ℓ1 distance of whatever distribution the algorithm
output will have ℓ1 distance from AS of nearly one. 2

4 Applications to Markov Chains

Random walks on Markov chains generate probability distributions over the states of the chain, in-
duced by the endpoints of the random walks. We employ ℓ1-Distance-Test, described in Section 2,
to test mixing properties of Markov Chains.

This application of ℓ1-Distance-Test is initially inspired by the work of Goldreich and Ron [32],
which conjectured an algorithm for testing expansion of bounded-degree graphs. Their algorithm
is based on comparing the distribution of the endpoints of random walks on a graph to the uni-
form distribution via collisions. Subsequently to this work, Czumaj and Sohler [22], Kale and
Seshadri [37], and Nachmias and Shapira [43] have independently concluded that the algorithm of
Goldreich and Ron is provably a test for expansion property of graphs.

4.1 Preliminaries and Notation

Let M be a Markov chain represented by the transition probability matrix M. The point distribu-
tion uth state of M corresponds to an n-vector eu = (0, . . . , 1, . . . , 0), with a one in only the uth
location and zeroes elsewhere. The distribution generated by t-step random walks starting at state
u is denoted as a vector-matrix product euM

t.
Instead of computing such products in our algorithms, we assume that our ℓ1-Distance-Test

has access to an oracle, next node which on input of the state u responds with the state v with
probability M(u, v). Given such an oracle, the distribution eTuM

t can be generated in O(t) steps.

15

Furthermore, the oracle itself can be realized in O(log n) time per query, given linear preprocessing
time to compute the cumulative sums Mc(j, k) =

∑k
i=1 M(j, i). The oracle can be simulated on

input u by producing a random number α in [0, 1] and performing binary search over the uth row
of Mc to find v such that Mc(u, v) ≤ α ≤ Mc(u, v + 1). It then outputs state v. Note that
when M is such that every row has at most d nonzero terms, slight modifications of this yield an
O(log d) implementation consuming O(n+m) words of memory if M is n× n and has m nonzero
entries. Improvements of the work given in [55] can be used to prove that in fact constant query
time is achievable with space consumption O(n + m) for implementing next node, given linear
preprocessing time.

We define a notion of closeness between states u and v, based on the distributions of endpoints
of t step random walks starting at u and v respectively.

Definition 24 We say that two states u and v are (ǫ, t)-close if the distribution generated by t-step
random walks starting at u and v are within ǫ in the L1 norm, i.e. ‖euMt − evM

t‖1 < ǫ. Similarly
we say that a state u and a distribution s are (ǫ, t)-close if ‖euMt − s‖1 < ǫ.

We say M is (ǫ, t)-mixing if all states are (ǫ, t)-close to the same distribution:

Definition 25 A Markov chain M is (ǫ, t)-mixing if a distribution s exists such that for all states
u, ‖euMt − s‖1 ≤ ǫ.

For example, if M is (ǫ,O(log n log 1/ǫ))-mixing, then M is rapidly-mixing [53]. It can be easily
seen that if M is (ǫ, t0)-mixing then it is (ǫ, t) mixing for all t > t0.

We now make the following definition:

Definition 26 The average t-step distribution, sM,t of a Markov chain M with n states is the
distribution

sM,t =
1

n

∑

u

euM
t.

This distribution can be easily generated by picking u uniformly from [n] and walking t steps from
state u. In an (ǫ, t)-mixing Markov chain, the average t-step distribution is ǫ-close to the stationary
distribution. In a Markov chain that is not (ǫ, t)-mixing, this is not necessarily the case.

Each test given below assumes access to an ℓ1 distance tester ℓ1-Distance-Test(u, v, ǫ, δ) which
given oracle access to distributions eu, ev over the same n element set decides whether ‖eu − ev‖1 ≤
f(ǫ) or if ‖eu − ev‖1 > ǫ with confidence 1− δ. The time complexity of L1 test is T (n, ǫ, δ), and
f is the gap of the tester. The implementation of ℓ1-Distance-Test given earlier in Section 2 has
gap f(ǫ) = ǫ/(4

√
n), and time complexity T = O(ǫ−8/3n2/3 log n

δ).

4.2 A Test for Mixing and a Test for Almost-Mixing

We show how to decide if a Markov chain is (ǫ, t)-mixing; then, we define and solve a natural
relaxation of that problem.

In order to test whether M is (ǫ, t)-mixing, one can use ℓ1-Distance-Test to compare each
distribution euM

t with sM,t, with error parameter ǫ and confidence δ/n. The running time is
O(nt · T (n, ǫ, δ/n)). The algorithm is given in Figure 4.

The behavior of the test is as follows: If every state is (f(ǫ)/2, t)-close to some distribution s,
then sM,t is f(ǫ)/2-close to s. Therefore every state is (ǫ, t)-close to sM,t and the tester passes. On

16

Mixing(M, t, ǫ, δ)

1. For each state u in M
Reject if ℓ1-Distance-Test(euM

t, sM,t, ǫ, δ/n) rejects.

2. Otherwise, accept.

Figure 4: Algorithm Mixing

the other hand, if there is no distribution that is (ǫ, t)-close to all states, then, in particular, sM,t

is not (ǫ, t)-close to at least one state and so the tester fails. Thus, we have shown the following
theorem.

Theorem 27 Let M be a Markov chain. Given ℓ1-Distance-Test with time complexity T (n, ǫ, δ)
and gap f and an oracle for next node, there exists a test with time complexity O(nt ·T (n, ǫ, δ/n))
with the following behavior: If M is (f(ǫ)/2, t)-mixing then Pr [M is accepted] > 1− δ; if M is not
(ǫ, t)-mixing then Pr [M is accepted] < δ.

For the implementation of ℓ1-Distance-Test given in Section 2, the running time of Mixing
algorithm is O(ǫ−8/3n5/3t log n

δ). It distinguishes between chains which are ǫ/(4
√
n) mixing and

those which are not ǫ-mixing. The running time is sublinear in the size of M if t ∈ o(n1/3/ log(n)).
A relaxation of this procedure is testing that most starting states reach the same distribution

after t steps. If (1 − ρ) fraction of the states u of a given M satisfy ‖~s− euM
t‖1 ≤ ǫ, then we

say that M is (ρ, ǫ, t)-almost mixing. The algorithm in Figure 5 tests whether a Markov chain is
(ρ, ǫ, t)-almost mixing.

AlmostMixing(M, t, ǫ, δ, ρ)
Repeat O(1/ρ · ln(1/δ)) times

1. Pick a state u in M uniformly at random.

2. Reject if ℓ1-Distance-Test(euM
t, sM,t, ǫ, δρ) rejects.

Accept if none of the tests above rejected.

Figure 5: Algorithm AlmostMixing

Thus, we obtain the following theorem.

Theorem 28 Let M be a Markov chain. Given ℓ1-Distance-Test with time complexity T (n, ǫ, δ)
and gap f and an oracle for next node, there exists a test with time complexity O(tρT (n, ǫ, δρ) log

1
δ)

with the following behavior: If M is (ρ, f(ǫ)/2, t)-almost mixing then Pr [M is accepted] > 1− δ; If
M is not (ρ, ǫ, t)-almost mixing then Pr [M is accepted] < δ.

4.3 A Property Tester for Mixing

The main result of this section is a test that determines if a Markov chain’s matrix representation
can be changed in an ǫ fraction of the non-zero entries to turn it into a (4ǫ, 2t)-mixing Markov
chain. This notion falls within the scope of property testing [50, 30, 31, 23, 47], which in general
takes a set S with distance function ∆ and a subset P ⊆ S and decides if an elements x ∈ S is in

17

P or if it is far from every element in P , according to ∆. For the Markov chain problem, we take
as our set S all matrices M of size n×n with at most d non-zero entries in each row. The distance
function is given by the fraction of non-zero entries in which two matrices differ, and the difference
in their average t-step distributions.

4.3.1 Preliminaries

We start with defining a distance function on a pair of Markov chains on the same state space.

Definition 29 Let M1 and M2 be n-state Markov chains with at most d non-zero entries in each
row. Define distance function ∆(M1,M2) = (ǫ1, ǫ2) if and only if M1 and M2 differ on ǫ1dn entries
and ‖sM1,t − sM2,t‖1 = ǫ2. We say that M1 and M2 are (ǫ1, ǫ2)-close if ∆(M1,M2) ≤ (ǫ1, ǫ2).

2

A natural question is whether all Markov chains are ǫ-close to an (ǫ, t)-mixing Markov chain, for
certain parameters of ǫ. For example, given a strongly connected and dense enough Markov chain,
adding the edges of a constant-degree expander graph and choosing t = Θ(log n) yields a Markov
chain which (ǫ, t)-mixes. However, for sparse Markov chains or small ǫ, such a transformation
does not work. Furthermore, the situation changes when asking whether there is an (ǫ, t)-mixing
Markov chain that is close both in the matrix representation and in the average t-step distribution:
specifically, it can be shown that there exist constants ǫ, ǫ1, ǫ2 < 1 and Markov chain M for which
no Markov chain is both (ǫ1, ǫ2)-close to M and (ǫ, log n)-mixing. In fact, when ǫ1 is small enough,
the problem becomes nontrivial even for ǫ2 = 1. The Markov chain corresponding to random walks
on the n-cycle provides an example which is not (t−1/2, 1)-close to any (ǫ, t)-mixing Markov chain.

Overview As before, our algorithm proceeds by taking random walks on the Markov chain and
comparing final distributions by using the ℓ1-Distance-Test. We define three types of states. First,
a normal state is one from which a random walk arrives at nearly the average t-step distribution.
In the discussion which follows, t and ǫ denote constant parameters fixed as input to the algorithm.

Definition 30 Given a Markov Chain M, a state u of the chain is normal if it is (ǫ, t)-close to
sM,t. That is if ‖euMt − sM,t‖1 ≤ ǫ. A state is bad if it is not normal.

Testing normality requires time O(t · T (n, ǫ, δ)). Using this definition, the first two algorithms
given in this section can be described as testing whether all (resp. most) states in M are normal.
Additionally, we need to distinguish states which not only produce random walks which arrive near
sM,t but which have low probability of visiting a bad state. We call such states smooth states.

Definition 31 A state eu in a Markov chain M is smooth if (a) u is (ǫ, τ)-close to sM,t for
τ = t, . . . , 2t and (b) the probability that a 2t-step random walk starting at eu visits a bad state is
at most ǫ.

Testing smoothness of a state requires O(t2 · T (n, ǫ, δ)) time. Our property test merely verifies by
random sampling that most states are smooth.

2We say (x, y) ≤ (a, b) if x ≤ a and y ≤ b.

18

4.3.2 The Test

We present below algorithm TestMixing in Figure 6, which on input Markov chain M and param-
eter ǫ determines whether at least (1− ǫ) fraction of the states of M are smooth according to two
distributions: uniform and the average t-step distribution. Assuming access to ℓ1-Distance-Test
with complexity T (n, ǫ, δ), this test runs in time O(ǫ−2t2T (n, ǫ, 1

6t)).

TestMixing(M, t, ǫ)

1. Let k = Θ(1/ǫ).

2. Choose k states u1, . . . , uk uniformly at random.

3. Choose k states uk+1, . . . , u2k independently according to sM,t.

4. For i = 1 to 2k
(a) u = ~eui .

(b) For w = 1 to O(1/ǫ) and j = 1 to 2t
i. u = next node(M, u)
ii. ℓ1-Distance-Test(euM

t, sM,t, ǫ,
1
6t)

(c) For τ = t to 2t, ℓ1-Distance-Test(~euiM
τ , sM,t, ǫ,

1
3t)

5. Pass if all tests pass.

Figure 6: Algorithm TestMixing

The main lemma of this section says that any Markov chain that is accepted by our test is
(2ǫ, 1.01ǫ)-close to a (4ǫ, 2t)-mixing Markov chain. First, we describe the modification of M that
we later show is (4ǫ, 2t)-mixing.

Definition 32 F is a function from n× n matrices to n× n matrices such that F (M) returns M̃
by modifying the rows corresponding to bad states of M to eu, where u is any smooth state.

An important feature of the transformation F is that it does not affect the distribution of random
walks originating from smooth states very much.

Lemma 33 Given a Markov chain M and any state u ∈ M which is smooth. If M̃ = F (M), then,

for any time t ≤ τ ≤ 2t, ‖euMτ − euM̃
τ‖1 ≤ ǫ and ‖sM,t − euM̃

τ‖1 ≤ 2ǫ.

Proof: Define Γ as the set of all walks of length τ from u in M. Partition Γ into ΓB and Γ̄B

where ΓB is the subset of walks which visit a bad state. Let χw,i be an indicator function which
equals 1 if walk w ends at state i, and 0 otherwise. Let weight function W (w) be defined as the
probability that walk w occurs. Finally, define the primed counterparts Γ′, etc. for the Markov
chain M̃. Now the ith element of euM

τ is
∑

w∈ΓB
χw,i · W (w) +

∑
w∈Γ̄B

χw,i · W (w). A similar

expression can be written for each element of euM̃
τ . Since W (w) = W ′(w) whenever w ∈ Γ̄B it

follows that ‖euMτ − euM̃
τ‖1 ≤

∑
i

∑
w∈ΓB

χw,i|W (w)−W ′(w)| ≤ ∑
i

∑
w∈ΓB

χw,iW (w) ≤ ǫ.

Additionally, since ‖sM,t − euM
τ‖1 ≤ ǫ by the definition of smooth, it follows that ‖sM,t − euM̃

τ‖1 ≤
‖sM,t − euM

τ‖1 + ‖euMτ − euM̃
τ‖1 ≤ 2ǫ. 2

We can now prove the main lemma.

19

Lemma 34 If according to both the uniform distribution and the distribution sM,t, (1− ǫ) fraction
of the states of a Markov chain M are smooth, then the matrix M is (2ǫ, 1.01ǫ)-close to a matrix

M̃ which is (4ǫ, 2t)-mixing.

Proof: Let M̃ = F (M). M̃ and M differ on at most ǫn(d + 1) entries. This gives the first

part of our distance bound. For the second we analyze ‖sM,t − s
M̃,t

‖1 = 1
n

∑
u ‖euMt − euM̃

t‖1
as follows. The sum is split into two parts, over the nodes which are smooth and those nodes
which are not. For each of the smooth nodes u, Lemma 33 says that ‖euMt − euM̃

t‖1 ≤ ǫ.
Nodes which are not smooth account for at most ǫ fraction of the nodes in the sum, and thus can
contribute no more than ǫ absolute weight to the distribution s

M̃,t
. The sum can be bounded now

by ‖sM,t − s
M̃,t

‖1 ≤ 1
n((1− ǫ)nǫ+ ǫn) ≤ 2ǫ.

In order to show that M̃ is (4ǫ, 2t)-mixing, we prove that for every state u, ‖sM,t − euM
2t‖1 ≤

4ǫ. The proof considers three cases: u smooth, u bad, and u normal. The last case is the most
involved.

If u is smooth in the Markov chainM, then Lemma 33 immediately tells us that ‖sM,t − euM̃
2t‖1 ≤

2ǫ. Similarly if u is bad in the Markov chain M, then in the chain M̃ any path starting at u tran-
sitions to a smooth state v in one step. Since ‖sM,t − evM̃

2t−1‖1 ≤ 2ǫ by Lemma 33, the desired
bound follows.

If eu is a normal state which is not smooth, then we need a more involved analysis of the
distribution euM̃

2t. We divide Γ, the set of all 2t-step walks in M starting at u, into three sets,
which we consider separately.

For the first set take ΓB ⊆ Γ to be the set of walks which visit a bad node before time t. Let
db be the distribution over endpoints of these walks, that is, let db assign to state i the probability
that any walk w ∈ ΓB ends at state i. Let w ∈ ΓB be any such walk. If w visits a bad state at
time τ < t, then in the new Markov chain M̃, w visits a smooth state v at time τ + 1. Another
application of Lemma 33 implies that ‖evM̃2t−τ−1 − sM,t‖1 ≤ 2ǫ. Since this is true for all walks
w ∈ ΓB, we find ‖db − sM,t‖1 ≤ 2ǫ.

For the second set, let ΓS ⊆ Γ \ ΓB be the set of walks not in ΓB which visit a smooth state
at time t. Let ds be the distribution over endpoints of these walks. Any walk w ∈ ΓS is identical
in the chains M and M̃ up to time t, and then in the chain M̃ visits a smooth state v at time t.
Thus since ‖evM̃t − sM,t‖1 ≤ 2ǫ, we have ‖ds − sM,t‖1 ≤ 2ǫ.

Finally, let ΓN = Γ \ (ΓB ∪ ΓS), and let dn be the distribution over endpoints of walks in ΓN .
ΓN consists of a subset of the walks from a normal node u which do not visit a smooth node at
time t. By the definition of normal, u is (ǫ, t)-close to sM,t in the Markov chain M. By assumption
at most ǫ weight of sM,t is assigned to nodes which are not smooth. Therefore |ΓN |/|Γ| is at most
ǫ+ ǫ = 2ǫ.

Now define the weights of these distributions as ωb, ωs and ωn. That is ωb is the probability that
a walk from u in M visits a bad state before time t. Similarly ωs is the probability that a walk does
not visit a bad state before time t, but visits a smooth state at time t, and ωn is the probability
that a walk does not visit a bad state but visits a normal, non-smooth state at time t. Then,
ωb + ωs + ωn = 1. Finally, ‖euM̃2t − sM,t‖1 = ‖ωbdb + ωsds + ωndn − sM,t‖1 ≤ ωb‖db − sM,t‖1 +
ωs‖ds − sM,t‖1+ωn‖dn − sM,t‖1 ≤ (ωb+ωs)max{‖db − sM,t‖1, ‖ds − sM,t‖1}+ωn‖dn − sM,t‖1 ≤
4ǫ. 2

Given this, we finally can show our main theorem.

20

Theorem 35 Let M be a Markov chain. Given ℓ1-Distance-Test with time complexity T (n, ǫ, δ)
and gap f and an oracle for next node, there exists a test such that if M is (f(ǫ), t)-mixing

then the test accepts with probability at least 2/3. If M is not (2ǫ, 1.01ǫ)-close to any M̃ which
is (4ǫ, 2t)-mixing then the test rejects with probability at least 2/3. The runtime of the test is
O(1

ǫ2
· t2 · T (n, ǫ, 1

6t)).

Proof: Since in any Markov chain M which is (ǫ, t)-mixing all states are smooth, M accepts
this test with probability at least (1−δ). Furthermore, any Markov chain with at least (1−ǫ) fraction
of smooth states is (2ǫ, 1.01ǫ)-close to a Markov chain which is (4ǫ, 2t)-mixing, by Lemma 34. 2

4.4 Extension to Sparse Graphs and Uniform Distributions

The property test can also be made to work for general sparse Markov chains by a simple modifi-
cation to the testing algorithms. Consider Markov chains with at most m ≪ n2 nonzero entries,
but with no nontrivial bound on the number of nonzero entries per row. Then, the definition of
the distance should be modified to ∆(M1,M2) = (ǫ1, ǫ2) if M1 and M2 differ on ǫ1 ·m entries and
the ‖sM1,t − sM2,t‖1 = ǫ2. The above test does not suffice for testing that M is (ǫ1, ǫ2)-close to

an (ǫ, t)-mixing Markov chain M̃ , since in our proof, the rows corresponding to bad states may

have many nonzero entries and thus M and M̃ may differ in a large fraction of the nonzero entries.
However, let D be a distribution on states in which the probability of each state is proportional to
cardinality of the support set of its row. Natural ways of encoding this Markov chain allow constant
time generation of states according to D. By modifying the algorithm to also test whether most
states according to D are smooth, one can show that M is close to an (ǫ, t)-mixing Markov chain

M̃ .
Because of our ability to test ǫ-closeness to the uniform distribution in O(n1/2ǫ−2) steps [32], it

is possible to speed up our test for mixing for those Markov chains known to have uniform stationary
distribution, such as Markov chains corresponding to random walks on regular graphs. An ergodic
random walk on the vertices of an undirected graph instead may be regarded (by looking at it “at
times t+1/2”) as a random walk on the edge-midpoints of that graph. The stationary distribution
on edge-midpoints always exists and is uniform. So, for undirected graphs we can speed up mixing
testing by using a tester for closeness to the uniform distribution.

Acknowledgments We are very grateful to Oded Goldreich and Dana Ron for sharing an early
draft of their work with us and for several helpful discussions. We would also like to thank Naoke
Abe, Richard Beigel, Yoav Freund, Russell Impagliazzo, Jeff Ketchersid, Kevin Matulef, Alexis
Maciel, Krzysztof Onak, Sofya Raskhodnikova, and Tassos Viglas for helpful discussions. Finally,
we thank Ning Xie for pointing out errors in the proofs in an earlier version.

References

[1] Michal Adamaszek, Artur Czumaj, and Christian Sohler. Testing monotone continuous dis-
tributions on high-dimensional real cubes. In Proceedings of 21st ACM-SIAM Symposium on
Discrete Algorithms, pages 56–65, 2010.

[2] N. Alon, M. Krivelevich, E. Fischer, and M. Szegedy. Efficient testing of large graphs. In
IEEE, editor, 40th Annual Symposium on Foundations of Computer Science: October 17–19,

21

1999, New York City, New York,, pages 656–666, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1999. IEEE Computer Society Press.

[3] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. JCSS, 58, 1999.

[4] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

[5] Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef, Ronitt Rubinfeld, and Ning Xie.
Testing k-wise and almost k-wise independence. In David S. Johnson and Uriel Feige, editors,
STOC, pages 496–505. ACM, 2007.

[6] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Sampling algorithms: Lower bounds and
applications. In Proceedings of 33th Symposium on Theory of Computing, Crete, Greece, 6–8
July 2001. ACM.

[7] Tuğkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The complexity of ap-
proximating the entropy. SIAM Journal on Computing, 35(1):132–150, 2005.

[8] Tuğkan Batu, Lance Fortnow, Eldar Fischer, Ravi Kumar, Ronitt Rubinfeld, and Patrick
White. Testing random variables for independence and identity. In Proceedings of 42nd FOCS.
IEEE, 2001.

[9] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White. Testing
that distributions are close. In Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, pages 259–269, Redondo Beach, CA, 2000. IEEE Computer Society.

[10] Tuğkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing monotone
and unimodal distributions. In Proceedings of 36th ACM Symposium on Theory of Computing,
pages 381–390, 2004.

[11] Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating entropy over data streams. In Yossi
Azar and Thomas Erlebach, editors, ESA, volume 4168 of Lecture Notes in Computer Science,
pages 148–159. Springer, 2006.

[12] Mickey Brautbar and Alex Samorodnitsky. Approximating entropy from sublinear samples.
In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, SODA, pages 366–375. SIAM, 2007.

[13] Vladimir Braverman and Rafail Ostrovsky. Measuring independence of datasets. In Pro-
ceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pages 271–280, 2010.

[14] Vladimir Braverman and Rafail Ostrovsky. Zero-one frequency laws. In Proceedings of the
42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, pages 281–290, 2010.

[15] A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent permutations.
JCSS, 60, 2000.

22

[16] Amit Chakrabarti, Khanh Do Ba, and S. Muthukrishnan. Estimating entropy and entropy
norm on data streams. In Bruno Durand and Wolfgang Thomas, editors, STACS, volume 3884
of Lecture Notes in Computer Science, pages 196–205. Springer, 2006.

[17] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algorithm for
estimating the entropy of a stream. ACM Transactions on Algorithms, 6(3), 2010.

[18] Steve Chien, Katrina Ligett, and Andrew McGregor. Space-efficient estimation of robust
statistics and distribution testing. In Proceedings of Innovations in Computer Science, Beijing,
China, 2010.

[19] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley Series in
Telecommunications. John Wiley & Sons, 1991.

[20] N. Cressie and P.B. Morgan. Design considerations for Neyman Pearson and Wald hypothesis
testing. Metrika, 36(6):317–325, 1989.

[21] I. Csiszár. Information-type measures of difference of probability distributions and indirect
observations. Studia Scientiarum Mathematicarum Hungarica, 1967.

[22] Artur Czumaj and Christian Sohler. Testing expansion in bounded-degree graphs. In FOCS,
pages 570–578. IEEE Computer Society, 2007.

[23] Funda Ergün, Sampath Kannan, S. Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. In STOC 30, pages 259–268, 1998.

[24] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate L1-difference
algorithm for massive data streams (extended abstract). In FOCS 40, 1999.

[25] William Feller. An Introduction to Probability Theory and Applications, volume 1. John Wiley
& Sons Publishers, New York, NY, 3rd ed., 1968.

[26] J. Fong and M. Strauss. An approximate Lp-difference algorithm for massive data streams. In
Annual Symposium on Theoretical Aspects of Computer Science, 2000.

[27] Alan Frieze and Ravi Kannan. Quick approximation to matrices and applications. COMBI-
NAT: Combinatorica, 19, 1999.

[28] Phillip B. Gibbons and Yossi Matias. Synopsis data structures for massive data sets. In SODA
10, pages 909–910. ACM-SIAM, 1999.

[29] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Technical
Report ECCC-10, Electronic Colloquium on Computational Complexity, January 2001.

[30] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. In FOCS 37, pages 339–348. IEEE, 14–16 October 1996.

[31] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. In STOC 29,
pages 406–415, 1997.

[32] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Technical
Report TR00-020, Electronic Colloquium on Computational Complexity, 2000.

23

[33] G. H. Golub and C. F. van Loan. Matrix Computations. The John Hopkins University Press,
Baltimore, MD, 1996.

[34] Sudipto Guha, Piotr Indyk, and Andrew McGregor. Sketching information divergences. Ma-
chine Learning, 72(1-2):5–19, 2008.

[35] Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian. Sublinear estimation of
entropy and information distances. ACM Transactions on Algorithms, 5(4), 2009.

[36] Piotr Indyk and Andrew McGregor. Declaring independence via the sketching of sketches. In
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2008, San Francisco, California, USA, January 20-22, 2008, pages 737–745, 2008.

[37] Satyen Kale and C. Seshadhri. An expansion tester for bounded degree graphs. In Luca Aceto,
Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP (1), volume 5125 of Lecture Notes in Computer Science, pages
527–538. Springer, 2008.

[38] R. Kannan. Markov chains and polynomial time algorithms. In Shafi Goldwasser, editor,
Proceedings: 35th Annual Symposium on Foundations of Computer Science, November 20–22,
1994, Santa Fe, New Mexico, pages 656–671, 1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA, 1994. IEEE Computer Society Press.

[39] Sampath Kannan and Andrew Chi-Chih Yao. Program checkers for probability generation.
In Javier Leach Albert, Burkhard Monien, and Mario Rodŕıguez-Artalejo, editors, ICALP 18,
volume 510 of Lecture Notes in Computer Science, pages 163–173, Madrid, Spain, 8–12 July
1991. Springer-Verlag.

[40] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, 1973.

[41] E. L. Lehmann. Testing Statistical Hypotheses. Wadsworth and Brooks/Cole, Pacific Grove,
CA, second edition, 1986. [Formerly New York: Wiley].

[42] S-K. Ma. Calculation of entropy from data of motion. Journal of Statistical Physics, 26(2):221–
240, 1981.

[43] Asaf Nachmias and Asaf Shapira. Testing the expansion of a graph. Electronic Colloquium on
Computational Complexity (ECCC), 14(118), 2007.

[44] J. Neyman and E.S. Pearson. On the problem of the most efficient test of statistical hypotheses.
Philos. Trans. Royal Soc. A, 231:289–337, 1933.

[45] Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete
data. IEEE Transactions on Information Theory, 54(10):4750–4755, 2008.

[46] Beresford N. Parlett. The Symmetric Eigenvalue Problem, volume 20 of Classics in applied
mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1998.

24

[47] Michal Parnas and Dana Ron. Testing the diameter of graphs. In Dorit Hochbaum, Klaus
Jensen, José D.P. Rolim, and Alistair Sinclair, editors, Randomization, Approximation, and
Combinatorial Optimization, volume 1671 of Lecture Notes in Computer Science, pages 85–96.
Springer-Verlag, 8–11 August 1999.

[48] Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. Strong lower bounds for
approximating distribution support size and the distinct elements problem. SIAM J. Comput.,
39(3):813–842, 2009.

[49] Ronitt Rubinfeld and Rocco A. Servedio. Testing monotone high-dimensional distributions.
Random Struct. Algorithms, 34(1):24–44, 2009.

[50] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, April 1996.

[51] Ronitt Rubinfeld and Ning Xie. Testing non-uniform -wise independent distributions over
product spaces. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer
auf der Heide, and Paul G. Spirakis, editors, ICALP (1), volume 6198 of Lecture Notes in
Computer Science, pages 565–581. Springer, 2010.

[52] Amit Sahai and Salil Vadhan. A complete promise problem for statistical zero-knowledge. In
Proceedings of the 38th Annual Symposium on the Foundations of Computer Science, pages
448–457. IEEE, 20–22 October 1997.

[53] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly
mixing Markov chains. Information and Computation, 82(1):93–133, July 1989.

[54] Paul Valiant. Testing symmetric properties of distributions. In Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, pages 383–392, 2008.

[55] A. J. Walker. An efficient method for generating discrete random variables with general
distributions. ACM trans. math. software, 3:253–256, 1977.

[56] Kenji Yamanishi. Probably almost discriminative learning. Machine Learning, 18(1):23–50,
1995.

A Chebyshev’s Inequality

Chebyshev’s inequality states that for any random variable A, and ρ > 0,

Pr [|A− E[A]| ≥ ρ] ≤ Var (A)

ρ2
.

25

	1 Introduction
	1.1 Related Work
	1.2 Notation

	2 Testing Closeness of Distributions
	2.1 Closeness in 2 Norm
	2.2 Closeness in L1 Norm
	2.3 Testing 1 Distance from Uniformity

	3 Lower Bounding the Sample Complexity
	3.1 Characterization of Canonical Algorithms for Testing Properties of Distributions
	3.2 Towards a Lower Bound on the Sample Complexity of Testing Closeness
	3.3 Other Lower Bounds

	4 Applications to Markov Chains
	4.1 Preliminaries and Notation
	4.2 A Test for Mixing and a Test for Almost-Mixing
	4.3 A Property Tester for Mixing
	4.3.1 Preliminaries
	4.3.2 The Test

	4.4 Extension to Sparse Graphs and Uniform Distributions

	A Chebyshev's Inequality

