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Abstract

Novel systems and algorithms have been designed and built to recognize
affective patterns in physiological signals. Experiments were conducted
for evaluation of the new systems and algorithms in three types of set-
tings: a highly constrained laboratory setting, a largely unconstrained
ambulatory environment, and a less unconstrained automotive environ-
ment. The laboratory experiment was designed to test for the presence
of unique physiological patterns in each of eight different emotions given
a relatively motionless seated subject, intentionally feeling and expressing
these states. This experiment generated a large dataset of physiological
signals containing many day-to-day variations, and the proposed features
contributed to a success rate of 81% for discriminating all eight emotions
and rates of up to 100% for subsets of emotion based on similar emotion
qualities. New wearable computer systems and sensors were developed and
tested on subjects who walked, jogged, talked, and otherwise went about
daily activities. Although in the unconstrained ambulatory setting, phys-
ical motion often overwhelmed affective signals, the systems developed
in this thesis are currently useful as activity monitors, providing an im-
age diary correlated with physiological signals. Automotive systems were
used to detect physiological stress during the natural but physically driv-
ing task. This generated a large database of physiological signals covering
over 36 hours of driving. Algorithms for detecting driver stress achieved a
recognition rates of 96% using stress ratings based on task conditions for
validation and 89% accuracy using questionnaires analysis for validation.
Further results in which metrics of stress from video tape annotations of
the drive were correlated with physiological features showed highly signif-
icant correlations (up to r = .77 for over 4000 samples). Together, these
three experiments show a range of success in recognizing affect from phys-
iology, showing high recognition rates in somewhat constrained conditions
and highlighting the need for more automatic context sensing in uncon-
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more automatic context sensing in unconstrained conditions. The recog-
nition rates obtained thus far lend support to the hypothesis that many
emotional differences can be automatically discriminated in patterns of
physiological changes.

Thesis Supervisor: Rosalind W. Picard
Title: Professor MIT Media Laboratory
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Chapter 1

Introduction

There is a movement in computer science toward developing systems that learn what

their users want and that try to model their user's interests and respond in a more

adaptive way. Currently, methods of modeling user preferences and frustrations in-

volve active non-social interactions, such as clicking on menus and creating preference

lists; however, the natural way people communicate and respond to satisfaction or

dissatisfaction is through affective expression. To appear socially intelligent, comput-

ers will have to develop a model of their user's emotional state and respond to that

state appropriately. This affective intelligence becomes more important as computers

become more ubiquitous. A natural, social interaction with a spreadsheet or program-

ming task might seem superfluous, but computers will soon be everywhere, in our

homes, assisting with cooking, heating, and room ambiance, in our cars, controlling

communication, navigation and music selection and even in our clothing, extending

our senses, jogging our memories in appropriate contexts and perhaps broadcasting

messages expressing our personality.

One of the main thrusts of engineering has been to model natural phenomena.

Since the time of William James in 1890, it has been hypothesized that emotion could

be modeled according to the unique patterns of physiological signals. This hypothesis

has been challenged and defended many times and most recently it has been put forth

that more sophisticated feature combination methods would be the key to finding

these patterns[CT90]. The research of this thesis represents a contribution to the

18



field of electrical engineering by demonstrating a new application of signal processing

and pattern recognition techniques to the problem of emotion recognition, and by

showing promising results in this analysis. Novel prototype systems for gathering

affective data are developed and results show how aspects of a user's affective state

can be recognized.

Research in the area of computer emotion understanding is just beginning to de-

velop. Efforts exist focusing different affective channels such as the analysis of voice,

facial expression and profiling behavior. This work explores the use of physiolog-

ical signals for detecting affect. Although the best overall detection method may

incorporate several of these modalities, affect detection through physiology offers a

private, continuous signal for computer human interaction that is free of the artifact

of social masking. Physiological signals have not been traditionally considered as an

input channel for a computer, but as computers move beyond desktop applications

and become integrated into clothing and vehicles the opportunity for greater physical

contact between user and machine increases. This thesis explores the extent to which

affect can be detected through physiology in various environments: in the office, while

walking around performing daily activities and while driving a car. To study these

situations, physiological sensors were integrated into several new prototype systems

using wearable computers and an automobile as platforms.

The automotive experiment focused on recognizing the affective state of stress.

Reducing stress is an important factor in disease prevention and recovery. Chronic

health problems such as back pain and migrane headaches are negatively impacted

by stress and reduced stress has been linked to faster recovery from serious diseases

such as cancer[Sel56]. Automobile driving provided a natural situation in which

stress could be evaluated using task design, driver questionnaires and ground truth

annotations from video recordings. The stress detection provided by the automotive

system could be used to help manage on board information appliances in situations

of high stress or it could be used to track a persons stress level in a long term way by

measuring stress on a daily commute over many days.

The systems developed and tested in this thesis show that affect can be recog-
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nized through physiology, given certain constraints on the situation, providing a new

method of interaction which can enrich the effectiveness of computer human interac-

tion especially in new mobile platforms. The following chapters provide a background

for this research, a detailed description of the three sets of experiments and the con-

clusions from this research effort. The chapters are largely self contained and the

reader may advance to the sections of greatest interest in any order. Chapter 2, the

background chapter, can be referenced at any time for a detailed description of the

physiological sensors, an overview of the models of emotion used for labeling and a

description of prior related work. Chapter 3 describes the Sentics experiments, de-

signed to recognize eight unique emotional states intentionally felt and expressed by a

subject seated in an office environment. For this experiment a recognition rate of 81%

was achieved for eight intentionally expressed emotions by researchers in our group

using the features presented here and rates of up to 100% were achieved for subsets

of the eight emotions sharing similar emotion qualities. Chapter 4 introduces the

new prototype designs built for ambulatory physiological monitoring. Systems incor-

porating cameras and wireless devices are shown to be useful for measuring physical

activity. Chapter 5 presents the driver stress detection experiment. The results of

this experiment demonstrate that driver stress can be recognized with 96% accuracy

using five minute segments of data and a task based metric for validation and that

a 89% recognition rate can be achieved using one minute segments of data and a

questionnaire based metric for validation. Additional analysis shows that highly sig-

nificant correlations (up to r = .77 for over 4000 samples) exist between physiological

features and a metric of observed stressors obtained from a second by second annota-

tion of video tape records of the drives. Chapter 6 discusses conclusions, application

and directions for future work. The driver self-report questionnaire and the matlab

code used for startle detection and linear classification are included as appendices.
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Chapter 2

Background

This background provides a description of the physiological sensors used to collect

the data, the models of emotion used to classify the data and presents selected exam-

ples of of prior work in detecting emotion from physiology. The first section presents

the five different types of sensors used in this research: the electromyogram (EMG)

for measuring muscle activity, the galvanic skin response or electrodermal response

(GSR) for measuring sweat gland activity, the hall effect sensor for measuring respira-

tion through chest cavity expansion (RESP), the photoplethysmograph for measuring

blood volume pulse (BVP) and the electrocardiograph (EKG) for measuring heart

rate and heart rate variability. The following section introduces the frameworks used

for modeling emotion. These models are used to establish labels for the physiolog-

ical data and to argue for an association between emotional stress and the axis of

emotional arousal.

The final section presents examples of previous experiments designed to detect

emotion from physiology. These experiments include laboratory experiments under

very controlled conditions and field studies of ambulatory subjects, airplane pilots

and automobile drivers.
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2.1 Physiological Sensors and Signals

Five sensors were chosen to measure physiological signals that could give a continuous

electronic reading to a computer and that were minimally invasive to the user. These

sensors measured skin conductance, heart activity, respiration and muscle activity.

Two different sensors were used to measure heart activity, the blood volume pres-

sure (BVP) sensor and the electrocardiograph (EKG). Blood pressure and electroen-

cephalogram (EEGs) readings were not used, but are briefly described for potential

use in future experiments. More direct methods of autonomic nervous system (ANS)

activation such as blood or salivary analysis of adrenalines, corticoids, or ACTH[Sel56

were not used because they require off-line chemical analysis. The goal of the systems

designed in this thesis is to provide a continuous digital signal reflecting physiological

variables to a computer system for analysis. The sensors described here can all meet

the criteria of providing a continuous electronic output while also being minimally

inconvenient to the users' normal activities.

2.1.1 Skin Conductance

The skin conductance sensor measures changes in the resistance of the skin caused

when glands in the skin produce ionic sweat. The resistance of the skin is usually

large, approximately 1MQ; however, momentary changes in the level of the sweat

gland activity causes changes in resistance (AR up to approximately 950K Q) that

can be measured by passing a small electrical current across two electrodes placed on

the surface of the skin[SF90]. This measurement was taken in two locations, on the

palm of the hand and the sole of the foot. K-Y Jelly was used as a low-conductivity

gel to assure good contact between the skin and the sensor. The gel was applied on

the electrode before the electrode was placed on the skin. For the reading of skin

conductance across the hand, the electrodes were placed on the middle of the three

segments of the first and middle finger, on the side of the palm. For the measurement

on the foot the electrodes were placed on the sole of the foot at both ends of the arch

of the foot. The skin conductance signal was sampled at 20 samples per second in
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Figure 2-1: Three simultaneous skin conductance readings taken on the hand and the
toes and arch of the foot. A noise burst, indicated by the microphone trace was used
to stimulate phasic responses. All three traces are highly correlated.

both the eight emotion recognition experiment and the wearables experiments and

sampled at 31 samples per second in the experiments for the detection of stress in

automobile drivers. The difference in sampling rates is due to the difference in the

rates available on the two systems.

This skin conductance reading has two components, a tonic baseline level and

short term phasic responses superimposed on the baseline level. The phasic response

has many names including the electrodermal response (EDR), the skin conductance

startle response, the skin conductance orienting response, skin resistance response

(SRR) and skin conductance response (SCR). The terms resistance response and

conductance response reflect that the response can be measured either by measuring

the resistance or conductance of the skin. The orienting response is a more general
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term for the response. The term startle response is typically used to describe a

response to more extreme stimuli. This response may occur whenever a person is

forced to attend to a change in either their external environment, such as a sudden

sound or a change in lighting, or their internal environment, such as when formulating

mental plans or when having thoughts of expectation[Dam94].

Figure 2-1 shows examples of skin conductance readings taken at three locations:

taken across the hand, across the arch of the foot and off the second and third toes

of the foot. Phasic responses are stimulated by 100 ms white noise bursts, which are

recorded by a microphone sensor shown in the bottom trace. Unstimulated responses

also occur, such as those that occur before the first white noise burst. The magnitude

of the responses does not vary consistently with the magnitude of the stimuli. Part

of the reason for this variation is the phenomena of habituation in which the subject

does not react as strongly to a repeated stimuli as to a novel stimulus.

The electrodermal response is typically scored using a subset of the following

features: latency, amplitude, rise time and the half-recovery time. The half recovery

time is used because the full recovery time is difficult to determine. The diagram in

Figure 2-2 shows an ideal response to a hypothetical stimulus. As this diagram shows,

the response occurs a few seconds after the stimulus. The latency is the amount of

time between stimulus and the onset of the rise of the response. The amplitude of

the response is the difference between the peak of the response and the baseline. The

duration of the response is the difference between the time of the response onset and

the time of the peak. The half recovery time difference between the time of the peak

and the time at which the response decays to one half of the magnitude of the peak.

This single response is referred to as a Type 1 response[Bou92].

Scoring ambiguities arise when responses are not well separated, such as when

responses can also occur on the recovery (type 2) or rise (type 3) of previous responses.

These types of occurrences are shown in the diagram from Boucsein in Figure 2-

3 [Bou92]. Three methods of scoring multiple responses, labeled A, B and C are

shown. Method A models the decay of the response as an exponential and measures

the magnitude of the response from the modeled height of the decay of the first
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Figure 2-2: The electrodermal response (EDR) shown in this diagram from
Boucsein[Bou92], has been measured according to several different features. This
diagram shows an ideal response to a hypothetical stimulus. The response occurs a
few seconds after the stimulus.

response at the time of the onset of the second response to the peak of the following

response. Method B establishes a local baseline at the level of the onset of the second

response and measures the distance from that baseline to the following peak. Method

C measures all responses as the difference from the local peak to a global baseline.

The automatic detection algorithm presented in Chapter 5 is based on Method B.

Skin conductivity has been found to be one of the most robust non-invasive phys-

iological measures of autonomic nervous system activity[CT90]. Laboratory stud-

ies, such as those by Lang Ekman[ELF83], Levenson[Lev92] and Winton, Putnam

and Kraus[WPK84] have found that skin conductivity response varies linearly with

arousal ratings[Lan95]. Skin conductance measurements have been also been used to

differentiate between states such as anger and fear[Ax53] and between states of con-

flict and no conflict[Kah73]. Skin conductance has been used as a measure of stress

in anticipatory anxiety studies including studies of feared electric shock and studies

of public speaking. This measure has also been studied in tasks such as driving and

piloting aircraft [Bou92].
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Figure 2-3: Startle responses can also occur on the rise of previous startle re-
sponses. Two examples, labeled type 2 and 3 are shown here in this diagram from
Boucsein[Bou92]. Three methods of scoring multiple responses, labeled A, B and C
are shown. Method A models the decay of the response as an exponential and mea-
sures the magnitude of the response from the modeled height of the decay of the first
response at the time of the onset of the second response to the peak of the following
response. Method B establishes a local baseline at the level of the onset of the second
response and measures the distance from that baseline to the following peak. Method
C measures all responses as the difference from the local peak to a global baseline.
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2.1.2 BVP and Electrocardiograph

Heart rate and heart rate acceleration have been used as measures of overall phys-

ical activation [EG88] and changes in heart rate have been reported as indicators

of fear[Lev92] and anger[Lev92][Kah73]. Blood volume pulse (BVP) and electro-

cardiograph (EKG) are both used to measure heart activity. The BVP sensor is a

photoplethysmograph which measures light (infra-red or red) reflected from the skin.

It is placed on the surface of the skin and does not require adhesives or gels. From the

reflectance reading, the BVP can measure heart rate and vasoconstriction, however

heart rate measured through this method is not precise enough to use for determining

heart rate variability and it is subject to many placement and motion artifacts. The

EKG is able to give a precise estimate of instantaneous heart rate by detecting sharp

R-wave peaks, however, this sensor requires more effort to apply.

Blood Volume Pulse

A back-scatter photoplethysmograph is used to measure blood volume pulse. This

device emits light and measures the amount of light reflected by the surface of the

skin. After every heart beat, blood is forced through the blood vessels, producing

an engorgement of the peripheral vessels under the light source and modifying the

amount of light reflected to the photosensor[Tho94]. Therefore, the reflectance gives

a relative measure of the amount of blood in the capillaries from which heart rate

(pulse) and vasoconstriction can be derived. An example of the BVP signal is shown

in Figure 2-4. The pulse train indicates the heart beats and shape of the envelope

indicates the relative constriction of the blood vessel. This example shows twelve

pulses and gradual vasoconstriction. Heart rate can be calculated by measuring the

distance between successive pulse peaks. The heart rate from BVP was automati-

cally calculated by the ProComp software in these experiments [Tho94]. This signal

was sampled at 20 samples per second for all experiments. Vasoconstriction is a de-

fensive reaction[Kah73] in which peripheral blood vessels constrict. This phenomena

increases in response to pain, hunger, fear and rage and decreases in response to quiet

relaxation[Fri86].
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Figure 2-4: Blood volume pulse measures the amount of light reflected by the skin.
This gives a measure of both the overall constriction of the blood vessel as determined
by the envelope of the signal and a measure of the heart rate as determined by the
pulse train. The figure on the left shows the BVP sensor [Tho94]. The example signal
from this sensor (right) shows increasing vasoconstriction.

The BVP sensor can be placed anywhere on the body where the capillaries are close

to the surface of the skin, but peripheral locations such as the fingers are recommended

for studying emotional responses[Tho94]. In the experiments presented in Chapters

3 and 4, the BVP was placed on the tip of the ring finger. The BVP sensor requires

no gels or adhesives, however the reading is very sensitive to variations in placement

and to motion artifacts.

Electrocardiograph

The electrocardiograph measures heart activity by detecting voltages on the surface

of the skin resulting from heart beats. The skin was prepared by using alcohol as

a cleanser and Electro-Trace pre-gelled were applied. A modified lead II electrocar-

diogram was used to minimize motion artifacts and to produce a rhythm trace with

sharp R-waves. In this configuration, shown in Figure 2-5 two signal electrodes are

placed across the heart. The negative electrode is placed just to the right of the

sternum near the base of the clavicle. The positive electrode is placed on one of

the floating ribs underneath the left armpit. A third ground electrode is placed at

a laterally symmetric position on the right floating ribs. An example of the signal
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Figure 2-5: An EKG was applied in a modified lead 11 configuration to minimize
motion artifacts and to attain a good record of the "R" wave. The EKG trace, right,
shows the P wave, QRS complex and T wave(left). Detection of successive R wave
peaks is used to calculate inter-beat intervals.

recorded by this configuration of the electrocardiogram is shown in Figure 2-5 with

the characteristic P, Q, R, S and T segments are labeled.

Heart Rate Variability

Heart rate variability (HRV) has been measured in both the time and frequency

domains. The term HRV often refers to the time series measure of the standard devi-

ation of heart periods within the recording epoch[Bea97]. This is considered a good

measure of short term variation (STV) in the electrocardiograph[vRAKea93]. Other

time series measures have been used to assess long term variation of the spectrum

including the difference between the maximum and the minimum R-R interval length

in the window[vRAKea93] and the percent differences between successive normal R-R

intervals that exceed 50 msec and the root mean square successive difference[KF98].

Recently, with the availability of digital recording devices and signal processing algo-

rithms, short-term power spectral density analysis of the heart rate has become more

popular as a method for assessing heart rate variability. In the spectral domain, the

relative strengths of the sympathetic and parasympathetic influence on HRV can be

discriminated. A ratio of the low frequency energy to the high frequency energy in

the spectrum represents a ratio of the sympathetic to parasympathetic influence on
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Figure 2-6: The power spectrum of the heart rate has three distinct peaks, one in the
lowest frequencies under 0.1Hz, one near 0.1Hz and another in the higher frequencies
between 0.3 and 0.5Hz. The diagram left shows the three peaks with the labels given
by Akselrod [AGU+81] and the right shows an example of a spectrogram calculated
using the digital signal from the car experiments.

the heart.

The power spectrum of the heart rate has three distinct peaks, one in the lowest

frequencies under 0.1Hz, one near 0.1Hz and another in the higher frequencies between

0.3 and 0.5Hz. [AGU+81] [KF98]. The first two peaks are described alternately as

very low and low frequency or low and medium frequency. The term low frequency is

preferred by Akselrod(0.02-0.08Hz)[AGU+81], McCraty (0.01-0.08Hz)[MAea95] and

Aasman (0.02 to 0.06Hz)[AMM87] and Very Low Frequency by van Ravenswaaij-

Arts(<0.05Hz)[vRAKea93]. Energy in this region of the heart rate spectrum (below

0.05Hz) has been linked to circulation, vasomotor control and temperature control.[KF98].

This region of the spectrum is influenced by both sympathetic and parasympathetic

branches of the ANS[Bea97].

The frequency band encompassing the 0.1Hz peak has been described as low fre-

quency by Kamath (0.06Hz-0. 15Hz) [KF98], Itoh(0.04-0.15Hz) [ITea95] and vanRavenswaaij-

Arts(<0.05Hz) [vRAKea93] and medium frequency by Akselrod(0.1-0.15)[AGU+811,

McCraty (0.08-0.15Hz)[MAea95] and Aasman (0.06-0.14Hz)[AMM87]. This 0.1Hz

peak is associated with baroreceptor-mediated blood pressure control[KF98]. There

are synchronous fluctuations in the blood pressure are called Mayer waves at this
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Figure 2-7: Different portions of the low frequency spectrum have been used to dif-
ferentiate between the emotions anger and appreciation [MAea95].

frequency. They are increased when sympathetic tone is increased [vRAKea93].

The high frequency band, generally agreed to range from 0.15 to at most 0.6

Hz reflects Respiratory Sinus Arrhythmia, (RSA). Due to inspiratory inhibition of the

vagal tone, the heart rate shows fluctuations with a frequency equal to the respiration

rate[vRAKea93]. Respiratory-frequency rhythms in autonomic nerves are translated

into changes in discharge frequency of the Sino-Atrial (SA) node. RSA is mediated

predominantly by parasympathetic influences on the sinus node and is often employed

as an index of vagal control[Bea97].

Sympathetic and Parasympathetic Influence

The parasympathetic nervous system is able to modulate heart rate effectively at all

frequencies between 0 and 0.5 Hz, whereas the sympathetic system modulates heart

rate with significant gain only below O.lHz[Bea97]. Sympathetic activity increases

heart rate while parasympathetic activity decreases heart rate. The integrated re-

sponse depends on sympathetic and parasympathetic balance[SSea93].It has been

proposed that a ratio of low frequency to high frequency portions be used as mea-

sure of sympathovagal balance, however, some researchers suggest using 0.02-0.15Hz

[Bea97] as the low frequency band while others suggest using 0.08-0.15Hz as the low

frequency band[MAea95]. McCraty suggests "anger" can be identified by the -

ratio and that "appreciation" can be identified using the mid-range frequencies, how-

ever the emotions he measured were generated by subjects following special training

techniques [MAea95].
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Confounding Variables

Several variables influence HRV which are not necessarily related to emotion. These

include age, posture, level of physical conditioning, breathing frequency [vRAKea93]

and circadian cycle[Bea97]. As age increases, heart rate variability decreases. In-

fants have a high sympathetic activity but this decreases quickly between ages 5

and 10[vRAKea93]. HRV is enhanced in the upright position due to an increased

sympathetic tone. RSA is augmented in the supine position[vRAKea93]. Patients

with certain medical conditions also have altered HRV. A predominance of sympa-

thetic activity and a reduction in parasympathetic cardiac control has been found

in patients with acute myocardial infraction[vRAKea93]. And patients with essen-

tial hypertension have less (vagally mediated) respiratory sinus arrhythmia and more

baro-reflex related (0.1 Hz) heart rate variability when compared with normotensive

controls [vRAKea93].

Meaningful analysis of heart rate variability is dependent on the integrity of the

basic cardiac signal input[Bea97]. Analog recording systems can have errors due to

inconsistencies in tape speed[vRAKea93] while digital recordings must be sampled at

a sufficiently high rate to capture the R-wave peaks. The suggested rate varies from

250Hz [KF98] to 500-1000Hz. In the driver stress detection experiments this signal

was sampled at 496 samples per second.

Finally, the statistics of the heart rate time series over which the power spectrum is

computed is assumed to be stationary. This assumption is true for long time windows

for resting subjects and in this case taking the power spectrum of the heart rate over

a long heart rate time series can give a more precise estimation. However, in cases

where the subject is actively engaged in a task such as when HRV is measured during

arithmetic tasks or during active tasks such as driving, the stationarity of the heart

rate time series is not assured. In these cases a shorter time window may provide a

more accurate estimation of the spectrogram. Windows as short as 120 seconds are

used in such studies[KF98] and some authors suggest using windows as short as 30

seconds if the EKG recording is free of missed beats and motion artifacts[vRAKea93].
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Figure 2-8: The respiration signal shows how the circumference of the diaphragm
changes during breathing. The sensor is initially fastened with some degree of baseline
stretch, then the inhalation and exhalation cycle causes the magnets to be first further
separated then returned to the original position.

2.1.3 Respiration

Respiration is most accurately recorded by measuring the gas exchange of the lungs,

however this method inhibits activities such as talking and driving in the natural

environment. As an alternate measure, chest cavity expansion is recorded to capture

breathing activity. A hall effect sensor comprised of two magnets embedded inside

an elastic tube is used to measure inhalation and exhalation. Inhalation stretches

the elastic, separating the magnets and creating a current and exhalation allows the

sensor to return to the baseline state. An example of steady breathing as measured

by this sensor is shown in Figure 2-8, showing breath cycles superimposed on the

baseline stretch. This signal was sampled at 20 samples per second in the eight

emotion experiment and wearables experiments and 31 samples per second in the

automotive system.

Both physical activity and emotional arousal are reported to cause faster and

deeper respiration, while peaceful rest and relaxation are reported to lead to slower

and shallower respiration[Fri86. Sudden, intense or startling stimuli can cause a

momentary cessation of respiration and negative emotions have been reported to
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cause irregularity in respiration patterns[Fri86]. The respiration signal can also be

used to assess physical activities such as talking, laughing, sneezing and coughing.

2.1.4 Electromyogram

The electromyograph (EMG) measures muscle activity by detecting surface voltages

that occur when a muscle is contracted. Three electrodes are used for this measure-

ment, two are placed along the axis of the muscle of interest and a third ground

electrode is placed off axis. Triode electrodes from Thought Technology were used

with 10-20 high-conductivity gel in all experiments. This sensor was used to mea-

sure jaw clenching in the experiments in Chapter 3 and used to measure upper back

(trapezius) tension in the experiments in Chapters 4 and 5. Electromyogram has

been used to study facial expression[Ekm90], gestural expression[MP98], emotional

valence[Lan95] and emotional stress[CT90][DEM88]. An example of the RMS EMG

signal shown in Figure 2-9. This raw EMG signal was sampled at 20 samples per

second in the eight emotion experiment and the wearables experiment. In the auto-

motive experiment the RMS EMG signal was saved at 15.5 samples per second using

the 0.5 second averaging option provided by the Flexcomp software[Tho94].

2.1.5 Additional Modalities

Many other modalities may be considered to create the more complete picture of

physiological state, but these are beyond the scope of this work. Blood pressure

and electro-encephalogram (EEG) are mentioned here briefly because they also show

potential for capturing important emotion related changes. However, other drawbacks

made these modalities impractical for the research of this thesis.

Blood Pressure

Increases in blood pressure have been found to correlate with increases in stress [Sel80]

however blood pressure was not used in this research because it was considered too

cumbersome at the time of the experimental design. Blood pressure measurements
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Figure 2-9: The electromyograph records muscle activity. Large activity readings are
usually from motor activity
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currently require the constriction of a blood vessel to determine the pressure required

to restore blood flow in that vessel. To take this reading, a cuff inflates periodically

on the subject's arm, a distraction which may have introduced artifacts into sensitive

experiments measuring emotion or caused anxiety during the more dangerous driving

experiment.

Electroencephalogram

The electroencephalogram (EEG) measures electrical activity of the brain by placing

electrodes on the surface of the head. A full electroencephalogram incorporates over

128 electrodes, however simpler metrics using two or four channels are used in bio-

feedback practice[Tho94]. EEG's have been shown to distinguish between positive and

negative emotional valence[Dav94] and different arousal levels[Lev9O] under certain

conditions. EEG can also be used to detect the orienting response by detecting

"alpha blocking." In this phenomenon, alpha waves (8-13 Hz) become extinguished

and beta waves (14-26Hz) become dominant when the person experiences a startling

event [Lev90].

EEG was excluded from this thesis research because EEG readings are difficult

to interpret in the ambulatory environment. The readings are often confounded by

muscle activity such as forehead movement and the opening and closing of the eyes.

In waking activity, EEG is considered only a crude measure of arousal[Lev90].

2.2 Emotion Classification

Emotion classification is necessary to provide labels to the physiological data in classi-

fication algorithms. Although there is no one universally accepted method of dividing

the space of emotion, this section provides a description of the models widely used

in theory and in practice. Furthermore, definitions of emotional stress are presented

and a description of how stress fits into the space of emotion is discussed.
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Table 2.1: A brief summary of sets of basic emotions proposed by different
theorists[OCC88].

2.2.1 Models of Emotion

Several theorists have proposed sets of basic emotions. These sets either span the

space of emotion or provide a palette from which all other emotions can be derived.

As an example, the basic emotion set proposed by Paul Ekman, includes anger, fear,

disgust, sadness, and enjoyment and sometimes surprise[Ekm93]. Other theorists have

created similar groupings of fundamental emotions and a brief summary of these is

given in Table 2.1. This table is a partial representation of the sets collected by

Ortony, Clore and Collins[OCC88]. Differences in these emotion sets may be biased

to the particular field of the theorist Ekman's set might be biased to the the set of

emotions most "basic" to facial expression while Clynes' set might be more basic to

emotions found in piano music.

One of the difficulties of organizations using emotion names is that the relation-

ships between the emotion categories is not clear. There is no structure for measur-

ing the similarity of the emotions or the ways in which they differ. This makes the

boundaries of what is included in each category difficult to define. For example, the

specifications for separating distress from fear or contempt and disgust are subject

to debate. The lack of a descriptive framework also makes it difficult to describe

differences between examples of the same emotion. For example, Ekman states that
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Theorist Emotion Set
James rage, fear, grief, love
Ekman anger, fear, sadness, enjoyment, disgust, (surprise)
Clynes anger, hate, grief, joy, love, romantic love,

reverence, no emotion
Panskepp rage, fear, panic, expectancy
Plutchik anger, fear, anticipation, sadness,

joy, acceptance, disgust, surprise
Izard anger, fear, distress, joy, surprise, interest,

disgust, contempt, guilt, shame

Frijda anger, fear, distress, joy, surprise
aversion, contempt, pride, shame, desire
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Figure 2-10: The use of emotion qualities to describe a space facilitates creating
quantifiable relationships between emotions. Shown left, the circumplex model of
emotion[Rus80], shown right, the arousal-valence space with self-assessment manikin
(SAM)[LGea93]. In this ratings diagram, the valence axis is labeled pleasure, a more
commonly recognized term.

"anger" refers to not one, but a family of over 60 anger expressions[Ekm92b] [EF78].

However the particular qualities which distinguish them do not tell how similar that

instance of anger is to any other emotion such as fear or sadness.

In recognition experiments, frameworks which allow differences between emotions

to be measured along some metric of similarity provide greater flexibility in designing

experiments and offer greater insight into misclassification errors. Frameworks that

support similarity metrics include the arousal-valence space used by Lang[LBC] and

the circumplex model proposed by Russell[RusSO]. The circumplex model of emo-

tion divides the emotion space into a circle with eight radial axes, spaced at slightly

irregular intervals. These include, as opposing pairs, arousal and sleepiness, excite-

ment and depression, pleasure and misery and contentment and distress[Rus80]. The

arousal-valence space is similar to the circumplex model, except that only two axes

are labeled, an arousal axis, ranging from calm to excited and a valence axis rang-

ing from negative to positive. Both of these models are shown in Figure 2-10. The

arousal-sleepiness and misery-pleasure axis in the circumplex model are similar to the

arousal and valence axes in Peter Lang's model. It can be seen that if these two axes
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are aligned across models the resulting spaces are very similar.

The practical benefit of the arousal-valence space is that it allows people to rate

how they are feeling in a simple way that is easily quantifiable. To facilitate this rating

process, a set of icons called the self-assessment manikins or SAMs were created.

The illustrations in the icons help to clarify what is meant by each quantification of

the emotion state. SAM is a gender-neutral outline of a person with a simple facial

expression. Manikins on the arousal axis have a neutral facial expression and describe

the level of arousal by using four icons with an expanding a starburst in the center

of the outline. The starburst expands from a dot to an explosion to help the subject

quantify arousal. The valence or pleasure axis has a manikin with no starburst and a

facial expression varies from a frown to a smile. This rating system has been tested in

practise and ratings have been found to be consistent in a large number of trials using

emotionally eliciting picture stimuli[Lan95]. The arousal and valence axes may not

be entirely independent, although depicted as separated at a 90 degree angle. One

indication that the two axes are related is that the low arousal, low valence quadrant

shown in Figure 2-10 is sparsely populated. This indicates that there exist few visual

images that people find both very unpleasant and not at all arousing (disturbing).

2.2.2 Definitions of Stress

Historically, stress has been defined as a reaction from a calm state to an excited state

for the purpose of preserving the integrity of the organism. The idea has been recorded

as early as 450BC when Empedocles described stress as a threat to the harmonious

balance of an organism's essential elements. Claude Bernard (1850) refined this idea

and used the term "milieu interior" to describe the interior environment which held

the essential elements. A stress reaction for Bernard is a reaction to protect this

milieu interior. Walter Cannon (1927) coined the term "homeostasis"[EG88] to refer

to the calm or "steady state" of the organism and stress as a transient "fight or

flight." [EG88] reaction to preserve homeostasis.

These definitions support the idea of stress as moving from a calm to an aroused

state. A negative bias seems to be inherent in the definitions. The reactions are
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described by Bernard as protective and by Cannon as "fight or flight" not "fight or

joy". Some researchers make a distinction between "eustress" and "distress," where

eustress is a good stress, such as joy, or a stress leading to an eventual state which is

more beneficial to the organism. The definition of stress in Chapter 5 will only cover

"distress" or stress with a negative bias.

Bernard's hypothesis is that as organisms evolve and become more independent

of their outer environment, they develop more complex mechanisms to serve the goal

of preserving the interior from the exterior[EG88]. For an organism as highly devel-

oped and independent of the natural environment as socialized man, most stressors

are intellectual, emotional and perceptual[Sel80]. Physical stressors occur far less

frequently[Sel80].

The ambiguity of the emotion names is lessened by grouping emotions together

in a qualitative space. This also allows discrimination with the metrics of similarity

based on the qualitative axes. The arousal-valence space was used to help describe the

emotion names used in the experiment presented in Chapter 3, and to help define the

stress variable evaluated in the experiment presented in Chapter 5. The stress variable

is described as primarily a measure of arousal with a slightly negative valence skew.

This agrees with Selye's definition of emotional stress as overall autonomic nervous

system arousal[Sel56] and the negative bias is supported by many other historical

definitions. The goal of Chapter 5 will be to present a recognition algorithm for these

short term emotional stress reactions.

2.3 Finding Physiological Patterns of Emotion

William James (1890) [Jam92] speculated that patterns of physiological response could

be used to recognize emotion. This viewpoint has been debated by other theorists

who argue that only certain aspects of emotion can be determined from physiology.

Researchers have identified physiological quantities that discriminate between emo-

tional states both in the laboratory and in the field, the results of which are reported.

There are differences in experimental design and research goals that make some re-
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sults hard to compare, but physiological trends are evident. A proposed framework

of models and methods of analysis for future research is described.

2.3.1 The Domain of Physiology

Historically, there has been a debate over which aspects of emotion can be recognized,

or best recognized, within the domain of physiology. James believed that the emo-

tional physiological reaction was the emotion, so that everything which can be known

about emotion is inherent in physiological signals. Cannon seriously challenged this

viewpoint, arguing emotion was primarily a cognitive event and that autonomic pat-

terns were too slow and non-specific to be unique to each emotion[Can27]. Schacter

is said to have resolved the "Cannon-James controversy" by showing that emotional

response was both physiological and cognitive[Sch64]. However, arguments were also

made against Schacter's experiments and further debate continues on the degree to

which emotion can be determined from physiological measures.

2.3.2 Laboratory Studies

Patterns in emotional response have been sought both with respect to emotion name

spaces and with respect to the axes of arousal and valence. This section lists a brief

summary of the results of previous experiments in the field.

Patterns Using Emotion Name Classification

Many laboratory studies have been performed to find measurable patterns for the

emotion descriptions James first proposed. James' descriptions were only qualitative

descriptions, for example he described anger as "increased blood flow to hands, in-

creased heart rate, snarling and increases involuntary nervous system arousal" and

fear as "a high arousal state, in which a person has a decrease in voluntary muscle

activity, a greater number of involuntary muscular contractions and a decrease of

circulation in the peripheral blood vessels." Using modern sensors for psychophysi-

ological monitoring, Ekman, Levenson and Friesen have discovered evidence for dis-
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Table 2.2: Ekman, Levenson and Friesen noted trends in different physiologi-
cal variables which could be used to determine differences between some emotion
states[ELF83].

tinctive patterns of autonomic nervous (ANS) activity for anger, disgust and possibly

sadness [ELF83] [Lev92], as shown in Table 2.2. The authors measured heart rate

acceleration, hand temperature and skin conductivity. Using combinations of each of

these metrics, it seems that each emotion state could be uniquely recognized, however

no such recognition study was performed.

Patterns Using Arousal-Valence Classification

Lang, Winton, Putman and Krauss have reported features that correlate with the

arousal and valence axes. Lang found that the magnitude of the skin conductance

response varied linearly with arousal ratings[Lan95]. Valence has been reported to

correlate with activity in the corrugator muscle, inhibition of the startle reflex[Lan95]

and changes in heart rate acceleration. Winton Putnam and Kraus report heart rate

acceleration changes in the 10 second window following stimulus which differentiate

positive and negative images. Their results are shown in Figure 2-11 [WPK84]. Lang

confirmed this result by reporting a correlation between valence and the peak heart

rate in the six seconds following picture onset[Lan95].

2.3.3 Ambulatory Monitoring

Recent advances in microprocessors have allowed digital recording of physiological

signals in the ambulatory environment. This facilitates processing the recording of
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Emotion Physiological response
heart rate hand skin
acceleration temperature conductance

Anger large positive up none
Fright none down big up
Disgust deceleration none big up
Sadness small positive none none
Happiness none no effect small up
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Figure 2-11: Heart rate deceleration, associated with valence is difficult to discern
unless the time of stimulus onset is known. Averaging heart rate over the ten second
interval here would have obscured the effect. Image from Winton, Putnam and Krauss
(1984) [WPK84].
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physiological signals outside the laboratory and allows computer algorithms to in-

terpret and respond to the signals in the natural environment Such field studies of

emotion have a higher degree of "external validity" than experiments measuring emo-

tion in the laboratory. This external validity comes at the cost of less certainty in

the validation of the emotion, relying on user compliance to label data and subject

self-ratings. Although ambulatory medical monitoring devices exist for cardiac and

blood pressure evaluation over 24 hour periods, these tools have not been applied to

the problem of emotion monitoring, with the recent exception of monitoring panic

attacks[HB96].

One ambulatory experiment was conducted by Buse and Pawlik using a small

digital computer and a device for recording heart rate (BVP)[BP96]. The study con-

sisted of two assessment periods of one week in duration, spaced fourteen months

apart. The test used active self-report in which each subject was prompted on 71

occasions during the week, with interrogation intervals varying from 30 to 90 minutes

(mean 60 minutes). When prompted, the subjects were asked to fill out an electronic

survey which included a list of activities, a rating of mental activation and an assess-

ment of emotion along the axis of "euphoria" to "dysphoria." At this time heart rate

was also recorded.

The goal of this experiment was to determine measures of consistency for heart

rate and mood variables throughout the day. They wished to determine if heart rate

and mood at the present time could be predicted using previous measurements. From

their results, the authors could not find any significant prediction of heart rate from

previously reported heart rate, but found that euphoria and dysphoria had significant

correlations with previously reported mood (.48 for euphoria and .33 for dysphoria

(p>0.05)). No correlation was found between mood and heart rate or heart rate and

previous heart rate. The reason for this was hypothesized to be that the heart rate

variable was mainly related to physical motion[BP96].

This experiment encountered several problems with subject self report in the field.

The study consisted of 135 subjects originally, but only 104 were willing to complete

the study. Also, the compliance rate for completing the surveys when requested by
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the prompt was only 61%. This non-compliance was partially due to the subjects

being somewhere where filling out the survey would have been distracting, such as

a movie theater, at the time for the prompt. To compensate for this the authors

asked subjects to fill out a "retrospective protocol of the day" summarizing, by way

of an hourly schedule their essential daily activities[BP96]. Their study shows that

conducting purely ambulatory monitoring is difficult, both because of the difficulty in

assessing the subjects emotional state and because of confounding physical artifacts

in the physiological readings.

2.3.4 Measuring Stress in Aircraft Pilots

The psychological workload on pilots in the stress stimulating environment of flight

has been a concern for both commercial and military aircraft designers. To measure

the amount of stress pilots experience, especially while flying military aircraft, several

studies have been performed. These studies provide valuable information regarding

the differences between simulated and real experience and between novice and veteran

subject groups. As an example, a study that uses heart rate as an indicator of stress in

both real and simulated flight of a BA Hawk MK 51[YLL+97] is presented. This study

reports the effect of the various observable stressors experienced over the course of a

pre-planned flight mission. This study also compares the difference between measures

collected from a simulated versus real flight experience. The same flight mission was

performed in both a simulator and in a real jet. Five experienced (aged 26-33 yr)

and five less experienced (aged 23-25 yr) male military pilots on active flying status

participated in the study. In the study, the heart rates for the following observable

events were recorded: rest, take-off, initial approach, intermediate approach, final

approach, landing tour and landing.

The approximate time of the test was 25 minutes. Heart measurements were

continuously measured using a small portable recorder. The R-R intervals were stored

and analyzed with an accuracy of ims. The different phases of each flight were

marked in the data using pre-determined codes. The marking was done either by

an investigator (for the simulations) or a pilot in the back seat (for the real flights).
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Simulated Flight Experienced Pilots

HR DHRFlight Phase

Rest after seating
Take-off
Initial Approach
Intermediate App.
Final Approach
Landing Tour
Landing

Real Flight
Flight Phase

Rest after seating
Take-off
Initial Approach
Intermediate App.
Final Approach
Landing Tour
Landing

DSD

10.03
15.41
13.93
12.65
15.15
13.15
13.93

Pilots
DSD

6.37
9.95
8.38
11.46
14.60
11.72
11.84

Novice Pilots

HR DHR DSD

74.45 21.65
85.78 32.98
82.44 29.64
84.66 31.86
85.94 33.14
80.76 27.96
85.92 33.12

Experienced
HR DHR

71.62 18.82
89.82 37.02
87.50 34.70
88.48 35.68
95.06 42.26
87.52 34.72
91.94 39.14

85.64
96.34
94.78
95.08
93.24
89.52
93.56

N
HR

76.10
89.34
89.84
91.06
92.18
87.60
88.10

Table 2.3: The mean heart rates (HR), corresponding mean delta heart rates (DHR)
and their standard deviations (DSD) in each real and simulated flight phase

The authors report possible artifacts due to an algorithm that excluded those R-

R intervals that differed from previous intervals by more than 60% (to account for

missed beats and false positives). For every analysis the baseline heart rate of every

pilot was subtracted from his heart rate in each flight phase and during the rest after

seating. The heart rates obtained after this subtraction are the delta heart rates

(DHR). Both actual (HR) and delta (DHR) heart rates are reported in Table 2.3.

A two way analysis of variance for repeated measures was used for statistical

testing of the differences. The results of this study show no significant heart rate

differences between real and simulated flight. However, different phases of flight

showed significant changes in the heart rate variables in both cases. It is interesting

to note however, that the novice and experienced subjects reacted differently. Heart

rate was consistently higher for experienced pilots in the real flights and higher for

the novice pilots in the simulated flights. Differences in novice vs. veteran subjects

were also found in parachute jumpers including an increase in heart rate after the
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27.04 19.69
37.74 14.17
36.18 15.22
36.48 16.12
34.64 16.13
30.92 15.40
34.97 15.74

ovice Pilots
DHR DSD

17.50 11.51
30.74 10.78
31.24 12.36
32.46 9.12
33.58 8.66
29.00 7.55
29.50 8.68



jump is completed[Fri86].

This study also suggests that simulations can be used to gather data similar to that

of real situations, although other studies have shown that the results from simulations

do not produce the same results as real flight in terms of hormone levels[LLH+95].

Although there is no unambiguous trend, real experience is different from simulated is

some situations and a difference between novice and experienced subjects is evident.

2.3.5 Measuring Stress in Automobile Drivers

Previous driving studies have also been done to measure physiological variables in

response to driving events. Martin Helander conducted a study in which braking and

traffic events were recorded and correlated with multiple physiological signals[Hel78].

The events recorded included: encountering a cyclist or pedestrian, another car merg-

ing in front of the driver's car and the driver's car passing another car. In this study,

an EKG was used to measure heart rate (HR), skin conductivity was measured across

the palm (EDR) and the muscular activity was measured using two EMG, one on the

calf (m. tilialis anterior - EMGTA) and one on the anterior hip muscle (EMGAS).

The skin conductivity change was predicted to be the best measure of driver stress

to fast events because of its fast onset when compared to heart rate changes[Hel78].

The EMG, steering and braking measures were taken to assess the physical work-

load experienced by the driver since heart rate and skin conductivity changes can be

effected by both physical and mental task load[Hel78].

The test vehicle was a Volvo 145 which was driven on a 23.7km stretch of rural

road composed of four segments. All tests were performed during daylight non-peak

hours and dry road conditions. Sixty test drivers were paid to participate in the

study. A Spearman rank order correlation was performed between traffic events and

the physiological and sensor measures. The events were recorded as occurring or not

occurring on each 10 meter strip of the road, this is why the "no event activity" has

such a high rate of occurrence. The results are reported in Table 2.4.

GSR, EMG and EKG were recorded during the driving task, however only the

EMG and GSR readings were reported in the analysis. The GSR reading was ex-
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Traffic Event

1. Cyclist or pedestrian
meets other car
2. Other car merges
3. Multiple events
4. Leading car diverges
5. Cyclist or pedestrian
6. Own car passes
and car following
7. Cyclist or pedestrian
and car following
8. Car following and
meeting other car
9. Meeting other car
10. Car following
11. Parked car
12. No event
13. Other car passes
14. Parked car and
car following
15. Own car passes

Traffic Events in rank by:
n Brake EDR HR EMGTA EMGAS

28 1 1 7 (81.2) 2 1

47
163
207
839
126

65

353

1,535
13,049

742
112,630

157
64

3,590

2
3
4
5
6

2
3
5
7
6

4
13
8
1

12

(81.5)
(78.3)

(80.5)
(82.5)
(78.4)

7 10 3 (81.7)

8 12 14 (76.2)

9
10
11
12
13
14

9
11
15
13
8

14

10 (78.9)
9 (79.3)
2 (82.4)
11 (78.6)
15 (76.0)
5 (81.4)

15 4 6 (81.3)

1
3
4
8

13

14

10

5
11
6
9

12
7

15

2
3

11
5

15

9

13

8
12
6
7
4

14

10

Table 2.4: A previous experiment by Helander analyzed skin conductance, heart rate
and EMG signals of drivers. In this table, Brake represents brake pressure, EDR rep-
resents the electrodermal response, HR indicates the heart rate in beats per minute,
EMGTA represents the activation of the m. tibialis anterior and EMGAS represents
the activation of the anterior hip muscle. The magnitude of the responses were mea-
sured against brake pressure. The EDR was found to be most highly correlated signal
to the braking activity.
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pressed in decibels: GSR = 10logG dB, where G = momentary conductivity in pQ

and Gm = mean conductivity in pQ. The EMG's were scaled for each driver, with

the highest response being given a value of 98 and the other responses being scaled

accordingly. Measurement values are finally averaged across each 10-meter stretch of

road. Braking was taken to be the effective measure of workload and the correlations

of the physiological variables with respect to braking are reported in Table 2.4. This

study showed the skin conductance was more highly correlated to braking than either

heart rate or either of the EMG variables.

2.4 A New Model for Psychology and Physiology

Modern theorists have proposed that the key to finding unique ANS patterns in emo-

tion lies in developing a more advanced model of the relationship between psychology

to physiology. This model maps physiological variables to emotion space initially as a

many to one relationship, but hypothesizes that by using mathematical combinations

of features better discrimination of the states will become possible [CT90]. Cacioppo

and Tassinary propose that the psychological domain represented by the greek let-

ter psi, and the physiological domain, represented by the greek letter phi might be

related as shown in Figure 2-12. This illustration shows that psychological states

such as "relaxation, orienting, startle and defense" can have confused mappings to

the physiological domain if features such as skin conductance and accelerating and

decelerating heart rate are considered separately. They theorize that if features are

combined, these domains can be more unambiguously mapped. They further propose

that looking at combinations of features over different time windows will further lead

to a unique mapping.

To show how combinations of features can create better discrimination, an example

of data points in two feature dimensions is shown in Figure 2-13. They note that if the

plotted points were projected onto either the x-axis or the y-axis, representing single

features, it would be difficult to create a discrimination boundary that would separate

the two classes of points. However, by creating a feature which is a linear combination
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PSYCHOLOGICAL

DOMAIN

Relaxation

Orienting

Startle
Defense

c i

PHYSIOLOGICAL

DOMAIN

SCR

Decelerating HR

Accelerating HR

Relaxation

Orienting

Startle

Defense

Relaxation

Orienting

Startle

Defense

No SCR and Decelerating HR

SCR and Decelerating HR

SCR and Accelerating HR

No SCR and Decelerating HR

SCR and Decelerating HR
Abrupt accelerating HR

Lingering accelerating HR

Figure 2-12: Combining features can create a one to one relationship between events in
the psychological domain and events in the physiological domain. From Psychophys-
iology [CT90]

of these two and projecting the points onto that line, a far better discrimination can

be achieved. They suggest the mean and total energy of an EMG reading might

generate such a dataset. This idea of combining multiple features and projecting

them into an optimally discriminating space has been well studied in the pattern

recognition community for years [DH73]. It is the goal of this thesis to apply these

techniques to the problem of distinguishing emotion states in physiology as suggested

by Cacioppo and Tassinary.

2.5 Summary

Sensing physiological patterns is not a new thing; ambulatory medical devices have

been under development for years, recording heart rate and blood pressure for cardiac

analysis and helping monitor panic attacks[HB96]. Studies are just beginning to

detect affect in the ambulatory environment. These studies face the challenges of
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(a) Analysis using both mean and total (b) Analysis using a linear combination

energy measures seperately of mean and total energy measures

Figure 2-13: Combinations of features can lead to more optimal discrimination of
states. If the data points in this two dimensional space were projected on to either
the x or the y axis, the distributions that would be formed would not have good
separation. By projecting the points onto a line that is formed by the combination of
two features, as shown in Figure (b), a much better discrimination can be obtained.
This figure taken from Psychophysiology [CT9O].

modeling and documenting occurrences of natural affective states and of mediating

the impact of physical changes on physiological variables. These challenges may be

more easily met by conducting experiments in a vehicle. A vehicle platform allows

natural responses to be captured in a platform where motion artifacts are limited and

where cameras can be placed to monitor the subject.

Physiological variables have been found to be significantly different during tasks

in vehicle studies. Studies in real and simulated flight show that heart rate can

be an excellent predictor of stress in extreme circumstances such as take off and

landing. In driving studies, galvanic skin response was found to be highly correlated

with the stress of various tasks. Cacioppo and Tassinary suggest that by using novel

combinations of physiological variables, better discrimination between emotion states

might be achieved.

This section introduced the basic tools that will be used for the physiological

monitoring performed in Chapters 3,4 and 5. Various frameworks for modeling and

quantifying emotion were presented to show how the emotion qualities of arousal and

valence can be used to measure differences in emotion states. Results from laboratory

and field studies were presented to show how physiological variables have been shown

to correlate with affective states. The work of this thesis will be to advance the field
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by testing the application of more advanced signal' processing and pattern recognition

techniques to the problem of emotion recognition. New features and algorithms for

discrimination are presented. Multiple modes of physiological signals are combined

to create novel classifiers. In addition, new systems for capturing affect in the natural

environment are developed for both ambulatory and driving situations.
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Chapter 3

Eight Emotion Experiment

The eight emotion experiment was designed to test for the presence of unique phys-

iological patterns for the emotion set: no emotion, anger, hate, grief, love, romantic

love, joy and reverence. This experiment studies the most diverse set of emotions

of this thesis; however, the setting is the most constrained. This particular set of

emotions was chosen because it has been found to produce a unique set of finger

pressure patterns when intentionally expressed[Cly77]. Using the same experimental

protocol that generated these results in the finger pressure feature, four additional

signals were collected: blood volume pulse, elecromyogram, respiration and skin con-

ductance. The experiment was performed over thirty-two days with the author as the

subject. Although the subject was informed, she had no access to the signal readings

during the experiment and made every effort to authentically feel and express the

emotion states to create a good data set from which to develop features for future

use. Twenty perfect datasets in which there were no hardware or software failures

were collected over the thirty-two days. The goal of this experiment was to find a

discriminating set of features in the physiological domain and to see if an algorithm

could be built, using these features, for classification of the eight states.
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3.1 Experimental Protocol

Each experimental session required the subject to sit in a chair with a straight back

while wearing sensors and to sustain each emotion for a period of three to five minutes

at the prompting of the Sentics software. The subject sat with feet placed comfortably

apart, with the left hand on the left leg and the right hand on a finger-pressure sensing

device called the the Sentograph. The BVP and GSR sensors were placed on the

resting left hand, the respiration sensor was placed around the diaphragm, and the

EMG was placed on the masseter muscle to measure jaw clenching. The subject wore

headphones over which a computer voice announced the start of each emotion episode.

The episodes occurred in the same order for each experimental session: no emotion,

anger, hate, grief, platonic love, romantic love, joy and reverence. The name of each

emotion was first announced, followed by a series of soft metronome clicks. At each

click the subject pressed the finger pressure sensor, to mimic the original experiment

and to evoke the emotion through physical expression. The software randomly varied

the duration of each emotion episode to lessen anticipation effects. The duration of

each episode ranged from three to five minutes.

Data was collected over a period of 32 days in an office setting. At each experi-

mental session, approximately thirty minutes of data was recorded. Twenty complete

datasets were collected due to various equipment failures, including sensors becom-

ing detached from the subject, the connector from the sensor to the analog-to-digital

converter becoming unplugged and loss of electronic files due to software errors. The

four analog sensors, GSR, BVP, respiration and EMG were sampled at 20 samples

per second using the ProComp unit from Thought Technologies, Ltd[Tho94].

3.2 Emotion Generation

The Sentics software provided a cue to begin each emotion episode and the Sento-

graph provided a means of physical expression; but the subject was responsible for

generation of the emotion. Relying on a guided imagery technique for acting that the
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subject learned, the subject picked specific images to use as cues during each emotion

episode. The images were chosen which had both a compelling impact on the subject

and which matched with the guidelines Clynes laid out for interpreting the emotion

states. The goal of these images was to encourage a consistent generation of the

emotion across multiple data collecting sessions. During the experiment the subject

attempted to feel and express eight affective states for the period specified by the

Sentics software (a length of time varying between three to five minutes with random

variations). The subjects goal was to authentically feel and express this emotion to

the computer as they might strongly express an emotion to another person. Because

the goal of this experiment was to truly determine if unique physiological signatures

of emotion could be detected, the subject attempted to authentically feel the emo-

tions. She reported that this generation was different from emotion generation for

stage action because the expression was not overly exaggerated.

Defining a set of basic emotion states is a difficult task and one that has been

the subject of much debate in the psychological community [Ekm92a]. Analysis of

any system becomes more problematic when the inputs are unknown or ambiguously

classified. Identifying or generating an emotion of a specific class is easier when the

class is well defined. Each of the following subsections presents: a summary of the

guidelines provided by Clynes, the images used by the subject to elicit the emotion

state and an interpretation of the resulting emotion along the axes of arousal and

valence. As described earlier in the background chapter, arousal is a measure of the

strength of activity associated with the emotion (ranging from calm to very excited)

and valence is an axis reflecting the positive or negative aspect of the state of the

state (ranging from negative=sad to positive=happy). These generation assessment

ratings were used in the analysis to create subsets of emotion that shared similar

qualities.

No Emotion

Clynes instructs the subject to just "think of the pressing as just a mechanical action,

as if you are pressing on a typewriter key." [Cly77] in his guidelines for the Sentics
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experiment. For this state the subject used the image of a blank piece of paper and

the image of typing blank characters on the paper using a typewriter with no ribbon.

The subject consistently rated the no emotion state as being low arousal and neutral

valence. Errors in generation occurred when the subject occasionally became bored

and her mind wandered to other topics.

Anger

Clynes did not give specific instructions for expressing anger. However, the subject

did not find this emotion difficult to imagine. At the time the subject had a specific

person whose image consistently aroused anger. She used the image of this person to

generate the emotion. The subject rated this emotion as having the highest arousal

level of the eight states, although on a few occasions the subject reported that fatigue

affected the generation of this emotion and a high arousal level was not achieved.

She also reported the valence as consistently negative. This emotion could also be

described as rage.

Hate

Clynes also gave no specific instructions for imagining hate. The subject was asked to

name different things she felt hatred towards and to describe the emotion. She chose

to use images of injustice (television images of people being treated badly by police

forces or seeing people forced to live in extremely bad conditions), school yard bullies,

hate crime graffiti, and scenes of war. The subject described these feelings of hate

as things she would feel angry about if she felt it was possible to take action against

them. This may be similar to the experience of the "cold anger"[Ax53] described

in emotion literature. The subject rated this emotion as low arousal and negative

valence. The subject reported that the vagueness of this emotion made it difficult to

generate.
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Grief

Clynes describes the grief state as a transition between negative and positive emotions.

From this the subject understood it to be a cathartic emotion, an active form of

grieving that would purge negative emotions. The subject used two primary images to

generate this emotion. She either imagined the loss of someone she loved, in particular

her mother or she remembered a specific picture in which a mother is grieving over

her deformed child in a large bathtub. Both images were imagined situations, the first

possibly a more direct form of grief and the second perhaps a more empathic form of

grief. The subject reported that the spontaneous generation of this emotion was often

the most difficult. Either the emotion was not well generated or the emotion was so

well generated that it was difficult to contain its expression to the window allowed

by the Sentics software. The subject described this emotion as high arousal, negative

valence when successfully generated, and as a lower arousal, negative valence state

when the generated emotion felt more like depression. The subject reported that

this emotion could also be interpreted as a kind of pity, either for herself or for the

deformed child in the image.

Platonic Love

Clynes describes platonic love as the experience of motherly or brotherly love as

opposed to sexual love. The subject used a childhood image of being with her mother

in a hammock at a summer cottage with her family to generate this state. The subject

rated this emotion as low arousal and positive valence. Many psychologists disagree

with the inclusion of love as an emotion due to the long duration of the state[Ekm92a];

however, the subject reported no difficulty generating this emotion or containing its

expression to the short window of the emotion episode.

Romantic Love

Clynes describes romantic love as a love for a member of the opposite sex[Cly77]. To

generate this emotion the subject used erotic imagery. The subject reported that this
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emotion was often difficult to generate. When properly generated, this emotion had

very high arousal and positive valence, otherwise a neutral arousal, neutral valence

state was reported. The results of this state were the most highly varied across days.

Joy

Clynes does not give any specific instructions for experiencing joy. The subject imme-

diately associated this emotion with Beethoven's "Ode to Joy" and used the memory

of this song rather than a visual image to elicit the emotion. The subject reported

feeling joy as a uplifting emotion, an excited form of happiness. Often this feeling was

coupled with a feeling of triumph. Joy was rated as a high arousal, positive valence

emotion.

Reverence

Clynes describes reverence as "not reverence for a person, but for nature or for God,

or the starry skies, i.e. for something larger than yourself" [Cly80]. The subject used

images of being in church and reciting prayers to generate this emotion. The subject

reported this emotion as having very low arousal and neutral valence. She reported

is was easy to generate and was consistently experienced as peaceful.

Emotion Generation Summary

Although the intensity of the emotions sometimes varied, the overall character of

each state was consistent. The subject reported that using the finger pressure device

as channel for expressing each of these emotions was always helpful. It provided a

focus for renewed expression of the emotion every few seconds. A summary of the

images used to elicit these emotions and the general ratings they were given in the

dimensions of arousal and valence are summarized in Table 3.1.
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Emotion Imagery Description Arousal Valance

No blank paper boredom low neutral
Emotion typewriter vacancy
Anger people who desire very very

aroused anger to fight high negative
Hate injustice passive low negative

cruelty anger
Grief deformed child loss high negative

loss of mother sadness
Platonic family happiness low positive
Love summer peace
Romantic romantic excitement very positive
Love encounters lust high
Joy Ode uplifting medium positive

to Joy happiness high
Reverence church calm very neutral

prayer peace low

Table 3.1: A description of the emotional states intentionally induced and expressed
in this experiment

3.3 Feature Extraction

Eleven features were initially proposed for extraction from the four signals. This

section described the features and the signals from which they are derived. The signal

processing for each sensor, including smoothing, normalization and feature extraction

is described in four subsections. The symbols g, B, R and . represent the GSR, the

BVP heart rate, the respiration and the EMG respectively. The heart rate signal, B,

is calculated automatically by the ProComp system using the inverse of the inter-beat

intervals detected from the BVP sensor[Tho94]. No features were extracted from the

raw BVP signal. All signals are analyzed digitally after being sampled at a rate of

twenty samples per second by the ProComp system.

Let X designate the samples taken from any one of the eight emotion episodes

on any one of the twenty days. The features representing a particular emotion on a

particular day are calculated from these segments. Let the bar symbol represent the

signal taken over an entire day, across all eight emotion episodes, e.g. X. These long
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data records are used in normalization calculations. Let the tilde symbol represent a

normalized signal, e.g. X is a normalized version of X, where different normalization

procedures are described for each feature in the following sections. Let the lower case

represent a smoothed signal, e.g. x represents the smoothed signal X. All smoothed

signals were created by convolution with a 500 pont (25 sec) Hanning window. This

window, represented as w, was generated by the Matlab function "hanning." The

smoothed signal x is described by x = X * w. All signals were sampled at a rate of

20 samples per second, creating a digital version of the signal. Let X" represent the

value of the nth sample of the raw digital signal, where n = 1,..., N, with N in the

range of 2000 to 5000 for the varied lengths of the emotion episodes.

Features extracted from multiple sensors include the mean, variance and the mean

of the first forward difference. These features, represented by the symbols [x, -X2

and 6x or tx, Ofx 2 and &x for normalized signals are defined by the Equations 3.1- 3:

1. Mean for Raw and Normalized Signals:

1 N N

x = XnN [ Xn (3.1)
n=1 n=1

2. Variance for Raw and Normalized Signals:

1X2 N AXN2

U-X = Z( Xn- x)); &X= ( N (kn (3.2)
N' -N 1 n=1 N - I n_1

3. First Forward Difference Mean for Smoothed and Normalized Smoothed Signals:

1 _ 1
6x =i(Xn+i - Xn) = (XN -X1); sx - Nx1) (3-3)

The 6x calculation was used to capture a general estimate of the slope. It is performed

only on smoothed signals which are less likely to contain outliers in the first and final
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Figure 3-1: An example of a raw EMG signal from which the feature was extracted.
An example of a raw GSR signal from which the features of mean and average differ-
ential were extracted Each mean feature is labeled with the name of the emotion for
the episode during which it was recorded. The line of the mean feature extends over
the time period of each emotion.

points of the emotion episode.

EMG

The EMG sensor was used to capture motor activity in the masseter muscle. The

signal was neither filtered nor normalized in the feature analysis. One feature was

extracted, the mean of the raw signal p,,. This measure can reflect jaw clenching,

frowning and smiling. Figure 3-1 shows the raw data S, the same data smoothed

for better visualization, e and the mean for each emotion segment pe. Each mean

feature is labeled with the name of the emotion for the episode during which it was

recorded. The line representing of the mean feature extends over the time period of

each emotion.
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GSR

Two features were extracted from the smoothed and normalized signal, the normalized

mean, pg and the normalized first difference mean 6g. These features were chosen to

represent the overall autonomic level during the emotion episode and the change in

autonomic activation over the course of the episode. An example of how these features

represent the signal is shown in Figure 3-1.

The smoothed signal, g was normalized using a metric proposed by Rose in

1996[LRLM66] and subsequently found to be valuable to other researchers[LV71],

[SF90]. The normalization metric is defined by:

~ g - min()
max(g) - min(g) (3.4)

where max(g) and min(g) are the maximum and minimum points of the signal for

the entire day's session.

BVP Heart Rate

The heart rate signal, B is calculated automatically by the ProComp system using the

inverse of inter-beat intervals detected from the raw BVP signal. Two features were

extracted from The heart rate signal after smoothing, the the mean,pb, and the mean

of the first forward difference, 6 b. These features are similar to those extracted from

the GSR, except no normalization procedure is applied. The signal B was smoothed

using the same window w which was used for the GSR, b = B * w.

Respiration

The respiration sensor measures expansion and contraction of the chest cavity using

a Hall effect sensor attached around the chest with a velcro band. Six features were

extracted from the respiration signal, two in the time domain and four in the frequency

domain. In the time domain, the signal was normalized by subtracting off the overall

mean of the data for that day. This removes baseline variations due to the initial

tightness of the sensor when it is stretched around the diaphragm, an artifact which
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is not due to any physiological effect. This normalization is described by:

S= 7Z - PR. (3.5)

The mean, PI and the variance, &' were calculated from this normalized signal.

These features reflect resting lung volume and the overall amount of variation in the

respiration signal.

Four additional features were calculated from a power spectral density of the

signal. For these features, the last 2048 points of data collected for each emotion

episode were used. Each 2048 point segment was normalized by subtracting off the

mean of the segment. Let R represent the uniform length segments. The power

spectrum estimate used the normalized signal:

R = R - PR (3-6)

From this normalized signal the power spectral density was calculated using the Mat-

lab command PSD. This command was invoked using the command:

PRR = PSD(R, 2048, 10); (3.7)

where 1 is the normalized 2048 point segment, 2048 is the length of the FFT and 10

is the Nyquist frequency for the 20Hz sampling rate. The segment is windowed by a

hanning window the length of the segment. The spectral estimate is most accurately

described by the on-line reference provided by Matlab[Mat99].

Pxx = PSD(X,NFFT,Fs,WINDOW) estimates the Power Spectral Den-
sity of a discrete-time signal vector X using Welch's averaged, modified
periodogram method.

X is divided into overlapping sections, each of which is detrended (accord-
ing to the detrending flag, if specified), then windowed by the WINDOW
parameter, then zero-padded to length NFFT. The magnitude squared of
the length NFFT DFTs of the sections are averaged to form Pxx. Pxx is
length NFFT/2+1 for NFFT even, (NFFT+1)/2 for NFFT odd, or NFFT
if the signal X is complex. If you specify a scalar for WINDOW, a Han-

63



ning window of that length is used. Fs is the sampling frequency which
doesn't affect the spectrum estimate but is used for scaling the X-axis of
the plots.[Mat99]

The spectrum was then normalized by dividing by the sum of the samples:

PRR
PRR = 2048 (3.8)

Z 1 PRR

From this normalized spectral estimate four band characteristics were calculated by

summing 10 samples and dividing by the number of samples. Using a 2048 point

FFT in Matlab results in a spectrum with 1024 points mirrored across the real axis.

The positive 1024 points correspond to a frequency band ranging from zero to the

Nyquist rate of the sampling frequency. In this case, the 1024 points represent the

frequency range 0-10 Hz. Each sample represents a frequency spaced at intervals of

10 = 0.00976 Hz ~ 0.01 Hz. Therefore each feature represents a band of 0.1Hz. Let
1024

PN represent the band power feature as defined by Equation 3.9:

10*i PRR
Pi = 10(3.9)

10*(i-1)+1

where i ranges from 1 to 4 for these features. These four band features capture most

of the energy in the spectrum, covering the range 0-0.4 Hz. Figure 3-2 shows an

example of how these features represent the signal during each of the eight emotion

episodes.

3.4 Feature Summary

Sample signals from the four physiological signals are shown in Figure 3-3. The

annotations in the top graph indicate the times at which the subject expressed no

emotion, anger, hate, grief, love, romantic love, joy and reverence. These signals

appear to exhibit trends which differentiate the eight emotion states. The eleven

features extracted from these signals ([e, fg, 6g, p , PS,) i, R, Pi, P2, p3, p4) were

used to capture the qualities of the signals. A summary of the features is given in
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Respiration Signal and Features
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Figure 3-2: An example of how the respiration signal is represented by features in
both the time and frequency domain. On the left, the raw and smoothed signals
are shown along with the mean and variance features which represent them. On
the right, examples of how each emotion episode is represented by features in the
frequency domain.

Table 3.2. This table shows the mean value for each emotion across all twenty days.

From this a rough estimate of how well each feature distinguishes the emotion states

can be seen.

3.5 Pattern Recognition Results

To discriminate sets of emotion states, points in the eleven dimensional feature space

representing the 160 emotion segments were projected into a two dimensional space

using Fisher projection. In this projected space, emotion sets were modeled as Gaus-

sian distributions and linear and quadratic classifiers were created using discriminant

functions. Recognition rates were calculated using leave one out cross validation.

These methods are well established in the pattern recognition community. A brief

description is provided here to show how these methods were applied to the emotion

recognition problem. This implementation is based on a description by Duda and

Hart[DH73].

The Fisher projection matrix uses linear combinations of features to find a space
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Signals from Physiological Sensors Showing 8 States
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Figure 3-3: An example of a session's data collected from four sensors. Signals from
the EMG on the masseter muscle in microvolts (top), the skin conductance waveform

(in micro-Siemens), the heart rate (in beats per minute), and the respiration waveform

(in % expansion) are shown. The annotations at the top on the EMG waveform
indicate the periods during which the subject was asked to express no emotion, anger,
hate, grief, love, romantic love, joy and reverence. These periods are the same for all
emotions
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Average Features for 20 trials

no emotion

1.0
.56
-.36
78

.0020
.10
.02
.32
.38
.07
.03

Table 3.2:

anger hate
3.2 1.5
.68 .60
.76 -.82
86 80

.0001 .0004
.14 .02
.02 .02
.26 .34
.36 .27
.12 .07
.04 .03

grief
1.9
.54
.05
81

.0000
-.12
.08
.33
.18
.07
.03

platonic

1.2
.54

-.01
80

-.0030

-.01
.02
.43
.23
.04
.02

romantic

1.5
.56
.01
83

.0001
.01
.02
.24
.29
.11
.04

joy
1.7
.60
.20
80

.0001
.00
.06
.35
.24
.06
.02

reverence
0.9
.57
-.44
78

-.0007
-0.2
.01
.33
.36
.06
.03

The average values of the eleven features extracted from the data for
the eight emotion states. Differences in the means across the features gives a rough
estimate of how well the feature distinguishes between emotion states

Three Individual Emotions Linear Classifier Quadratic Classifier
em 1 em 2 em 3 misclassified correct misclassified correct
no em. joy reverence 1-7-4 80 % 2-5-4 82 %
anger hate romantic 6-4-3 78 % 5-4-3 80 %
anger hate reverence 5-4-3 80 % 5-3-3 82 %
anger grief reverence 2-6-2 83 % 3-4-1 87 %
grief platonic reverence 6-6-4 73 % 5-5-5 75 %
anger romantic reverence 4-5-3 80 % 4-6-3 78 %

Table 3.3: Subsets of three individual emotions were projected into the Fisher space
and a good discrimination was achieved. These methods did not yield good results
for greater numbers of individual emotions.
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Sets of Similar Emotions Linear Classifier Quadratic Classifier
Emotion Set Set Size misclassified correct misclassified correct
anger 20 2 90% 0 100%
peaceful 60 1 98% 1 98%
high arousal 80 15 81% 16 80%
low arousal 80 11 86% 10 88%
positive 60 15 75% 11 82%
negative 60 29 53% 30 50%

Table 3.4: This table summarizes the results of discriminating between sets of emo-
tions defined by differences in arousal and valence qualities. Anger was rated as a
very high arousal emotion, it was discriminated from a class of "Peaceful" emotions

including no emotion, reverence, and platonic love. All eight emotions were divided
into classes of high arousal including anger, grief, romantic love, and joy; and a low
arousal class containing no emotion, hate, love, and reverence. A positive valence class
was created containing platonic love, romantic love, and joy; which was compared to
the negative valence class consisting of anger, hate, and grief. Better discrimination
was achieved for emotions separated along the arousal axis.

in which the classes are most well separated from each other and in which the dis-

tance between points belonging to the same class is minimized. This is a method

which would produce the kind of optimal discrimination suggested by Cacioppo and

Tassinary and shown in Figure 2-13 of the background chapter.

To find this optimal projection two quantities, the between-class scatter, SB, to

the within class scatter, Sw are defined by Equations 3.10 and 3.11:

C D

Sw = E S (x - mk)(x - Mk)' (3.10)
k=1 xExk

C

SB = E Dk(mk - m)(mk - m)t (3
k=1

where C is the number of classes, representing the emotion episodes, D is the number

of sample vectors in a class, corresponding to the number of days over which the

data was taken, Mk is the sample mean for class k, m is the pooled mean over all

classes, and x are the 11-dimensional feature vectors in each emotion class Xk . For a

classification involving the entire data set, C = 8 (1=no emotion, 2=anger, 3=hate,
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4=grief, 5=platonic love, 6=romantic love, 7=joy and 8=reverence) and D = 20

representing each of the days in which a complete data record was taken. In this

example, there would be 160 feature vectors, x, 20 belonging to each class Xk. The

Fisher projection matrix is found by solving the generalized eigenvector equation:

Si-YSBWk = Atk (3.12)

where the wk corresponding to the largest eigenvalues form the columns of the pro-

jection matrix W. This matrix is then used to project the test point onto the classifier

space using

y = WTx (3.13)

In this analysis the points y exist in a two dimensional space, where linear and

quadratic classifiers were calculated. These classifiers use discriminant functions de-

scribed by the following functions:

1. Quadratic discriminant function

gk(y) = -(y - mk)TKj(y - ink) - In JKk + 2In Pr[ck], (3.14)

2. Linear discriminant function

gk(y) = -(y - mk)TK-(y - Mik) - In IKI + 2ln Pr[ck], (3.15)

where for each class k, mk represents the sample mean for that class and Kk represents

the covariance matrix for the class. For the linear classifier K is the sample mean

of the individual covariances. Pr[ck] is the prior probability of the sample belonging

to class k. This prior is based on the number of samples in the class with respect

to the total number of samples. In the cross validation procedure, a single point, x,

is excluded from the data set and a Fisher projection matrix, W is calculated for

remaining members of the set. The excluded point is then projected using that same
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W and classified using the maximum discriminant function of both the quadratic and

linear classifiers in the standard method described by Therrien [The92] and described

by the rule:

choose class ci when gi(y) = maxK 9k (Y)

This procedure was performed on subsets of individual emotions and subsets of groups

of emotions. It was found that it was difficult to discriminate all eight emotion states.

Some subsets of three emotion states were found to be well discriminated, such as

anger, grief and reverence. The results of projecting three emotions into the two

dimensional Fisher space and performing recognition with both linear and quadratic

classifiers are reported in Table 3.3.

Other discriminations were made by taking sets of 4, 6 and eight emotions and

projecting them into a two dimensional space defined by the Fisher features wi cor-

responding to the two greatest eigenvectors. Each of the emotions was individually

modeled by a gaussian distribution and linear and quadratic classifiers were calcu-

lated. Classification was performed on each of the emotion classes individually. If a

point belonging to any of the emotion classes in a set was classified as belonging to

any emotion class in that set the point was labeled as being correctly classified. If the

point was classified as an emotion of the other set it was labeled as being misclassified.

These sets were created to determine if emotions described as similar along the axes

of arousal and valence could be well discriminated by these features. The results of

this classification are shown in Table 3.4. The best discrimination was found between

emotions differing along the axis arousal. For example, anger, a very high arousal

emotion is well discriminated from a set of more peaceful emotions (no emotion, love

and reverence). The entire set of eight emotions was well classified when grouped

into sets of sets of high arousal (including anger, grief, romantic love and joy) and

low arousal (including no emotion, hate, love and reverence) emotions. Conversely,

discrimination was poor when the emotion states were grouped into sets of positive

valence (including love, romantic love and joy) and negative valence (including anger,

hate and grief), where neutral valence emotions were excluded from the sets. From
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Number of Features which Without Day Matrix
formed initial space

SFFS Fisher SFFS-FP
(%) (%) (%)

30: ux, Ox, 6 x, r x, ~ x 52.50 56.87 60.00
X E (9', 8,9,7Z,'H)
11: fl, f2,..., fo, Pe 60.62 70.00 70.63
40: all of the above 65.00 77.50 81.25

Table 3.5: Comparative classification rates for eight emotions using combinations of
the features used in this original analysis and statistical features derived and evaluated
by Elias Vyzas[VP99]. Recognition rates are significantly boosted by the addition of
the features described in this section, fi, f2,... , f 1o and ye.

these results it can be determined that these features are better for distinguishing

between emotion sets which differ along the axis of arousal.

3.6 Additional Results

Additional analysis on this data set and on a subset of the data collected from this

experiment was done by Elias Vyzas, a researcher in our group. His analysis used

the the eleven features proposed in this thesis plus 29 additional statistical and day-

dependent features[VP99]. The results of his analysis using the features described in

this section as fi - fio and Ate is shown in Table 3.5. Using these features along with

his statistical features in Jain and Zongker's Sequential Forward Feature Selection

Algorithm yielded a recognition discrimination rate of 81.25% for the eight emotions.

The confusion matrix for this analysis is shown in Table 3.6 [VP99]. Algorithms were

also created to analyze this data as if it were being presented to the computer in real

time[VP99].

3.7 Summary

This study has shown that within the constrained conditions of this experiment

(seated subject, relatively motionless, intentionally generating and expressing each
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N A H G P L J R 1Total

N 17 0 0 0 3 0 0 0 20
A 0 17 0 0 2 1 0 0 20
H 0 0 14 1 0 0 3 2 20
G 0 0 1 15 0 0 4 0 20
P 0 0 0 0 17 2 1 0 20
L 1 1 0 0 3 14 1 0 20
J 0 0 1 2 0 0 17 0 20
R 0 0 0 1 0 0 0 19 20

[Total 118 18j 16 19 25 17 26 121 160

Table 3.6: The confusion matrix for the method that gave the best performance in
the classification of 8 emotions using both the eleven features presented here plus

additional statistical features (81.25%)[Vyz99]. In this matrix an entry's row is the
true class, the column how it was classified.

emotion) specific emotion patterns can be automatically recognized by a computer

using physiological features. For emotions which were clearly different in their gen-

eration along the axis of arousal, 100% recognition was possible. Also subsets of

emotions which had clearly different qualities were also well separated with recogni-

tion rates of 75-87%. Furthermore, the features used in this analysis were found to

contribute significantly to a recognition rate of 81% for the set of all eight individual

emotions found using Fisher projection and a Sequential Floating Feature Selection

(SFFS) algorithm using a k-nearest neighbor (k-NN) classification criterion. This

81.25% recognition rate may be close to the best possible rate for recognizing the

actual emotions generated given that the emotions were not generated with perfect

consistency.

Emotions have been studied in the laboratory for decades; however, repeated

studies using a single individual are rare. This experiment allowed the best possible

circumstances for recognizing a single individual's emotions in a laboratory setting;

however, it is not certain how well these acted episodes correlate to real emotional

episodes outside the laboratory where their expression is not as encouraged. In real

situations, for example, a person may not actively clench their jaw in anger with the

same exaggerated expression as when trying to produce the emotion. The respiration
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effects during true grief may also differ from the patterns found in self-produced

grief. Naturally occurring reactions may be even more distinct and easy to identify,

or they may be more subtle. The next two experiments present physiological data

from natural situations in which affective states occur.
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Chapter 4

Ambulatory Experiments

A wearable computer offers an unprecedented opportunity to collect and analyze large

quantities of data in natural situations. Augmented with physiological sensors and

the capability of real-time digital processing of these signals, a wearable computer

can learn about the user's affective responses as they happen, where they happen and

when they happen. Ideally, a wearable system would be as transparent and as easy to

wear as a wristwatch, but currently this technology has not been reliably developed.

This section presents new devices developed for ambulatory affect detection and the

results of some data collection experiments in real world situations. In one experi-

ment, a person wore the ambulatory system for a portion of the day while walking

around and performing normal daily tasks. During this time, a digital video camera

captured periodic images and the person made annotations of her activities which

were logged with the physiological data. Another experiment consisted of a series of

in-lab tests designed to determine how the effects of physical activity impacted on

physiological signals. Although the range of motion in the ambulatory environment

often obscured affective signals the devices here serve as excellent activity monitors

and can be used to detect affect in low motion situations. Such a situation, automobile

driving is explored in the next chapter.
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4.1 Affective Wearables

To determine if natural affective responses could be captured and quantified in the

unconstrained ambulatory environment, a wearable system for monitoring physiolog-

ical signals was designed and tested. The ambulatory monitoring system consisted

of a "Lizzy" wearable computer[SMR+97], physiological sensors and an analog-to-

digital converter unit. The Lizzy wearable system is slightly bulky and could more

accurately be described as "tote-able" rather than wearable, but it provided a com-

paratively robust base unit that has been used reliably by researchers for the past

few years. Experimental prototypes of more lightweight, low power sensing units were

also developed. These sensor designs incorporate wireless transceivers and conductive

rubber electrodes, and have been embedded into clothing and accessories. Designs

for embedded GSR, BVP and respiration sensors are presented.

The Affective Lizzy

The system used to collect the data in the ambulatory experiments was based on

Thad Starner's "Lizzy" wearable. This design incorporated a PC104 card stack run-

ning Linux, a Private Eye head-mounted-display (HMD) and a Twiddler chordic

keyboard. To monitor physiological signals this design was augmented with physio-

logical sensors and a ProComp unit with an analog-to-digital converter [Tho94]. A

PalmPilot interface was developed as an input-output device to replace the combina-

tion of the head mounted display and chordic keyboard. A digital camera was added

to collect periodic snapshots of the wearer's activities throughout the day. Figure 4-1

shows the ambulatory system both with the Private Eye and Twiddler combination

and with the PalmPilot. Both images show the ProComp unit and the physiological

sensors, including an electromyogram for measuring muscle activity, a Hall-effect sen-

sor for measuring respiration through chest cavity expansion, a photoplethysmograph

for measuring pulse, and a skin conductance sensor.

This system is small enough to fit in a satchel and can be carried around unobtru-

sively. Replacing the head-mounted-display and chordic keyboard with the PalmPilot
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Figure 4-1: Two Lizzy based wearable systems. The top image shows a Lizzy with

sensing system using a Private Eye HMD and Twiddler chordic keyboard. The com-

ponents shown include, clockwise from top left, the Private Eye HMD, CDPD modem,
PC104 based wearable [Sta95], the AD converter, EMG, BVP GSR, a chordic key-

board and the battery, and, center the digital camera and the respiration sensor.

Another version shown in the bottom image uses the PalmPilot to replace the HMD

and chordic keyboard.
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Figure 4-2: To make the wearable monitoring system less noticeable, a PalmPilot

interface was developed to replace the head-mounted-display and chordic keyboard.

The physiological sensors can be worn underneath clothing.

makes the wearable even less noticeable. The sensors can be worn under clothing to

make them minimally obtrusive. Figure 4-2 shows four images of wearable systems.

The first two show wearables using either the Private Eye and Twiddler or the PalmPi-

lot interface. The third image shows the author wearing the physiological sensor and

the fourth image shows the same system with the sensors hidden. The exposed sen-

sors are shown with the respiration sensor worn around the chest on top of the shirt,

an EMG worn on the bicep, a BVP attached to the wrist and a GSR sensor worn

on two fingers. The hidden sensors include the respiration sensor worn under the

shirt, the EMG sensor on the trapezius (back shoulder) muscle, the GSR sensor on

the foot, and the BVP sensor on the side of the neck. The sensors are connected to

the wearable computer worn in the satchel.

ADX Microprocessor Units

As an alternative to a bulky general purpose wearable computer with sensors, proto-

types of very small, low power, low cost microprocessor based sensors were designed.

These units, called ADX for "analog-to-digital converter," were designed to take ana-

log readings of physiological signals at different points on the body, sample the signals

using a low-power analog-to-digital converter, and send the digital signal back to a
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central processing unit. A PIC series microprocessor controlled the timing of the

signal collection, stored data and controlled error checking. The prototypes were

primarily designed by Grant Gould, an undergraduate researcher under my supervi-

sion. His design consists of a base unit PIC16F84 micro-controller and an LTC1298

two-channel analog-to-digital converter buffered through an Analog Devices OP291

operational amplifier[Gou99]. The micro-controller also controls the transmission of

information across a serial bus, an 'infra-red channel (IR) and short distance radio fre-

quency (RF) Personal Area Network (PAN) [Zim96] transmitters. These sensors can

operate at up to 9600 bits per second using the RJ11-style serial connection[Gou99].

Wireless transmission methods have more limited bandwidth not exceeding 2400 bits

per second.

These ADX boards were coupled with several embedded sensors and tested in the

laboratory. Figure 4-3 shows an ADX board attached to a GSR sensor embedded on

a wrist-cuff with rubber electrodes and worn on the arm attached to two "ring" elec-

trodes. The wrist-cuff arrangement uses PAN radio frequency wireless transmission

while the arm-mount system uses wireless line-of-sight IR transmission. Figure 4-5

shows the ADX board attached to a BVP sensor on the ear. This sensor arrangement

uses the RJ11 style serial connection to avoid RF near the head and because drifting

strands of hair interrupted the line-of-sight for IR. Testing these sensors showed that

signals could be transmitted at the 20Hz sampling rate, but that the prototypes were

very fragile. Transmission methods were sensitive to motion artifacts for the embed-

ded GSR and the signal from the embedded BVP sensors was confounded by head

motion. Further work would have to be done to develop these embedded sensors into

a working system. The prototypes are presented here to illustrate the goals of this

experiment and to show the placement of sensors we found to be most useful.

Embedded GSR Sensor

Skin conductivity can be measured effectively from either the palm of the hand or

the sole of the foot. The prototype embedded GSR sensor shown in Figure 4-4 is

used to take a reading off the sole of the foot. The foot is a good place to take a
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Figure 4-3: Two prototypes for measuring skin conductivity. Left shows a model

using a conductive rubber electrode embedded into the cuff of a shirt sleeve attached

to an ADX unit with RF transmission capabilities. Right shows two silver rings used

as electrodes with an ADX using IR transmission.

reading because hands are used on many daily tasks which create motion artifacts

and because hand washing effects the skin conductivity reading. However. the skin

conductance reading from the foot is subject to pressure artifacts when the subject

is walking.

In this prototype design, Ag-Cl electrodes are shown embedded in the insole of a

shoe. The sensors and electronics used to capture the skin conductance reading are

embedded in the heel of a shoe. A wire runs through the shoe to attach the sensors

to conductive snaps which hold in the insole with the electrodes. Snap in insoles with

disposable electrodes allow electrode replacement to be easy and inexpensive.

Embedded BVP Sensor

The pulse can be measured by using a photoplethysmeograph to measure the quantity

of blood in the peripheral blood vessels. The sensor has two parts, a light source and

a photo-detector to measure the amount of light that is reflected by the surface of the

skin. Each time the heart beats, blood swells the capillaries, causing a change in the

amount of light detected[Tho94]. By measuring the distance between these peaks in

reflectance, heart rate can be calculated.

Both the light emitting device and the photo-detector are very small: in our sensor

they are less than one centimeter in diameter. Therefore, this sensor can be embedded
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Figure 4-4: A prototype for measuring skin conductivity can be measured from the

sole of the foot using electrodes embedded in the insole (top) and a microprocessor

unit in the heel of the shoe (bottom).
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Figure 4-5: A prototype for pulse sensing. A photoplethysmograph is attached to the

ADX using a wire instead of RF to avoid the risk of problems associated with having

radio frequency emissions constantly near the head. The left image shows the entire

system and the sensor as worn is shown right.
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Figure 4-6: The circuit design for the GSR sensor[Gou98]. In this design, R1 = 100k,

RD = 5kQ potentiometer, and R2 = lOkQ. Designed by Grant Gould

+5V
Detector

Emitter

2V Etc+ C

7 +

RR R2 R 2

R2 }
Figure 4-7: The circuit design for the BVP sensor[Gou98]. In this design, R1 = R 2 =

1OOkQ, RD = 1OOkQ potentiometer. Designed by Grant Gould.
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Figure 4-8: A prototype for respiration sensing through chest cavity expansion using

a Hall Effect sensor. The left image shows the sensor in the location where it could

be embedded into a sports bra. A close up of the sensor in the right image shows

the analog components and the constrained magnets. This image does not show the

attached ADX board.

into small pieces of jewelry, such as an earring. An example of this is shown in Figure

4-5. The signal from the earring is carried by a wire off the head to the ADX unit.

This sensor can be used to measure heart rate as long as the person's head is relatively

still. Motion artifacts overwhelm the reading when the person turns their head.

Embedded Respiration Sensor

An embedded respiration sensor was designed using a Hall effect sensor. This sensor

detects respiration activity be measuring chest cavity expansion. When the chest cav-

ity expands, the two magnets embedded in an elastic tube are pulled apart, generating

an electric current which is measured by the ADX sensor.

This sensor could easily be incorporated into a woman's sports bra. The elastic

band for the bra naturally sits at a good location for taking the respiration mea-

surement. Figure 4-8 shows the analog sensor on top of the elastic band of a sports

bra (where it would be embedded) and a close-up of the sensor showing two magnets

constrained by elastic on the top and bottom. In an embedded version, these magnets

would be encased in a tube of elastic.
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Figure 4-9: The circuit design for the BVP sensor[Gou98]. In this design R 1 = R 2 =
1OOkQ, RD = lOOkQ potentiometer. Designed by Grant Gould.

4.2 Daily Monitoring

A preliminary experiment was performed to determine the feasibility of conducting

ambulatory affect detection. Using the Lizzy wearable system with PalmPilot inter-

face, four physiological signals were collected from the EMG, BVP, respiration and

skin conductance sensors over the course of a day while the user went about normal

activities. In this experiment, the EMG was placed on the left trapezius muscle,

the GSR electrodes were placed on the index and middle finger of the right hand,

the BVP sensor was placed on the ring finger of the right hand and the respiration

sensor was placed around the diaphragm. Annotations were added manually by the

user through the PalmPilot interface. The computer automatically time-stamped the

annotations. During the day the subject went through various physical activities

and made occasional comments. Figure 4-10 presents the data with the annotations

placed where the computer marked them in the log file.

The anecdotal results of this experiment illuminated the main challenges of self-

reported ambulatory affect detection: the presence of motion artifacts and the diffi-

culty of capturing and coding physical and emotional events. These challenges are

illustrated by the data in Figure 4-10. The EMG record, for example, shows far more

activity in the morning than later in the day. Although this muscle tension might

be attributed to an emotional episode, it is far more likely that this tension indicates

motor activity. The subject was carrying the wearable computer on the left shoulder

84



in the morning and the recorded tension was most likely the muscle action necessary

to support the wearable. The decrease in activity at 9:40 after the "coffee" incident

was probably due to the subject's supporting the computer in her lap. The follow-

ing events explain the difference in the left shoulder motor activity in the afternoon.

During the time labeled "thesis," the computer was resting on the subject's desk and

later in the afternoon the subject carried the computer on her right shoulder. The

activity of lifting the device would have to be noted if muscle tension due to emotional

episodes is to be discerned from muscle activity due to these motor actions.

The GSR data record is also sensitive to motion artifacts, such as pressure and

electrode motion and it is difficult to know when these artifacts are present because of

an insufficiently rich labeling system. The GSR measures conductivity along the path

from one finger through the palm of the hand to the other finger. When pressure is

exerted on the electrodes, greater contact occurs between the skin and the electrode

and conductivity increases. During typing activities such as "thesis" a high variance

motion artifact occurs as the fingers move rapidly. The problem of insufficient labeling

makes these artifacts difficult to discern. For example at 9:30, a spike occurs in the

data at the time labeled "coffee." This spike may be due to an emotional episode,

physical activity, caffeine intake, or pressure from holding the coffee cup. Further, the

record shows a significant yet unlabeled degree of activity at 4:30. This precedes the

annotation "eat dinner" and is probably due to the subject's getting up, walking to

the cafeteria and climbing two flights of stairs. These activities appear in the image

record, described later, but were not noted by the subject.

The BVP data was very susceptible to motion artifacts, both in terms of sensor

motion with respect to the skin and changes in the capillary blood volume due to the

motion of the hand. The magnitude of the reflectance varied whenever the photo-

detector placement changed with respect to the skin. The sensor could not be affixed

very tightly, because doing so would cut off the pulse. This requirement and the

placement of the sensor on the finger created situations in which the photo-detector

moved with respect to the skin. The second type of motion artifact involved motion

of the hand with respect to the body, which actually changed the blood volume in the

85



capillary. When the hands were raised above the body or when the arms swung freely

during walking, identifying a definite pulse train was extremely difficult. Incidents of

sensor failure also occurred. For example, at 11:45, during the coughing episode the

signal vacillates from 0 to 100%, which usually indicates a loose connection between

the sensor and the computer unit. To be used effectively for heart rate detection in

an ambulatory situation, the BVP sensor should be placed at a better location or a

sensor less susceptible to motion artifacts should be used.

The respiration sensor was well placed to avoid motion artifacts; however, the

sensor did occasionally slip and required readjustment. Such an adjustment probably

occurred at 4:45 PM when the baseline of the recording changes significantly. This

record also suffers from a lack of consistent labeling of respiratory events. A significant

coughing episode occurred at 11:45 and was labeled. Similar disturbances occurred

at 1:30PM, 2:15PM, 2:45PM, 3:30PM, 4:20PM and 5:20PM, but the cause of these

are uncertain. A more complete record of events that effect respiration would help

distinguish these events from emotion related signals.

Although the results of this experiment are anecdotal, they illustrate the signifi-

cant challenge of reliably detecting physiological signatures of emotion in ambulatory

data. All of the user's motions and activities must be taken into account, including

eating, talking, getting up, sitting down, carrying objects, and walking. There must

also be a more complete and reliable method of annotating events, one that does not

rely on the user for input. The data recording system also used a computer controlled

camera to capture images at a rate of two per minute. Figure 4-11 shows an example

collection of these images. This record can give a good overview of the subject's

activities, helping them recall and annotate the day's events. However, for better

judgment of affective states a continuous video record which also assessed the facial

expression of the wearer would be preferred.
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Figure 4-10: A physiological record from four sensors taken during a normal day's
activities. Shown here are the traces from the BVP sensor, the respiration sensor,

the GSR sensor and the EMG sensor. The included annotations were entered by the
wearer at the times recorded by the computer. This record shows increased EMG
activity in the morning when the subject was carrying the device on the shoulder
measuring EMG activity. In this record physical activity was more readily captured
than affect and emotion episodes were sparse and not recognized by the subject.
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Figure 4-11: The digital camera automatically took snapshots once every two minutes.

The camera was worn on the strap of the wearable satchel. Without any annotation

from the user, the activity of the user can be determined. These images show the

wearer first eating a snack while working at the computer, then getting up and walking

to the kitchen, washing a dish, replacing some milk, then going outdoors.
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4.3 Physical Activity

To better understand how physical activity affected the sensor readings, a series of

controlled experiments was conducted in the laboratory. In this experiment, five

subjects wore a respiration sensor, a BVP, and two GSR sensors, one on the hand

and one on the arch of the foot. The subjects were then asked to perform the following

tasks: sit in a chair for one minute, stand up and sit down twice, walk around the room

for one minute, sit in a chair normally for two minutes, stand up and walk around the

room for one minute, sit normally for another minute, jog in place for one minute,

sit for another minute and finally intentionally cough repeatedly. An experimenter

remained in the room with the subjects at all times during the experiment to instruct

the subjects. Subjects sometimes had questions during the experiment, and this was

noted in the experimental record. The times for the tasks were marked with a special

sensor which made a spike in the recording data when depressed. Figure 4-12 shows

an example of data collected from this experiments.

The data for this experiment was saved at 16 samples per second. Two features

were calculated: the change in heart rate and the change in the skin conductance on

both the hand and the arch of the foot. The change in the skin conductivity (GSR)

was calculated as the difference between the signal taken at the time each task was

begun and the first significant local maximum. The heart rate was calculated from

the peak-to-peak intervals of the BVP. To calculate the change in heart rate due to

the activity, the average heart rate over the ten second period preceding the activity

was subtracted from the average of the heart rate over the ten second period following

the activity. Table 4.1 tabulates the results of this experiment, showing that even

common physical activities such as standing and walking can increase heart rate and

skin conductivity readings significantly. The change in skin conductance in the hand

and the foot showed different magnitudes for different subjects, perhaps because of

individual differences or differences in sensor placement. The change in the foot's

skin conductance is increased in many of these activities because of increased contact

between the electrode and the skin from the pressure of standing. The hand skin
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Table 4.1: A wearer's activities can cause large changes in physiological signals. These
changes need to be understood so that they can be taken into account by the system
trying to recognize affect.

conductivity data for Subject 5 (S5) was not available because the sensor became

detached during experiment.

Physiological emotion signals are often secondary in strength to physical signals.

In psychological studies by Lang [LGea93] and Winton, Putnam and Krauss [WPK84I,

the greatest changes in skin conductance and heart rate in their study were 0.6 micro-

Siemens, and 8 beats per minute respectively. The results presented in Table 4.1

show that simple physical activities such as standing can create physiological changes

which exceed these limits.

4.4 Summary

Wearable computers augmented with physiological sensors offer a new tool with which

to study emotion in natural situations. Through the use of this system a wealth of
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Activity Increase in HR (bpm)
S1 S2 S3 S4 S5

stand 16.0 15.8 19.7 22.0 15.2
walk 26.4 18.9 27.7 24.6 19.9
jog 68.2 60.8 74.0 80.9 87.4
cough 22.0 22.2 18.8 53.7 14.7
Activity A GSR Hand (pSiemens)

S1 S2 S3 S4 S5
stand 0.5 10.6 0.2 1.7 N/A
walk 2.0 14.3 0.8 2.8 N/A

jog 5.9 16.1 3.5 2.2 N/A
cough 5.4 11.0 2.1 2.7 N/A
Activity A GSR Foot (pSiemens)

S1 S2 S3 S4 S5
stand 0.5 12.6 0.3 4.1 3.7
walk 1.5 10.4 1.7 6.9 3.4
jog 11.5 11.0 5.0 5.0 6.4
cough 6.9 9.9 2.4 5.9 3.2
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Figure 4-12: An example of data collected from the ambulatory experiment. Data is
scaled and offset for show the relationships between the signals.

understanding about how emotions actually occur in daily life could potentially be

gained. A wearable platform allows laboratory monitoring outside the laboratory.

Now the physiology of emotion can be studied in the real world where emotions nat-

urally occur. In the future, new experiments and a better methods of automatically

capturing and codifying context may help reduce confounding artifacts. The hardware

systems to create an affective wearable are within the scope of current technologies.

Several of the prototype models could be developed into more robust wearable sens-

ing systems. Multiple EMG sensors could be used to better understand and quantify

motion. Tiny digital video cameras could replace the digital snapshot record and

record action from multiple viewpoints. In the future, vision algorithms might be

able to automatically interpret these video streams to provide automatic labeling to

aid in coding affect states. As the system currently stands, it provides an excellent

activity monitor.

Capturing the affective state to properly label physiological data is one of the

greatest challenges of this research. To lessen the effects of motion artifacts and to

limit the scope of the subjects actions, a new experiment was designed using a car

as a test-bed. In this new framework multiple video cameras captured context and

facial expression and were time synchronized with the physiological data stream to
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provide a new dimension of ground truth labeling. This experiment is presented in

Chapter 5.
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Chapter 5

Stress Recognition in Automobile

Drivers

Stress recognition in drivers is of growing concern because of the increased availability

of on-board electronic appliances (e.g. cell phones and navigation aids) which can

distract from a driver's attention. In driving situations when there is a high task

demand and when the driver is experiencing a high degree of stress, automatic man-

agement of these appliances may be desired. The automobile also offers an excellent

platform for measuring long term changes in a persons overall stress level. A regu-

lar commute to work provides a relatively constant sequence of events over which to

compare relative stress levels from day to day and the physical structure of the car

provides a large amount of space in which to embed computers, cameras and sensing

systems and also a power supply for these devices.

The design of the stress recognition experiment built on the findings of both the

eight emotion recognition experiment and wearables experiments. From the wearables

experiments, it was determined that natural situations often made the detection of

affective signals difficult. Difficulties included the confounding influence of motion,

the problem of the subject not being able to identify specific emotions as they were

experienced on a moment to moment basis and the lack of any objective fine grain

documentation of the subjects context or reactions to events. Automobile driving

is a natural situation in which ambulatory artifacts are limited and the context of
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Figure 5-1: The subject wears physiological sensors as shown in the left image. These

sensors are connected to a computer in the rear of the car, shown under the camera

in the right image.

the drivers experience was captured by multiple video cameras and a microphone.

The eight emotion identification experiment showed that emotions differing along the

axis of emotional arousal were most easily identified using the features and methods

presented here. Given the difficulties of natural emotion detection, the scope of this

experiment was limited to the detection of only one emotion state, that of emotional

stress, an axis closely linked to emotional arousal. To classify incidents of driver

stress, three metrics were used: task design, questionnaire analysis and a second by

second video tape annotation of events which might reflect the driver's stress level.

Two new types of features were also used in this analysis, features of the skin

conductivity orienting response, and measures of autonomic balance as calculated

from ratios of the short term power spectrum of the heart rate. These features

were found to be very useful at discriminating stress according to all three metrics

used. The results of this analysis suggest the possible use of this system for the

management information applications and for the purpose of evaluating automobile

and road designs.

5.1 The Automotive System

The automotive system was designed using a Volvo S70 series station-wagon. To

create the sensing system, I installed a DOS based operating system in the car's
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on-board computer and a laptop to remotely control the car's computer, a DSP

board for data acquisition, a set of five physiological sensors, three video cameras, a

microphone, a quad-splitter and a Hi-8 tape recorder. The physiological sensors were

attached to the computer in the rear of the car through a fiber-optic cable that kept

subject optically isolated from the car's electrical system, preventing any danger of

electric shock. During the driving runs, the observer used the laptop to control the

car's computer and monitor the physiological signals as they were being recorded.

The video output of the laptop was collected with the output of the three video

cameras and the microphone onto a single Hi-8 tape using the quad-splitter. This

synchronized the physiological signals with the record of driving events. Figure 5-1

shows the on-board computer, bolted to the rear of the station wagon, in the lower

left, the video quad-splitter and a digital camera are stacked on top of the computer.

The power supply for the computer, video equipment and observer's laptop are shown

in the lower right of this image. Figure 5-2 shows frame from the composite record

from the quad-splitter. This record was later independently coded to create a metric

of stress for labeling and validation.

During the experiment the subject wore four types of sensors at five locations as

shown in Figure 5.1. For the purpose of illustration, the sensors are all shown worn

on the left side. The EMG and GSR on the hand were actually worn on the right

side, symmetrically identical to their placement in the diagram. The electromyogram

was placed on the right trapezius muscle, on the upper back, near the shoulder. The

electrocardiograph was placed on the torso, underneath the subjects clothing. The

respiration sensor was placed around the subjects diaphragm on top of their shirt.

The two GSR sensors were placed on the hand and on the foot, with the wires secured

so that driving was not impeded. A more detailed description of sensor application

is provided in Chapter 2.

The sensors were attached to a FlexComp sampling unit (identical in appearance

to the ProComp unit shown in Figure 4-1) and data was transmitted via a single

fiber optic cable to the car's on-board computer in the rear of the vehicle. The

FlexComp unit was rated to be able to sample eight channels at up to 1984 samples
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Figure 5-2: A sample frame from the video collected during the experiment. Views

of the driver facial expression (upper left), body movement (upper right) and road

conditions (lower left) are combined with the microphone input and a visual record

of the physiological signals (lower right)

Figure 5-3: A small camera is placed on the steering column to capture facial ex-

pression while driving. A second camera monitors driver body motion and allows the

observer to mark events using index cards.
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per second [Tho94]; however, it was found by the author that sampling above 496

samples per second caused signal dropout across more than one channel. Also, the

author discovered that the "16 samples per second" setting actually saved data at a

rate of 15.5 samples per second, probably due to the fact that the unit is designed

to save samples only at rates in multiples of 31 samples per second. Caution is

advised in taking any of the system's reported specifications at face value. The type

cumulative errors in time synchronization which can occur due to dropped bits and

averaged sampling rates can become quite significant during a ninety minute drive;

for example, a signal event recorded at the 15.5 second rate would be over 87 seconds

off from the actual time the event occurred if the assumed 16 sample per second rate

were used.

Three video cameras captured the context of the drivers' stress, one mounted on

the steering wheel to capture facial expression, another mounted on the dashboard

to capture road conditions and a third in the rear seat to captured body motion and

indicate the roughness of the road. The camera positions are shown in Figure 5-3.

The camera on the steering wheel was placed behind the airbag release point to ensure

the driver's safety and a wide angle lens (.42) on the dashboard camera to capture a

wider view of the road. The third camera was originally intended solely to be used

by the observer to mark events using index cards; however, information from this

camera was also valuable to determine the driver's body motion and the roughness

of the road from the amount of jitter in the video image (it was the only camera

mounted on a soft surface - the rear car seat). A small microphone was placed on one

side of the driver's headrest to record the driver's voice and the noise from the road.

An observer was also present at all times during the experiment. The observer was

seated in the right rear seat of the station-wagon, diagonally in back of the driver. The

observer monitored the physiological signals from the driver using a laptop and was

also available to answer the subject's questions. The laptop was a Toshiba Tecra780

that remotely controlled the on-board computer in the rear of the vehicle. This laptop

had an RCA video output which was used to record the screen's output onto the Hi-8

tape through the video quad-splitter.
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5.2 Experimental Design

This experiment was designed to capture naturally occurring emotions, and therefore

was subject to far more uncertainty in terms of when such emotions were going to

occur. The stressors were not controlled, but the driving protocol was designed to take

the driver through situations where stressors were more or less likely to occur. Major

road types and obstacles that might typically be encountered in a daily commute were

designed into the task with the addition of two rest periods at the beginning and end

of the drive. The assumptions of the design were that the resting periods would

provide the least opportunity for stress, the uninterrupted highway driving periods

would provide a low opportunity for stress, that the city driving periods would provide

a higher opportunity for stress and that incidental encounters such as the garage exit,

tolls, the exits for the turnaround and the two lane merge would provide the highest

opportunity for stress. These assumptions were mainly supported by the subjective

report of the drivers, however some exceptions arose as explained in the section on

Questionnaire Analysis.

The session began with a fifteen minute resting period while parked in MIT's East

Garage. During this period, the motor was running and the drivers were asked to

rest with their eyes closed. When the rest period was over, the subject put the car

into reverse and exited the garage. This exit was presumed to be stressful because

the exit ramp is narrow and spirals down six floors. Following the exit, the subjects

were instructed to drive through the city of Cambridge on Massachusetts Avenue.

The subjects then took a left onto River Street and crossed the River St. Bridge.

The subjects encountered a toll booth before beginning the highway driving period

along the Massachusetts Turnpike(Interstate 90). After the toll booth the drivers

were instructed to stay in the right hand lane and maintain the speed limit, 55mph.

They were cautioned to avoid exiting the turnpike before the second toll at Route

95. The highway driving was designed to provide a relatively uninterrupted driving

task. After the second toll at Route 95, the drivers were to exit the Mass Pike going

west and turn around through a series of exits to get on to the Mass Pike going east.
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Figure 5-4: The driving route contained periods of city and highway driving. The
route began on Main St., continuing to Mass Ave and then to River Street shown
in the top map. From River Street, drivers continued along Interstate 90 (the Mass

Pike) to Interstate 95, shown in the bottom map then turned around and returned
along the same route.
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Table 5.1: A summary
questionnaires

of driving events and the median stress rating from the ten

They encountered a third toll before entering the Mass Pike East. On the return

trip, they were asked to drive in the second to right lane until they saw the signs for

the Allston-Cambridge exit. The second to right lane was chosen to provide the best

opportunity for an uninterrupted highway drive since the far right lane diverged into

an exit.

The merge across two lanes to the Allston-Cambridge exit was intended to induce

stress in the drivers. The drivers were instructed not to begin the merge until they

saw the sign for the Allston-Cambridge exit to achieve the longest uninterrupted

highway run on the return trip. Following the exit, they encountered the fourth toll

and an exit ramp leading to a bridge. After crossing the bridge, the drivers followed

the reverse path through Cambridge down Massachusetts Avenue and Main Street

and re-entered the MIT East Garage. The route of the experiment, including rest

periods, was completed in approximately an hour and a half. The maps of the actual

driving route are shown in Figure 5-4 and a summary of the driving events, in order

of occurrence, is given in Table 5.1.
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Event Event Stress
Num. Description Rating
1. Beginning stationary period (resti) 1
2. Garage Exit 2
3. City Road (cityl) 4
4. Toll Booth (tolli) 3
5. Highway driving period (hwyl) 3
6. Toll Booth (toll2) 3
7. Exit Ramp Turnaround (exit) 5
8. Toll Booth (toll3) 3
9. Highway driving period (hwy2) 3
10. Two Lane Merge (merge) 5
11. Toll Booth (toll4) 3
12. Bridge crossing (bridge) 4
13. City Road (city2) 4
14. Enter Garage 1
15. End stationary period (rest2) 1



5.3 Subject Pool

This experiment was originally designed to test differences between individual drivers

and within individual drivers. For this purpose the subject pool was comprised of

three subjects who repeated the experiment multiple times and six subjects who

completed the drive only once. In total 27 driving runs were attempted, however

portions of some drives were not used due tolost data and deviations proscribed

driving route. Appendix A gives a listing of all the drives comprising the database

for this experiment and the errors which occurred.

Subject 1 was a male undergraduate with three years of driving experience who

had not driven regularly for the past three years. Subject 1 also attempted seven

driving runs. In the first driving run, the skin conductivity sensor became detached,

creating an incomplete record, in the second run, the subject took a wrong turn and

altered the driving route and in the third run the resting data was accidentally not

recorded. For Subject 2, perceived stress was positively correlated with experience

with a correlation coefficient of 0.41, i.e., perceived stress increased with successive

driving runs. The sum of the stress ratings was 86, higher than subject 1. This

number is unusually high. The average of the stress ratings for the six subjects who

were all novice drivers was 63.

Subject 2 was an undergraduate male student with over four years of driving

experience. He had not driven a month previous to the experiment and the first drive

in the experimental vehicle was his second driving experience in Boston. Subject 2

attempted seven driving runs, for the first run there is no record of the driving events

and the second run was incomplete due to a minor accident and was excluded from

the questionnaire analysis. Overall, Subject 2 did not find driving to be a stressful

experience. His highest rating on the absolute stress scale was a single "3" for the

first experience with merges and exits. For Subject 1, the sum of the absolute ratings

was negatively correlated with experience with a correlation coefficient of -.84, i.e.

perceived stress decreased with successive runs. Sum of stress ratings was 41.

Subject 3 was a female undergraduate with eight years of driving experience.
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Data was lost on the turnaround of the first driving run, the driver got off the driving

route on the second driving run and on the sixth day the driver was forced to take

an alternate route because Mass Ave was closed.

Six remaining subjects participated in the study. Of these subjects, the second

subject had an unusual driving experience because she took a wrong turn on the

highway and was unusually agitated second rest period; the fourth subject had the

hand GSR become detached and the fifth subject had a faulty EKG signal.

5.4 Creating A Stress Metric

Three metrics were used to assess driver stress level: a task based metric, a ques-

tionnaire based metric and a metric based on second by second annotations of the

video tape record for perceived stressors. The task metric was based on three major

conditions designed into the experiment: two resting periods that were assumed to be

low stress, two highway driving periods that were assumed to be of medium stress and

two city driving periods that were assumed to be of high stress. A second metric used

questionnaire analysis to establish four stress categories based on ratings of different

events during the drive. Finally, a metric was developed from the annotations made

by independent coders of the video records. To compare these categories a mean rat-

ing from the video tape metric created for each of the task based and questionnaire

based categories.

5.4.1 Questionnaire Analysis

To validate the assumptions of the experimental design and to create a metric of

perceived stress, a questionnaire was administered to drivers following the completion

of the driving course. A copy of this questionnaire is included as an Appendix C.

The questionnaire contained three sections: an information section that recorded the

driver's name, age, driving experience and perceived starting stress level; a section

that rated types of driving events on an absolute scale and a section that created a

comparative rating of driving events using a forced scale.
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The absolute scale rated five types of driving events: rest periods, city driving,

highway driving, tolls and merges and exits. The subjects rated these categories on

an absolute scale of 1 to 5 (1 =no stress and 5=high stress). The median results for

each of the subjects and the total median are shown in Table 5.2. This scale has little

dynamic range. Many times subjects rated all events using only two numbers (e.g. 1

1 1 2 2).

The comparative scale was designed to force a finer grain evaluation of driving

events. On this scale, drivers were asked to rate fifteen sequential driving events on

a comparative scale of 1 to 7 where they were to use "1" to mark the least stressful

event and "7" to mark the most stressful event. They were also informed that they

could use any rating number, including 1 and 7 as often as they liked, however, the

one and the seven both must be used. The median results of this section of the

questionnaire are listed in Table 5.3.

From the comparative ratings four stress categories were originally created: very

high (events 7,10), high (events 3, 12, 13), neutral (events 4,5,6,8,9) and low stress

(events 1,2 14,15). The toll events were later excluded from analysis because of an

excess of motion artifacts due to the subject searching for change, obtaining a receipt

and storing the receipt and also respiratory artifacts as the subject had to talk to the

toll booth attendant to obtain the receipt. These artifacts were consistently present

and were considered to obscure the desired readings of physiology for stress. The

event garage exit was also reassessed due to a misunderstanding. This category was

originally supposed to refer to the exit ramp out of East Garage which is a six story

narrow descending spiral path, assumed to be high stress, however there was some

confusion about this both because one of the experimenters did not understand this

correctly and did not convey this to subjects and because occasionally the experiment

was started on a lower floor and the full exit was not used. Subjects most often

interpreted "garage exit" to refer to the short portion of flat driveway leading past

the garage entrance booth.
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Median Scores
Subject Pool Rest Highway City Tolls Merges and Exits

Subject 1 (S1) 1 1 1 1 2
Subject 2 (S2) 2 3 3 3 4
Subject 3 (S3) 1 1 1.5 1 2

Single Runs (R) 1 2 2 2 3

All (S1+S2+S3+R) 1 2 2 2 2.5

Table 5.2: The median scores of perceived
absolute scale for various pools of drivers.

stress for different driving terrains on an

Median Scores
Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S1 2.5 1.5 4 3 1.5 3 6.5 3.5 2 5 3 5 4.5 1.5 1.5
S2 1 1.5 3 3 3 3 6 3 3 6.5 4 3 3 2 1
S3 1 1 2 1 1 2 1.5 2 1.5 2 1.5 2 1.5 1 1
R 1 3 3.5 2 3 2 3.5 3 2.5 3 3 2.5 2 1 1

All 1 2 4 3 3 3 5 3 3 5 3 4 4 1 1

Table 5.3: The median scores of the forced 1-7 relative stress rating scale for fifteen
driving events. The results for each of the returning subjects (S1-S3) and for the pool
of single day drivers (R) are given. The collective median of all the correctly returned
questionnaires (on which events were rated on the 1-7 scale) is shown in the last row
(All).
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Time Eyes Head Body Talk-D Talk-E Other Comments
15:13:55 0 0 0 0 0 0
15:13:56 0 0 0 0 0 0
15:13:57 0 0 0 0 0 0
15:13:58 0 0 0 0 0 0
15:13:59 0 0 0 0 0 0
15:14:00 0 0 0 1 0 0
15:14:01 1 0 0 1 0 0
15:14:02 1 0 0 0 0 0
15:14:03 1 0 0 0 0 0
15:14:04 0 0 0 0 0 0

Table 5.4: An example from the exported Excel worksheet from the video coders for
a portion of the rest period. Very little activity is typical of the rest period.

5.4.2 Video Coding

As a separate method of validation, the video tapes were viewed by independent

researchers who were not involved with the signal processing or pattern recognition

aspects of the project and coded on a second by second basis to mark observed

stressors. The record was recorded on an Excel Spreadsheet in which rows represented

each second of the ninety minute drive and the columns represented different events

that were coded. In this rating scheme, the columns were marked with a "1" if the

event occurred during that second and a "0" otherwise. Examples of two spreadsheet

records are shown in Tables 5.4 and 5.5. The spreadsheet for scoring the resting

segments did not include active driving events such as turning, stopping or road

events such as bumps and tolls to facilitate coding. These events were assumed to be

zero in the stationary vehicle.

The marked stressors were intended to represent deviations from a relaxing ex-

perience. The spreadsheet for the two rest periods included the following categories:

Eyes, Head, Body, Talk-D, Talk-E and Other. Although there was some discretion

on the part of the coder in rating these events the following heuristics were used:

Eyes was marked as occurring whenever the subject opened their eyes, Head was

marked whenever the subject moved their head, Body was marked whenever the sub-
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Time Bump Stop Turn Talk-D Talk-E Eyes Head Toll 0 Cmts
15:49:11 0 0 1 0 0 1 0 0 0
15:49:12 0 0 1 0 0 1 0 0 0
15:49:13 0 0 1 0 0 1 0 0 0
15:49:14 0 0 1 0 0 1 0 0 0
15:49:15 0 0 0 0 0 1 0 0 0
15:49:16 0 0 0 0 0 1 0 0 0
15:49:17 1 0 0 0 0 1 0 0 0
15:49:18 0 0 0 0 0 1 0 0 0
15:49:19 0 0 0 0 0 1 1 0 0
15:49:20 0 0 0 0 0 1 0 0 1 sit up
15:49:21 0 0 0 0 0 1 0 0 1

Table 5.5: A sample from the exported Excel worksheet from the video coders for a
portion of the city drive. More activity is typical of the city driving period.

ject moved any other part of their body, such as the arm or when they readjusted

their position, Talk-D was marked whenever the driver spoke, Talk-E was marked

whenever the experimenter spoke and Other was marked whenever the coder judged

that some other stressor had occurred. For the driving segments, the additional cat-

egories Bump, Stop, Turn and Toll were added. For these categories: Bump was

marked whenever the car went over a noticeable bump in the road, Stop was marked

whenever the car braked to stop and Toll was marked whenever the driver conducted

some extra action associated with passing through the toll such as looking for change.

The category "Bump" was added in so that large bumps in the road that shook the

car could be included as stressors. This was a category that was determined to be

stressful by several drivers in pilot experiments. The category "Stop" replaced two

original categories, "Stop" and "Start." The toll category was created to be used for

all actions which were associated with approaching a toll, including getting money

and putting the window down. This was created as a separate category because so

many events happened preceding a tool that the raters often wanted to include more

than one unclassified event in the "other" category. This category was created es-

sentially to allow a value of up to "2" to be accumulated in the "other" category

preceding a toll, which was the only place where it was deemed necessary. To test
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reliability between coders, correlations were taken between two coders for the same

drive. These results showed that the stress metrics were highly correlated (r=.99 for

the rest segment, r=.84 for the city segment and r=.92 for the highway segment).

To create a signal with which to correlate the features on a second by second

basis a time series was created by taking the sum of the nine events in each row of

the spreadsheet EV. This time series was then smoothed by convolution with a 100

second hanning window to create the video stress metric EV

EV = EV *'H(100) (5.1)

This smoothing allows stressors just before and after the second of interest to

contribute to the stress metric.

5.4.3 Discussion

The video code ratings were compared to the ratings given by the driving tasks by

experimental design and to the questionnaire ratings for twelve drives for which both

the data segmentation marks and the video code data was available. After the toll

and garage exit categories were eliminated, the driving task segmentation and the

questionnaire were identical in two categories such that rest was equivalent to "low

stress" and highway was equivalent to the "neutral stress." The city task category

was included as a subset of the "high stress" category and the "very high stress"

events were not considered in the first analysis. To see how the task categories and

questionnaire categories compared to the scores from the coded video, a score was

created for each segment by summing signal EV over the entire segment and dividing

by the number of minutes in the segment. The score presented in Table 5.6 is the

mean score for each category across for all days which were scored.

The results of this comparison show that the video code supports the assumptions

of the task design and the questionnaire analysis, except for the "high stress" category.

One difficulty may be that the very high stress category contains events that are very

short in duration, such as merges, which may not span an entire minute. Therefore
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Segment Label Video Code Rating Segment Label Video Code Rating
Rest 13.6 Low Stress 13.6
Highway 61.4 Neutral Stress 61.4
City 87.7 High Stress 87.0

Very High Stress 64.3

Table 5.6: A comparison of the video code metric to the task based stress categories
and the questionnaire based categories. In this table the score presented for each
category is the average value of the signal EV per minute across all segments for
which video ratings and data segmentations were available. The relative ranking
of the stress categories agrees with the task based assumptions and most of the
questionnaire based assumptions, the exception being the rating for the very high
stress category.

the minute segment which includes the merge may actually be mainly highway. A

short event of very high stress, such as turning the car in a merge would be rated as

less stressful by the video code metric than the same event taking a longer time, since

the video is coded as events happening or not happening at any particular second.

The intensity of the event is not measured.

5.5 New Features

Two new types of features were extracted from the physiological signals: features

reflecting autonomic balance from the short term power spectrum of the heart rate

and measures of the skin conductance orienting response. The power spectrum of the

heart rate is used as a measure of heart rate variability (HRV). The energy in different

portions of the spectrum reflects changes in heart rate mediated by the sympathetic

and parasympathetic nervous systems. By taking ratios of the energy in the spectrum,

a measure of sympathovagal balance can be calculated. A more detailed description of

the influences on the heart rate spectrum is provided in Chapter 2. An algorithm for

automatically detecting features of the skin conductance orienting response was also

used in this analysis. This method detects the occurrence of the orienting response

and measures their amplitude and rise time.
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5.5.1 Heart Rate Variability

Features of short term power spectrum heart rate variability were derived from the

EKG rhythm trace. A software package developed by George Moody was used (avail-

able to researchers http://ecg.mit.edu/) to detect the inter-beat R-R intervals using

an autocorrelation technique. Heart rate was derived by using a time series repre-

senting the time between successive detected beats (inter-beat intervals). Outlying

samples were eliminated from the time series. No method of estimation was used

to replace the samples. Instead, the Lomb-Scargill technique, a method of spectral

estimation which allows for missing data was used to estimate the spectral density.

Unlike the FFT transform, the Lomb-Scargill method does not require the data to

be resampled at an even sampling rate. From this spectrum features representing the

high frequency, low frequency and middle frequency range were extracted. Ratios of

these features were used in the feature vector for identifying periods of stress.

To derive the features used for heart rate variability, a time series of the heart

rate was derived using the command "ihr" with standard defaults from the WAVE

cardiac analysis software. The data was then partitioned into segments of 5 minute

durations and a lomb spectrogram was performed on the data. In this spectrogram

the total power below the Nyquist frequency (defined as the reciprocal of the mean

interval between consecutive input samples) is normalized so that it is equal to the

variance of the input. This normalization is used so that the Lomb periodograms can

be compared directly to similarly-normalized FFT or AR spectra.

Three variables were derived from the Lomb-Spectrogram, the sum of the energy

in the low, middle and high frequency regions:

0.08Hz

LF = 1 lombPSD(ihr(ecg.dat)) (5.2)
0Hz

0.15Hz

MF = lombPSD(ihr(ecg.dat)) (5.3)
0.08Hz
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Figure 5-5: The digital electrocardiogram was not perfect. Absences of beats occa-
sionally occurred. To help correct for this the time series record only records the
inter-beat intervals of the beats it detects. Even beats bordering the missed beat are
not recorded. The beats are not interpolated. The Lomb Scargill method was used
to calculate the power spectrum of this series due to this kind of missing data.

110

U,

G)0 0 0 0Q
a,

a)
0~
C',
CUa)m

I I I I I I I I I I I I I I I I I I

Q G) T Q T @0 (D G) IT



0.5Hz

HF = Ej lombPSD(ihr(ecg.dat)) (5.4)
0.15Hz

These features are used in two ratios, - and LF MF to assess autonomic balance.

Two different length of window were used to create the spectrum, a 100 second window

and a 300 second window. In the two analysis of driving conditions the 300 second

window was used and in the correlation analysis a continuous variable describing the

autonomic balance is created by sliding both a 100 and 300 second window along the

heart rate series and calculating both ratios at one second intervals as the window is

advanced by one second.

5.5.2 Skin Conductance Orienting Response

The automatic startle detection algorithm developed and used in this thesis work

implements the method of scoring the startle response described as method "B"

in Chapter 2 (see Figure 2-3). The algorithm establishes a local baseline at the

point where the derivative exceeds a certain threshold. The algorithm measures two

features directly from the response, the magnitude (SM) and the duration of the rise

time (SD). From this information two derived features were calculated, the frequency

of occurrence (SF) as the sum of the startle durations per minute and the area of

the responses (SA) as approximated by a triangular model of the rise time (SA =

jSM * SD. An illustration of these features as derived by the detection algorithm is

shown in Figure 5-6.

The code for the detection algorithm is included in the appendix as sdetect.m.

It is a Matlab function which takes as input a signal segment and the sampling

frequency and gives as output the magnitudes, durations of the startle responses

and the frequency of occurrence of the responses. The signal segment is first passed

through a low pass filter with a cutoff of 4Hz to eliminate high frequency noise. This

filter was implemented with the matlab command:

[b,a] =ellip(4,0.1,40,4*2/Fs);

yielding the filter coefficients of the system function:

111



Eximple of Starile Detection

18 ~X - ONSET
0 - PEAK

17-

161-

S M

S D
13- i

12-I

117

SD

5300 5400:
Samples (at 31 SampIes.econd)
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H(z) = 0.0375 + 0.0367z- + 0.0641Z-2 + 0.0367z-3 + 0.0375z 4  (55)
-2.0792z-1 + 2.1493z- 2 - 1.0979z- 3 + 0.2426z-4

The smoothing effect of this filter eliminated many false positive results. The

derivative of the low pass filtered signal was then calculated by taking the first forward

difference:

6x[n] = x[n] - x[n - 1]. (5.6)

The detection algorithm then identified all occurrences of when the first deriva-

tive exceeded a certain threshold. This threshold was empirically determined to 0.003

micro-Siemens per sample or 0.093 micro-Siemens per second. A filtering algorithm

was then used to determine if this change was a new startle response by determining

if it was more than one second away from other responses. This eliminated both high

frequency noise artifacts and very small responses of less than one second duration.

Once the response was detected, the zero-crossings of the derivative preceding and fol-

lowing the response were identified as the onset and peak of the response respectively.

The amplitude and rise time of the response were then simply defined as:

SM = t peak - tonset (5.7)

SD = Xpeak - Xonset (5.8)

SA = * SM * SD (5.9)
2

These features representing the skin conductance orienting response were used in

both the task metric analysis and the questionnaire analysis.
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5.6 Feature Summary

Different subsets of features were used in each of the three analyses. The definitions

of the features not described in this section can be found in Chapter 3. In the task

metric analysis, 22 features were used and derived for data segments 300 seconds in

duration belonging to each of the three task categories: rest, highway driving and

city driving. AB as - for the entire segment, Jk and &2 for the mean and variance

of the heart rate derived from the EKG signal using the tach method of the WAVE

software, SM, SD, SA , SF fg and & as derived from both the hand and the foot skin

conductance signal, 7I#, &2, P1, P2, P3, P4 from the respiration signal and Pe from the

electromyogram on the trapezius muscle.

In the analysis using the questionnaire metric, twelve features were used. The AB

feature was calculated using a 300 second window, while the signals: KP, SM, SD, SA,

SF, Pg and &2 from the hand skin conductance signal, P2, &2 and P, and &' were

calculated using one minute segments of data.

In the video code metric analysis, eleven features are used. These include six

statistical features: pe, &2, pg, &2, pt1Z and 4U calculated for each second of the data.

Additionally, HR was calculated using the WAVE method ihr which excludes outliers.

The correlation was then performed on a point by point basis between each detected

R-wave and the video rating at that time. In addition, four functions representing

autonomic balance at each second of the drive were calculated represented by AB1,

AB2, AB3, AB4. These represent respectively, the L ratio for the sliding 100 second

window, the - ratio for the sliding 300 second window, the LF+MF ratio for the

sliding 100 second window, the LF 4 MF ratio for the sliding 300 second window.

5.7 Data Analysis

Three types of analysis were used to assess the performance of these physiological

features in recognizing driver stress: an analysis of 22 features in discriminating

stress according to the three major driving tasks (rest, city driving and highway
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Figure 5-7: An example of the physiological data record collected from the drive.

Signals are shown to emphasize how they change during the different parts of the

drive. This record is from a day in which no unusual events occurred.

driving) using five minute windows; an analysis of 12 features at discriminating four

stress levels as defined by the median questionnaire ratings using only one minute

segments and an analysis of how eleven features of the physiological data correlated

with the video code metric on a second by second basis. The goal of these studies

was to prove the value of these features for discriminating stress levels and to push

the limits of the assessment to shorter and shorter time segments to determine how

quickly an automatic system could response to driver stress using these recognition

algorithms. An example of the signals collected and analyzed on a typical day's drive

along with markings showing the rest, highway driving and city driving periods is

shown in Figure 5-7.
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5.7.1 Task Metric Analysis

The first analysis of driver stress was assessed according to task. This metric is one of

the most strongly supported metrics because the categories are observably different.

These categories are useful at determining an overall stress level. This analysis also

used the longest segments of data to derive the features, 300 seconds. The long time

of these segments allowed the segments to be statistically similar over the window

even if many variations in traffic conditions occurred on a second by second basis. To

determine the start of each of these major segments, the observer made a mark in the

physiological record by pulling a second respiration sensor. This created a spike in

the data recording. The data segment for each of the three tasks began at this mark

and included the next 300 seconds of data. A total of 112 five minute segments were

extracted from the database, consisting of 36 rest periods, 38 city driving periods and

36 highway driving periods. As indicated by Appendix A, drives Si-1, SI-2, S1-3,

S1-4, S1-6, S1-7, S2-1, S2-3, S2-7, S3-2, S3-3, S3-4, S3-5, S3-6, S3-7, Ri-1, R2-1 and

R3-1 were initially used in this analysis. On one of the days the rest period was lost

and on another day the second rest period did not occur.

The 22 features calculated for each of the 300 second segments were initially

grouped into six classes, representing the first and second three task types for each

drive. Each of these classes was modeled be a gaussian distribution mean (mk

equal to the sample mean of the class, where k-1,2,3 for the rest, city and high-

way classes) the covariance K was the pooled covariance. A linear classifier was

implemented by assigning each test sample ^ to the class k for which the function:

gkwas maximum[The89] where:

gk(y) = 2mkK-l - m1K-mk + 2ln(Pr[wk]); (5.10)

and the a priori probability of belonging to class k, Pr[wk] = g and n is the number

of members in class k. For the results in Table 5.7 leave one out and test cross-

validation was used where first Mk and K were calculated using all but the feature

for one minute, then classifying the excluded feature according to the maximum ga.
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Rest City Highway
Rest 36 0 0
City 0 37 1

Highway 0 2 36

Table 5.7: The confusion matrix for the linear discriminant after using the leave one
out and test method.

The results were that these 22 physiological features can discriminate driver stress

at 96% accuracy based on task. These tasks were confirmed to be of three distinct

stress levels: low, medium and high by both the driver perceived stress questionnaires

and the video code analysis. The confusion between the highway and city tasks may

actually be due to certain drives through the city being of a lower stress level and

certain drives on the highway being more stressful (such as when the driver tried to

pass other cars on the highway).

5.7.2 Questionnaire Metric Analysis

A second analysis was performed using a metric of four categories defined by the

perceived stress rated in the comparative analysis of the driver questionnaires. As in-

dicated by the Table A.1 in Appendix A, thirteen data sets were used in this analysis.

These were chosen at the time because the videos had been coded to indicate the start

and stop times of the fifteen different driving events. The 12 features listed in the

Feature Summary: pc, SM, SD, SA, SF, G and &2 from the hand skin conductance

signal, f#z, &2 and ft, and &2 were calculated for 545 one minute segments to create

a feature vector. This vector was assigned a label according to one of the four stress

categories: low, neutral, high and very high stress (k = 1, 2, 3, 4) based on the median

questionnaire rating of the minute from which it was extracted.

The features were evaluated and ranked individually, then combinations of features

were evaluated and the best performances were reported. The individual features were

tested on their ability to discriminate four stress classes using the linear classifier

and leave one out and test cross validation described in the previous subsection on
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Feature Rank Correct Feature Rank Correct
1 62.2% &2 6 53.5 %
2 62.0% ESA 7 53.0 %

ESD 3 58.5% HR 8 52.6 %
4 58.3% AB 9 52.5 %

SF 5 57.6% &2 10 50.2 %
ESM 5 57.6% &2 11 48.3 %

Table 5.8: A ranking of each individual feature in the four stress level recognition
task

Feature Set Recognition Rate

ibz (best individual feature) 62.2 %
1hZ A9 SD AS SF SM 78.5 %
AB pi Ag SD A SFSM 80.9%
All 12 78.9 %

Table 5.9: Multiple feature combinations out-perform all single features. Combina-
tions of six and seven features performs similarly to using all twelve features indicating
that some features contribute no additionally useful information.

task metric analysis. The percent of segments correctly classified by this method is

reported in Table 5.8.

This analysis shows that individual features perform better than random, but not

very well, at discriminating the four stress categories. To test the performance of

combinations of features the same linear classification using leave one out and test

cross-validation was performed on various subsets of the data. The results presented

in Table 5.9 show the results of the best single feature compared to combinations of the

top six highest ranked individual features, the entire feature set and a set containing

the top six individually ranked features with the addition of the AB variable, adding

a representation of heart activity to the set.

These results show that sets of multiple features out-perform all single features.

The best combination presented here achieved a recognition rate of 80.9%, a sig-

nificant improvement over the 62% result achieved by the best single feature. This

analysis also shows that some combinations of features perform similarly; however, in
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Feature Set Recognition Rate
AB HR SDIR ie SM O- 88.6%

Table 5.10: The results of the SFFS algorithm using the k-nearest neighbor classifier
for the four stress classes.

some combinations, adding one features might contributes more noise while adding a

different feature might improve performance. To determine which features might be

best for stress recognition, a second analysis was performed using Jain and Zongker's

sequential forward floating selection (SFFS) algorithm [JZ97] to evaluate set of fea-

tures. This algorithm was run using a k-nearest neighbor classifier and leave one out

cross validation. Table 5.10 shows the resulting optimal features (seven were chosen

as an optimal set out of all possible sets) selected by the algorithm and the improved

recognition rate of 88.6%.

The questionnaire based four stress level analysis shows that for even one minute

segments of data which are subject to a greater variety of statistical variation within

the segment due to second by second changes in the driving task demand, high recog-

nition rates of perceived driver stress can be achieved using the features described

here.

5.7.3 Video Code Metric Correlations

A final analysis was performed by comparing eleven features against the video code

metric EV on a second by second basis. This analysis uses the most fine grain

description of the ground truth collected during the drive to assess the stress level of

each individual driver on each individual drive, whereas previous metrics assigned a

stress category label to a drive segment based on either assumptions about the road

conditions or on the median of statistics collected for all drives. For each drive, the

video code metric EV was correlated with each of the eleven features: ABI, AB2,

AB3, AB4, HR, p,,, o-, pg, 01 and p, 4l and also with a randomly generated

white noise signal w (p = 0, a' = 1). The correlation with the random signal was

to establish that the correlation coefficients found for the physiological features were

119



Day AB1 AB2 AB3 AB4 HR p _p__ w
S1-2 .53 .61 .53 .64 .34 .22 .01 .75 .09 -.53 .04 .01
S1-3 .45 .45 .44 .42 .35 .04 .01 .77 .08 -.49 .04 .00
S1-4 .45 .58 .47 .60 .53 .14 .06 .71 .18 -.33 .26 .01
S1-5 .41 .35 .22 .09 .46 .30 .08 .85 .22 -.22 .15 .01
S1-6 .62 .62 .59 .62 .31 .32 .09 .74 .00 -.56 .16 .01
S1-7 .46 .36 .41 .31 .52 .28 .04 .77 .23 -.23 .16 .01
S2-2 .49 .66 .55 .69 .49 .02 .03 .13 .00 -.24 .15 -.01
S2-4 .22 .29 .13 .17 .41 .27 .01 .59 .12 .12 .18 .00
S3-2 .74 .73 .75 .74 .44 .20 .06 .78 .20 .17 .25 -.01
S3-4 .46 .41 .48 .48 .38 .16 .06 .77 .15 .59 .19 .01
S3-5 .41 .51 .44 .50 .35 .09 .00 .81 .20 .21 .01 -.02
S3-6 .44 .53 .44 .51 .40 .20 .04 .73 .14 .67 .24 .03
S3-7 .35 .35 .39 .35 .29 .22 .08 .78 .16 .44 .12 -.01
R2-1 .41 .58 .39 .54 .30 .20 .06 .47 .06 .10 .03 .00
R3-1 .32 .42 .35 .41 .30 .16 .13 .45 .08 .03 .10 .01
R4-1 .49 .55 -.08 -.19 .76 .37 .09 -.07 .03 -.28 .22 -.03
Sum 7.3 8.0 6.5 6.9 6.6 3.2 0.8 10.0 2.0 -0.6 2.3 0.02

Table 5.11: Correlation coefficients between the stress metric created from the video
and variables from the sensors. This coefficient shows how closely the sensor feature
varies with the detected stressors on a second by second variable. As a control a set
of random numbers was correlated with the video metric for each day, to assure that
this correlation was close to zero.

significantly different, in most cases, from random. The results of these correlations

are shown in Table 5.11 for each driver (S1 for Subject 1, S2 for Subject 2, S3 for

Subject 3 and R for the remaining subjects who came for only one drive) and for each

drive (S2-4 represents Subject 2's fourth drive). Some drives were excluded because

either the video record had not been coded or the sensors had failed for a major

portion of the drive.

The last line of Table 5.11 shows the sum of the correlation coefficients for each

feature to provide a general metric for seeing how closely each of the features correlates

with the video metric. These results show that the one second mean of the skin

conductance signal and the autonomic balance variables and heart rate most closely

track the stress metric provided by the video coders, suggesting their use in recognition

tasks which required tracking stress on a second by second basis.
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EMG Only Rest City Highway
Rest 27 2 7
City 0 22 16
Hwy 3 7 28

Table 5.12: The confusion matrix for the task based linear discriminant using only
the two features of the EMG, pe and o7

5.8 Discussion of Confounding Variables

Conducting experiments in the natural environment often entails accepting the occur-

rence of unexpected events and the presence of confounding variables such as motion,

for often motion will co-occur with stressful events. This section presents a discussion

of some possible confounding variables in this study: motion, subject variation and

day variations.

5.8.1 Motion

The effect of motion can undoubtedly impact the autonomic variables used in this

analysis. The design of this experiment has attempted to minimize the impact of

motion in several ways. The driving task constrains the motion of the subject to

a large extent such that the changes in variables found for standing, walking and

jogging in Chapter 4 are not of concern. One of the goals of a previous study of

driver physiology conducted by Helander [Hel78] (presented in the Chapter 2) was

to determine to what extent driver muscle actions contributed to changes in skin

conductivity and heart rate. His study particularly focused on the impact of braking

activity. He found that heart rate was not well correlated with this muscle activity

and the correlation coefficient between the skin conductance and brake pressure was

over twice that of the correlation between skin conductance and muscle activity. From

this he concluded that it "seems clear that EDR can be used to measure the mental

difficulty of traffic events[Hel78]."

There is no doubt, however that muscle activity and stressful events co-occur. It
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Optimal Selected Feature Set SFFS kNN
AB, HR, ESD, ESM, P, PR, UR 88.6 %
AB, HR, ESD, ZSM, SF, ptg, 02 88.4 %

Table 5.13: Recognition rates achieved using Jain and Zongker's FS-SFFS algorithm
with a k nearest neighbor classifier. No significant drop in performance occurs when
S and R are eliminated from the initial pool.

may also be that a single EMG as used in this study or only two EMGs as used in

Helander's study are sufficient to capture the impact of motion on the other phys-

iological signals. For the sake of comparison, an analysis was performed using the

mean EMG (pe) and EMG variance (&2) calculated in the experiment to evaluate

stress based on driving task for discrimination. The same linear discriminant method

used to generate the 96% correct result reported in Table 5.7 was used to create a

discriminant using only EMG variables. The resulting confusion matrix is reported

in Table 5.12. This Table shows that an accuracy of only 69% can be achieved using

EMG alone, significantly less than the result achieved using all the features.

A second test was performed to see how well a classifier could do without features

from sensors which might mainly represent motion. In this test, features derived from

both the EMG sensor and the respiration sensor were eliminated from the initial pool

of features and Jain and Zongker's FS-SFFS algorithm with a k nearest neighbor

classifier was applied to the remaining features. From this pool the algorithm found

that using the features AB, HR, ESD, ESM, SF, yg, ug, a recognition rate of 88.4%

resulted. This rate is not significantly different from that achieved by the best combi-

nation of sensor using all features. The result of this experiment indicates both that

motion is not necessarily a strong contributor to the effects measured as stress in this

research and that good systems for recognizing driver stress can be developed using

as few as two sensors, EKG and GSR.
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Train __ Test

S2+S3+R Rest City Hwy S1 Rest City Hwy
Rest 23 0 0 Rest 10 1 0
City 0 23 1 City 0 12 0
Hwy 0 1 23 Hwy 1 1 12
S1+S3+R Rest City Hwy S2 Rest City Hwy

Rest 25 0 0 Rest 9 0 0
City 0 26 0 City 0 10 0
Hwy 0 1 25 Hwy 0 1 9
S1+S2+R Rest City Hwy S3 Rest City Hwy

Rest 23 1 0 Rest 10 0 0
City 0 25 1 City 1 7 2
Hwy 0 1 25 Hwy 0 0 10
S1+S2+S3 Rest City HwyTR Rest City Hwy

Rest 30 0 0 Rest 4 0 0
City 0 31 1 City 0 4 0
Hwy 0 0 32 Hwy 0 1 3

Table 5.14: This table shows the results of leaving approximately a quarter of the
data set out of the training set by excluding sets that represent different portions
of the data. In order from top to bottom, Subject 1 (S1) is first excluded from the
data set, then Subject2 (S2), Subject 3 (S3) and finally the remaining single drive
subjects (R). The confusion matrices are shown for both the training and test data.
These results are comparable to those found using the leave one out cross validation,
suggesting that the data is not overtrained.

5.8.2 Overtraining and Subject Variation

Additional tests were performed using the task metric data to determine if leaving one

subject out of the training pool would strongly effect the results. By excluding one of

the first three subjects who returned for multiple drives, approximately one quarter

of the data was removed from the test pool. To make a more fair comparison the

remaining subjects who drove only once were collected as a single subject. Although

this last pool varied in its composition of individuals, they all shared the characteristic

of being first time drivers. In this analysis, the set of features from the task based

analysis was used.

Table 5.14 shows the results classification for the remaining quarter of the data
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after excluding each subject and the amount of confusion inherent in the original

training set. In order from top to bottom, subject drives S1 S2 S3 and R were

excluded from the training data and then tested. The results achieved through this

testing metric yield successful classifications of 92%, 97%, 90% 92%. These results

are comparable to the 96% recognition rate using the entire data set. The comparable

results from leaving one quarter of the data out of the training set and testing on the

remaining quarter argues against the hypothesis that the original classifier was not

overtrained.

5.8.3 Drive Variation

Conducting experiments in the natural environment allows for many unexpected in-

cidents to occur. For example, Figure 5-8 shows a day in which two unexpected

events occurred. During the first of the two highway driving segments, the subject

took an unexpected exit and had to get back on to the highway. Additionally, dur-

ing the second rest period the subject was agitated because they needed to use the

restroom and had difficulty resting. The metric most susceptible to deviations from

normal assumptions in these analyses is the questionnaire metric. The task metric

has a relatively long time window such that a data period that is partially inconsis-

tent with the assumption still had enough data in line with that assumption to make

the correct classification. The correlation analysis with the video code does not rely

on assumptions about what the stress level should be for a certain type of driving

event, but rather assesses stress for each moment of each drive individually. Any

single minute of the detour or the second rest period might have been misclassified

by the questionnaire metric.

5.9 Summary

The driving task provides a minimally constrained environment in which naturally

occurring stresses occur with reliable frequency and in which motion artifacts have a

limited impact. This experiment was performed on the open roads and was limited
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Subject R2 - First Drive

Rest City

2000 2500
Seconds

Hwy

3500 4000 4500

Hwy City Rest

Figure 5-8: A second example of the physiological data record collected from one

of the drives. This data record shows a record in which the subject was took an

unexpected detour during the first highway session and in which the subject was

unusually agitated during the second rest period.
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only by a specific route the drivers were to follow, as would generally occurs on

a daily commute. Analysis for both five minute segments representing the three

driving conditions (rest, city and highway) and one minute segments (low, neutral,

high or very high stress) show that driver stress can be recognized with 96% and

89% accuracy respectively. An evaluation of features of the four physiological signals

on a second by second basis showed highly significant correlations, especially in the

mean skin conductivity and autonomic balance variables (up to r = .77 for over 4000

samples).

Three methods were used for rating driver driver stress: experimental design,

subject self-report and a metric of observed stressors from independent annotations

of ground truth collected from video tapes of the drive. These metrics were com-

pared and found to be in agreement on which segments of the drive represented low,

medium, and high driver stress. Results from all three analyses show that these stress

levels can be identified using the physiological features and pattern recognition algo-

rithms presented in this research. These results were evaluated for their robustness

to excluding signals which may have mainly been measuring motion and found to be

robust. Evaluation was also repeated eliminating a larger portion of the data from

the training set to test for overtraining. The susceptibility of the metrics to some

unusual events in the data is also discussed. Together, these experiments show that

systems for automatically detecting driver stress can be designed using the algorithms

presented here.
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Chapter 6

Conclusions

Novel systems and algorithms were designed and built to recognize affective patterns

in physiological for the work of this thesis. Results show that in variously constrained

situations affective states can be recognized by a computer using continuous physiolog-

ical signals obtained through electromyogram, electrocardiogram, skin conductance,

respiration and blood volume pressure sensors. These sensors were tested in the lab-

oratory and embedded into wearable and automotive systems to measure affective

signals in the natural ambulatory environment.

The most diverse set of emotions was studied in the most constrained laboratory

setting. This experiment was designed to test for the presence of unique physiological

patterns for the emotions set: no emotion, anger, hate, grief, love, romantic love, joy

and reverence for a single subject over many days. New features of respiratory spectral

analysis and the slope of the skin conductance were extracted from the physiological

data. These features were combined with statistical features in an analysis of the data

that yielded a recognition rate of 81% across all eight emotions. Higher recognition

rates of up to 100% were achieved for subsets of these emotions clustered around

similar emotion qualities.

To capture affective responses in the natural ambulatory environment, several pro-

totype systems were developed using wearable computers. These systems included

low-power, micro-processor based systems embedded into clothing and a versatile

wearable computer system with desktop processing power and memory, augmented
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with a digital camera and a wireless ethernet connection. A new interface was de-

veloped using a PalmPilot to facilitate data annotation in the field. These systems

were found to provide a novel method monitoring physical activity, providing a time-

stamped image diary synchronized with the physiological data record. Laboratory

tests showed significant changes in signal features as subjects walked, jogged, stood

up and sat down. Unfortunately, these effects were far greater than the modulations

of physiology due to affect and it was determined that more sophisticated models of

activity would be necessary to detect emotion in this fully unconstrained setting.

Finally, an automotive system was developed to detect driver stress. The design

of the stress recognition experiment built upon the findings of both the eight emotion

recognition experiment and wearables experiments. Automobile driving presented a

natural situation in which ambulatory artifacts were limited and in which the negative

arousal emotion of stress occurred with reliable frequency. The automotive system

also allows the context of the drivers experience to be captured by multiple video

cameras and a microphone and provided a strong metric of ground truth assessment.

This analysis incorporates several previously developed features as well as two new

types of features, an automatic assessment of the skin conductivity orienting response

and a continuous metric of autonomic balance through short term power spectrum of

the heart rate variability. Two recognition based performance tests were conducted,

showing that given five minute segments of data three stress levels represented by

driving conditions could be with recognized 96% accuracy, and that given only one

minute segments of data four stress levels determined by driver self-report could be

recognized with 89% accuracy. An evaluation of features of the four physiological

signals on a second by second basis, highly significant correlations were found (up

to r = .77 for over 4000 samples) with the skin conductivity signal and autonomic

balance variables. Results from all three analyses show that driver stress levels as

confirmed by three separate metrics can be identified using the physiological features

and pattern recognition algorithms presented in this research. Additional analysis

shows that highly significant correlations (up to r = .77 for over 4000 samples) exist

between physiological features and a metric of observed stressors obtained from a
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second by second annotation of video tape records of the drives. Results from all

three analyses show that driver stress levels as confirmed by three separate metrics

can be identified using the physiological features and pattern recognition algorithms

presented in this research. The reliability of this algorithm might make it suitable

for use in non-critical applications such as automatic management of information

appliances and as an evaluation tool for road and vehicle designers.

Together, the three main experiments of this thesis show a range of success in rec-

ognizing affect from physiology. The recognition rates obtained thus far lend support

to the hypothesis that many emotional differences can be automatically discriminated

in patterns of physiological changes. The systems and algorithms developed in this

thesis work open a new channel of computer human interaction which will become

more viable as computers begin to be with us everywhere and as more automatic

context sensing systems become integrated into these new computers. This work

shows that affect detection through physiological signals is beginning to be possible.

These findings contribute toward progress in developing machines which can respond

intelligently to human affect.
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Appendix A

Driving Database

Comments indicate problems in the data. In "Phys Data," hgsr and ekg represent

that that these signals were lost for this run, rest means that no data was recorded

during the rest period, marks means that there were no observer coded markers on

the data record, lost indicates that a part of all the data was lost and sound indicated

that some of the sound was lost in the recording.

In "Route" comments are made to indicate deviations from the expected route.

Turn indicates that the subject was lost on the turnaround, crash indicated the day

that the car was bumped into from behind, toll indicates that there was a problem at

the toll, mass indicates the day Mass Ave. was closed, hwy indicates the day there

was an accident on the highway that seriously altered traffic conditions and bath

indicates the day the subject was particularly agitated and had to use the bathroom.

OK indicates that the day was not marked as unusual by the observers, but further

analysis of the video code might reveal some route discrepancies.

In the table:

Phys Data = Physiological Data Records

Route = Driving Route

3Task = This drive was used in the Task Metric Analysis

4Quest = This drive was used in the questionnaire Metric Analysis

V-Code = The video is coded at the time of this thesis writing

V-ext = The video record exists for this day
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Sub Day Phys Data Route Task Quest V-Code V-Ext
Si-1 jul14 hgsr OK Yes No No Yes -froze
S1-2 jul19 OK turn Yes Yes Yes Yes
S1-3 jul21 rest OK Yes-r2 No Yes Yes
S1-4 jul23 OK OK Yes No Yes Yes
S1-5 jul26 OK OK No No Yes Yes
S1-6 jul28 OK OK Yes Yes Yes Yes
S1-7 aug04 OK OK Yes Yes Yes Yes

S2-1 jul15 OK OK Yes Yes No Yes
S2-2 jul29 OK crash Yes-r2 No Yes Yes
S2-3 aug05b OK OK Yes Yes No Yes
S2-4 aug09a OK OK No Yes Yes Yes
S2-5 augl0a OK OK No Yes No Yes
S2-6 aug12 marks OK No Yes No Yes
S2-7 aug13 OK OK Yes No No Yes

S3-1 aug01 lost toll No No No Yes
S3-2 aug02 OK turn Yes No Yes Yes
S3-3 aug05a sound OK - No No Yes
S3-4 aug06 OK OK Yes Yes Yes Yes
S3-5 aug07 OK OK Yes No Yes Yes
S3-6 aug08 OK mass Yes No Yes Yes
S3-7 aug09b OK hwy Yes Yes Yes Yes

R1-1 jul16 OK OK Yes Yes No Yes
R2-1 jul22 OK bath Yes Yes Yes Yes
R3-1 jul25 OK OK Yes No Yes Yes
R4-1 jul27 hgsr OK No No Yes Yes
R5-1 auglOb ekg OK - No No Yes
R6-1 aug19 sound OK No Yes No Yes

Table A.i: Database for the Driver Stress Detection Experiment In this Table, each
driver is listed as a row, and each column shows the data that exists for that day.
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Appendix B

Driving Experiment Subject

Instructions

Sorry, you cannot participate if you do not have a valid and current driver's license

Here is an outline of how things will go:

The experimenter will take you out to the MIT East Parking Garage behind building

68. You will get into the driver's seat of the 1998 Volvo V70 XC. The experimenter

will be turning on the cameras and biofeedback recording equipment. Sensors will

be placed on your skin that will monitor EKG (chest), EMG (shoulder), and GSR

(fingers and foot) waveforms. You will also wear a belt around your chest to moni-

tor respiration. Be aware that the tape which holds these sensors in place may hurt

slightly when they are removed at the end of the experiment.

Your driving experience should include the following events:

1. A period of stationary monitoring (Stationary I)

2. Exiting the garage

3. A period of city driving down Massachusetts Avenue (City I)
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4. A toll booth onto the Mass Pike (Toll I)

5. A period of highway driving out to Western Massachusetts (Highway I)

6. A toll booth onto Route 95 (Toll II)

7. A turn back onto the Mass Pike

8. A toll booth back onto the Mass Pike (Toll III)

9. A period of highway driving back to Boston (Highway II)

10. A three-lane merge onto the Allston/Cambridge exit

11. A toll booth onto the Allston/Cambridge exit (Toll IV)

12. A bridge crossing the Charles River back to Massachusetts Avenue

13. A period of city driving back to MIT (City II)

14. Parking in the East Garage

15. A stationary period at the end of the drive (Stationary II)

Please remember to observe all posted speed limits. When we get back, you will

be asked to fill out a questionnaire asking about your driving experience today and

your driving habits and history. The whole process should take about two and a half

hours. Drive safely and remember to buckle up!
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Appendix C

Driving Questionnaire

Subject Name: ----------------------------- Subject Number:

Session Number: _____ Date: ------- Experimenter: __

This questionnaire is designed to help us assign labels to the data we have collected

during your drive. You will be asked to rate the stress level of certain driving events

and epochs and to rate certain episodes in relation to other episodes.

I. Background Questions:

1. How long have you had your driver's license?

2. How often do you usually drive?

a. every day

b. a few times a week

c. a few times a month

d. a few times a year

e. never drive

3. Do you own a car or have a car you can use frequently?

Yes No Other (explain)
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If so, what kind of car is it?

4. Do you usually find driving a stressful experience?

Yes No

5. Are there any recent event in your life that you feel may have affected your

driving experience today?

Yes No

6. If so, do you feel that you were more or less bothered by driving stressors than

you would usually be?

More Less Same

7. In general, do you feel you are more stressed than others, less stressed than

others, or at about the same stress level as others?

More Less Same
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II. Today's Driving Experience

Overall, how would you describe the following events using the five point scale listed

below:

1= no stress

2=a little stress

3=average stress

4= very stressful

5=extremely stressful

A. Stationary periods:

B. City driving periods:

C. Highway driving periods:

D. Tolls:

E. Merges and exits:
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III. General Questions

1. Was there a significant difference between your stress levels during the two

stationary periods? Yes No

If yes, which was more stressful? (I) before (II) after

Why?

2. Was there a significant difference between your stress levels during the two city

driving periods? Yes No

If yes, which was more stressful? (I) (II)

Why?

3. Was there a significant difference between your stress levels during the two

highway driving periods? Yes No

If yes, which was more stressful? (I) (II)

Why?

4. Was there a significant difference between your stress levels during the toll

encounters? Yes No

If yes, which were more/less stressful? (I) (II) (III) (IV)

Why?
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On a scale of 1 to 7 with 1 representing the least stressful event and 7

representing the most stressful event, please rate the fifteen driving events.

Feel free to use the same number more than once, even the one and the

seven.

1. Period of stationary monitoring before driving (Stationary I)

2. Exiting the garage

3. Period of city driving down Mass. Ave. (City I)

4. Toll booth on the Mass. Pike (Toll I)

5. Period of highway driving out to Western Mass. (Highway I)

6. Toll booth onto Route 95 (Toll II)

7. Turn around back onto the Mass. Pike

8. Toll booth back onto the Mass Pike (Toll III)

9. Period of highway driving back to Boston (Highway II)

10. Three-lane merge onto the Allston/Cambridge exit

11. A toll booth onto the Allston/Cambridge exit (Toll IV)

12. Crossing back to Mass. Ave.

13. City driving back to MIT (City II)

14. Parking in the garage

15. Period of stationary monitoring after driving (Stationary II)

Please feel free to make any additional comments:

Thank you for participating in this experiment!
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Appendix D

Matlab Code for Affect Analysis

D.1 Startle Detection

%The latest startle detection program

%Programmer: Jennifer Healey, Dec 13, 1999

% Usage: this is a script so you dont' have to pass a vector.

% You can easily make it into a function if you prefer.

% The signals is "s" the sampling frequency is "Fs"

% the results are s-freq, s.mags and s-dur

% Edit all here or comment out for use in a giant script

Fs=31;

%%Fi%%eroutthehighfrequencynose%%

WXilter out the high frequency noise%%

%%%%%%%%%%XXX%%%%%%%%%%%%%%%%%X%%%%%%%%
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lgsr=length(s);

lgsr2=lgsr/2;

t=(1:lgsr)/Fs;

[b,a]=ellip(4,0.1,40,4*2/Fs);

[H,w]=freqz(b,a,lgsr);

sf=filter(b,a,s);

sfprime=diff(sf);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

XMFind Significant Startles%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%There is ringing in the signal so the first 35 points are excluded

135=length(sf-prime);

sfprime35=sf.prime(35:135);

%Set a threshhold to define significant startle

%thresh=0.005;

thresh=0.003;

vector=sf-prime35;

overthresh=find(vector>thresh);

Xoverthresh is the values at which the segment is over the threshold
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overthresh35=overthresh+35;

%the true values of the segment

gaps=diff(overthresh35);

big-gaps=find(gaps>31);

%big.gaps returns the indices of gaps that exceed 31

% eg - big.gaps=[60 92 132 168....]

% gaps(60)=245; gaps(92)=205 ...

% overthresh35(58:62)= [346 347 348 593 594]

0/

% so overthresh(61) is where the startle starts (ish)

% is overthresh (60) where the startle ends?

%check the results

iend=[];

ibegin=[];

for i=1:length(biggaps)

iend=[iend overthresh35(big-gaps(i))];
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ibegin=[ibegin overthresh35(big-gaps(i)+1)1;

end;

WFine Tuning%%

% The idea being this is to find the zero crossing closet to where it goes

% over threshold

% find all zero crossings

overzero=find(sf-prime>O);

zerogaps=diff(overzero);

z-gaps=find(zerogaps>1);

iup=[];

idown=[];

for i=1:length(z-gaps)

idown=[idown overzero(zgaps(i))];

iup=[iup overzero(z.gaps(i)+1)1;

end;

% find up crossing closest to ibegin

new-begin=[];

for i=1:length(ibegin)
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temp=find(iup<ibegin(i));

choice=temp(length(temp));

new.begin(i)=iup(choice);

end;

% to find the end of the startle, find the maximum between startle

% beginnings

new-end=[];

for i=1:(length(new-begin)-1)

startit=newbegin(i);

endit=new-begin(i+1);

[val, loc]=max(s(startit:endit));

newend(i)=startit+loc;

end;

if (length(new-begin)>O)

lastbegin=new-begin(length(newbegin));

[lastval,lastloc]=max(s(lastbegin:length(s)-1));

new-end(length(new-begin))=new-begin(length(newbegin))+lastloc;

end;

smag=[]; %initialize a vector of startle magnitudes

s-dur=[]; %initialize a vector of startle durations

for i=1:length(new-end)

sdur(i)=new-end(i)-new.begin(i);

s-mag(i)=s(new-end(i))-s(new-begin(i));
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end;

s_freq=length(ibegin);
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D.2 Linear Discriminant

%the-matrix is a matrix that holds all the features for all the classes

% it should be formatted as follows:

Xe g

% ci.

% c2

% c3

the

%are

ft

4

6

1

1

2

3

3

f2

5

7

3

5

3

3

2

f3

5

7

3

6

3

3

2

f4

5

4

2

6

5

3

2

f5

5

3

6

6

6

3

2

variable "classjindex-vector" keeps track of where the classes

in "thematrix"

Xthe-matrix replaces old class variables

%classl=thematrix(:class-index-vector(1),:);

%class2=thematrix(classindex_vector(1)+1:classindex-vector(2),:);

Xe.g classindexvector=[3 5 7]

the-matrix=[];

class-index-vector=[];

g=[1;

%initialize the-matrix

Xinitialize classindexvector

%initialize the liklihood ratio vector
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%%%XXXALL EDITING SHOULD BE DONE IN THESE TWO LINESMXXXXX%%%

thematrix=[class-rl _all; classr2_all;

class_ciall; classc2_all; class-hl-all; classh2.all];

%class-.index-vector=[19 36 55 74 93 112];

class-index-vector=[36 74 112];

ciiv=class-indexvector;

[numberofvalues number-offeatures]=size(the-matrix);

number.ofclasses=length(class-index-vector);

%replaces old ni n2 n3....

% now nv=[nl n2 n3 ... ]

nv(1)=civ(1);

for i=2:number-of-classes

nv(i)=c_i_v(i)-c_i_v(i-1);

end;

lin_conf=zeros(number-ofclasses,number-of-classes);

%Initializes the confusion matrix

n =sum(nv);

% mean vector is now "mV"

% replaces old ml m2 m3....

% now mv=[ml m2 m3 ... ]
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mv(i,:)=mean(the-matrix(i:c_i_v(1),:));

for i=2:number-ofclasses

mv(i,:)=mean(the-matrix(c-i-v(i-1)+1:c-i-v(i),:));

end;

%pooled mean

%replaces old

%m=(ni/n*ml + n2/n*m2 + n3/n*m3 + n4/n*m4 +n5/n*m5 +n6/n*m6);

m=0; %initialize the pooled mean

for i=1:number-of-classes

m=nv(i)/(n*mv(i));

end;

%The individual covariance matricies in each class

%replaces old K1 = KV(i:n_o_f,:) K2,K3

KV=[];

KV(1:number-of_features,:)=cov(thematrix(1:ci-v(1),:));

n_o_f=number-offeatures;

for i=2:numberof-classes

i1=((i-1)*n-o-f)+1;

i2=i+n-o_f-1;

KV(il: i2, :)=cov(the-matrix(c-i-v(i-1)+1: c-i-v(i) ,:)

end;

%prior probability

Pw=[];
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Pw(1)=nv(1)/n;

for i=2:number-of-classes

Pw(i)=nv(i)/n;

end;

%average covariance matrix across all different classes

%pooled covariance

%replaces old

%K= nl/n*K1 + n2/n*K2 + n3/n*K3 + n4/n*K4 + n5/n*K5 + n6/n*K6;

K=[]; %initiatize K

K=nv()/n*KV(:n-o-f,:); %

for i=2:numberofclasses

il=((i-1)*n-o-f)+1;

i2=il+n-o-f-1;

K=K+ (nv(i)/n*KV(il:i2,:))

end;

%optimized by leaving out log det K

for i=1:numberofclasses

C(i) = -mv(i,:)*inv(K)*mv(i,:)' + 2*log(Pw(i));

end;

%initialize the number of failures

fail=O;

149



%for c=1 to the number of elements in class 1

findex=[zeros(number-of-classes, max(nv))];

lfv=[]; %initialize linear fail vector

j=1;

for c=1:nv(1)

y=[thematrix(c,:)1';

Xliklihood ratios

for i=1:numberofclasses

g(i)=2*mv(i,:)*inv(K)*y + C(i);

end;

for i=1:numberofclasses

if(max(g)==g(i))

linconf(j,i)=linconf(j,i) + 1;

XThis builds the confusion matrix

end;

end;

%this finds the max

if(max(g)~=g(i))

fail=fail+1;

findex(j ,c)=1;

end;

end;

lfv(1)=fail;

for j=2:number-ofclasses
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fail=O;

for c=c-i-v(j-1)+1:c-i_v(j)

y=[the-matrix(c,:)]';

for i=1:numberofclasses

g(i)=2*mv(i,:)*inv(K)*y + C(i);

end;

for i=1:numberofclasses

if (max(g)==g(i))

lin.conf(j,i)=lin.conf(j,i) + 1;

%This builds the confusion matrix

end;

end;

%this finds the max

if (max (g)~-=g j)

fail=fail+1;

findex(j ,c)=1;

end;

end;

lfv(j)=fail;

end;
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