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TEASER 
 
An orphan-disease “megafund” of less than a billion dollars can provide sufficient risk 
reduction to be financed by long-term bonds and still generate attractive investment 
returns with only 10 to 20 projects in the portfolio. 
 
ABSTRACT 
 
Recently proposed “megafund” financing methods for funding translational medicine and 
drug development require billions of dollars in capital per megafund to de-risk the drug 
discovery process enough to issue long-term bonds.  Here we demonstrate that the same 
financing methods can be applied to orphan drug development, but because of the unique 
nature of orphan diseases and therapeutics—lower development costs, faster FDA 
approval times, lower failure rates, and lower correlation of failures among disease 
targets—the amount of capital needed to de-risk such portfolios is much lower.  Numerical 
simulations suggest that an orphan-disease megafund of only $575 million may yield 
double-digit expected rates of return with only 10 to 20 projects in the portfolio. 
 

Introduction 
The drug development process has become expensive, lengthy, and risky.  In response to 
these characteristics, and to the lackluster performance of investments in the biotech and 
pharma sectors over the past decade, traditional sources of financing for such endeavors—
private and public equity—are waning as capital shifts to less risky investments.  
Fernandez et al. [1] have argued that this problem can be addressed by increasing the scale 
of investment and pooling a large number of drug development efforts into a single 
financial entity or “megafund”.  The benefits of diversification—lower aggregate risk with 
more “shots on goal”—yield a more attractive risk-adjusted return and a higher likelihood 
of success.  This, in turn, allows the megafund to raise the required amount of capital to 
achieve sufficient diversification by issuing “research backed obligations” (RBOs), bonds 
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that are collateralized by the portfolio of potential drugs and their associated intellectual 
property.  Because RBOs are structured as bonds, they can be designed to appeal to fixed-
income investors, who collectively represent a much larger pool of capital than venture 
capitalists and who have traditionally not been able to participate in investments in early 
stage drug development.  For example, the total size of the U.S. venture capital industry in 
2012 was $199 billion whereas the comparable figure for the U.S. bond market was $38 
trillion.   

To illustrate the mechanics of megafund financing using RBO securities, Fernandez 
et al. [1] provide an analytic framework, simulation software, and empirical examples 
involving cancer drug-development programs.  Their simulation results suggest that RBO 
structures are, in principle, able to generate reasonable returns for both debt and equity 
investors, while also providing a bridge for translational research in the drug approval 
process.  In a follow-on study, Fagnan et al. [2] propose an analytic framework for 
evaluating the impact of third-party guarantees on RBO transactions, and find that such 
guarantees can improve the economics of RBO transactions at very low expected cost to the 
guarantor.  However, the examples in Fernandez et al. [1] and Fagnan et al. [2] rely on very 
large portfolios of hundreds of candidate compounds, which raises a number of operational 
challenges in the practical implementation of such a megafund.   

In this article, we explore the applicability of the RBO approach by extending the 
framework to accommodate drug discovery for orphan diseases.  Because of the unique 
pathological characteristics of many orphan diseases, as well as the considerable support 
provided by the Orphan Drug Act of 1983 (ODA), orphan drug development projects 
frequently have higher success rates and shorter times to approval, but still generate 
potential lifetime revenues that are comparable to non-orphan drugs despite their much 
smaller target patient population.  To capture a realistic representation of the RBOs, we use 
numerical simulation techniques to compute the investment returns of a hypothetical 
portfolio of orphan drug development projects.  Given empirically plausible assumptions 
for revenues, costs, and probabilities of success for orphan diseases, we find that much 
smaller portfolios than those of Fernandez et al. [1]—containing only 10 to 20 compounds 
and less than $250 million in capital—are sufficiently diversified to yield reasonable 
investment returns for RBO investors.  While the investment returns of RBOs are positively 
related to portfolio size due to the impact of financial leverage, for certain types of projects 
the required threshold of assets may be quite modest and it may be worthwhile to target 
these projects for an initial “proof-of-concept” of the megafund financing structure. 

Orphan Diseases and the Orphan Drug Act 
In the thirty years since the passage of the Orphan Drug Act (ODA), the orphan disease 
landscape has changed drastically.  Orphan diseases, formally defined as those that affect 
fewer than 200,000 individuals in the United States [3], were once anathema to the 
pharmaceutical industry.  Today, this once-ignored category of diseases commands a 
market worth nearly $90 billion annually [4] and is believed to serve more than twice the 
number of all U.S. cancer patients—at least 25 million Americans are afflicted with one of 
almost 7,000 recognized rare diseases [5].  Clearly, as a collective, rare diseases are not 
rare at all.    
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Prior to 1983 and the ODA, orphan diseases posed too many challenges for industry 
to seriously confront the disease category.  Approximately 80% of rare diseases are caused 
by underlying genetic defects, which can be hard to identify [6].  Still others are caused by 
exposures to rare and unusual toxins.  Some orphan diseases are so uncommon that 
afflicted individuals may not be correctly diagnosed for many years, and there are 
instances of afflicted individuals never receiving a correct diagnosis [7].  Additionally, the 
rigorous standards of the Food and Drug Administration (FDA) for clinical trials often 
meant that assembling patient populations of sufficient size for testing was exceedingly 
difficult.  The ODA has been broadly acclaimed for its effectiveness in diminishing these 
barriers to development.    

The ODA and its subsequent revisions provided a number of important economic 
incentives to sponsors of orphan drugs.  To jumpstart therapeutic development in the rare 
disease category, the ODA created research grants specifically for orphan drug research, 
implemented tax credits of up to 50% for clinical testing costs, authorized expedited 
regulatory review for orphan drugs and, most importantly, established a seven-year period 
of marketing exclusivity that precludes FDA approval of any same or generic drug for the 
same orphan indication [8].  The exclusivity provision is distinct from a patent and, in many 
cases, provides additional protection from competition by generics and other potential 
market entrants.    

The combination of the ODA’s incentive program and a number of significant 
scientific breakthroughs in molecular biology and genome sequencing has resulted in three 
decades of innovative and fruitful orphan drug discovery.  Prior to the passage of the ODA, 
the FDA had approved fewer than 10 drugs for orphan diseases; today, that figure stands at 
more than 350 unique drugs (see: 
http://www.accessdata.fda.gov/scripts/opdlisting/oopd/).  Currently, orphan drugs are at 
the forefront of global pharmaceutical R&D trends.  While the compound annual growth 
rate (CAGR) between 2001 and 2010 for new molecular entities as a whole was negative, 
the CAGR for orphan designations over the same period was robust at approximately 10% 
[9].  The overall drug market also reflects this trend.  Orphan drugs currently comprise 
22% of total drug sales with a CAGR of 25.8% over 2001–2010, compared to 20.1% for the 
non-orphan market [8].  Some industry developments suggest that these strong figures 
may continue to rise as the evolution toward more targeted therapies and stratified 
medicine progresses.   

The Suitability of Orphan Drugs for RBO Financing 
 For a number of reasons, orphan drugs are particularly well suited to portfolio 
financing.  Chief among these are the significantly higher rates of success that orphan drug 
development projects enjoy when compared to those of other disease groups such as 
oncology or neurodegenerative disorders.  Orphan diseases are largely caused by a 
mutation in an individual’s genetic code, most commonly manifested as a malfunction or 
absence of one or more key proteins.  If the underlying genetic defect can be identified and 
characterized, it is often possible to create highly targeted and effective therapies to 
address the malfunction and its symptoms [9].  Similar targeting methodologies have been 
used to combat rare cancers, notably in drugs like Rituxan and Gleevec.  Consequently, the 
odds of a new orphan drug receiving FDA approval are significantly higher than those of a 
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non-orphan counterpart.  For orphan drugs that entered clinical testing between 1993 and 
2004, we estimate the overall regulatory success rate to be approximately 22%, whereas 
the comparable figure for non-orphan drugs was approximately 11% [10], and the rate for 
cancer compounds was even lower at only 6 to 7% [10]. 

The success or failure of orphan drug development projects is also less likely to be 
correlated across diseases due to the large proportion of orphan diseases that display 
monogenic pathology or act through largely unrelated mechanisms [11].  This observation 
is particularly significant given the central role that correlation plays in determining the 
risk of a portfolio of candidate drug compounds.  Although we are not aware of any 
longitudinal estimates of historical correlations among drug development projects, the 
scientific basis of orphan drugs suggest that correlations are likely to be quite small, 
especially when contrasted with other disease groups, such as oncology.  Many types of 
cancer have similar pathologies, such as the deregulation of specific signaling pathways 
and mutations in critical oncogenes.  As an example, consider the JAK/STAT and TGF-β 
pathways, each of which has been linked to dozens of oncologic diseases [12,13].  Of course, 
a number of orphan drugs are in oncology, but in contrast to larger classes of oncology 
drugs that share a common mechanism such as tyrosine kinase inhibition or anti-
angiogenesis, orphan drugs (as a distinct category) act against a wider variety of targets. 

Furthermore, orphan drugs have been shown to have nearly equivalent lifetime 
revenue potential as non-orphan therapies.  According to Thomson Reuters, an average 
orphan drug can be expected to attain sales of $100 to $500 million per year [14].  Small 
patient population sizes are often compensated for by high per-patient revenues.  For 
example, Soliris, a drug to treat paroxysymal nocturnal hemoglobinuria (a rare blood 
disease affecting fewer than 6,000 individuals in the US), is priced at more than $400,000 
per patient per year [9].  Consequently, the blockbuster drug model that is characteristic of 
many top-selling non-orphan drugs is equally applicable to the orphan market: compounds 
in the top 29% of orphan drugs are each expected to earn more than $1 billion in revenue 
per year over their lifetime [14].  As an extreme example of the potential profitability of 
orphan drugs, we consider again Rituxan, an orphan drug that is expected to attain 
discounted lifetime sales of over $150 billion, a figure surpassed only by Pfizer’s non-
orphan Lipitor [14]. 

Finally, the ODA’s marketing exclusivity clause provides a key financial incentive for 
orphan drug development.  One analysis of the seven-year exclusivity provision found that 
its impact extended the average combined patent/exclusivity period by nearly a year, 
resulting in an average competition-free marketing period of 11.7 years [15].  For therapies 
that receive approval later in their patent lifespans, the increase in the exclusivity period 
can be significantly longer.  Assuming average annual sales of $200 million and a 10% cost 
of capital [16], we estimate that the average present value of an orphan drug’s revenue 
over its competition-free lifespan is $1.36 billion.  In addition, we assume that the profit 
margin, including cost of goods sold (COGS) and marketing costs, is 60%, resulting in a final 
average valuation of $818 million.  To demonstrate the sensitivity of our simulation 
experiments to valuation assumptions, we also employ a less conservative estimation of 
annual revenues of $400 million [9], which results in a final average valuation of $1.63 
billion. 
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In the next section, we use these values along with some additional parameters to 
conduct a series of simulation experiments demonstrating how an orphan drug portfolio 
might be used as collateral for an RBO structure.   

Orphan Disease Megafund Simulation 
The financial engineering technique of securitization involves creating a legal entity that 
issues debt and equity to investors and uses the proceeds to purchase a portfolio of assets.  
The debt and equity securities are said to be “backed” by the assets in the portfolio in the 
sense that the holders of such securities have certain ownership rights to those assets.  In 
particular, the cash flows from the assets are used to repay the debt, and any residual value 
after the debt is fully repaid is paid to the equity holders.  A primary motivation for 
securitization is to reduce the risk of the individual assets through diversification and to 
allow fixed-income investors to invest in asset classes that would otherwise be too risky or 
fragmented to be of interest to them.  In a biomedical RBO, the assets are a diverse 
collection of biomedical projects that may span the entire range from preclinical research 
to new drug applications (NDAs) or focus on particular segments of the drug development 
process.   

However, unlike existing drug royalty securitization transactions (e.g., Royalty 
Pharma, DRI), our proposal accommodates investment in early-stage projects that may be 
far from FDA approval hence they have no discernible royalty stream at the time of 
investment.  As a result, the risk is much higher, creating the need for more sophisticated 
financial modeling of the economic value of the portfolio's assets as they progress from the 
preclinical stage into clinical trials.   

Fernandez et al. [1] present a stylized mathematical example of securitization of 
experimental drug compounds and Fagnan et al. (see: http://ssrn.com/abstract=2203203) 
develop this example in more detail.  While illustrative, this example oversimplifies the 
economics of the biopharma industry.  The authors also provide results of a more detailed 
set of simulation experiments that incorporate more realistic features of the drug-
development process including correlated assets, stochastic transitions between clinical 
trial phases, the need to manage cash to pay interest and principal, realistic valuations of 
compounds that are sold during intermediate stages of the clinical trials process, and the 
need to manage cash to fund new trials during the approval process.  Fagnan et al. (see: 
http://ssrn.com/abstract=2203203) extends this work by analyzing the impact of third-
party default guarantees for a subset of the RBO securities.  They find that such guarantees 
can greatly increase the attractiveness of RBOs, enhancing their fundraising potential.   

These simulation experiments extend the framework of the stylized example to a 
richer multi-state, multi-period setting that includes path-dependence and correlated asset 
valuations.  The need to extend the single-period model arises due to the nature of the drug 
trial process.  At each stage of this process, larger and larger cash inflows are required to 
fund additional testing.  Importantly, new investment at each stage can only occur when 
there is sufficient capital available that is not required for other uses such as debt service 
or repayment. 

The dominant source of cash flow for the megafund is from the sale of compounds 
out of the portfolio.  Profits or losses accrue when the megafund purchases a compound in 
one phase and subsequently sells it at another phase.  Analysis of the portfolio primarily 
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involves the specification of four quantities: the transition probabilities, the distribution of 
trial costs in each phase, the distribution of valuations for each compound that is sold in a 
specific phase, and some form of dependence amongst the compound valuations.  See 
Fagnan et al. (see: http://ssrn.com/abstract=2203203) and the Supplemental Information 
section of [1] for details of the models and estimation.  Pseudo-code for these simulations is 
given in [1], and the source code is available from the authors. 

Following Fernandez et al. [1] and Fagnan et al. (see: 
http://ssrn.com/abstract=2203203), we consider an RBO transaction with a capital 
structure consisting of a senior tranche, mezzanine tranche, and equity tranche.  Because of 
the complexities of the waterfall and the drug approval process, numerical simulations are 
used to evaluate the RBO securities.  We focus only on early stage investment (preclinical 
and Phase 1), which represents the riskiest portion of the drug-development process and 
where funding is scarcest.  We simulate acquiring an equal number of preclinical and Phase 
1 compounds, with the goal of selling any drugs that successfully complete Phase 1 trials.   

Our simulation relies on several key assumptions and parameters including clinical 
trial costs, valuations, and duration of each phase.  We derive our preclinical estimates 
from [17], making the assumption that the preclinical phase is similar for orphan and non-
orphan drugs.  Kaitin and Dimasi [18], report that orphan-drug trials in recent years take 
approximately 5.9 years from Phase 1 to NDA with an additional 0.8 years required for the 
approval process.  The time for each phase is calculated by scaling the relationships used in 
[1]. 

Clinical transition probabilities were estimated from [19] based on a large molecule 
dataset, which we have assumed to be a close approximation for orphan drugs due to the 
increased targeting specificity that characterizes biologics drug development.  
Furthermore, we believe the resulting success rate from preclinical to approval (21.8%) to 
be reasonable based on our analysis of recent orphan drugs developed by pharmaceutical 
companies.  Valuations for each phase were obtained by discounting the estimate described 
above based on the probability of success and using discount rates of up to 30% per year.  
Upon acquisition of compounds, we follow [1] and assume that upfront and milestone 
payments are proportional to clinical costs.  In addition, we increase our assumed upfront 
payment amounts.  Lastly, we estimate clinical trial costs using conservative values for the 
number of patients per clinical trial [20] and cost per patient [21].  We assume a higher 
cost per patient in Phase 1 to account for expenses associated with locating suitable 
candidates for the trial, which is inherently more difficult for an orphan drug.   

While we believe our parameter assumptions to be reasonable, to permit other 
researchers to experiment with different values, we have made all of our assumptions and 
the source code for our simulations available in open source format.  (For further 
discussion of all parameters, see Supplemental Information and Parameters.) 

Simulation Results 
Table 1 compares the simulation performance (using 2,000,000 simulations) of an 

(approximately) optimized RBO structure to a traditional equity model, assuming a fixed 
correlation of 20%.  For comparison, we include results for the equity-only structure using 
the same equity amount used in the RBO, as well as a second set of results for an equity 
structure, but using the same total capital of the RBO.   

http://ssrn.com/abstract=2203203�
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The simulation acquires 10 or 16 orphan drugs (depending on the capital), with an 
equal number of compounds in preclinical and Phase 1 using a total capital of $373.75 or 
$575 million, respectively, substantially less than in the case of candidate compounds in 
oncology as discussed in [1].  The simulation extends for a horizon of 6.5 years (in 6-month 
increments), with an additional year used for the selling of compounds upon liquidation of 
the remaining drugs in the portfolio.  The simulation is targeted to sell compounds once 
they (successfully) complete Phase 2 trials, but compounds can be sold earlier in the 
process in anticipation of bond coupon or service payments.  Readers are encouraged to 
download our simulation software and re-run simulations with their own parameters and 
assumptions.  For example, purchasing drugs earlier in discovery or using  an alternative 
target selling phase.  (For sensitivity analysis of some of the parameters, see Supplemental 
Information and Parameters.) 

 
 
 
 

Table 1: RBO simulation parameters. 
 
Using an equity-only structure with capital of $135 million, Table 2 reports that the 

mean return on equity in our experiments was 10.7%, nearly 3% below the RBO, while the 
probability of loss of equity was also higher, resulting in 16.1% compared to 13.1% for the 
RBO.  By increasing the capital used in the equity-only model to $575 million, the 
probability of loss to equity is reduced to 10.1%, with a smaller improvement to expected 
return on equity, which had a mean value of 11.8%.  Using the higher level of capital, both 
the RBO and same-capital equity-only structures sell around 5 Phase 3 compounds on 
average, compared to about 3 for the smaller level of capital.  Thus, the RBO achieves a 
higher return on equity, a modest increase in the probability of loss, but more than twice 
the probability of receiving a return on equity larger than 25%.  This higher equity return is 
due to the increased use of leverage, which comes with more risk to equityholders, as can 
be seen from the much higher probability of all equity being lost in the RBO versus either of 
the equity-only cases (60 basis points (bp) versus less than 1bp).   

The leverage is achieved in the RBO structure through the issuance of two tranches 
of structured bonds.  The default rate on the senior tranche of the RBO is approximately 1 
bp, which is comparable to the historical default rates for bonds rated at the highest levels 
by rating agencies.  The default rate on the mezzanine tranche is 56 bp with an expected 
loss of 15bp.  Such relatively low default rates would likely be attractive to fixed-income 
investors, given the assumed coupon rate on the debt (5% and 8%, respectively). 

 
 

Phase Clinical Trial 
Cost ($MM) 

Clinical Trial 
Success Rate 

Clinical Trial 
Duration (years) 

Valuation 
($MM) 

     
     Preclinical 5 69% 1.00 7.1 
     Phase 1 5 84% 1.66 27.6 
     Phase 2 8 53% 2.09 75.6 
     Phase 3 43 74% 2.15 321.5 
     NDA — 96% 0.80 701.9 
     APP — — — 817.6 
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Table 2:  RBO simulation results using a target selling phase of Phase 3. 
 

To develop a sense of the range of investment returns that are possible, Table 3 
reports the outcome of the same simulations but assuming annual revenues of $400 million 
instead of the original $200 million for the same capital structure used in the experiment of 
Table 2.  As a result of these higher valuations, we see expected returns of 20% to 34% 
with a higher level of debt supported by the RBO.   

Under this aggressive revenue assumption, there is little need for debt financing, 
given that a 19.6% rate of return is considerably higher than the average biotech VC firm 
over the past decade (but comparable with the returns of the most successful ones).  
However, at the same time, the impact to the fund’s risk profile from acquiring significant 
debt is minimal.  In particular, RBOs increase the probability of default over an all-equity 
model—with the same amount of equity—by only 79 bp.   

The risk of extreme losses in this structure involves a trade-off between 
increasing diversification due to larger capital pool on the one hand, and increasing 
leverage due to debt issuance on the other.  Specifically, although the average return on 
equity increases from 19.6% in the all-equity-financed case to 33.8% in the RBO-financed 
case, the probability of total loss for the equity holders also increases by a factor of 40.  
Even so, many investors might still prefer the leveraged financing structure to the all-
equity version because of its boost to returns.  However, it should be emphasized that the 
proper use of RBOs does rely more heavily on the accuracy of the assumed parameters, 
given that the default probabilities of the bonds and ROE may vary materially for different 
parameter assumptions.   
 
 

 All Equity 
(Same Equity) 

RBO All Equity  
 (Same Capital) 

Number of Compounds    
     Preclinical 5 8 8 
     Phase 1 5 8 8 
Research Impact    
    Number sold in Phase 2 1.1 2.2 1.7 
    Number sold in Phase 3 3.1 4.7 5.0 
Liabilities    
    Capital ($ millions) 373.75 575 575 
    Senior tranche ($ millions) — 86.25 — 
    Junior tranche ($millions) — 115 — 
    Equity tranche ($millions) 373.75 373.75 575 
Equity tranche performance    
    Average annualized ROE 10.7 13.4 11.8 
    Prob.  (equity wiped out) 0.2bp 60bp <0.1bp 
    Prob.  ( return on equity < 0) 16.1 13.1% 10.1% 
    Prob.  ( return on equity > 10%) 54.7% 66.7% 59.77% 
    Prob.  ( return on equity > 25%) 7.8% 18.4% 6.27% 
Debt tranches performance    
    Senior tranche:  
    default prob., expected loss (bp) 

— 0.8, <0.1 — 

    Junior tranche:  
    default prob., expected loss (bp) 

— 56, 15 — 
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Table 3:  RBO simulation results using a target selling phase of Phase 3, a Phase 2 
valuation of $174 million and a Phase 3 valuation of $643 million, corresponding to sales of 
$400MM per year [9]. 

Conclusion 
A confluence of factors is responsible for the lower number of new drugs approved over 
the past decade, causing some authors to suggest that the current business model for life 
sciences research and development is flawed [22,23,24].  The productivity of large 
pharmaceutical companies—as measured by the number of new molecular entity and 
biologic license applications per dollar of R&D investment—has declined in recent years 
(see: http://ssrn.com/abstract=2203203), and their stock-price performance over the last 
decade—an annualized return of 1.2% for the New York Stock Exchange Arca 
Pharmaceutical Index during the period from January 2, 2002 to July 1, 2013—has been 
equally disappointing.  Despite the near doubling of the aggregate R&D budget of the 
pharmaceutical industry from $68 billion in 2002 to $127 billion in 2010, there has been 
little appreciable impact on the number of new drugs approved (see: 
http://www.evaluatepharma.com/EvaluatePharma_World_Preview_2016.aspx). 

Fernandez et al. [1] introduced the concept of RBOs as a means of channeling funds 
from global capital markets to early stage drug development.  A complication regarding the 
original RBO model was that constructing portfolios of the size described in the 
methodology was untested and introduced a number of potential operational challenges.  
In this article, we have tried to address this by reporting the results of a series of 
experiments that suggest that smaller portfolios—on the order of as few as 10 compounds 
and $135 million of capital—can still be used as collateral for RBO transactions and deliver 
reasonable investment returns.   

 All Equity 
(Same Equity) 

RBO All Equity  
 (Same Capital) 

Number of Compounds    
     Preclinical 3 8 8 
     Phase 1 3 8 8 
Research Impact    
    Number sold in Phase 2 0.7 2.3 1.7 
    Number sold in Phase 3 1.8 4.6 5.0 
Liabilities    
    Capital ($ millions) 230 575 575 
    Senior tranche ($ millions) — 115 — 
    Junior tranche ($millions) — 230 — 
    Equity tranche ($millions) 230 230 575 
Equity tranche performance    
    Average annualized ROE 19.6% 33.8% 23.2% 
    Prob.  (equity wiped out) 2bp 81bp <0.1 bp 
    Prob.  ( return on equity < 0) 10.4% 2.5% 14bp 
    Prob.  ( return on equity > 10%) 79.1% 95.4% 93.7% 
    Prob.  ( return on equity > 25%) 40.5% 82.9% 45.7% 
Debt tranches performance    
    Senior tranche:  
    default prob., expected loss (bp) 

— 1.2, <0.1 — 

    Junior tranche:  
    default prob., expected loss (bp) 

— 80, 27 — 

http://ssrn.com/abstract=2203203�
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The three biggest drivers of this result are the assumptions of a higher probability of 
success, uncorrelated failures, and a much lower cost of conducting clinical trials for 
orphan drug development programs.  Although the recent scientific literature and 
biopharma experience in orphan diseases seem to be consistent with these assumptions, 
this is still a relatively young field with new findings published almost daily, some of which 
could change the simulation parameters and its result.  Therefore, our simulation results 
are, at best, suggestive and not conclusive.  Readers are invited to download our simulation 
software and re-run the simulations with their own combination of preferred parameter 
values.  Nevertheless, we believe that across a reasonable range of simulation parameters, 
certain biomedical challenges can be met with megafunds of much smaller scale than that 
proposed by Fernandez et al. [1]. 

Another implication of our analysis is that asset selection—based on a deep 
understanding of both the scientific and financial aspects of the projects being 
considered—is central to successful portfolio construction, and that there are at least two 
paths to achieve such success.  In cases where success rates are unavoidably low and 
failure is positively correlated between projects, a large number of projects and vast 
amounts of capital may be needed to achieve sufficient diversification and an acceptable 
risk/reward profile.  However, when success rates are higher and projects are less 
correlated, fewer projects and less capital may be required.   

This trade-off suggests that more efficient business models for drug discovery can 
be developed by allowing the scientific and engineering challenges of translational 
medicine to determine the financing structure used to support them, and not vice versa.  
Relying on existing financing methods such as venture capital and public equity may be 
inadequate to address the rapidly shifting economic incentives arising from scientific 
breakthroughs such as big data, biomarkers, the “omics” revolution and precision medicine, 
and political and regulatory changes. 

These changes may not bode well for the profitability of orphan drugs.  Indeed, 
there is a growing concern that the rising cost of drugs like Soliris is unsustainable; hence 
our simulation results should be re-generated and re-evaluated as the economic landscape 
changes.  But one of the primary drivers of the megafund concept is the financial efficiency 
gains from pooling a large number of diverse investments into a single portfolio.  Such 
efficiency gains may, in fact, contribute to a lowering of the cost of developing drugs for 
rare diseases and accelerate the industry toward a more sustainable business model. 

Finally, our orphan drug development simulations hint at an intriguing potential 
future for the biopharma industry.  As diagnostic techniques and our understanding of the 
molecular basis of disease become more and more precise, it is conceivable that most 
diseases could eventually be “orphanized.”  By stratifying patient populations sufficiently 
finely to increase the efficacy of a candidate drug—thereby increasing the probability of 
approval and decreasing the correlation of failure among projects—we reduce both the 
amount of capital and the number of shots on goal needed to achieve an attractive 
risk/reward profile.    The financial economics of orphan drug development show that, in 
addition to scientific and ethical motivations for developing targeted therapies, there are 
important financial incentives as well.   
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