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Abstract

Peripheral nerve injury affects nearly 200,000 patients annually in the United
States and unless treated results in paralysis of skeletal muscle and loss of sensation.
Previous studies in this laboratory have focused on comparing the effectiveness of
various tubular devices in repairing experimental nerve injuries in an animal model. The
devices were rank-ordered based on clinically relevant assays of regeneration such as
number regenerated nerve fibers and electrophysiological conduction properties of the
regenerated nerves. Such assays provide a useful measure of the clinical efficacy of
devices but require long-term (up to 60-week) studies in order to obtain meaningful
results. There exists a need for a short-term (less than 12-week) assay with which nerve
repair devices can be compared. The overall goal of this thesis was to establish an
experimental assay that can be used to detect statistically significant differences among
nerve repair devices in short-term studies.

In this thesis, four different assays of nerve regeneration were compared on the
basis of their appropriateness to quantify the regeneration promoted by nerve repair
devices in studies less than 12 weeks in duration. An acceptable assay must reach a
plateau with time during short-term studies and must yield a quantitative metric with
which nerve devices can be compared. The results of this thesis suggest that an assay
based on ability of a nerve repair device to promote reinnervation across nerve gaps of
various lengths meets the criteria for an acceptable assay. The data also indicate that the
characteristic gap length (L), which is derived from curve-fitting the experimental data
for reinnervation versus gap length, can be used as a quantitative metric of nerve
regeneration. The experimental data indicate that for the silicone tube device, the value of
L. reached a plateau with time before 9 weeks, and the standard error in L. was less than
5 percent of the value in two different nerve repair models (single-leg and cross-
anastomosis). The data also suggest that statistically significant differences between the
silicone tube device and a collagen-based device (the CG device) are obtainable during
short-term (12-week) studies.

Thesis Supervisor:  Ioannis V. Yannas, Professor of Polymer Science
Thesis Committee: ~ Myron Spector, Senior Lecturer of Mechanical Engineering
Peter So, Professor of Mechanical Engineering
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Chapter 1: Introduction
1.1 Clinical Problem

The clinical outcome of severe peripheral nerve injury is the loss of function and
sensation in the affected limb or organ. Peripheral nerve injuries necessitate
approximately 200,000 surgical repair pfocedures each year in the United States alone
(Madison et al., 1992). Injuries to peripheral nerves may be the result of disease, trauma,
or intentional nerve transection during certain surgical procedures. Traumatic injuries to
peripheral nerves may be the result of violence, industrial accidents, or sports-related
injuries. An example of intentional peripheral nerve transection is the procedure used for
oncological surgery to remove tumors from the cranial base, in which the facial nerve is
transected to provide access to the tumor site (Janecka et al., 1990).

Regardless of the cause of peripheral ﬁewe injury, the result is loss of function of
the denervated organ. The most common clinical treatments for peripheral nerve damage
are direct suture of the nerve stumps or interposition of a segment of autograft nerve
tissue. The direct suture technique is most often used when the two nerve stumps can be
directly apposed without the introduction of mechanical tension at the suture line
(Madison et al., 1992). Clinical studies of direct suturing of the median nerve in humans
demonstrated that only 25% of patients recovered full motor function and 3% recovered
full sensory function (Mackinnon and Dellon, 1988). Autografting is the curren‘; clinical
treatment for damaged peripheral nerves in which the gap separating the two nerve
stumps is too large to allow direct suture without tension. This procedure requires that a
segment of nerve tissue be harvested from a donor site, commonly the sural nerve. .The

autograft tissue is then sutured to bridge the initial nerve injury. Clinical studies of



autograft repair of the median nerve in humans demonstrated that only 20% of patients
reco‘vered full motor function and none of the patients recovered full sensory function
(Mackinnon and Dellon, 1988). The unsatisfactory results obtained with both the direct
suture and the autograft techniques clearly demonstrate the need for a more effective
therapy for the treatment of peripheral nerve injury.

A third approach to peripheral nerve repair is to bridge the nerve defect with a
tubular implant device. A numbef of research efforts have been dedicated to the goal of
developing an artificial tubular implant for nerve repair that will achieve a level of
performance equivalent to or even superior to that of the autograft. This notion is
supported by studies that have demonstrated that bioengineered tubular devices promoted °
peripheral nerve regeneration equivalent to the autograft in the rat animal model (Kim et
al., 1994, Chamberlain, 1998, Chamberlain et al., 1998). Bioengineered devices for nerve
repair also have the advantage over the autograft in that the characteristics of an
engineered device can be systematically modified in order to improve performance. A
review of engineering strategies for peripheral nerve repair can be found in section 1.5
later in this chapter.

Although a wide range of nerve gap injuries (1 mm to several centimeters in
length) are common in the clinic, a comprehensive study of tubulation repair of nerve
gaps of various lengths has not been performed. Two experimental studies, performed by |
Buti et al. (Buti et al., 1996) and Lundborg et al. (Lundborg et al., 1982), have initially
examined the effects of gap length on nerve regeneration. The Buti study examined the
return of electrophysiological function in the mouse sciatic nerve following repair with a

silicone tube. The results indicated a general decreasing trend in the quality of
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regeneration with increasing gap length. The Lundborg study was performed in the
sciatic nerve of the adult rat. Nerve gaps 6, 10, 15, and 20 mm in length were repaired
with silicone tubes. Nerve fiber regeneration into the gap was qualitatively examined at 4
weeks following implantation. It was observed that nerve fibers had successfully
regenerated to the gap midpoint in all animals with small gap lengths (6 and 10 mm) but
did not successfully bridge the gap in any animals with larger gaps (15 and 20 mm). This
study provides the initial points that describe the relationship between successful axon

bridging and gap length.

1.2 Peripheral Nerve Structure and Function

The nervous system consist of a network of cell bodies (neurons) and cellular
processes (nerve fibers or axons) throughout the body responsible for conducting
electrical impulses from the brain to distal endpoints (skeletal muscle and organs) and
from sensory endpoints back to the brain. The cell bodies of motor neurons are located in
the gray matter of the spinal cord, and the cell bodies of sensory neurons are located in
the peripheral nerve roots (dorsal root ganglia). The central nervous system consists of
the nerve cell bodies and processes located in the brain and spinal cord, and the
peripheral nervous system consists of the cell processes outside the brain and spinal cord.
Figure 1.1 shows a schematic diagram illustrating the distincjtion between the central and

peripheral nervous systems in a simple motor communication network.
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Figure 1.1 Schematic diagram of a simple motor circuit. The central nervous system
contains the neurons and axons within the brain and spinal cord. The peripheral nervous
system contains the nerve fibers located in the body extremities, outside the brain and
spinal cord.

Peripheral nerves conduct electrical impulses to and from the central nervous
system using a complex organization of conducting and non-conducting components. The
conducting elements of peripheral nerves are axons, which are long cell processes of the
nerve cells (neurons). Axons of the peripheral nervous system are organized into bundles
which comprise the peripheral nerve trunks (peripheral nerves) located throughout the
limbs and body. The axons connect each neuron cell body to the distal target organ
without interruption. A single axon may be as long as 1 meter in the human.

Each peripheral nerve contains axons, support cellé (mainly ﬁbroblasts and
Schwann cells), conn-ective tissue, and a vascular supply. The Schwann cell is the most
numerous support cell type in the peripheral nervous system. Schwann cells provide

trophic support for the axons and ensheathe or myelinate axons to improve their electrical

conduction properties. The myelin sheath consists of multiple layers of Schwann cell
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cytoplasm wrapped tightly around the axon (Figure 1.2). Myelination enhances the
velocity of the signal conducted by an axon by electrically insulating the axon at periodic
segments along its length. The thickness of the myelin sheath varies between axons and

depends to some extent on axon diameter.

Schwann cell
Cytoplasm

Myelin Sheath

Schwann Cell
Nucleus

Basement Membrane

FIGURE 1.2 Schematic showing the cross section of a normal myelinated axon. Adapted
from Chamberlain (Chamberlain, 1998).

Peripheral nerve trunks contain a number of small bundles of axons that may be
organized into one or more fascicles. Each fascicle contains the axons, supporting
Schwann cells, interspersed connective tissue (endoneurium), and endoneurial
fibroblasts. Each fascicle is surrounded by a layer of flattened cells and ECM known as
the perineurium. The diameter of a typical nerve trunk can vary greatly between less than
one millimeter and greater than 10 mm in the human. The sciatic nerve of the rat which is

a popular experimental model for nerve repair, is typically 1.0-1.5 mm in diameter.
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1.3 Peripheral Nerve Regeneration

There have been many comprehensive reviews of the physiological processes
involved in peripheral nerve regeneration (Fields et al., 1989, Fawcett and Keynes, 1990,
Fu and Gordon, 1997). A brief review will be presented below to introduce useful
concepts f01; interpreting the results of this thesis.

Transection injury to a peripheral nerve disrupts all sensory and motor axons.
The distal portion of each axon has been separated from its neuron and undergoes
Wallerian degeneration. The debris of degrading axons is phagocytosed by macrophages
and activated Schwann cells within the first few days following injury. The remaining
myelin sheaths may persist up to 30 or 40 days before being similarly phagocytosed
(Ramon y Cajal, 1928). Schwanﬂ celis in the distal nerve stump detach frorﬁ the
degeneratingl axons and begin to proliferate. Schwann cells and fibroblasts in the
proximal nerve stump also become active and undergo mitosis.

In cases when the nerve stumps are bridged with a tubular implant, the lumen of
the tube becomes filled with wound fluid within one day after injury (Williams et al., |
1983). Fibrinogen from the blood plasma polymerizes to form a continuous clot of fibrin
and fibronectin between the nerve stumps (Williams et al., 1983). Cells from both the
proximal and distal sfumps migrate into the fibrin scaffold during the first week
following injury. Initial cell migration into the gap consists mainly of cells of apparent
endothelial origin as well as cells resembling fibroblasts and macrophages (Scaravilli,
1984). Other studies suggest that fibroblasts and Schwann cells are the first to migrate,
entering the gap during the first week (Williams et al., 19835. These cells are followed by

vascular cells during the second week.
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The sprouting and elongation of severed axons in the proximal stump begins
within hours after transection (Fawcett and Keynes, 1990). Nonmyelinated axons first
enter the gap after a delay of 7-14 days(Williams et al., 1983). Initial axon growth was
observed in close association with Schwann cells in the gap. The rate at which the leading
elongating axons traverse the gap remains an item of debate. Investigators have estimated
the velocity of elongation to be 1 to 3 mm per day depending on tﬁe age and species of
the experimental animal. Studies by Williams et al. indicated that unmyelinated axons
traversed a 10-mm gap within 3 weeks with a one-week period of delay (Williams et al.,
1983), yielding an elongation velocity of less than 1 mm per day after the delay period.
Based on the elongation velocity estimates above, it is possible that regenerating axons
may reach distal muscle and sensory targets within 5 weeks after injury. However,
electrophysioloigcal impulses are not conducted across a 10-mm gap in rat sciatic nerves
until 8 weeks after injury and tubulation (Chang et al., 1990). The time delay before the
nerves are able to conduct a signal may be explained by the additional time required for
the axons to reach maturity. Once the regenerated axons have reached the distal targets,
they typically grow in diameter and may undergo an increase in myelin thickness

(Chamberlain, 1998).

1.4 Experimental Models of NerVe Injury

A number of different models have been developed for thé sgudy peripheral nerve
regeneration. The various models differ in the animal species, the choice of injury mode,
choice of anatomical site, and the assays with which regeneration is evaluated. Each topic

is discussed below.
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1.4.1 Choice of Animal Species

A number of different animal species have been used for experimental models of
peripheral nerve injury including the rabbit (Fawcett and Keynes, 1986, Whitworth et al.,
1995), the cat (Noback et al., 1958, Rosen et al., 1983), the non-human primate (Dellon
and Mackinnon, 1988, Archibald et al., 1995), the mouse (Navarro et al., 1995, Buti et
al.,. 1996), and the rat (Fields et al., 1989). The rat is the most commonly used species,
probébly due to its high resistant to infection and relatively simple procedures for
anesthesia, surgery, and post-operative care. Although many of the same benefits are
available in using the mouse, the surgical procedure can more difﬁcpIt due to the small
size of the nerve.

Within the rat species, there exist differences among the different strains in the
animals’ response to nerve trauma. A study of sciatic nerve repair in several strains of rat
revealed that the various strains differed in the incidence of autotomy (self-mutilation) of
the affected limb (Carr et al., 1992). In the study by Carr et al., 100% of Sprague-Dawley
rats exhibited autotomy following nerve transection without repair, and 71% exhibited
autotomy following transection and direct suture. In the same study, no rats of the Lewis
rat strain exhibited autotomy following transection with or without repair. In the most
severe cases, autotomous behavior can lead to pain and infection of the limb and
exclusion of the animal fromvanalysis (Wall et al., 1979, Landstrom, 1993). For this

reason, the Lewis rat strain was used for studies in this thesis.

1.4.2 Choice of Injury Mode

The two main modes of injury used by investigators include compression of the

nerve tissue and complete transection of the nerve. The compression injury mode
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resembles a class of clinical situations in which the continuity of the connective and
support tissue remains grossly intact while the nerve fibers themselves are damaged or
interrupted by the crushing force. This mode of injury has been used in a number of
studies in various laboratories (Haftek and Thomas, 1968, Devor and Govrin-Lippman,
1979, Walker et al., 1994, Danielsson et al., 1996, Hoffman and O’Shea, 1999,
Korompilias et al., 1999). The compression injury mode does not easily lend itself to the
study of implantable devices since the nerve trunk remains intact, but is more appropriate
- for pharmacological studies. Nerve compression is also not well suited for morphological
studies of nerve regeneration since nerve fibers found in the injury site may be either
regenerated nerve fibers or intact nerve fibers that were not damaged by the initial injury.
For these reasons, compression injury was not appropriate for the study of nerve repair
devices in this thesis.

The transection mode of injury resembles a class of clinical_ situations in which
the continuity of the nerve trunk has been interrupted and the two nerve stumps ar