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Abstract

In this thesis I study the generation of density perturbations in two classes of infla-
tionary models: hybrid inflation and multifield inflation with nonminimal coupling to
gravity.

• In the case of hybrid inflation, we developed a new method of treating these
perturbations that does not rely on a classical trajectory for the fields. A
characteristic of the spectrum is the appearance of a spike at small length scales,
which could conceivably seed the formation of black holes that can evolve to
become the supermassive black holes found at the centers of galaxies. Apart
from numerically calculating the resulting spectrum, we derived an expansion
in the number of waterfall fields, which makes the calculation easier and more
intuitive.

• In the case of multifield inflation, we studied models where the scalar fields
are coupled non-minimally to gravity. We developed a covariant formalism and
examined the prediction for non-Gaussianities in these models, arguing that
they are absent except in the case of fine-tuned initial conditions. We have also
applied our formalism to Higgs inflation and found that multifield effects are
too small to be observable. We compared these models to the early data of the
Planck satellite mission, finding excellent agreement for the spectral index and
tensor to scalar ratio and promising agreement for the existence of isocurvature
modes.
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and Senior Lecturer, Department of Physics

3



4



Acknowledgments

I am grateful to my supervisors, Prof. Alan Guth and Prof. David Kaiser, for their

support and mentoring. I thank my thesis readers, Prof. Hong Liu and Prof. Max

Tegmark for their advice. I also thank my collaborators, Prof. Ruben Rosales,

Prof. Edward Farhi, Prof. Iain Stewart, Dr. Mark Hertzberg, Dr. Mustafa Amin,

Ross Greenwood, Illan Halpern, Matthew Joss, Edward Mazenc and Katelin Schutz

for their contribution to this thesis and beyond.

I would like to thank my family and friends for their continued support and

Angeliki for being there for me during the last two years.

I am indebted to my fellow students, the staff of the CTP, Joyce Berggren, Scott

Morley and Charles Suggs and the staff of the Physics Department for creating a

vibrant environment. I thank the undergraduate students who worked with us, since

they reminded me why I wanted to be a physicist, at a time when I needed it the

most. I would not be here without the teachers and professors, in Greece and the US,

who inspired me and I hope I have met their expectations.

Last but not least I would like to thank George J. Elbaum and Mimi Jensen for

their generosity that gave me the opportunity to pursue a PhD at MIT.

This thesis is dedicated to the memory of my beloved grandmother.

5



6



Contents

1 Introduction 25

1.1 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.1.1 Simple Single field inflation . . . . . . . . . . . . . . . . . . . 27

1.1.2 Inflationary Perturbations . . . . . . . . . . . . . . . . . . . . 28

1.2 Beyond the single field . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.2.1 Hybrid Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2.2 Non-minimal coupling . . . . . . . . . . . . . . . . . . . . . . 31

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Density Perturbations in Hybrid Inflation Using a Free Field Theory

Time-Delay Approach 37

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Field set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.2 Fast Transition . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.3 Mode expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.4 Solution of the mode function . . . . . . . . . . . . . . . . . . 46

2.3 Supernatural Inflation models . . . . . . . . . . . . . . . . . . . . . . 52

2.3.1 End of Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Perturbation theory basics . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.1 Time delay formalism . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.2 Randall-Soljacic-Guth approximation . . . . . . . . . . . . . . 57

2.5 Calculation of the Time Delay Power Spectrum . . . . . . . . . . . . 59

7



2.6 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . . 64

2.6.1 Model-Independent Parameter Sweep . . . . . . . . . . . . . . 66

2.6.2 Supernatural Inflation . . . . . . . . . . . . . . . . . . . . . . 71

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.9.1 Zero mode at early times . . . . . . . . . . . . . . . . . . . . . 78

2.9.2 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 80

3 Hybrid Inflation with N Waterfall Fields: Density Perturbations

and Constraints 87

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2 N Field Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2.1 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.2 Mode Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.3 The Time-Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4.1 Two-Point Function . . . . . . . . . . . . . . . . . . . . . . . 99

3.4.2 Three-Point Function . . . . . . . . . . . . . . . . . . . . . . . 102

3.4.3 Momentum Space . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5 Constraints on Hybrid Models . . . . . . . . . . . . . . . . . . . . . . 107

3.5.1 Topological Defects . . . . . . . . . . . . . . . . . . . . . . . . 107

3.5.2 Inflationary Perturbations . . . . . . . . . . . . . . . . . . . . 108

3.5.3 Implications for Scale of Spike . . . . . . . . . . . . . . . . . . 109

3.5.4 Eternal Inflation . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 112

3.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.8.1 Series Expansion to Higher Orders . . . . . . . . . . . . . . . 114

3.8.2 Two-Point Function for Even Number of Fields . . . . . . . . 115

8



3.8.3 Alternative Derivation of Time-Delay Spectra . . . . . . . . . 116

4 Primordial Bispectrum from Multifield Inflation with Nonminimal

Couplings 123

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2 Evolution in the Einstein Frame . . . . . . . . . . . . . . . . . . . . . 126

4.3 Covariant Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4 Adiabatic and Entropy Perturbations . . . . . . . . . . . . . . . . . . 144

4.5 Primordial Bispectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.8.1 Field-Space Metric and Related Quantities . . . . . . . . . . . 164

5 Multifield Dynamics of Higgs Inflation 175

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.2 Multifield Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.3 Application to Higgs Inflation . . . . . . . . . . . . . . . . . . . . . . 182

5.4 Turn Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.5 Implications for the Primordial Spectrum . . . . . . . . . . . . . . . . 197

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.8.1 Angular Evolution of the Field . . . . . . . . . . . . . . . . . 203

6 Multifield Inflation after Planck:

The Case for Nonminimal Couplings 211

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.2 Multifield Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.3 The Single-Field Attractor . . . . . . . . . . . . . . . . . . . . . . . . 217

6.4 Observables and the Attractor Solution . . . . . . . . . . . . . . . . . 219

9



6.5 Isocurvature Perturbations . . . . . . . . . . . . . . . . . . . . . . . . 221

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7 Multifield Inflation after Planck : Isocurvature Modes from Non-

minimal Couplings 229

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

7.2.1 Einstein-Frame Potential . . . . . . . . . . . . . . . . . . . . . 233

7.2.2 Coupling Constants . . . . . . . . . . . . . . . . . . . . . . . . 236

7.2.3 Dynamics and Transfer Functions . . . . . . . . . . . . . . . . 238

7.3 Trajectories of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . 243

7.3.1 Geometry of the Potential . . . . . . . . . . . . . . . . . . . . 243

7.3.2 Linearized Dynamics . . . . . . . . . . . . . . . . . . . . . . . 247

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

7.4.1 Local curvature of the potential . . . . . . . . . . . . . . . . . 252

7.4.2 Global structure of the potential . . . . . . . . . . . . . . . . . 254

7.4.3 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 256

7.4.4 CMB observables . . . . . . . . . . . . . . . . . . . . . . . . . 257

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

7.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

7.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

7.7.1 Approximated Dynamical Quantities . . . . . . . . . . . . . . 265

7.7.2 Covariant formalism and potential topography . . . . . . . . . 267

10



List of Figures

1-1 A pictorial form of the hybrid potential. . . . . . . . . . . . . . . . . 32

2-1 Mode functions for different comoving wavenumbers as a function of

time in efolds. The model parameters are µψ = 1
10

and µφ = 10. We

can see the modes following our analytic approximation for the growth

rate. Our analysis gives Ndev(1/256) ≈ −7.9 and Ntr(256) ≈ 4.76,

which are very close to the values that can be read off the graph. . . 51

2-2 Mode functions for different comoving wavenumbers as a function of

time in efolds. The model parameters are µψ = 1
2

and µφ = 1. The

horizontal line corresponds to the asymptotic value of the growth fac-

tor λ. We can see how the mode functions reach their asymptotic

behavior after 10 efolds. Our analysis gives Ndev(1/256) ≈ −7.84 and

Ntr(256) ≈ 5.4, which are very close to the values that can be read off

the graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2-3 Parameter space for the two supernatural inflation models. The bot-

tom right corner shows the parameter for model 2, while the other

three show parameters for model 1, for different ranges of the mass

scale M ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2-4 The time delay field calculated using the RSG formalism. The end time

was taken to be 15 e-folds after the waterfall transition and µψ = 1
20

for all curves, while we varied µφ. . . . . . . . . . . . . . . . . . . . . 59

11



2-5 Comparison between the RSG and FFT methods. The end time was

taken to be 15 e-folds after the waterfall transition and µφ = 20 and

µψ = 1/20. We can see that the spectrum of the time delay field

calculated in the free field theory agrees very well with the rescaled

version of the RSG approximation AδτRSG (Bk). . . . . . . . . . . . 65

2-6 Parameter sweep for constant timer field mass µψ = 1/20 and constant

end field value φend = 1014. Data points are plotted along with a least

square power law fit. The same trend is evident in all curves. The time

delay spectrum grows in amplitude and width and is shifted towards

larger momentum values as the mass product decreases. Also inflation

takes longer to end for low mass product. . . . . . . . . . . . . . . . . 67

2-7 Time delay spectra for different values of the mass product, keeping

the timer field mass fixed at µψ = 1
20

. . . . . . . . . . . . . . . . . . 68

2-8 Perturbation spectrum for varying field value at tend for constant masses.

The time delay curves are identical in shape and differ only in ampli-

tude. This variation is entirely due to the different value of the time

dependent growth factor λ, which differs for each case because inflation

simply takes longer to end for larger end field values. . . . . . . . . . 69

2-9 Fixing the mass product at 2 and varying the mass ratio. There is

significant variation only for low mass ratio, when the light timer field

approximation loses its validity. Furthermore the curves of maximum

time delay amplitude and 1/λ follow each other exactly up to our

numerical accuracy. Finally by rescaling the spectra by the growth

factor λ they become identical for all values of the mass ratio. . . . . 72

2-10 Fixing the mass ratio at 900 (open circles) or the timer mass at µψ =

1/20 (+’s). The time delay spectra for different mass products show no

common shape characteristics and remain different even when rescaled

by λ. Furthermore the end time and maximum perturbation amplitude

curves are identical for constant mass ratio and constant timer field

mass, proving that indeed the mass product is the dominant parameter. 73

12



2-11 First Supernatural inflation model with M ′ at the Planck scale. The

spectra corresponding to the maximum and minimum mass product

are shown. We observe good agreement with the results of the model

independent parameter sweep of the previous section, because the timer

field mass is much smaller than the Hubble scale. . . . . . . . . . . . 74

2-12 First Supernatural inflation model with M ′ at the GUT scale. The

spectra corresponding to the maximum and minimum mass product

are shown. There is again good agreement with the results of the

previous section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2-13 First Supernatural inflation model with M ′ at the intermediate scale.

Five representative pairs of masses were chosen and the corresponding

time delay curves are shown. This model can give maximum time delay

of more than 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2-14 Second Supernatural inflation model. Three representative pairs of

masses were chosen and the corresponding time delay curves are shown. 76

2-15 Mode functions for µφ = 22 and m̃uψ = 1/18. The left column is

calculated for k̃ = 1/256 and the right for k̃ = 256 . . . . . . . . . . 82

3-1 An illustration of the evolution of the effective potential for the wa-

terfall field φ as the timer field ψ evolves from “high” values at early

times, to ψ = ψc, and finally to “low” values at late times. In the

process, the effective mass-squared of φ evolves from positive, to zero,

to negative (tachyonic). . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3-2 A plot of the (re-scaled) field’s power spectrum Pφ̃ as a function of

wavenumber k (in units of H) for different masses: blue is m0 = 2

and mψ = 1/2, red is m0 = 4 and mψ = 1/2, green is m0 = 2 and

mψ = 1/4, orange is m0 = 4 and mψ = 1/4. . . . . . . . . . . . . . . . 95

13



3-3 A plot of the field’s correlation ∆ as a function of x (in units of H−1)

for different masses: blue is m0 = 2 and mψ = 1/2, red is m0 = 4

and mψ = 1/2, green is m0 = 2 and mψ = 1/4, orange is m0 = 4 and

mψ = 1/4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3-4 Top: a plot of the (re-scaled) two-point function of the time-delay

N (2λ)2〈δt(x)δt(0)〉 as a function of ∆ ∈ [0, 1] as we vary N : dot-

dashed is N = 1, solid is N = 2, dotted is N = 6, and dashed is

N → ∞. Bottom: a plot of the (re-scaled) two-point function of the

time-delay N〈δt(x)δt(0)〉 as a function of x for different masses: blue

is m0 = 2 and mψ = 1/2, red is m0 = 4 and mψ = 1/2, green is m0 = 2

and mψ = 1/4, orange is m0 = 4 and mψ = 1/4, with solid for N = 2

and dashed for N →∞. . . . . . . . . . . . . . . . . . . . . . . . . . 103

3-5 The dimensionless power spectrum NPδt(k) at large N as a function

of k (in units of H) for different choices of masses: blue is m0 = 2

and mψ = 1/2, red is m0 = 4 and mψ = 1/2, green is m0 = 2 and

mψ = 1/4, orange is m0 = 4 and mψ = 1/4. . . . . . . . . . . . . . . . 106

3-6 The dimensionless bispectrum
√
N FNL as a function of k (in units of

H) at large N for m0 = 4 and mψ = 1/2. . . . . . . . . . . . . . . . . 107

4-1 The Einstein-frame effective potential, Eq. (4.18), for a two-field model.

The potential shown here corresponds to the couplings ξχ/ξφ = 0.8, λχ/λφ =

0.3, g/λφ = 0.1, and m2
φ = m2

χ = 10−2 λφM
2
pl. . . . . . . . . . . . . . . . 132

14



4-2 Parametric plot of the fields’ evolution superimposed on the Einstein-frame

potential. Trajectories for the fields φ and χ that begin near the top of

a ridge will diverge. In this case, the couplings of the potential are ξφ =

10, ξχ = 10.02, λχ/λφ = 0.5, g/λφ = 1, and mφ = mχ = 0. (We use

a dimensionless time variable, τ ≡
√
λφ Mpl t, so that the Jordan-frame

couplings are measured in units of λφ.) The trajectories shown here each

have the initial condition φ(τ0) = 3.1 (in units of Mpl) and different values

of χ(τ0): χ(τ0) = 1.1 × 10−2 (“trajectory 1,” yellow dotted line); χ(τ0) =

1.1×10−3 (“trajectory 2,” red solid line); and χ(τ0) = 1.1×10−4 (“trajectory

3,” black dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4-3 The evolution of the Hubble parameter (black dashed line) and the back-

ground fields, φ(τ) (red solid line) and χ(τ) (blue dotted line), for trajectory

2 of Fig. 2. (We use the same units as in Fig. 2, and have plotted 100H

so its scale is commensurate with the magnitude of the fields.) For these

couplings and initial conditions the fields fall off the ridge in the potential

at τ = 2373 or N = 66.6 efolds, after which the system inflates for another

4.9 efolds until τend = 2676, yielding Ntotal = 71.5 efolds. . . . . . . . . . 134

4-4 Models with nonzero masses include additional features in the Einstein-

frame potential which can also cause neighboring field trajectories to diverge.

In this case, we superimpose the evolution of the fields φ and χ on the

Einstein-frame potential. The parameters shown here are identical to those

in Fig. 4-2 but with m2
φ = 0.075λφM2

pl and m2
χ = 0.0025λφM2

pl rather than

0. The initial conditions match those of trajectory 3 of Fig. 4-2: φ(τ0) = 3.1

and χ(τ0) = 1.1× 10−4 in units of Mpl. . . . . . . . . . . . . . . . . . . 135

4-5 Parametric plot of the evolution of the fields φ and χ superimposed on the

Ricci curvature scalar for the field-space manifold, R, in the absence of a

Jordan-frame potential. The fields’ geodesic motion is nontrivial because of

the nonvanishing curvature. Shown here is the case ξφ = 10, ξχ = 10.02,

φ(τ0) = 0.75, χ(τ0) = 0.01, φ′(τ0) = −0.01, and χ′(τ0) = 0.005. . . . . . . 136

15



4-6 The slow-roll parameters ε (blue dashed line) and |ησσ| (solid red line) versus

N∗ for trajectory 2 of Fig. 2, where N∗ is the number of efolds before the

end of inflation. Note that |ησσ| temporarily grows significantly larger than

1 after the fields fall off the ridge in the potential at around N∗ ∼ 5. . . . 142

4-7 The turn-rate, ω = |ωI |, for the three trajectories of Fig. 4-2: trajectory 1

(orange dotted line); trajectory 2 (red solid line); and trajectory 3 (black

dashed line). The rapid oscillations in ω correspond to oscillations of φ

in the lower false vacuum of the χ valley. For trajectory 1, ω peaks at

N∗ = 34.5 efolds before the end of inflation; for trajectory 2, ω peaks at

N∗ = 4.9 efolds before the end of inflation; and for trajectory 3, ω remains

much smaller than 1 for the duration of inflation. . . . . . . . . . . . . . 143

4-8 The effective mass-squared of the entropy perturbations relative to the Hub-

ble scale, (µs/H)2, for the trajectories shown in Fig. 4-2: trajectory 1

(orange dotted line); trajectory 2 (red solid line); and trajectory 3 (black

dashed line). For all three trajectories, µ2
s < 0 while the fields remain near

the top of the ridge, since µ2
s is related to the curvature of the potential in

the direction orthogonal to the background fields’ evolution. The effective

mass grows much larger than H as soon as the fields roll off the ridge of the

potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4-9 The transfer function TRS for the three trajectories of Fig. 4-2: trajectory

1 (orange dotted line); trajectory 2 (red solid line); and trajectory 3 (black

dashed line). Trajectories 2 and 3, which begin nearer the top of the ridge

in the potential than trajectory 1, evolve as essentially single-field models

during early times, before the fields roll off the ridge. . . . . . . . . . . . 153

4-10 The spectral index, ns, versus N∗ for the three trajectories of Fig. 4-2:

trajectory 1 (orange dotted line); trajectory 2 (red solid line); and trajectory

3 (black dashed line). The spectral indices for trajectories 2 and 3 coincide

and show no tilt from the value ns(N60) = 0.967. . . . . . . . . . . . . . 154

16



4-11 The non-Gaussianity parameter, |fNL|, for the three trajectories of Fig.

4-2: trajectory 1 (orange dotted line); trajectory 2 (solid red line); and

trajectory 3 (black dashed line). Changing the fields’ initial conditions by a

small amount leads to dramatic changes in the magnitude of the primordial

bispectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5-1 The potential for Higgs inflation in the Einstein frame, V (φ, χ). Note the

flattening of the potential for large field values, which is quite distinct from

the behavior of the Jordan-frame potential, Ṽ (φ, χ) in Eq. (5.27). . . . . . 184
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Chapter 1

Introduction

1.1 Inflation

Inflation was introduced by Alan Guth in 1980 [1], and developed into a full working

model by Linde [2] and Albrecht and Steinhardt [3] in 1981 and 1982. We will

start the thesis by listing what can be considered the four main supporting pieces

of evidence for inflation. We will not include the absence of monopoles from our

universe, although this was one of the initial motivations.

1. Uniformity at large scales: If one examines the universe at large scales, one

can see that it is approximately homogenous. From the CMB to the distribution

of galaxies, the universe looks the same no matter “which way we look”. Based

on the standard big bang theory and the fact that information travels at the

speed of light at most, opposite parts of the universe were not in causal contact

in the past, hence they are not expected to be uniform to that degree (1 in

100, 000). Inflation solves this problem by starting with a very small uniform

patch and doubling it 100 times to create our observable universe.

2. Flatness of the universe: To explain the flatness problem of the old big bang

theory, we should start from an isotropic universe governed by the Friedman-
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Robertson-Walker metric

ds2 = dt2 − a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.1)

where a(t) is the scale factor and k defines the curvature of the universe. Let

us define the ratio

Ω =
mass density

critical mass density
. (1.2)

The parameter |Ω − 1| defines the departure from flatness (Ω = 1 for a flat

universe). However |Ω− 1| is increasing after the big bang. In fact, in order for

the observed value of Ω = 1 + 0.0010 ± 0.0065 [4] to be possible, Ω had to be

exponentially close to unity at the big bang. Indeed inflation shows that

|Ωend − 1|
|Ωinit − 1|

=

(
ainit

aend

)2

= e−2Ne . 10−50, (1.3)

meaning that inflation can start with a patch of some curvature and the resulting

universe will be approximately flat to a high degree.

3. Perturbations: Although the universe is made uniform by inflation, we can

see non-uniformities all around us, from planets to solar systems, from galaxies

to galaxy clusters and of course in the CMB. This can also be explained quite

naturally by inflation. One has to take a step back and realize that quantum

mechanics demands that field values are fluctuating on very short scales. Dur-

ing inflation these fluctuations are stretched along with the rest of the universe,

so they reach cosmological dimensions. These fluctuations are observable in

the CMB, and they also provide the seeds of all structure around us, as they

are then enhanced by the unstable nature of gravitational systems. Inflation-

ary predictions agree with the measured spectrum of these fluctuations to an

excellent degree [5].

4. Tensor modes: Inflation has the ability to stretch fluctuations of the gravi-

tational field that exist at the quantum level to cosmological scales. The am-
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plitude of the resulting primordial gravity waves is proportional to the energy

scale during inflation. Suppression of gravity waves would not rule out infla-

tion, but rather point to models of “low-scale” inflation. However a detection of

primordial gravity waves (through B-modes in the CMB) has been considered

a smoking gun for inflation. Such a discovery was announced as the present

thesis was being written [6]. Although there are claims that primordial gravity

waves can be generated by other sources (e.g. phase transitions), such models

are more complicated and not widely accepted as a viable alternative.

1.1.1 Simple Single field inflation

It is worth presenting the simplest model of inflation (which became hugely relevant

after the latest BICEP2 data [6]), which is a model of a single inflaton field φ coupled

minimally to gravity with the potential V (φ) = 1
2
m2φ2.

The action for this model is

S =

∫
d4x
√
−g
[
M2

Pl

2
R− 1

2
gµν∂µφ∂νφ−

1

2
m2φ2

]
, (1.4)

leading to the following equation of motion

φ̈+ 3Hφ̇+m2φ = 0 , (1.5)

where the Hubble parameter is defined as

H2 =
1

3M2
Pl

(
1

2
φ̇2 + V

)
. (1.6)

During slow roll the dynamics is dominated by the potential energy and the Hubble
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parameter remains almost constant, giving

1

2
φ̇2 � V (φ), (1.7)

|Ḣ| � H2, (1.8)

|φ̈| � |3Hφ̇| . (1.9)

The above slow roll conditions are equivalent to ε � 1 and |η| � 1, where ε and η

are the slow-roll parameters defined by

ε ≡ M2
Pl

2

(
V ′

V

)2

' − Ḣ

H2
, (1.10)

|η| ≡ M2
Pl

∣∣∣∣V ′′V
∣∣∣∣ '

∣∣∣∣∣ε− φ̈

Hφ̇

∣∣∣∣∣ . (1.11)

During slow-roll we can neglect the φ̈ term in the equation of motion for the inflaton,

which gives

φ̇ = −m
2φ

3H
= −

√
2

3
mMPl , (1.12)

where

H2 ' 1

3M2
Pl

V =
m2

6M2
Pl

φ2 . (1.13)

Using this we can calculate the number of efolds of inflation (the number of times

that the universe expands by a factor of e ≈ 2.72)

dN = Hdt⇒ N =

∫ tend

ti

H(t)dt =

∫ φend

φi

Hdt =

∫ φend

φi

H
dt

dφ
dφ =

=

∫ φend

φi

−3H2

V ′
dφ⇒ N =

φ2
i − φ2

end

4M2
Pl

⇒ N ≈ 1

4

φ2
i

M2
Pl

. (1.14)

In order for inflation to solve the flatness and horizon problems we need Ne = 60−70.

1.1.2 Inflationary Perturbations

At this point we will present a simple description of the standard perturbation theory

for single field inflation. Since the thesis aims at extending these methods, this is a
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good place to start. Since there are numerous books and review articles on inflationary

perturbations, we will not attempt to present a complete discussion here, but rather

a very simple introduction to make the comparison of the standard methods with our

new results easier.

We start by considering linear perturbations in the field and the metric

φ(x, t) = φ(x) + δφ(x, t), (1.15)

gµν(x, t) = ḡµν(x, t) + hµν(x, t). (1.16)

The line element in the longitudinal gauge in terms of the gauge-invariant Bardeen

potentials is

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)dxidxjδij. (1.17)

In a single field model the anisotropic pressure vanishes, leading to the equality of

the two Bardeen potentials

Φ = Ψ . (1.18)

The equations of motion for the field and metric perturbations are

δφ̈+ 3Hδφ̇− 1

a2
∇2δφ+ V,φφδφ = −2ΨV,φ + 4φ̇Ψ̇ , (1.19)

Ψ̇ +HΨ = 4πGφ̇δφ, (1.20)

supplemented by the constraint equation

(
Ḣ − 1

a2
∇2

)
Ψ = 4πG(−φ̇δφ̇+ φ̈δφ) . (1.21)

Studying the evolution of perturbations becomes easier if one uses the gauge invariant

form

R = ψ +
H

φ̇
δφ . (1.22)
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The spectrum of the scalar perturbations defined by

PR(k) ≡ k3

2π2

∫
d3xe−i

~k·~x〈R(~x, t)R(~0, t)〉. (1.23)

Skipping the analysis, the spectrum of the scalar perturbations is

P(k) = As

(
k

k∗

)ns−1

(1.24)

where the amplitude is calculated to be

As =

(
H2

2πφ̇

)2

(1.25)

and the spectral tilt

ns = 1− 6ε+ 2η . (1.26)

Both As and ns are evaluated at the time that an arbitrary pivot wave number k∗

crosses the Hubble length (i.e., when k∗/a = H). The Planck Collaboration uses

k∗ = 0.05 Mpc−1. A similar analysis for the tensor modes gives for the ratio r of

tensor to scalar modes

r = 16ε . (1.27)

This means that the amplitude of tensor modes directly probes the value of the Hubble

parameter during inflation.

1.2 Beyond the single field

Modern theories of particle physics, including Supersymmetry and String Theory,

generally contain multiple scalar fields at high energies. Considering that some of

those scalars are relevant for inflation provides a model-building framework, where

one can deviate from the simple picture of a single slow rolling scalar field presented

above. And more than that multi-field models offer possibilities to extend beyond the

simplest case of purely adiabatic and Gaussian perturbations. They provide levers
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with which to address some subtle features of state-of-the-art CMB measurements.

So there are both high-energy theory and empirical / phenomenological motivations

to look at multi-field models. We will study two classes of models, where a revision

or extension of the standard tools was needed to study inflationary perturbations.

1.2.1 Hybrid Inflation

As we saw for the single field inflation model, the same field is responsible for the ex-

pansion of the universe (since its potential energy dominates the Hubble parameter)

and the creation of the perturbations that are relevant for the CMB and structure for-

mation. Inflation ends when the field starts accelerating near the end of the potential.

Hybrid inflation employs two fields with distinct roles.

1. The timer field produces the observable large scale perturbations.

2. The waterfall field provides the potential energy that drives the expansion and

once the timer field reaches a particular value, it is destabilized and ends infla-

tion.

A pictorial representation of the hybrid potential is given in Fig. 1-1. The field rolls

along the valley (form right to left) and once it finds itself on top of the ridge is

destabilized by quantum perturbations and rolls towards its minimum. More details

regarding the transition are given in Chapter 2.

1.2.2 Non-minimal coupling

When we wrote the action for the simple model of inflation, the gravity term was

1
2
M2

PlR. However one can modify this, by essentially making Newton’s constant be

a function of the field amplitude at each point in space. In fact, renormalization of

scalar fields in a curved background generates terms of the form ξφ2R [7, 8], where ξ is

a dimensionless parameter, called the non-minimal coupling. We will describe briefly

here the physics of a single non-minimally coupled inflaton field (for more look for

example [9, 10]), since in the main part of the thesis we study multiple non-minimally
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Figure 1-1: A pictorial form of the hybrid potential.

coupled fields in detail. The general form of the action we will consider is

S =

∫
d4x
√
−g
[
f(φ)R− 1

2
gµν∂µφ∂νφ− V (φ)

]
. (1.28)

A conformal transformation is possible that will bring the gravity term to the usual

form of Einstein gravity 1
2
M2

PlR

g̃µν =
2f

M2
Pl

gµν . (1.29)

In addition we can make a field redefinition from φ to ϕ, in order for the kinetic term

to be canonical.

dϕ

dφ
=

MPl

2f(φ)

√
2f(φ) + 6(f ′(φ))2

2f 2(φ
, (1.30)

Ṽ =
V (φ)

(2f(φ))2
. (1.31)

With the conformal transformation and the field redefinition the action becomes

S =

∫
d4x
√
−g̃
[
M2

Pl

2
R̃− 1

2
g̃µν∂µϕ∂νϕ− Ṽ

]
. (1.32)

In the case of multiple fields (more than two) the conformal transformation does not

change, but a field redefinition that makes the kinetic term canonical is not possible.
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1.3 Organization of the thesis

The thesis is divided in two main parts, each consisting of a number of chapters and

dealing with two main classes of inflationary models. Each chapter is meant to be

self-contained and can be read separately. However Chapters 2 and 4 extensively

discuss the framework developed for the two model types that were studied and it

can be helpful to the reader to study them before proceeding to Chapters 3 and 5-7

respectively.

Chapters 2 and 3 deal with a new method of calculating density perturbations in

Hybrid Inflation. They are based on [11, 12] respectively. Regarding my contribution,

I did all numerical calculations and wrote most of the text for [11], and I assisted in

the analysis and wrote an early draft of [12].

Chapters 4-7 deal with calculating density perturbations in inflationary models

where multiple fields are coupled to each other and non-minimally to gravity. They

are based on [13, 14, 15, 16] respectively. Regarding my contribution, I did most

numerical calculations and a big part of the analytics and assisted in writing the final

version of the papers.
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Chapter 2

Density Perturbations in Hybrid

Inflation Using a Free Field Theory

Time-Delay Approach

We introduce a new method for calculating density perturbations in hybrid infla-

tion which avoids treating the fluctuations of the “waterfall” field as if they were

small perturbations about a classical trajectory. We quantize only the waterfall field,

treating it as a free quantum field with a time-dependent m2, which evolves from

positive values to tachyonic values. Although this potential has no minimum, we

think it captures the important dynamics that occurs as m2 goes through zero, at

which time a large spike in the density perturbations is generated. We assume that

the time-delay formalism provides an accurate approximation to the density pertur-

bations, and proceed to calculate the power spectrum of the time delay fluctuations.

While the evolution of the field is linear, the time delay is a nonlinear function to

which all modes contribute. Using the Gaussian probability distribution of the mode

amplitudes, we express the time-delay power spectrum as an integral which can be

carried out numerically. We use this method to calculate numerically the spectrum of

density perturbations created in hybrid inflation models for a wide range of param-

eters. A characteristic of the spectrum is the appearance of a spike at small length

scales, which can be used to relate the model parameters to observational data. It is
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conceivable that this spike could seed the formation of black holes that can evolve to

become the supermassive black holes found at the centers of galaxies.

2.1 Introduction

Inflation [1] remains the leading paradigm for the very early universe. It naturally

solves the cosmological flatness and horizon problems and is consistent with high pre-

cision measurements of the cosmic microwave background radiation [2, 3]. Numerous

models of inflation have been proposed, each adding features to the predictions of a

scale invariant spectrum derived from single-field slow-roll inflation. Their motiva-

tion can be either some particle physics ideas coming from the standard model [4] or

supersymmetric theories [5, 6], the need to explain some observation such as glitches

in the CMB or supermassive black holes in galactic centers, or simply the extension

of a theorist’s toolbox in anticipation of the next set of high precision data, such as

the upcoming Planck satellite measurements.

Hybrid inflation was first proposed by A. Linde [7] and the name was chosen

because this class of models can be thought of as being a hybrid between chaotic

inflation and inflation in a theory with spontaneous symmetry breaking. The simplest

hybrid inflation model requires two fields that we will call the timer and waterfall

fields. The timer field corresponds the usual slow rolling field and is responsible for

the scale invariant spectrum of perturbations observed in the CMB. The waterfall field

is confined to its origin by the interaction with the timer field, giving a large constant

contribution to the potential, which is also the main contribution to the energy density

and hence the Hubble parameter. The potential governing the waterfall field changes

as the timer field evolves, and at some point the minimum of the potential turns into

a local maximum, and the waterfall field rolls down its tachyonic potential to its new

minimum, where inflation ends. A characteristic feature of the density perturbation

spectrum of hybrid inflation is the appearance of a large spike generated at the time

when the waterfall potential turns tachyonic. The spike is generically at small length

scales, and can potentially seed primordial black holes [8]. Primordial black hole
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formation and evolution has been studied in the past [9, 10, 11, 12], but whether

these black holes grow to become the supermassive black holes currently found in

galactic centers is an open and intriguing possibility that we will address in a future

publication.

Usual inflationary perturbation theory is based on the study of quantum fluc-

tuations around a classical trajectory in field space. However, in a purely classical

formulation the waterfall field of hybrid inflation would remain forever at the origin,

even after the waterfall transition, due to symmetry. It is quantum fluctuations that

destabilize it and lead to the end of inflation, so in a sense the classical trajectory

has a quantum origin. Numerous papers have used various analytical approaches or

numerical simulations to overcome this difficulty and approximate the spectrum of

density perturbations [5, 6, 15, 16, 17, 18, 19, 20, 21, 13, 14].

The method we use here has evolved from the early work in Kristin Burgess’ thesis

[13], in which she studied a free-field model of the waterfall field in one space dimen-

sion, focusing on the time delay of the scalar field as a measure of perturbations. As

in the model considered here, the waterfall field was described by a Lagrangian with

a time-dependent m2, caused by the interaction with the timer field. m2 evolved from

positive values at early times to negative (tachyonic) values at late times. Such models

are unnatural, since the potential is not bounded from below, but they nonetheless

appear to be useful toy models, since the dynamics that generate the spike in the

fluctuation spectrum occur during the transition from positive to negative m2. The

evolution in the bottomless potential is realistic enough to give a well-defined time

delay. Burgess studied the evolution of the waterfall field by means of a numerical

simulation on a spatial lattice, using 262,000 points, calculating the power spectrum

of the time delay by Monte Carlo methods. The method was slow, but for one choice

of parameters she accumulated 5000 runs, giving a very reliable graph of the time-

delay spectrum for this model. This line of research was pursued further in the thesis

of Nguyen Thanh Son [14], who repeated Burgess’ numerical simulations with a new

code (with excellent agreement). More importantly, Son and one of us (AHG), with

some crucial input from private communication with Larry Guth, developed a method
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to short-circuit the Monte Carlo calculation. Instead of determining the power spec-

trum by repeated random trials, it was possible to express the expectation value for

the random trials as an explicit expression involving integrals over mode functions,

which could be evaluated numerically. The speed and numerical precision were dra-

matically improved. While Son’s work was still limited to one spatial dimension, the

possibility of extending it to three spatial dimensions was now a very realistic goal. In

this chapter we extend the calculation of the time-delay power spectrum in free-field

models of hybrid inflation to three spatial dimensions, calculating the spectrum for a

wide range of model parameters.

In Section II we define the free-field model for the timer and waterfall fields that

we will use to calculate fluctuations. We set up the equations of motion, define the

notation of the mode expansion, and discuss the behavior of the mode functions. We

make contact with a class of supersymmetric models that support hybrid inflation

in Section III, presenting the form of their potential and the range of parameters

that they allow. Section IV gives a brief summary of the time delay formalism, and

presents an approximation for calculating perturbations, developed earlier by Randall,

Soljačić, and Guth. In Section V we develop a new method for calculating density

perturbations in hybrid inflation that avoids any need to consider small fluctuations

about a classical solution. Instead we show how the time delay power spectrum can

be calculated essentially exactly in the context of the free field theory description.

The result is given in the form of an integral over the modes which makes use of their

known Gaussian probability distribution. In section VI we present an extensive set of

numerical results over the parameter space of our model, where we are able to isolate

the main factors that influence the density perturbation spectrum. In the limit of a

light timer field, all quantities of interest are determined by the product of the timer

and waterfall masses. We examine the models discussed in Section II as examples

of realistic versions of hybrid inflation, and provide graphs showing the predictions

of these models. Concluding remarks and directions of future work follow in Section

VII.
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2.2 Model

As we noted in the Introduction, the model consists of two fields with different be-

havior: the timer and waterfall fields. The timer field dominates the initial slow-roll

inflation phase and we take it to be a single scalar field. The waterfall field becomes

tachyonic and rolls to its minimum ending inflation. We take the waterfall field to

be a complex scalar, so as to avoid the creation of domain walls after the waterfall

transition. The action of this two-field system with minimal coupling to gravity is

S =

∫
d4x
√
−g
[
M2

Pl

2
R− 1

2
gµν∂µψ∂µψ −

1

2
gµν∂µφ

†∂νφ− V (ψ, φ)

]
, (2.1)

where the potential is comprised of a constant term, the potentials of the waterfall

and timer fields and an interaction terms.

V (ψ, φ) = V0 + Vψ(ψ) + Vφ(φ) + Vint(ψ, φ). (2.2)

2.2.1 Field set-up

Our first assumption is related to the expansion rate. We consider the metric to be

exactly De-Sitter, even though this is only approximately correct. However, it changes

only weakly during the slow roll inflation era, and we will terminate our calculation

once the approximation loses its validity. This is equivalent to requiring the constant

term V0 to dominate the potential. Defining the Hubble constant during inflation

through

H2 ≈ V0

3M2
pl

, (2.3)

the scale factor is written as

a(t) = eHt. (2.4)

Our second approximation concerns the potential of the two fields Vψ(ψ) and Vφ(φ).

We will take both to be purely quadratic. Physically this can only be an accurate

approximation close to the transition time. However we will take this potential to

hold for all times. Since the important dynamics happens close to the time of the
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transition, we believe that this approximation makes the dynamics tractable without

introducing large errors. Work is already under way to extend out method to more

realistic potentials.

We will split the action in two parts for each of the fields. We neglect the interac-

tion term from the Lagrangian of the timer field and consider it a part of the waterfall

field Lagrangian. This means that there is no back-reaction from the waterfall to the

timer field. Physically this is a reasonable approximation before the waterfall tran-

sition, as well as afterwards, for as long as the waterfall field remains close to the

origin. Mathematically, neglecting this term makes the equation of motion for the

timer field de-coupled and in our quadratic approximation analytically solvable.

The Lagrangian density for the waterfall field φ is

Lφ = e3Ht
[
|φ̇|2 − e−2Ht|∇φ|2 −m2

φ(t)|φ|2
]
. (2.5)

The usual 1/2 factors can be restored, if one writes φ = 1√
2
(φ1 + iφ2) where φ1 and

φ2 are real scalar fields. The waterfall field must be complex, otherwise it will create

domain walls as it rolls down from its initial value. The time-dependent mass of the

φ field is controlled by a real scalar field, subsequently called the timer field. The

important property of the squared mass of φ is that it has to be positive initially and

as ψ evolves become negative. A general form is the following

m2
φ(t) = −m2

0

[
1−

(
ψ(t)

ψc

)r]
. (2.6)

We will choose r = 4 for most of our simulations. The lagrangian density of the timer

field ψ is

Lψ = e3Ht

[
1

2
ψ̇2 − 1

2
e−2Ht(∇ψ)2 − 1

2
m2
ψψ

2

]
. (2.7)

We do not examine perturbations arising from quantum fluctuations of the timer

field. Before the waterfall transition they will give the nearly scale invariant spectrum

that can be matched to the CMB observations. Apart from making sure that the

long wavelength tail of the waterfall field perturbations does not contradict CMB
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data, we will not consider these scales. After the waterfall transition the timer field

perturbations will continue to be of the order of 10−5, hence they will be subdominant

to the perturbations of the waterfall field by a few orders of magnitude, as we will see.

We will not worry about matching the Plack observations for the spectral index of the

CMB, but we will restrict ourselves to a quadratic timer field potential. Comments

on the modification needed to turn the blue spectrum of this model to one compatible

with Planck are deferred for [25].

The equations of motion are

φ̈+ 3Hφ̇− e−2Ht∇2φ = −m2
φ(t)φ, (2.8)

ψ̈ + 3Hψ̇ − e−2Ht∇2ψ = −m2
ψψ. (2.9)

If we take the timer field to be spatially homogenous, we get

ψ(t) = ψce
pt (2.10)

with the exponent

p± = H

−3

2
±

√
9

4
−
m2
ψ

H2

 . (2.11)

The value of the constant of integration was chosen so that ψ(t) = ψc and m2
φ(t) = 0

at t = 0. Both roots are negative, but the long time behavior is dominated by the

larger of the two roots, which is

p = p+ = −H

3

2
−

√
9

4
−
m2
ψ

H2

 . (2.12)

We will always choose
mψ
H
< 3

2
and not consider the case of a complex root. In fact,

hybrid inflation models usually require the mass of the timer field to be well below

the Hubble parameter, as in [5] and [6]. We choose to measure time in number of

e-folds, hence we use N = Ht. We rescale the masses similarly as µψ = mψ/H and

µφ = m0/H. Furthermore the finite box size that we will use in our simulations is
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measured in units of 1
H

and the field magnitude in units of H. We also define

µ̃2
ψ = −rp

H
= r

3

2
−

√
9

4
−
m2
ψ

H2

 . (2.13)

For a light timer field the reduced mass µ̃ψ is proportional to the actual timer mass,

µ̃ψ =
√

r
3

(mψ
H

)
=
√

r
3
µψ.

2.2.2 Fast Transition

Let’s consider the speed of the transition. The transition happens at m2
φ = 0. In order

to quantify the speed of the transition, we will use the basic scale of our system, the

Hubble scale. We will consider the transition duration to be the period for which

|mφ| ≤ H, meaning that the mass term in the equation of motion of the waterfall

field is negligible. Assuming that µ̃φ > 1 we get

±1 = µ2
φ

(
1− e−µ̃2

ψN
)
⇒ ∆N =

1

µ̃2
ψ

log

(
µ2
φ + 1

µ2
φ − 1

)
. (2.14)

In the limit of µ̃φ � 1

∆N =
2

(µ̃ψµφ)2
. (2.15)

Another measure of the speed of the transition is given by derivative of the waterfall

field mass at N = 0.

1

H2

dm2
φ(N)

dN
|N=0 = (µ̃ψµφ)2 ⇒ ∆N ∼ 1

(µ̃ψµφ)2
. (2.16)

This shows that as long as the product µφµψ is somewhat larger than unity, the

duration of the transition will be less than a Hubble time, meaning that the transition

is fast!
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2.2.3 Mode expansion

For purposes of our numerical calculations, we think of the universe as a finite box

with periodic boundary conditions and a discrete spatial lattice. We choose the lattice

to be cubic with length b and Q3 points. This means that

~x =
b

Q
~l , ~k =

2π

b
~n , (2.17)

where ~l is a triplet of integers between 0 and Q − 1 and ~n is a triplet of integers

between −Q/2 and (Q/2)− 1. We can move between the finite discrete set of points

and the continuous limit using the usual substitutions

∫
d3x→

(
b

Q

)3∑
~x

,

∫
d3k →

(
2π

b

)3∑
~k

. (2.18)

Our convention for the Fourier transform is

f(~x) =

∫
d3kei

~k·~xf(~k) =

(
2π

b

)3∑
~k

ei
~k·~xf(~k),

f(~k) =

(
1

2π

)3 ∫
d3xei

~k·~xf(~x) =

(
1

2π

)3(
b

Q

)3∑
~x

ei
~k·~xf(~x) . (2.19)

We will expand the waterfall field in modes in momentum space,

φ(~x, t) =
1

(2π)3/2

(
2π

b

)3/2∑
~k

[c(~k)ei
~k·~xu(~k, t) + d†(~k)e−i

~k·~xu∗(~k, t)] , (2.20)

which with Eq. (2.8) gives

ü(~k,N) + 3u̇(~k,N) + e−2N k̃2u(~k,N) = µ2
φ(1− e−µ̃2

ψN)u(~k,N) , (2.21)

where k̃ = |~k|
H

and an overdot denotes a derivative with respect to the time variable

N = Ht.
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2.2.4 Solution of the mode function

Early time behavior

At asymptotically early times the k̃2 term dominates over the mass term provided

that µ̃2
ψ < 2. For r = 2 this is the case for µψ <

√
2, and for r = 4 it holds for

µψ <
√

5/4. These inequalities will hold throughout the parameter space of the

models that we will examine, so we can neglect the mass term for N → −∞. We

then define a new function, following [22] as

u(~k,N) =
1

2

√
π

H
e−3N/2Z(z) , z = k̃e−N . (2.22)

Neglecting the mass term in Eq. (2.21), we find

z2d
2Z

dz2
+ z

dZ

dz
+

(
z2 − 9

4

)
Z = 0 , (2.23)

which is the equation for a Bessel function of order 3/2. At early times the solution

should look like a harmonic oscillator in its ground state, or equivalently the ground

state of a free field in flat space, which is composed of negative frequency complex ex-

ponentials. This choice of initial conditions is the well known Bunch–Davies vacuum.

For a review of scalar field quantization in de Sitter space and the corresponding

vacuum choice see for example Ref. [23]. At early times the solution is given by

u ∼ 1

2

√
π

H
e−3N/2H

(1)
3/2(z) , (2.24)

where

H
(1)
3/2(z) = −

√
2

πz
eiz
(

1− 1

iz

)
(2.25)

is a Hankel function, a linear combination of Bessel functions. (The phase is arbi-

trary, and the normalization is fixed by insisting that the field and the creation and

annihilation operators obey their standard commutation relations.) Rewriting the
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original mode equation in terms of the new variable z, it simplifies to

∂2u

∂z2
− 2

z

∂u

∂z
+ u =

µ2
φ

z2

[
1−

(
z

k̃

)µ̃2
ψ

]
u . (2.26)

The ~k = 0 mode is not captured by the procedure described here and is presented in

detail in Appendix 2.9.1.

General Solution

We will now examine the general solution in a form that will be more appropriate for

the numerical calculations that we have to perform. We can write the solution as

u(~k, t) =
1√
2k̃H

R(~k, t)eiθ(
~k,t) (2.27)

and the differential equation separates in real and imaginary parts

R̈−Rθ̇2 + 3Ṙ + e−2N k̃2R = µ2
φ(1− e−µ̃2

ψN)R, (2.28)

2Ṙθ̇ +Rθ̈ + 3Rθ̇ = 0. (2.29)

Integrating the second equation gives

θ̇ = const
e−3N

R2
. (2.30)

By comparing this with the early time behavior of the analytic solution

u ∼ 1

2H
√
k̃
e−Neik̃e

−N
. (2.31)

The phase equation becomes

θ̇ = − k̃e
−3N

R2
, (2.32)
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while the initial condition for the amplitude is given by the same asymptotic term to

be

R→ e−N . (2.33)

Inserting this expression in the equation for the amplitude function R

R̈− k̃2e−6N

R3
+ 3Ṙ + e−2N k̃2R = µ2

φ(1− e−µ̃2
ψN)R . (2.34)

A closer look at the mode behavior

Let us rewrite the equation of motion (Eq. 2.21) in a way that makes the time

dependence of the solution more transparent

ük(t) + 3u̇k(t) + µ2
eff = 0 , µ2

eff (k) = k̃2e−2N + µ2
φe
−µ̃2

ψN − µ2
φ. (2.35)

We can distinguish different time windows with different behavior of the mode func-

tions, based on the effective waterfall field mass. We will list these time windows here

and then proceed to examine them one by one.

1. N � 0, many efolds before the waterfall transition, in the asymptotic past

2. Ndev(k) < N < 0, a few efolds before the transition, where Ndev(k) is the time at

which a mode starts deviating significantly from the e−N behavior, in particular

starts decaying faster.

3. 0 < N < Ntr(k) a few efolds after the transition, where Ntr(k) is the time at

which each mode starts growing.

4. N � 0, the asymptotic future

Now let us look at each of those time scales more closely. The asymptotic past is

well described in the previous section and we see that all modes decay like e−N .

More precisely their magnitude behaves as |uk| ∼
√

1
2k
e−N . The first time scale Ndev

appears only for low wavenumbers. For N < 0 we can keep only two of the three

terms in the effective mass. Since µ2
φe
−µ̃2

ψN > µ2
φ we will drop the µ2

φ term, leaving the
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effective mass as µ2
eff (k) = k̃2e−2N + µ2

φe
−µ̃2

ψN . The time at which the two dominant

terms become equal is

Ndev(k) =
2

2− µ̃2
ψ

log

(
k̃

µφ

)
. (2.36)

For k̃ ≥ µφ this time is not negative, hence we cannot drop µ2
φ and our analysis fails.

This transition, which happens only for k̃ < µφ signals a deviation of the behavior of

the modes, which do not evolve as e−N , but instead decay faster.

Next we move to the actual waterfall transition time for each mode, which happens

when the effective squared mass changes sign and becomes negative, or

k̃2e−2N = µ2
φ

(
1− e−µ̃2

ψN
)
. (2.37)

We will approximate the right hand side of the above equation with a piecewise linear

function as follows

µ2
φ

(
1− e−µ̃2

ψN
)

=

 µ2
φµ̃

2
ψN : N < 1/µ2

ψ

µ2
φ : N > 1/µ2

ψ

. (2.38)

For k̃ < µφe
1/µ2

ψ the solution is found on the first branch and is

Ntr(k) =
1

2
W

(
2k̃2

µφµ̃2
ψ

)
. (2.39)

where W is known as the Product Logarithm, or Lambert W function and is defined

as the solution to the equation z = W (z)eW (z). For small values of the wavenumber

we can write the solutions as a Taylor series in k̃

Ntr(k̃ �
√
µφµ̃ψ) =

k̃2

µ2
φµ̃

2
ψ

+O(k̃4). (2.40)

For k̃ > µφe
1/µ2

ψ we operate on the second branch and the transition time for each

mode is

Ntr(k) = log

(
k̃

µφ

)
. (2.41)
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The behavior of the modes after the transition is different for different ranges of

the timer field mass. If we consider the late time behavior of the mode equation,

we can see two timescales introduced by the time dependent exponential coefficients.

One is O(1) and the other O(1/µ̃2
ψ). We distinguish two cases: They can both be

O(1) or the second one can be larger than the first. The first timescale defines the

time at which the equation becomes k-independent, meaning that all modes behave

(grow) in the same way. The second time scale defines the time, after which the

equation becomes time independent, meaning that after that all modes behave as

pure exponentials.

Let us first deal with the case of µ̃ψ � 1 meaning that the second time scale is

much larger than the first one. Between the two timescales, that is 1 < N < −1/µ̃2
ψ,

the equation is independent of k̃

R̈ + 3Ṙ = µ2
φ(1− e−µ̃2

ψN)R. (2.42)

Since the evolution of the exponential term on the right hand side is by far slowest

than the other timescales in the problem, we will treat 1− e−µ̃2
ψN adiabatically. This

leads immediately to the solution

R = R0e
RN
0 λ(N ′)dN ′ , λ(N) =

−3 +
√

9 + 4µ2
φ(1− e−µ̃2

ψN)

2
. (2.43)

After a long time the growth rate would mathematically settle to

1

R

dR

dN
→ λ∞ =

−3 +
√

9 + 4µ2
φ

2
. (2.44)

However, this is far beyond the time when inflation will have ended, hence it would

physically never have time to happen (plus it is well outside the validity of our con-

structed potential).

Let us choose µφ = 10 and µ̃ψ = 1/10 to demonstrate our analysis. Some charac-

teristic mode functions are presented in Fig. 2-1
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Figure 2-1: Mode functions for different comoving wavenumbers as a function of
time in efolds. The model parameters are µψ = 1

10
and µφ = 10. We can see the

modes following our analytic approximation for the growth rate. Our analysis gives
Ndev(1/256) ≈ −7.9 and Ntr(256) ≈ 4.76, which are very close to the values that can
be read off the graph.

We see that all modes behave similarly at late times, independent of their wave-

number, as they should based on our late time analysis. Specifically, we can plot the

ratio of the time derivative of each mode to its magnitude, as in Fig. 2-1. We call

this the growth rate λ ≡
(
Ṙk
Rk

)
. We can see both phenomena. First, after N ≈ 6

the modes behave identically. Second, the behavior of the mode approaches that of

an exponential function (whose logarithm is a constant), but at a slower rate. In

this example time needs to go on for several hundreds of efolds for the growth rate

to set to a constant, which is calculated to be λ(t → ∞) = 8.6119 for µφ = 10 and

µψ = 1/10.

It is important to test our analytical approach to the late time behavior of the

growth rate of mode function. As seen in Fig. 2-1 once the mode functions evolve in

a k - independent way, our simple analytical estimate for their growth rate is accurate

to within a few percent, which gives us a very accurate expression for the growth rate

and leads to the terms evolving as u ∼ eλ(t)t, where the time-dependent growth rate

λ(t) is slowly changing.

As a test of our analysis, we can calculate the two important transition times

Ndev(1/256) = −7.9005 and Ntr(256) = 4.76457. We see that the calculated values
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Figure 2-2: Mode functions for different comoving wavenumbers as a function of
time in efolds. The model parameters are µψ = 1

2
and µφ = 1. The horizontal line

corresponds to the asymptotic value of the growth factor λ. We can see how the
mode functions reach their asymptotic behavior after 10 efolds. Our analysis gives
Ndev(1/256) ≈ −7.84 and Ntr(256) ≈ 5.4, which are very close to the values that can
be read off the graph.

agree very well with the behavior of the plotted modes.

Let us briefly examine the situation where µ̃2
ψ ≤ 2. In this case the mode equation

becomes k-independent and time independent at about the same time, that is a few

e-folds after the waterfall transition. We choose µψ = 1
2

and µφ = 1 and plot the

results in Fig. 2-2. It is clear that the modes become both k-independent and pure

exponential (having a constant growth rate) at about the same time (N ≈ 10). The

asymptotic growth rate in this case is λ(t→∞) = 0.3028.

Again we can calculate the two important transition times Ndev(1/256) = −7.8377

and Ntr(256) = 5.39554, which agree once more with the behavior of the plotted

modes.

2.3 Supernatural Inflation models

It is interesting to make contact between our abstract model and specific potentials

inspired form particle theory. In general inflation models require small parameters

in order to ensure slow roll inflation and produce the correct magnitude of density

perturbations. It was shown in [5, 6] that supersymmetric theories with weak scale
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Quadratic Approximation V0 m0 r ψc mψ

SUSY Model 1 M4 M2
√

2f
4 M

√
2M ′√
f

mψ

SUSY Model 2 M4 M2
√

2f
2

√
2M2

fλ
mψ

Table 2.1: Parameters of SUSY models and their counterparts in our quadratic ap-
proximation

supersymmetry breaking can give models where such small parameters emerge ”nat-

urally” as ratios of masses already in the theory. We will not go into the details of

such theories, but instead give the forms of the constructed potentials and use them

as an application of our formalism.

V = M4 cos2(φ/
√

2f) +
m2
ψ

2
ψ2 +

ψ4φ2 + φ4ψ2

8M ′2 (2.45)

for what we will call model 1 and will be the primary focus of this work and

V = M4 cos2(φ/
√

2f) +
m2
ψ

2
ψ2 + λ2ψ

2φ2

4
(2.46)

which we will call model 2.

The first model can be taken with M ′ at one of three regions: the Planck scale,

the GUT scale or an intermediate scale (∼ 1010 GeV ). At each scale the rest of the

parameters are adjusted accordingly to produce sufficient inflation and agree with

CMB data.

We will approximate the potential with a pure quadratic one with a time varying

waterfall mass, of the form

V (φ, ψ) = V0 −m2
0

[
1−

(
ψ

ψc

)r]
|φ|2 +m2

ψψ
2, (2.47)

where r = 4 for model 1 and r = 2 for model 2, as can be easily seen by the form

of the interaction terms in both cases. The correspondence between the exact SUSY

potential and our quadratic counterpart is shown in Table 2.1.

The parameters of the two models are restricted to fit CMB data, as shown in

Fig. 2-3.
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Figure 2-3: Parameter space for the two supernatural inflation models. The bottom
right corner shows the parameter for model 2, while the other three show parameters
for model 1, for different ranges of the mass scale M ′
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To lowest order, in this potential dominated model, the Hubble parameter is

constant and equal to

H =

√
8π

3

M2

Mp

=

√
8π

3

√
V0

Mp

. (2.48)

2.3.1 End of Inflation

In our simplified quadratic model inflation will never end. The waterfall field will

roll forever down its tachyonic potential. However, we shall not forget that this

is a mere Taylor expansion of more realistic potentials, which have a well defined

minimum. We will use the supersymmetric potentials of [5, 6] as a concrete example

to connect our purely quadratic potential to ones with more realistic shapes. In these

supersymmetric models the potential has a cosine-like form and the minimum occurs

at φ√
2f

= π
2
, where the inflaton will oscillate, terminating inflation and giving rise to

(p)reheating. By making contact between the parameters of our potential and the

physical parameters of the actual supersymmetric models, we can estimate the field

value at which inflation ends.

There are two strategies for defining φend, the field value at which inflation ends.

We can either pretend that the quadratic potential can be followed up to the end field

value of the corresponding SUSY potential, or we can choose to end our calculation

when the quadratic potential departs significantly from the actual SUSY potential

that we are trying to approximate.

In the first case the end field value is at φend = fπ/
√

2. To calculate the end

field value for the latter case we will note that the cosine potential is accurately

approximated by a quadratic as long as φ/f � 1. We will call this ratio ε and in this

case we will end our calculations when ε ceases being small. We can write these two

cases in a unified manner, as

φend = εf, (2.49)

where ε = π/
√

2 if we follow the quadratic potential all the way to the field value

corresponding to the minimum of the SUSY potential and ε < 1 if we stop our

calculation at the point where the quadratic potential deviates significantly from the
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supersymmetric one.

Using the values of the parameters taken from the supersymmetric models, we

can estimate the end field value to be

φend ∼ ε 1015H (2.50)

within one or two orders of magnitude for all cases of models considered in [5, 6].

We will be using field values of this order of magnitude in our numerical calcu-

lations, whether we are dealing with the supersymmetric potentials or not. We will

however examine the effects of changing the end value of the field and show that it is

minimal, easily understandable, and calculable.

2.4 Perturbation theory basics

2.4.1 Time delay formalism

The time delay formalism provides an intuitive and straightforward way to calculate

primordial perturbations. Its basic principle is that inflation ends at different places in

time at different times, due to quantum fluctuations. This leads some of the regions of

the universe to have inflated more than others, creating a difference in their densities.

The time-delay formalism was first introduced by Hawking [24] and by Guth and Pi

[26], and has recently been reviewed in Ref. [27].

We will briefly describe the method here for the case of a single real scalar field.

The universe is assumed to be described by a de-Sitter space-time, since the Hubble

parameter is taken to be a constant. The equation of motion for the scalar field φ(~x, t)

is

φ̈+ 3Hφ̇ = −∂V
∂φ

+
1

a(t)2
∇2φ, (2.51)

where the last term is suppressed by an exponentially growing quantity, so at late

times it becomes negligible. We will omit the last term from now on.

We call the homogenous (classical) solution φ0(t) and write the full solution, in-
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cluding a space dependent small perturbation δφ� φ0 as

φ(~x, t) = φ0(t) + δφ(~x, t). (2.52)

Plugging this into the equation of motion and working to linear order in δφ one can

show that the quantity δφ obeys the same differential equation as φ̇0. Furthermore

the presence of a damping term implies that any two solutions approach a time

independent ratio at large times. Thus, at large times we have (to first order in δτ)

δφ(~x, t)→ −δτ(~x)φ̇0(t)⇒ φ(~x, t)→ φ0(t− δτ(~x)). (2.53)

This is the formulation of the intuitive picture of the time delay method.

2.4.2 Randall-Soljacic-Guth approximation

The usual calculation of density perturbations in inflation considers small quantum

fluctuations around a classical field trajectory. In the case of hybrid inflation such

a classical trajectory does not exist, since classically the field would stay forever on

the top of the inverted potential. It is the quantum fluctuations that push the field

away from this point of unstable equilibrium. One way to overcome this difficulty

is to consider the RMS value of the field as the classical trajectory. This was done

for example in [5] and [6] and is a recurring approximation in the study of hybrid

inflation.

Using the Bunch-Davies vacuum in the definition of the RMS value of the waterfall

field φrms =
√
〈0|φ(x, t)φ∗(x, t)|0〉 it it straightforward to calculate it using the mode

expansion

φ2
rms(t) =

1

b3

∑
~k , ~k′

ei(
~k−~k′)·x

〈
0|(c~ku~k + d†

−~k
u∗−~k)(c

†
~k′
u∗~k′ + d−~k′u−~k′)|0

〉
=

1

b3

∑
~k

|uk(t)|2.

(2.54)
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The mean fluctuations are measured by

∆φ(~k) =

[(
k

2π

)3 ∫
d3xei

~k·~x 〈φ(x)φ∗(0)〉

]1/2

=

[(
k

2π

)3

|u~k|
2

]1/2

(2.55)

resulting in what will be called the RSG approximation for the time delay field

∆τRSG(~k) ≈ ∆φ(~k, t)

φ̇rms

=

(
kb

2π

)3/2

|u~k|
√∑

~k |u~k(t)|2∑
~k u̇~k(t)u~k(t)

. (2.56)

There is an important comment to be made about the quantum mechanical nature

of these density perturbations. In regular models of inflation quantum perturbations

are scaled by ~. We can think of them as modes with initial conditions that are of

the order of ~. The classical trajectory on the other hand does not have any quantum

mechanical origin, hence does not scale with ~. This means that in the limit of ~→ 0

the perturbations vanish, as one would expect will happen if one could ”switch off”

quantum mechanical effects.

In the case of hybrid inflation on the other hand, what we call the classical trajec-

tory (be it the RMS value or something else) is comprised of modes that originated

as quantum fluctuations, hence is scaled by ~ itself. This means that even in the limit

of ~ → 0, the density perturbations in hybrid inflation remain finite! By explicitly

restoring ~ in the formulas of this chapter, the reader can formally arrive to the same

conclusion.

Some plots of the time delay field calculated using the RSG approximation are

shown in Fig. 2-4. The reduced mass of the timer field was taken to be µψ = 1
20

while

we varied the waterfall field mass. We fixed the time at which inflation ended to be

15 e-folds after the waterfall transition.
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Figure 2-4: The time delay field calculated using the RSG formalism. The end time
was taken to be 15 e-folds after the waterfall transition and µψ = 1

20
for all curves,

while we varied µφ.

2.5 Calculation of the Time Delay Power Spec-

trum

The usual method to calculate the primordial perturbation spectrum would involve

either making some approximations (more or less similar to the RSG) or using a

Monte Carlo simulation. The former suffers from the lack of a classical trajectory that

invalidates the usual perturbation method, while the latter would be computationally

costly in three spatial dimensions. We will therefore implement an alternate method

that reduces the calculation of the spectrum of the time delay field to the evaluation

of a two dimensional integral and does not need a classical trajectory to do so.

As discussed at the end of Sec. 2.2.4, the behavior of the mode functions at

asymptotically late times (t→∞) is given by

u(~k, t→∞) ∼ eλ∞tu(~k) , (2.57)

where λ∞ is given by Eq. (2.44). If we define for all times

λ(t) ≡ φ̇rms(t)

φrms(t)
=

∑
~k
R(~k,t)Ṙ(~k,t)

2|k|∑
~k
|R(~k,t)|2

2|k|

, (2.58)
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then at late times λ(t) → λ∞. Since λ(t) changes very slowly, we can take it as a

constant around the time of interest.

To discuss fluctuations in the time at which inflation ends, we begin by defining

t0 as the time when the rms field reaches the value φend, which we have chosen to

define the nominal end of inflation:

φ2
rms(t0) = φ2

end . (2.59)

Since at late times all modes, to a good approximation, grow at the same exponential

rate λ(t), we can express the field φ(~x, t) at time t = t0 + δt in terms of the field

φ(~x, t0) by

|φ(~x, t)|2 = |φ(~x, t0)|2e2
R t0+δt
t0

λ(t′)dt′ = |φ(~x, t0)|2e2λ(t0)δt. (2.60)

We will drop the argument of λ(t0) from now on. If t is chosen to be the time tend(~x)

at which inflation ends at each point in space, then φ
(
~x, tend(~x)

)
= φend = φrms(t0),

and the above equation becomes

φ2
rms(t0) = |φ(~x, t0)|2e2λδt , (2.61)

which can be solved for the time delay field δt(~x) = tend(~x)− t0:

δt(~x) =
−1

2λ
log

(
|φ(~x, t0)|2

φ2
rms(t0)

)
. (2.62)

Rescaling by the rms field

φ̃(~x, t) ≡ φ(~x, t)

φrms(t)
, (2.63)

we can write

δt(~x) =
−1

2λ
log |φ̃(~x, t0)|2 . (2.64)

Using this expression, we can write the two-point function of the time delay field as

〈
δt(~x)δt(~0)

〉
=

1

4λ2

〈
log |φ̃(~x, t0)|2 log |φ̃(~0, t0)|2

〉
, (2.65)
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which can be evaluated, since the probability distributions are known. To continue,

we can decompose the complex scalar field in terms of the real fields Xi:

φ̃(~x, t) = X1 + iX2 , φ̃(~0, t) = X3 + iX4 . (2.66)

The average value of a function F of a random variableX with probability distribution

function p(X) is given by

〈F [X]〉 =

∫
dXp(X)F [X] . (2.67)

Since this is a free field theory, we can take the four random variables Xi(~x) to follow

a joint Gaussian distribution with

p(X) =
1

(2π)2
√

det(Σ)
exp

(
−1

2
XTΣ−1X

)
, Σij = 〈XiXj〉 . (2.68)

A function of the X ′is then has the expected value

〈F [X]〉 =

∫ 4∏
i=1

dXi
1

(2π)2
√

det(Σ)
exp

(
−1

2
XTΣ−1X

)
F [X] . (2.69)

The new fields Xi can be written in terms of the original complex field φ as

X1 =
1

2

[
φ̃(~x) + φ̃∗(~x)

]
, X2 =

1

2i

[
φ̃(~x)− φ̃∗(~x)

]
,

X3 =
1

2

[
φ̃(~0) + φ̃∗(~0)

]
, X4 =

1

2i

[
φ̃(~0)− φ̃∗(~0)

]
. (2.70)

The components of the variance matrix Σ can be easily calculated using the commu-

tation relations for the creation and annihilation operators in φ(~x, t), from Eq. (2.20).
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Due to the high degree of symmetry the matrix itself has a very simple structure:

Σ =


1
2

0 ∆ 0

0 1
2

0 ∆

∆ 0 1
2

0

0 ∆ 0 1
2

 , (2.71)

where

∆(~x, t0) = 〈X1X3〉 = 〈X2X4〉 =
1

2

〈
φ∗(~x, t0)φ(~0, t0)

〉
=

1

2b3

∑
~k

|ũ(~k, t0)|2ei~k·~x ,

(2.72)

where

ũ(~k, t) =
u(~k, t)

φrms(t)
. (2.73)

Since ũ(~k, t) actually depends only on the magnitude of the wavenumber, because of

the isotropy of the problem, we can do the angular calculations explicitly in ∆ and

leave only the radial integral to be calculated numerically. Then

〈
δt(~x)δt(~0)

〉
=

1

4λ2

1

(2π)2[1
4
−∆2]

∫
dX1dX2dX3dX4 log(X2

1 +X2
2 ) log(X2

3 +X2
4 )

× exp

{
− 1

4[1
4
−∆2]

[
X2

1 +X2
2 +X2

3 +X2
4 − 4(X1X3 +X2X4)∆

]}
. (2.74)

Changing to polar coordinates

X1 = r1 cos θ1 , X2 = r1 sin θ1 ,

X3 = r2 cos θ2 , X4 = r2 sin θ2 , (2.75)

the integral becomes

〈
δt(~x)δt(~0)

〉
=

2

πλ2(1− 4∆2)

∫ 2π

0

dθ

∫ ∞
0

r1dr1

∫ ∞
0

r2dr2 log(r1) log(r2)

× exp

[
−r

2
1 + r2

2 − 4∆r1r2 cos θ

1− 4∆2

]
, (2.76)
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where we redefined the angular variables as θ = θ1−θ2 and θ̃ = θ1 +θ2 and integrated

over θ̃. Changing also the radial variables

r1 = r cosφ , r2 = r sinφ , (2.77)

〈
δt(~x)δt(~0)

〉
=

1

πλ2(1− 4∆2)

∫ 2π

0

dθ

∫ π
2

0

dφ sin 2φ

∫ ∞
0

dr r3 log(r cosφ) log(r sinφ)

× exp

[
−(1− 2∆ sin 2φ cos θ) r2

1− 4∆2

]
. (2.78)

The radial integration can be performed analytically

∫ ∞
0

dr r3 log(ar) log(br)e−cr
2

= (2.79)

1

8c2

[
(γ − 2)γ +

π2

6
− 2 log(ab)(γ − 1 + log(c)) + 4 log(a) log(b) + log(c)(2γ − 2 + log(c))

]
,

where a = cosφ, b = sinφ, c = 1
(1−4∆2)

(1−2∆ sin 2φ cos θ) and γ is the Euler constant

γ ≈ 0.57721.

Finally, the spectrum of the time delay field is defined by

δτ(~k) =

[(
k

2π

)3 ∫
d3x ei

~k·~x
〈
δt(~x)δt(~0)

〉]1/2

. (2.80)

Calculation in the two limiting cases x → 0 and x → ∞ (or x → b in our case)

can be done analytically.

1. For x → 0 several terms in the integral diverge, since ∆ → 1
2
. In this case we

have only two degrees of freedom instead of four, since we consider a complex

scalar field at one point in space. The integral becomes

〈
δt(~0)δt(~0)

〉
=

1

4λ2

∫
dX1dX2

π
e−(X2

1+X2
2 ) log2(X2

1 +X2
2 ) =

=
1

4πλ2

∫ 2π

0

dθ

∫ ∞
0

dr re−r
2

log2(r2) =
1

4λ2

(
γ2 +

π2

6

)
. (2.81)
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2. The x→∞ limit is much easier to handle. We recognize that ∆(~x) is simply the

Fourier transform of |uk|2. Since uk is smooth, ∆(x → ∞) → 0, and therefore

δt(∞) is uncorrelated with δt(~0). Eq. (2.74) can be seen to factorize, giving〈
δt(∞)δt(~0)

〉
=
〈
δt(~0)

〉2

, where

〈
δt(~0)

〉
=
−1

2πλ

∫
dX1dX2 log(X2

1 +X2
2 ) exp

[
−(X2

1 +X2
2 )
]

= − 1

πλ

∫ 2π

0

dθ

∫ ∞
0

r dr log re−r
2

=
γ

2λ
. (2.82)

Combining these results, we see that the probability distribution for δt(~0) has a

standard deviation σ =

√〈
δt(~0)2

〉
−
〈
δt(~0)

〉2

= π/(2
√

6λ). While the first limit

above is needed for programming the numerical calculations, since the integral of

Eq. (2.74) cannot be numerically evaluated at ~x = ~0, the second limit can be used as

a numerical check.

The same method can be applied to the exact calculation of any higher order cor-

relation functions. Especially the non-Gaussian part of the power spectrum fNL can

be read off from the momentum space Fourier transform of the three-point correla-

tion function in position space 〈δt(~x1)δt(~x2)δt(x3)〉 = 〈δt(~x1)δt(~x2)δt(0)〉. Taking the

Fourier transform we can compute
〈
δt(~k1)δt(~k2)δt(k3)

〉
, from which we can extract

the properties of the bispectrum.

The form of the three point function in position space is

〈δt(~x1)δt(~x2)δt(0)〉 =
−(2π)2

λ3

∫ 2π

0

dγ1dγ2

∫ π

0

sin θdθ

∫ 2π

0

dφF (γ1, γ2, θ, φ) , (2.83)

where F (γ1, γ2, θ, φ) is a function of four angular variables. Calculations regarding

the form of the bispectrum are given in the next chapter of the present thesis.

2.6 Numerical Results and Discussion

Let us begin by plotting one example of the free field theory (FFT) calculation of the

time delay power spectrum, from Eqs. (2.78) and (2.80), along with the corresponding
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Figure 2-5: Comparison between the RSG and FFT methods. The end time was
taken to be 15 e-folds after the waterfall transition and µφ = 20 and µψ = 1/20. We
can see that the spectrum of the time delay field calculated in the free field theory
agrees very well with the rescaled version of the RSG approximation AδτRSG (Bk).

curve derived using the RSG approximation, Eq. (2.56). We use the sample param-

eters µψ = 1
20

and µφ = 20. Both calculations give a spike, but a spike of different

width, different height and different position. Let us rescale the RSG result as follows

δτRSG,rescaled(k) = AδτRSG (Bk) , (2.84)

where A and B are O(1) constants calculated by requiring the peaks of the FFT and

RSG distributions to match in position and amplitude. The results are plotted in

Fig. 2-5. We can see that the FFT and RSG curves do not seem similar. However the

rescaled RSG curve seems to follow the FFT curve very well, as was first noticed by

Burgess [13]. Based on our simulations the curves generally tend to agree better for

low wavenumbers, up to and including the peak, and start deviating after the peak.

The rescaling parameters vary with the field masses chosen and for the particular

choice of Fig. 2-5 were calculated to be A = 0.6152 and B = 3.25 . We do not yet fully

understand this behavior, but we are studying it both analytically and numerically

and will present our findings in a subsequent paper.
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We will now do an extensive scan of parameter space {µφ, µψ} in order to have

reliable estimates on the magnitude and wavelength of the perturbations. This is

important both to make sure that CMB constraints can be satisfied as well as to

study the formation of primordial black holes that might lead to the supermassive

black holes found in the centers of galaxies. Since the original motivation for this work

has been the supersymmetric models first presented in [5] and [6], we will present the

results for the perturbations in these models. However, our quadratic approximation

holds for more general hybrid inflation models. Hence it is important to make a model-

independent parameter sweep. This will provide a more general set of predictions of

this class of models. We will give both exact power spectra, as well as try to isolate

the dominant features and provide a qualitative understanding of their dependence

on the model’s parameters.

2.6.1 Model-Independent Parameter Sweep

There are several model-dependent parameters that give us some control over the

properties of the resulting power spectrum. Initially we will fix the value of the field

at the end of inflation to be |φend| = 1014 in units of the Hubble parameter. With

this assumption (which will be relaxed later), we can calculate the properties of the

power spectrum as a function of the masses. Initially we fix the reduced timer field

mass to be µψ = 1
20

and vary the mass of the waterfall field. The results are shown

in Fig. 2-6. We have plotted (clockwise from the top left)

1. The end time of inflation, defined as the time when the RMS value of the field

reaches the end value.

2. The maximum amplitude of the spectrum of the time delay.

3. The comoving wavenumber at which the aforementioned maximum value occurs.

Thinking about black holes, this is the scale at which black holes will be most

likely produced.

4. The width of the time delay distribution in the logarithmic scale, taken as
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Figure 2-6: Parameter sweep for constant timer field mass µψ = 1/20 and constant
end field value φend = 1014. Data points are plotted along with a least square power
law fit. The same trend is evident in all curves. The time delay spectrum grows
in amplitude and width and is shifted towards larger momentum values as the mass
product decreases. Also inflation takes longer to end for low mass product.
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Figure 2-7: Time delay spectra for different values of the mass product, keeping the
timer field mass fixed at µψ = 1

20

∆k = log10

(
k+1/2

k−1/2

)
where k±1/2 are the wavenumbers at which the distribution

reaches one half of its maximum value.

We see that all the plotted quantities show a decreasing behavior as one increases the

mass product. In order to quantify this statement, we fitted each set of data points

with a power law curve of the form y = axb+c. The scaling exponent b for the various

quantities was btend
≈ −0.88, bδτmax ≈ −0.34, bkmax ≈ −3.219, b∆k ≈ −1.17. As a

comparison, the corresponding best fit exponent of the growth rate λ as a function

of the mass product is bλ ≈ −0.85.

In order to get a better understanding of what these parameters actually mean,

we plot three characteristic spectra for three values of the mass ratio in Fig. 2-7.

We also rescale the spectra by the growth factor λ. This probes the actual form of

the two point correlation function, as seen in momentum space. That is, it shows

the evaluation of the spectrum in Eq. (2.80), while ignoring the factor of 1/λ2 in the

evaluation of
〈
δt(~x)δt(~0)

〉
from Eq. (2.78).

Before continuing to a more thorough examination of parameter space, let us

understand how changing the field value at the end of inflation will change our results.

Fixing the product of the reduced masses equal to 2 (µψ = 1
20

and µφ = 40), we let

the field value φend vary by four orders of magnitude. The results are shown in

Fig. 2-8. It is evident that the curves for δτ(k) are of identical form and slightly
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Figure 2-8: Perturbation spectrum for varying field value at tend for constant masses.
The time delay curves are identical in shape and differ only in amplitude. This
variation is entirely due to the different value of the time dependent growth factor λ,
which differs for each case because inflation simply takes longer to end for larger end
field values.
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different magnitude. The last graph shows the product λ · δτ(k) for the two curves

at φend = 1012 and φend = 1016, plotted respectively as a green thick and a black thin

line. It is seen, that once rescaled the two curves fall exactly on top of each other,

meaning that the actual integral that gives us the two point function in position space

is time independent, once we enter the region where all modes behave identically.

Furthermore if one takes the product of the maximum value of the time delay times

the growth parameter (δτmax·λ) for the different values of φend the result is constant for

the range explored here to better than 1 part in 106, meaning that they are identical

within the margins of numerical error. Thus, changing the value of the field at which

inflation ends can affect the resulting perturbation spectrum only by changing the

growth parameter λ, for which we have a very accurate analytical estimate in the

form of Eq. (2.43). From this point onward, we will keep the end field value fixed at

φend = 1014 and keep in mind that the fluctuation magnitude can change by 10% or

so if this field value changes.

Once we fix the field magnitude at the end of inflation we have two more param-

eters to vary, namely the two masses: the actual timer field mass and the asymptotic

tachyonic waterfall field mass. The two masses can be varied either independently on

a two dimensional plane or along some line on the plane, in a specific one-dimensional

way. Fixing one of the two masses is such a way of dimensional reduction of the avail-

able parameter space, as we did before. Another way to eliminate one of the variables

is to fix the mass product and change the mass ratio. This will prove and quantify

the statement, that (at least for heavy waterfall and light timer fields) the result is

controlled primarily by the mass product.

We fix the mass product at µφµψ = 2. The results are shown in Fig. 2-9. The

curves are of identical form and everything is again controlled only by λ. On the top

left figure we plotted λ δτ for the two extreme values and the curves fall identically on

top of each other (color-coding is as before). Furthermore if we calculate the product

λ ·δτmax for different values of the mass ratio we get a constant result 0.1225±2 ·10−5

where the discrepancy can be attributed to our finite numerical accuracy. The second
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feature of this calculation is the extremely flat part of the end-time, growth factor

and maximum time delay curves for large values of the mass ratio and the abrupt

change as the mass ratio gets smaller. For the value of the mass product that we have

chosen, this transition happens as the timer field mass approaches unity. Let us look

at the expansion of the effective waterfall field mass

µ2
φ,eff = µ2

φ

(
1− e−µ̃2

ψN
)

= µ2
φµ̃

2
ψN(1− µ̃2

ψN + ...) . (2.85)

When the second term in the expansion cannot be neglected, the dynamics of the

problem stops being defined by the mass product alone. This explains the abrupt

change we see as we lower the mass ratio. By doing the same simulation for different

values of the fixed mass product we get similar results.

We can now do the opposite, that is fix the ratio and change the mass product.

The results are shown as the open circles in the top two diagrams of Fig. 2-10, and

in the lower diagrams of the figure. There are two main comments to be made. First

of all, in the case of a fixed ratio, the growth rate λ does not solely determine the

results. Rescaling the spectrum by λ not only fails to give a constant peak amplitude

(Fig. 2-10, lower left), but the result are spectra of different shapes (Fig. 2-10, lower

right). On the other hand, the data points taken with a constant mass ratio and a

constant timer field mass (µψ = 1
20

), as shown by the +’s on the upper diagrams of

Fig. 2-10, fall precisely on the same curve! This clearly demonstrates that the only

relevant parameter, at least for a light timer field, is the mass product!

We see that contrary to the fixed product case, the results for fixed mass ratio do

not depend solely on λ. We have established that the the most important factor in

determining the time delay field is the product of the waterfall and timer field masses,

especially for a light timer field.

2.6.2 Supernatural Inflation

We now turn our attention to the supernatural inflation models that were studied in

[5] and [6]. We will examine each of the four cases separately.
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Figure 2-9: Fixing the mass product at 2 and varying the mass ratio. There is
significant variation only for low mass ratio, when the light timer field approximation
loses its validity. Furthermore the curves of maximum time delay amplitude and
1/λ follow each other exactly up to our numerical accuracy. Finally by rescaling the
spectra by the growth factor λ they become identical for all values of the mass ratio.

72



Figure 2-10: Fixing the mass ratio at 900 (open circles) or the timer mass at µψ = 1/20
(+’s). The time delay spectra for different mass products show no common shape
characteristics and remain different even when rescaled by λ. Furthermore the end
time and maximum perturbation amplitude curves are identical for constant mass
ratio and constant timer field mass, proving that indeed the mass product is the
dominant parameter.
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Figure 2-11: First Supernatural inflation model with M ′ at the Planck scale. The
spectra corresponding to the maximum and minimum mass product are shown. We
observe good agreement with the results of the model independent parameter sweep
of the previous section, because the timer field mass is much smaller than the Hubble
scale.

Let us start with the first SUSY model (described by Eq. (2.45)) with the interaction-

suppressing mass scale M ′ set at the Planck scale. The mass of the timer field was

calculated to be 50 to 100 times less than the Hubble scale, while the asymptotic

waterfall field mass was more than 20 times the Hubble scale. This means that the

model is well into the region where the two masses are separated by a few orders of

magnitude. According to the analysis of the previous section, we expect the mass

product to be the dominant factor in the generation of density perturbations. In the

left part of Fig. 2-11 we see the mass product for this model. We can see that the

mass product varies less than 15%. It is hence enough to calculate the time delay

spectra for the two extreme values and say that all other values of the mass product

will fall between the two, as shown in 2-11.

Putting the mass scale M ′ of the first SUSY model at the GUT scale changes the

masses as well as the Hubble scale by one order of magnitude. However the reduced

masses and their product have very similar values as before. This is shown in Fig.

2-12

It is worth noting that these two SUSY models contain a very light timer field,

hence the results should be the same as our previous parameter space sweep with a
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Figure 2-12: First Supernatural inflation model with M ′ at the GUT scale. The
spectra corresponding to the maximum and minimum mass product are shown. There
is again good agreement with the results of the previous section.

constant light timer field. If one compares Fig. 2-11 and Fig. 2-12 with Fig. 2-6,

we indeed see excellent agreement for the amplitude and width of the time delay

spectrum.

When setting the mass scale M ′ at some lower scale of 1011 GeV, the reduced timer

and waterfall masses become O(1). This means that in this case the parameter λ satu-

rates faster and the perturbation spectrum reaches its asymptotic limit earlier and be-

comes time-independent from that point onward. Furthermore the actual value of the

growth parameter λ is smaller, leading to an enhanced perturbation amplitude, the

largest among the models studied here. The mass product changes by a factor of 2.5

as seen in Fig. 2-13. We choose five points in the allowed interval of mass values and

calculate the corresponding curves. The specific values of the mass parameter M are

M = 1.06 ·1010 GeV, 2.4 ·1010 GeV, 5.42 ·1010 GeV, 1.23 ·1011 GeV, 2.77 ·1011 GeV.

The corresponding pairs of reduced waterfall and timer masses are {µφ, 1/µψ} =

{3.19, 4.48}, {2.58, 2.97}, {2.22, 2.05}, {1.99, 1.47}, {1.83, 1.09}. The points on the

mass product graph are color coded to match the corresponding time delay curve

in Fig. 2-13. We can see that since the mass products have a larger variation, the

resulting spectra have quite different time delay spectra. Also, since the timer is not

much lighter than the Hubble scale, the curves do not scale according to our previous

analysis.
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Figure 2-13: First Supernatural inflation model with M ′ at the intermediate scale.
Five representative pairs of masses were chosen and the corresponding time delay
curves are shown. This model can give maximum time delay of more than 0.1.

Figure 2-14: Second Supernatural inflation model. Three representative pairs of
masses were chosen and the corresponding time delay curves are shown.

We finally consider SUSY model 2, Eq. (2.46), with the ψ2φ2 interaction term.

Again the reduced masses are O(1), so we expect a small λ leading to a large ampli-

tude perturbation spectrum. The mass product varies around 1 by less than ±15%.

We choose three values of the mass product (the two extrema and an intermedi-

ate one) and plot the resulting curves in Fig. 2-14. The specific values of the

mass parameter M are M = 1.080 · 1010 GeV, 1.006 · 1011 GeV, 9.376 · 1011 GeV

and the corresponding pairs of reduced waterfall and timer masses are {µφ, 1/µψ} =

{2.697, 2.367}, {2.330, 2.262}, {2.007, 2.170}.
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2.7 Conclusions

We presented a novel method for calculating the power spectrum of density fluctua-

tions in hybrid inflation, one that does not suffer from the non-existence of a classical

field trajectory. We used this method to numerically calculate the power spectrum

for a wide range of parameters and concluded that in the case of a light timer field,

all characteristics of the power spectrum are controlled by the product of the masses

of the two fields. In particular the amplitude was fitted to a power law and found to

behave as δτmax ∼ 0.03(µφµψ)−0.34 and the width in log-space as ∆k ∼ 1.7(µφµψ)−1.17.

Furthermore we made connection to SUSY inspired models of hybrid inflation and

gave numerical results to their power spectra as well. For the SUSY models with

a light timer field the numerical results were in excellent agreement with our fitted

parameters.

Work is currently under way in refining and extending the formalism. Under-

standing the rescaling properties between the RSG approximation and the exact re-

sult could provide further insight into the physics of the problem and provide quasi-

analytical approximation of well controlled accuracy. We will also apply our results

to estimating the number and size of primordial black holes and try to make con-

tact with astrophysical observations regarding supermassive black holes in galactic

centers. Finally we are examining the predictions of our model for the non-Gaussian

part of the perturbation spectrum.
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2.9 Appendix

2.9.1 Zero mode at early times

The ~k = 0 mode is not captured by the procedure described in the main text. If

we consider this mode alone for asymptotically early times, so that we keep only the

exponential in the mass term

ü+ 3u̇ = −µ2
φe
−µ̃2

ψNu . (2.86)

This can again be solved in terms of Bessel functions by defining a new variable and

a new function as

z̃ = αe−µ̃
2
ψN/2 , u(0, N) = z̃βZ̃(z̃) . (2.87)

The mode function becomes

z̃2d
2Z̃

dz̃2
+ z̃

dZ̃

dz̃

(
1 + 2β − 6

µ̃2
ψ

)
+ Z̃

(
β2 − 6β

µ̃2
ψ

+
µ2
φz̃

24

α2µ̃4
ψ

)
= 0 . (2.88)

The standard form of the differential equation that gives Bessel functions is

z2d
2Zν
dz2

+ z
dZν
dz

+ (z2 − ν2)Zν = 0 . (2.89)

By appropriately choosing the constants α,β and ν the two equations can be made

identical. The choices are

β =
3

µ̃2
ψ

, α =
2µφ
µ̃2
ψ

, ν =
3

µ̃2
ψ

. (2.90)
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Finally introducing an arbitrary constant of normalization N0, the solution for the

zero mode at asymptotically early times becomes

u(0, N) = N0e
−3N/2H(1)

ν (z̃) , z̃ =
2µφ
µ̃2
ψ

e−µ̃
2
ψN/2 . (2.91)

The normalization factor N0 can be defined using the Wronskian at early times. The

Wronskian at all times is defined as

W (~k, t) = u(~k, t)
∂u∗(−~k, t)

∂t
− ∂u(~k, t)

∂t
u∗(−~k, t) . (2.92)

Taking the time derivative and using the equation of motion

∂W (~k, t)

∂t
= u(~k, t)

∂2u∗(−~k, t)
∂t2

− ∂2u(~k, t)

∂t2
u∗(−~k, t) = −3HW (~k, t)

⇒ W (~k, t) = f(~k)e−3Ht . (2.93)

Since f(~k) is by definition independent of time, we will compute it at approximately

early times, where we know the solution in analytic form and the solution is

W (~k 6= 0) = ie−3N , W (~k = 0) =
2irµ2

ψH

pi
N2

0 e
−3N . (2.94)

Requiring that the Wronskian be a continuous function of ~k at all times we can extract

the value of N0.

N0 =

√
3π

2rµ2
ψH

. (2.95)
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2.9.2 Initial Conditions

We can rewrite the mode equation as a system of three coupled first order differential

equations.

dθ

dN
= − k̃e

−3N

R2
, (2.96)

dR

dN
= Ṙ , (2.97)

dṘ

dN
=

k̃2e−6N

R3
− 3Ṙ− e−2N k̃2R + µ2

φ(1− e−µ̃2
ψN)R . (2.98)

In this notation, Ṙ is one of the three independent functions.

This is not a system of three coupled ODE’s in the strict sense. We can first solve

the two equations dR
dN

and dṘ
dN

as they do not contain any terms involving θ or its

derivative. We can then integrate dθ
dN

forward in time, using the calculated values

of R(N). Furthermore it is clear that the equations needed to calculate the spectral

quantities of the time delay field only depend on the magnitude of the wavenumber,

as was expected due to the isotropy of the problem, so we need only solve the mode

equations for one positive semi-axis.

We know from the analytical solution at early times that

R(N → −∞)→ e−N . (2.99)

Since we have to start the numerical integration at some finite negative time without

losing much in terms of accuracy, we refine the initial condition by including extra

terms in the above expression. We will then start numerically integrating when

our expansion violates the desired accuracy bound. We define the correction to the

asymptotic behavior as δR(N) such that

R(N) ≡ e−N + δR(N) . (2.100)
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We will plug this into Eq. (2.34) and expand δR in powers of µ2
φ and eN .

δR =

(
eN

2k̃2
− e3N

8k̃4
+

e5N

16k̃6

)
+ µ2

φ

(
eN

4k̃2

[
1− e−µ̃2

ψN
]

+
e3N

16k̃4

[
4 + e−µ̃

2
ψN(µ̃4

ψ − 6µ̃2
ψ − 4)

]
−µ2

φ

e5N

64k̃6

[
86 + e−µ̃

2
ψN(µ̃8

ψ − 14µ̃6
ψ + 53µ̃4

ψ − 25µ̃2
ψ − 86)

])
+5µ4

φ

(
e3N

32k̃4

[
1− e−µ̃2

ψN
]2

− e5N

64k̃6

[
29− e−µ̃2

ψN(9µ̃4
ψ − 65µ̃ψ2 + 58)

+e−2µ̃2
ψN(14µ̃4

ψ − 65µ̃ψ2 + 29)
])

+ 15µ6
φ

e5N

128k̃6

[
1− e−µ̃2

ψN
]3

+O
(
e7N , µ8

φ

)
. (2.101)

We can now use the initial value expansion for R(N) to calculate the corresponding

expansion for the phase θ(N) through Eq. (2.32).

The asymptotic behavior, given by the standard definition of the Hankel functions

is

θ(N → −∞) = k̃e−N − π ⇔ θ(N → −∞) + π = k̃e−N . (2.102)

We define θ̃ ≡ θ(N) + π ⇒ ˙̃θ = θ̇, in order to keep track of the constant phase factor

without carrying it through the perturbation expansion.

Defining the corrections to the early time behavior of the phase as

θ̃ = e−N [k̃ + δθ(N)] , (2.103)

we can construct a similar expansion as the one for δR. Since our formalism does not

require knowledge of θ(N) we will not report the full expansion. It can be calculated

in a straightforward way following the definition of Eq. (2.103), the evolution of Eq.

(2.32) and the expansion for δR given in Eq. (2.101).
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Figure 2-15: Mode functions for µφ = 22 and m̃uψ = 1/18. The left column is
calculated for k̃ = 1/256 and the right for k̃ = 256
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Chapter 3

Hybrid Inflation with N Waterfall

Fields: Density Perturbations and

Constraints

Hybrid inflation models are especially interesting as they lead to a spike in the density

power spectrum on small scales, compared to the CMB. They also satisfy current

bounds on tensor modes. Here we study hybrid inflation with N waterfall fields

sharing a global SO(N ) symmetry. The inclusion of many waterfall fields has the

obvious advantage of avoiding topologically stable defects for N > 3. We find that it

also has another advantage: it is easier to engineer models that can simultaneously

(i) be compatible with constraints on the primordial spectral index, which tends to

otherwise disfavor hybrid models, and (ii) produce a spike on astrophysically large

length scales. The latter may have significant consequences, possibly seeding black

hole formation. We calculate correlation functions of the time-delay, a measure of

density perturbations, produced by the waterfall fields, as a convergent power series

in both 1/N and the field’s correlation function ∆(x). We show that for large N ,

the two-point function is 〈δt(x) δt(0)〉 ∝ ∆2(|x|)/N and the three-point function is

〈δt(x) δt(y) δt(0)〉 ∝ ∆(|x − y|)∆(|x|)∆(|y|)/N 2. In accordance with the central

limit theorem, the density perturbations on the scale of the spike are approximately

Gaussian for large N and non-Gaussian for small N .
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3.1 Introduction

Inflation, a phase of accelerated expansion in the very early universe thought to be

driven by one or several scalar fields, is our paradigm of early universe cosmology

[1, 2, 3, 4]. It naturally explains the large scale homogeneity, isotropy, and flatness

of the universe. Moreover, its basic predictions of approximate scale invariance and

small non-Gaussianity in the ∼ 10−5 level departures from homogeneity and isotropy

are in excellent agreement with recent CMB data [5, 6] and large scale structure.

While the basic paradigm of inflation is in excellent shape, no single model stands

clearly preferred. Instead the literature abounds with various models motivated by

different considerations, such as string moduli, supergravity, branes, ghosts, Standard

Model, etc [7, 8, 9, 10, 11, 12, 13, 14]. While the incoming data is at such an impressive

level that it can discriminate between various models and rule out many, such as

models that overpredict non-Gaussianity, it is not clear if the data will ever reveal

one model alone. An important way to make progress is to disfavor models based on

theoretical grounds (such as issues of unitarity violation, acausality, etc) and to find

a model that is able to account for phenomena in the universe lacking an alternate

explanation. It is conceivable that some version of the so-called “hybrid inflation”

model may account for astrophysical phenomena, for reasons we shall come to.

The hybrid inflation model, originally proposed by Linde [15], requires at least two

fields. One of the fields is light and another of the fields is heavy (in Hubble units).

The light field, called the “timer”, is at early times slowly rolling down a potential

hill and generates the almost scale invariant spectrum of fluctuations observed in the

CMB and in large scale structure. The heavy field, called the “waterfall” field, has

an effective mass that is time-dependent and controlled by the value of the timer

field. The waterfall field is originally trapped at a minimum of its potential, but as

its effective mass-squared becomes negative, a tachyonic instability follows, leading to

the end of inflation; an illustration is given in Figure 3-1. The name “hybrid inflation”

comes from the fact that this model is a sort of hybrid between a chaotic inflation

model and a symmetry breaking inflation model.
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As originally discussed in Refs. [16, 17], one of the most fascinating features of

hybrid models is that the tachyonic behavior of the waterfall field leads to a sharp

“spike” in the density power spectrum. This could seed primordial black holes [18,

19, 20, 21, 22]. For generic parameters, the length scale associated with this spike

is typically very small. However, if one could find a parameter regime where the

waterfall phase were to be prolonged, lasting for many e-foldings, say Nw ∼ 30− 40,

then this would lead to a spike in the density perturbations on astrophysically large

scales (but smaller than CMB scales). This may help to account for phenomena

such as supermassive black holes or dark matter, etc. Of course the details of all

this requires a very careful examination of the spectrum of density perturbations,

including observational constraints.

Ordinarily the spectrum of density perturbations in a given model of inflation

is obtained by decomposing the inflaton field into a homogeneous part plus a small

inhomogeneous perturbation. However, for the waterfall fields of hybrid inflation,

this approach fails since classically the waterfall field would stay forever at the top

of a ridge in its potential. It is the quantum perturbations themselves that lead to a

non-trivial evolution of the waterfall field, and therefore the quantum perturbations

cannot be treated as small. Several approximations have been used to deal with this

problem [16, 17, 25, 26, 27, 28, 29, 30, 31, 23, 24]. Here we follow the approach

presented by some of us recently in Ref. [32], where a free field time-delay method

was used, providing accurate numerical results.

In this chapter, we generalize the method of Ref. [32] to a model with N waterfall

fields sharing a global SO(N ) symmetry. A model of many fields may be natural in

various microscopic constructions, such as grand unified models, string models, etc.

But apart from generalizing Ref. [32] to N fields, we also go much further in our

analysis: we derive explicit analytical results for several correlation functions of the

so-called time-delay. We formulate a convergent series expansion in powers of 1/N

and the field’s correlation function ∆(x). We find all terms in the series to obtain the

two-point correlation function of the time-delay for anyN . We also obtain the leading

order behavior at large N for the three-point function time-delay, which provides a
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measure of non-Gaussianity. We find that the non-Gaussianity is appreciable for small

N and suppressed for large N .

We also analyze in detail constraints on hybrid inflation models. We comment

on how multiple fields avoids topological defects, which is a serious problem for low

N models. However, the most severe constraint on hybrid models comes from the

requirement to obtain the observed spectral index ns. We show that at large N ,

it is easier to engineer models that can fit the observed ns, while also allowing for a

prolonged waterfall phase. This means that largeN models provide the most plausible

way for the spike to appear on astrophysically large scales and be compatible with

other constraints.

The organization of this chapter is as follows: In Section 3.2 we present our hybrid

inflation model and discuss our approximations. In Section 3.3 we present the time-

delay formalism, adapting the method of Ref. [32] to N fields. In section 3.4 we derive

a series expansion for the two-point function, we derive the leading order behavior of

the three-point function, and we derive results in k-space. In Section 3.5 we present

constraints on hybrid models, emphasizing the role that N plays. In Section 3.6 we

discuss and conclude. Finally, in the Appendices we present further analytical results.

3.2 N Field Model

The model consists of two types of fields: The timer field ψ that drives the first

slow-roll inflation phase, and the waterfall field φ that becomes tachyonic during the

second phase causing inflation to end. In many hybrid models, φ is comprised of two

components, a complex field, but here we allow for N real components φi. We assume

the components share a global SO(N ) symmetry, and so it is convenient to organize

them into a vector

~φ = {φ1, φ2, . . . , φN}. (3.1)

For the special case N = 2, this can be organized into a complex field by writing

φcomplex = (φ1 + i φ2)/
√

2.

The dynamics is governed by the standard two derivative action for the scalar
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fields ψ, ~φ minimally coupled to gravity as follows (signature +−−−)

S =

∫
d4x
√
−g

[
1

16πG
R +

1

2
gµν∂µψ∂νψ

+
1

2
gµν∂µ~φ · ∂ν~φ− V (ψ, φ)

]
. (3.2)

The potential V is given by a sum of terms: V0 providing false vacuum energy, Vψ(ψ)

governing the timer field, Vφ(φ) governing the waterfall field, and Vint(ψ, φ) governing

their mutual interaction, i.e.,

V (ψ, φ) = V0 + Vψ(ψ) + Vφ(φ) + Vint(ψ, φ). (3.3)

During inflation we assume that the constant V0 dominates all other terms.

The timer field potential Vψ and the waterfall field potential Vφ can in general be

complicated. In general, they are allowed to be non-polynomial functions as part of

some low energy effective field theory, possibly from supergravity or other microscopic

theories. For our purposes, it is enough to assume an extremum at ψ = φ = 0 and

expand the potentials around this extremum as follows:

Vψ(ψ) =
1

2
m2
ψψ

2 + . . . (3.4)

Vφ(φ) = −1

2
m2

0
~φ · ~φ+ . . . (3.5)

The timer field is assumed to be light mψ < H and the waterfall field is assumed to be

heavy m0 > H, where H is the Hubble parameter. In the original hybrid model, this

quadratic term for Vψ was assumed to be the entire potential. This model leads to a

spectrum with a spectral index ns > 1 and is observationally ruled out. Instead we

need higher order terms, indicated by the dots, to fix this problem. This also places

constraints on the mass of the timer field mψ, which has important consequences. We

discuss these issues in detail in Section 3.5.

As indicated by the negative mass-squared, the waterfall field is tachyonic around

91



Figure 3-1: An illustration of the evolution of the effective potential for the waterfall
field φ as the timer field ψ evolves from “high” values at early times, to ψ = ψc, and
finally to “low” values at late times. In the process, the effective mass-squared of φ
evolves from positive, to zero, to negative (tachyonic).

φ = ψ = 0. This obviously cannot be the entire potential because then the potential

would be unbounded from below. Instead there must be higher order terms that

stabilize the potential with a global minimum near V ≈ 0 (effectively setting the

late-time cosmological constant).

The key to hybrid inflation is the interaction between the two fields. For simplicity,

we assume a standard dimension 4 coupling of the form

Vint(ψ, φ) =
1

2
g2ψ2 ~φ · ~φ. (3.6)

This term allows the waterfall field to be stabilized at φ = 0 at early times during

slow-roll inflation when ψ is displaced away from zero, and then becomes tachyonic

once the timer field approaches the origin; this is illustrated in Figure 3-1.

3.2.1 Approximations

We assume that the constant V0 is dominant during inflation, leading to an approx-

imate de Sitter phase with constant Hubble parameter H. By assuming a flat FRW
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background, the scale factor is approximated as

a = exp(Ht). (3.7)

At early times, ψ is displaced from its origin, so φ = 0. This means that we can

approximate the ψ dynamics by ignoring the back reaction from φ. The fluctuations in

ψ establish nearly scale invariant fluctuations on large scales, which we shall return to

in Section 3.5. However, for the present purposes it is enough to treat ψ as a classical,

homogeneous field ψ(t). We make the approximation that we can neglect the higher

order terms in the potential Vψ in the transition era, leading to the equation of motion

ψ̈ + 3Hψ̇ +m2
ψψ = 0. (3.8)

Solving this equation for ψ(t), we insert this into the equation for φi. We allow spatial

dependence in φi, and ignore, for simplicity, the higher order terms in Vφ, leading to

the equation of motion

φ̈i + 3Hφ̇i − e−2Ht∇2φi +m2
φ(t)φi = 0. (3.9)

Here we have identified an effective mass-squared for the waterfall field of

m2
φ(t) ≡ −m2

0

(
1−

(
ψ(t)

ψc

)2
)
, (3.10)

where the dimension 4 coupling g has been traded for a coupling ψc as g2 = m2
0/ψ

2
c .

The quantity ψc has the physical interpretation as the “critical” value of ψ such that

the effective mass of the waterfall field passes through zero. So at early times for

ψ > ψc, then m2
φ > 0 and φi is trapped at φi = 0, while at late times for ψ < ψc,

then m2
φ < 0 and φi is tachyonic and can grow in amplitude, depending on the mode

of interest; Figure 3-1 illustrates these features.
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3.2.2 Mode Functions

Since we ignore the back-reaction of φ onto ψ and since we treat ψ as homogeneous

in the equation of motion for φ (eq. (3.9)), then by passing to k-space, all modes

are decoupled. Each waterfall field φi can be quantized and expanded in modes in

momentum space as follows

φi(~x, t) =

∫
d3k

(2π)3

[
ck,ie

ik·xuk(t) + c†k,ie
−ik·xu∗k(t)

]
, (3.11)

where c†k (ck) are the creation (annihilation) operators, acting on the φi = 0 vacuum.

By assuming an initial Bunch-Davies vacuum for each φi, the mode functions uk are

the same for all components due to the SO(N ) symmetry. To be precise, we assume

that at asymptotically early times the mode functions are the ordinary Minkowski

space mode functions, with the caveat that we need to insert factors of the scale factor

a to convert from physical wavenumbers to comoving wavenumbers, i.e.,

uk(t)→
e−i k t/a

a
√

2k
, at early times. (3.12)

At late times the mode functions behave very differently. Since the field becomes

tachyonic, then the mode functions grow exponentially at late times. The transition

depends on the wavenumber of interest. The full details of the mode functions were

explained very carefully in Ref. [32], and the interested reader is directed to that

paper for more information.

Now since we are approximating φi as a free field, then its fluctuations are entirely

Gaussian and characterized entirely by its equal time two-point correlation function

〈φi(x)φj(y)〉. Passing to k-space, and using statistical isotropy and homogeneity

of the Bunch-Davies vacuum, the fluctuations are equally well characterized by the

so-called power spectrum Pφ(k), defined through

〈φi(k1)φj(k2)〉 = (2π)3δ(k1 + k2) δij Pφ(k1). (3.13)
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Figure 3-2: A plot of the (re-scaled) field’s power spectrum Pφ̃ as a function of
wavenumber k (in units of H) for different masses: blue is m0 = 2 and mψ = 1/2,
red is m0 = 4 and mψ = 1/2, green is m0 = 2 and mψ = 1/4, orange is m0 = 4 and
mψ = 1/4.

This means the power spectrum is

δij Pφ(k) =

∫
d3x e−ik·x〈φi(x)φj(0)〉. (3.14)

It is simple to show that the power spectrum is related to the mode functions by

Pφ(k) = |uk|2. (3.15)

In Figure 3-2 we plot a rescaled version of Pφ, where we divide out by the root-mean-

square (rms) of φ as defined in the next Section.

3.3 The Time-Delay

We would now like to relate the fluctuations in the waterfall field φ to a fluctuation

in a physical observable, namely the density perturbation. An important step in this

direction is to compute the so-called “time-delay” δt(x); the time offset for the end of

inflation for different parts of the universe. This causes different regions of the universe

to have inflated more than others, creating a difference in their densities (though we

will not explicitly compute δρ/ρ here). This basic formalism was first introduced by
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Hawking [33] and by Guth and Pi [34], and has recently been reviewed in Ref. [35].

In the context of hybrid inflation, it was recently used by some of us in Ref. [?]. It

provides an intuitive and straightforward way to calculate primordial perturbations

and we now use this to study perturbations established by the N waterfall fields.

In its original formulation, the time-delay formalism starts by considering a classi-

cal homogeneous trajectory φ0 = φ0(t), and then considers a first order perturbation

around this. At first order, one is able to prove that the fluctuating inhomogeneous

field φ(x, t) is related to the classical field φ0, up to an overall time offset δt(x),

φ(x, t) = φ0(t− δt(x)). (3.16)

In the present case of hybrid inflation, the waterfall field is initially trapped at

φ = 0 and then once it becomes tachyonic, it eventually falls off the hill-top due to

quantum fluctuations. This means that there is no classical trajectory about which

to expand. Nevertheless, we will show that, to a good approximation, the field φ(x, t)

is well described by an equation of the form (3.16), for a suitably defined φ0. The key

is that all modes of interest grow at the same rate at late times. Further information

of the time evolution of the mode functions is in Ref. [32].

To show this, we need to compute the evolution of the field φ according to eq. (3.9).

This requires knowingmφ(t), which in turn requires knowing ψ(t). By solving eq. (3.8)

for the timer field and dispensing with transient behavior, we have

ψ(t) = ψc exp (− p t) , (3.17)

where

p = H

3

2
−

√
9

4
−
m2
ψ

H2

 , (3.18)

(note p > 0). We have set the origin of time t = 0 to be when ψ = ψc and assume

ψ > ψc at early times.

Substituting this solution into mφ(t), we can, in principle, solve eq. (3.9). In

general, the solution is somewhat complicated with a non-trivial dependence on
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wavenumber. However, at late times the behavior simplifies. Our modes of inter-

est are super-horizon at late times. For these modes, the gradient term is negligible

and the equation of motion reduces to

φ̈i + 3Hφ̇i +m2
φ(t)φi = 0. (3.19)

So each mode evolves in the same way at late times. Treating mφ(t) as slowly varying

(which is justified because the timer field mass mψ < H and so p is small), we can

solve for φi at late times t in the adiabatic approximation. We obtain

φi(x, t) = φi(x, t0) exp

(∫ t

t0

dt′ λ(t′)

)
, (3.20)

where

λ(t) = H

(
−3

2
+

√
9

4
+
m2

0

H2

(
1− e−2 p t

))
. (3.21)

Here t0 is some reference time. For t > 0, we have λ(t) > 0, so the modes grow

exponentially in time. Later in Section 3.5 we explain that in fact λ is roughly

constant in the latter stage of the waterfall phase, i.e., the exp(−2 p t) piece becomes

small.

We now discuss fluctuations in the time at which inflation ends. For convenience,

we define the reference time t0 to be the time at which the rms value of the field

reaches φend; the end of inflation

Nφ2
rms(t0) = φ2

end, (3.22)

where we have included a factor of N to account for all fields, allowing φrms to refer

to fluctuations in a single component φi, i.e., φ2
rms = 〈φ2

i (0)〉. In terms of the power

spectrum, it is

φ2
rms =

∫
d3k

(2π)3
Pφ(k). (3.23)

If we were to include arbitrarily high k, this would diverge quadratically, which is

the usual Minkowski space divergence. However, our present analysis only applies to

97



modes that are in the growing regime. For these modes, Pφ(k) falls off exponentially

with k and there is no problem. So in this integral, we only include modes that are

in the asymptotic regime, or, roughly speaking, only super-horizon modes.

Using eq. (3.20), we can express the field φi(x, t) at time t = t0 + δt in terms of

the field φi(x, t0) by

φi(x, t) = φi(x, t0) exp (λ(t0) δt) . (3.24)

If t is chosen to be the time tend(x) at which inflation ends at each point in space,

then ~φ· ~φ
(
x, tend(x)

)
= φ2

end = Nφ2
rms(t0), and the above equation becomes

Nφ2
rms(t0) = ~φ(x, t0)·~φ(x, t0) exp (2λ(t0) δt), (3.25)

which can be solved for the time-delay field δt(x) = tend(x)− t0 as

δt(x) =
−1

2λ(t0)
ln

(
~φ(x, t0)·~φ(x, t0)

Nφ2
rms(t0)

)
. (3.26)

This finalizes the N component analysis of the time-delay, generalizing the two com-

ponent (complex) analysis of Ref. [32].

3.4 Correlation Functions

We now derive expressions for the two-point and three-point correlation functions of

the time-delay field. To do so, it is convenient to introduce a re-scaled version of the

correlation function ∆(x) defined through

〈φi(x)φj(0)〉 = ∆(x)φ2
rmsδij. (3.27)

By definition ∆(0) = 1, and as we vary x, ∆ covers the interval ∆(x) ∈ (0, 1].

(Ref. [32] used a different convention where ∆ covers the interval ∆(x) ∈ (0, 1/2]).

In Figure 3-3, we show a plot of ∆ at tend as a function of x, measured in Hubble

lengths (H−1), for a choice of masses.
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Figure 3-3: A plot of the field’s correlation ∆ as a function of x (in units of H−1) for
different masses: blue is m0 = 2 and mψ = 1/2, red is m0 = 4 and mψ = 1/2, green
is m0 = 2 and mψ = 1/4, orange is m0 = 4 and mψ = 1/4.

3.4.1 Two-Point Function

We now express the time-delay correlation functions as a power series in ∆ and 1/N .

An alternative derivation of the power spectra of the time-delay field in terms of an

integral, which is closer to the language of Ref. [32], can be found in Appendix 3.8.3.

Using the above approximation for δt in eq. (3.26), the two-point correlation

function for the time-delay is

(2λ)2〈δt(x)δt(0)〉 =

〈
ln

(
~φx ·~φx
Nφ2

rms

)
ln

(
~φ0 ·~φ0

Nφ2
rms

)〉
, (3.28)

where we have used the abbreviated notation ~φx ≡ ~φ(x). The two-point function will

include a constant (independent of x) for a non-zero 〈δt〉. This can be reabsorbed

into a shift in t0, whose dependence we have suppressed here, and so we will ignore

the constant in the following computation. This means that we will compute the

connected part of the correlation functions.

We would like to form an expansion, but we do not have a classical trajectory about

which to expand. Instead we use the following idea: we recognize that ~φ · ~φ should

be centralized around its mean value of Nφ2
rms, plus relatively small fluctuations at
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large N . This means that it is convenient to write

~φ · ~φ
Nφ2

rms

= 1 +

(
~φ · ~φ
Nφ2

rms

− 1

)
(3.29)

and treat the term in parenthesis on the right as small, as it represents the fluctuations

from the mean. This allows us to Taylor expand the logarithm in powers of

Φ ≡
~φ · ~φ
Nφ2

rms

− 1, (3.30)

with 〈Φ〉 = 0. Now recall that the series expansion of the logarithm for small Φ is

ln(1 + Φ) = Φ− Φ2

2
+

Φ3

3
− Φ4

4
+ . . . , (3.31)

allowing us to expand to any desired order in Φ.

The leading non-zero order is quadratic ∼ Φ2. It is

(2λ)2〈δt(x)δt(0)〉2 = 〈Φ(x)Φ(0)〉,

=
〈φi(x)φi(x)φj(0)φj(0)〉

(Nφ2
rms)

2
− 1, (3.32)

where we are implicitly summing over indices in the second line (for simplicity, we

will place all component indices (i, j) downstairs). Using Wick’s theorem to perform

the four-point contraction, we find the result

(2λ)2〈δt(x)δt(0)〉2 =
2∆2(x)

N
, (3.33)

where x ≡ |x|. This provides the leading approximation for large N , or small ∆.

This should be contrasted to the RSG approximation used in Refs. [16, 17] in which

the correlation function is approximated as ∼ ∆, rather than ∼ ∆2, at leading order.

For brevity, we shall not go through the result at each higher order here, but we

report on results at higher order in Appendix 3.8.1. By summing those results to
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different orders, we find

(2λ)2〈δt(x)δt(0)〉 =
2∆2

N
+

2∆4

N 2
− 4∆4

N 3
+

16∆6

3N 3
+

8∆4

N 4

−32∆6

N 4
+

24∆8

N 4
+O

(
1

N 5

)
, (3.34)

(where ∆ = ∆(x) here). We find that various cancellations have occurred. For

example, the −8∆2/N 2 term that enters at cubic order (see Appendix 3.8.1) has

canceled.

Note that at a given order in 1/N there are various powers of ∆2. However, by

collecting all terms at a given power in ∆2, we can identify a pattern in the value of

its coefficients as functions of N . We find

(2λ)2〈δt(x)δt(0)〉

=
2∆2(x)

N
+

2∆4(x)

N (N + 2)
+

16∆6(x)

3N (N + 2)(N + 4)

+
24∆8(x)

N (N + 2)(N + 4)(N + 6)
+ . . . (3.35)

We then identify the entire series as

(2λ)2〈δt(x)δt(0)〉 =
∞∑
n=1

Cn(N ) ∆2n(x), (3.36)

where the coefficients are

Cn(N ) =
1

n2

(N
2
− 1 + n

n

)−1

, (3.37)

with
(
a
b

)
the binomial coefficient. This series is convergent for any N and ∆ ∈ (0, 1],

and is one of our central results.

For the case of a single scalar or a doublet (complex field), the full series organizes
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itself into known functions. For N = 1 we find

(2λ)2〈δt(x)δt(0)〉 = 2∆2(x) +
2∆4(x)

3
+

16∆6(x)

45
+ . . .

= 2 (sin−1∆(x))2. (3.38)

For N = 2 we find

(2λ)2〈δt(x)δt(0)〉 = ∆2(x) +
∆4(x)

22
+

∆6(x)

32
+ . . .

= Li2(∆2(x)), (3.39)

where Lis(z) is the polylogarithm function. We also find that for any even value of

N , the series is given by the polylogarithm function plus a polynomial in ∆; this is

described in Appendix 3.8.2.

Using the power series, we can easily obtain plots of the two-point function for any

N . For convenience, we plot the re-scaled quantity N (2λ)2〈δt(x)δt(0)〉 as a function

of ∆ in Figure 3-4 (top) for different N . We see convergence of all curves as we

increase N , which confirms that the leading behavior of the (un-scaled) two-point

function is ∼ 1/N . In Figure 3-4 (bottom) we plot N〈δt(x)δt(0)〉 as a function of x

for different masses and two different N .

3.4.2 Three-Point Function

The three-point function is given by a simple modification of eq. (3.28), namely

−(2λ)3〈δt(x)δt(y)δt(0)〉

=

〈
ln

(
~φx ·~φx
Nφ2

rms

)
ln

(
~φy ·~φy
Nφ2

rms

)
ln

(
~φ0 ·~φ0

Nφ2
rms

)〉
. (3.40)
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Figure 3-4: Top: a plot of the (re-scaled) two-point function of the time-delay
N (2λ)2〈δt(x)δt(0)〉 as a function of ∆ ∈ [0, 1] as we vary N : dot-dashed is N = 1,
solid is N = 2, dotted is N = 6, and dashed is N → ∞. Bottom: a plot of the
(re-scaled) two-point function of the time-delay N〈δt(x)δt(0)〉 as a function of x for
different masses: blue is m0 = 2 and mψ = 1/2, red is m0 = 4 and mψ = 1/2, green
is m0 = 2 and mψ = 1/4, orange is m0 = 4 and mψ = 1/4, with solid for N = 2 and
dashed for N →∞.
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Here we will work only to leading non-zero order, which in this case is cubic. We

expand the logarithms as before to obtain

−(2λ)3〈δt(x)δt(y)δt(0)〉3

= 〈Φ(x)Φ(y)Φ(0)〉,

=
〈φi(x)φi(x)φj(y)φj(y)φk(0)φk(0)〉

(Nφ2
rms)

3
+ 2

−
(
〈φi(x)φi(x)φj(y)φj(y)〉

(Nφ2
rms)

2
+ 2 perms

)
, (3.41)

where “perms” is short for permutations under interchanging x, y, 0. Using Wick’s

theorem to perform the various contractions, we find the result

−(2λ)3〈δt(x)δt(y)δt(0)〉3 =
8 ∆(|x− y|) ∆(x) ∆(y)

N 2
. (3.42)

We would now like to use the three-point function as a measure of non-Gaussianity.

For a single random variable, a measure of non-Gaussianity is to compute a dimen-

sionless ratio of the skewness to the 3/2 power of the variance. For a field theory,

we symmetrize over variables, and define the following measure of non-Gaussianity

in position space

S ≡ 〈δt(x)δt(y)δt(0)〉√
〈δt(x)δt(y)〉〈δt(x)δt(0)〉〈δt(y)δt(0)〉

. (3.43)

(Recall that we are ignoring 〈δt〉, as it can be just re-absorbed into t0, so the three-

point and two-point functions are the connected pieces). Computing this at the

leading order approximation using eqs. (3.33, 3.42) (valid for large N , or small ∆),

we find

S ≈ −
√

8

N
. (3.44)

Curiously, the dependence on x, y has dropped out at this order. We see that for

small N there is significant non-Gaussianity, while for large N the theory becomes

Gaussian, as expected from the central limit theorem.
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3.4.3 Momentum Space

Let us now present our results in k-space. We shall continue to analyze the results at

high N , or small ∆, which allows us to just include the leading order results.

For the two-point function, we define the power spectrum through

〈δt(k1)δt(k2)〉 = (2π)3δ(k1 + k2)Pδt(k1). (3.45)

We use eq. (3.33) and Fourier transform to k-space using the convolution theorem. To

do so it is convenient to introduce a dimensionless field φ̃i ≡ φi/φrms and introduce

the corresponding power spectrum Pφ̃(k) = Pφ(k)/φ2
rms = |uk|2/φ2

rms, which is the

Fourier transform of ∆(x). We then find the result

Pδt(k) ≈ 1

2λ2N

∫
d3k′

(2π)3
Pφ̄(k′)Pφ̄(|k− k′|). (3.46)

A dimensionless measure of fluctuations is the following

Pδt(k) ≡ k3H2Pδt(k)

2π2
, (3.47)

The factor of k3/(2π2) is appropriate as this gives the variance per log interval:

〈(Hδt)2〉 =
∫
d ln k Pδt(k). By studying eq. (3.46), one can show Pδt ≈ const for

small k and falls off for large k. This creates a spike in Pδt(k) at a finite k∗ and its

amplitude is rather large. (This is to be contrasted with the usual fluctuations in de

Sitter space, Pδt(k) ∝ 1/k3, making Pδt(k) approximately scale invariant.) We see

that the amplitude of the spike scales as ∼ 1/N , and so it is reduced for large N . A

plot of Pδt(k) is given in Figure 3-5.

For the three-point function, we define the bispectrum through

〈δt(k1)δt(k2)δt(k3)〉 = (2π)3δ(k1 + k2 + k3)Bδt(k1, k2, k3) (3.48)

where we have indicated that the bispectrum only depends on the magnitude of the

3 k-vectors, with the constraint that the vectors sum to zero. We use eq. (3.42) and
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Figure 3-5: The dimensionless power spectrum NPδt(k) at large N as a function of
k (in units of H) for different choices of masses: blue is m0 = 2 and mψ = 1/2, red
is m0 = 4 and mψ = 1/2, green is m0 = 2 and mψ = 1/4, orange is m0 = 4 and
mψ = 1/4.

Fourier transform to k-space, again using the convolution theorem. We find

Bδt(k1, k2, k3) ≈ − 1

3λ3N 2
×[∫

d3k

(2π)3
Pφ̄(k)Pφ̄(|k1 − k|)Pφ̄(|k2 + k|) + 2 perms

]
(3.49)

To measure non-Gaussianity in k-space, it is conventional to introduce the dimen-

sionless fNL parameter, defined as1

fNL(k1, k2, k3) ≡ Bδt(k1, k2, k3)

Pδt(k1)Pδt(k2) + 2 perms
. (3.50)

By substituting the above expressions for Pδt and Bδt, we see that fNL is indepen-

dent of N at this leading order. However, this belies the true dependence of non-

Gaussianity on the number of fields. This is because fNL is a quantity that can be

large even if the non-Gaussianity is relatively small (for example, on CMB scales,

any fNL smaller than O(105) is a small level of non-Gaussianity). Instead a more

appropriate measure of non-Gaussianity in k-space is to compute some ratio of the

bispectrum to the 3/2 power of the power spectrum, analogous to the position space

1A factor of 6/5 is often included when studying the gauge invariant quantity ζ that appears in
cosmological perturbation theory, but it does not concern us here.
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Figure 3-6: The dimensionless bispectrum
√
N FNL as a function of k (in units of H)

at large N for m0 = 4 and mψ = 1/2.

definition in eq. (3.43). For the simple equilateral case, k1 = k2 = k3, we define

FNL(k) ≡ k3/2Bδt(k)

3
√

2πPδt(k)3/2
, (3.51)

where we have inserted a factor of k3/2/(
√

2 π) from measuring the fluctuations per

log interval. Using eqs. (3.46, 3.49), we see that FNL ∝ 1/
√
N , as we found in

position space. In Figure 3-6, we plot this function. We note that although the non-

Gaussianity is large, the peak is on a length scale that is small compared to the CMB

and so it evades recent bounds [6].

3.5 Constraints on Hybrid Models

Hybrid inflation models must satisfy several observational constraints. Here we dis-

cuss these constraints, including the role that N plays, and discuss the implications

for the scale of the density spike.

3.5.1 Topological Defects

The first constraint on hybrid models concerns the possible formation of topological

defects. Since the waterfall field starts at φ = 0 and then falls to some vacuum, it
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spontaneously breaks a symmetry. For a single field N = 1, this breaks a Z2 sym-

metry; see Figure 3-1. For multiple fields N > 1, this breaks an SO(N ) symmetry.

N = 1 leads to the formation of domain walls, which are clearly ruled out observa-

tionally, so these models are strongly disfavored; N = 2 leads to the formation of

cosmic strings, which have not been observed and if they exist are constrained to be

small in number. This would require a very large number of e-foldings of the waterfall

phase to make compatible with observations, and seems unrealistic; N = 3 leads to

the formation of monopoles, which are somewhat less constrained; N = 4 leads to the

formation of textures, which are relatively harmless; N > 4 avoids topological defects

altogether. So choosing several waterfall fields is preferred by current constraints on

topological defects.

3.5.2 Inflationary Perturbations

Inflation generates fluctuations on large scales which are being increasingly con-

strained by data. An important constraint on any inflation model is the bound on

the tensor-to-scalar ratio r. Recent CMB measurements from Planck places an upper

bound on tensor modes of r < 0.11 (95% confidence) [6]. The amplitude of tensor

modes is directly set by the energy density during inflation. Typical hybrid models

are at relatively low energy scales, without the need for extreme fine tuning, and so

they immediately satisfy this bound.

Although hybrid inflation passes the tensor mode constraint with flying colors, its

ability to pass the scalar mode constraint is much less clear. The tilt of the scalar

mode spectrum is characterized by the primordial spectral index ns. WMAP [5] and

recent Planck measurements [6] place the spectral index near

ns,obs ≈ 0.96, (3.52)

giving a red spectrum. Here we examine the constraints imposed on hybrid models

in order to obtain this value of ns.

The tilt on large scales is determined by the timer field ψ. For low scale models
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of inflation, such as hybrid inflation, the prediction for the spectral index is

ns = 1 + 2 η, (3.53)

where

η ≈ 1

8πG

V ′′ψ
V0

=
V ′′ψ

3H2
. (3.54)

This is to be evaluated Ne e-foldings from the end of inflation, where Ne = 50− 60 in

typical models. Combining the above equations, we need to satisfy V ′′ψ ≈ −0.06H2.

If we take Vψ = m2
ψψ

2/2, then V ′′ψ > 0, and ns > 1, which is ruled out. So we need

higher order terms in the potential to cause it to become concave down at large values

of ψ where η is evaluated, while leaving the quadratic approximation for Vψ valid at

small ψ. For most reasonable potential functions, such as potentials that flatten at

large field values, we expect |V ′′ψ | . m2
ψ. So this suggests a bound

m2
ψ & 0.06H2, (3.55)

which can only be avoided by significant fine tuning of the potential. Hence although

the timer field is assumed light (mψ < H), it cannot be extremely light.

3.5.3 Implications for Scale of Spike

The length scale associated with the spike in the spectrum is set by the Hubble length

during inflation H−1, red-shifted by the number of e-foldings of the waterfall phase

Nw. Since the Hubble scale during inflation is typically microscopic, we need the

duration of the waterfall phase Nw to be significant (e.g., Nw ∼ 30− 40) to obtain a

spike on astrophysically large scales. Here we examine if this is possible.

Since we have defined t = 0 to be when the transition occurs (ψ = ψc), then

Nw = Ht with final value at t = tend. To determine the final value, we note that modes

grow at the rate λ, derived earlier in eq. (3.21). For mψ < H, we can approximate

the parameter p (eq. (3.18)) as p ≈ m2
ψ/3H. Using the above spectral index bound in

eq. (3.55), we see that for significantly large Nw (e.g., Nw ∼ 30− 40) the exponential
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factor

exp(−2 p t) ≈ exp

(
−

2m2
ψNw

3H2

)
(3.56)

is somewhat small and we will ignore it here. In this regime, the dimensionless growth

rate λ/H can be approximated as a constant

λ

H
≈ −3

2
+

√
9

4
+
m2

0

H2
. (3.57)

The typical starting value for φ is roughly of order H (de Sitter fluctuations) and the

typical end value for φ is roughly of order MPl (Planck scale). For self consistency,

φ must pass from its starting value to its end value in Nw e-foldings with rate set by

λ/H. This gives the approximate value for Nw as2

Nw ≈
H

λ
ln

(
MPl

H

)
. (3.58)

This has a clear consequence: If we choose m0 � H, as is done in some models of

hybrid inflation, then H/λ � 1. So unless we push H to be many, many orders of

magnitude smaller then MPl, then Nw will be rather small. This will lead to a spike

in the spectrum on rather small scales and possibly ignorable to astrophysics.

Note that if we had ignored the spectral index bound that leads to eq. (3.55), then

we could have taken mψ arbitrarily small, leading to an arbitrarily small p value. In

this (unrealistic) limit, it is simple to show

λ

H
≈

2m2
ψm

2
0Nw

9H4
. (3.59)

So by taking mψ arbitrarily small, λ could be made small, and Nw could easily be

made large. However, the existence of the spectral index bound essentially forbids

this, requiring us to go in a different direction.

The only way to increase Nw and satisfy the spectral index bound on mψ is to

2A better approximation comes from tracking the full time dependence of λ and integrating
the argument of the exponential exp(

∫ t
dt′λ(t′)), but this approximation suffices for the present

discussion.
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take m0 somewhat close to H. This allows H/λ to be appreciable from eq. (3.57).

For instance, if we set m0 = 1.3H, then H/λ ≈ 2. If we then take H just a few

orders of magnitude below MPl, say H ∼ 10−6,7MPl, which is reasonable for inflation

models, we can achieve a significant value for Nw. This will lead to a spike in the

spectrum on astrophysically large scales, which is potentially quite interesting. It is

possible that there will be distortions in the spectrum by taking m0 close to H, but

we will not explore those details here. However, there is an important consequence

that we explore in the next subsection.

3.5.4 Eternal Inflation

Since we are being pushed towards a somewhat low value of m0, near H, we need

to check if the theory still makes sense. One potential problem is that the theory

may enter a regime of eternal inflation. This could occur for the waterfall field at the

hill-top. This would wipe out information of the timer field, which established the

approximately scale invariant spectrum on cosmological scales.

The boundary for eternal inflation is roughly when the density fluctuations are

O(1), and this occurs when the fluctuations in the time delay are 〈(H δt)2〉 = O(1).

To convert this into a lower bound on m0, let us imagine that m0 is even smaller than

H. In this regime, the growth rate λ can be estimated using eq. (3.57) as λ ∼ m2
0/H

2.

Using eq. (3.33) this gives 〈(H δt)2〉 ∼ H4/(Nm4
0). This implies that eternal inflation

occurs when the waterfall mass is below a critical value mc
0, which is roughly

mc
0 ∼

H

N 1/4
. (3.60)

So when N ∼ 1 we cannot have m0 near H, because we then enter eternal inflation.

On the other hand, for large N we are allowed to have m0 near H and avoid this

problem. This makes sense intuitively, because for many fields it is statistically fa-

vorable for at least one of the fields to fall off the hill-top, causing inflation to end.

Hence large N is more easily compatible with the above set of constraints than low

N .
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3.6 Discussion and Conclusions

In this work we studied density perturbations in hybrid inflation caused byN waterfall

fields, which contains a spike in the spectrum. We derived expressions for correlation

functions of the time-delay and constrained parameters with observations.

Density Perturbations: We derived a convergent series expansion in powers of

1/N and ∆(x), the dimensionless correlation function for the field, for the two-point

function of the time-delay for any N , and the leading order behavior of the three-

point function of the time-delay for large N . These correlation functions are well

approximated by the first term in the series for large N (even for N = 2 the leading

term is moderately accurate to ∼ 30%, and much more accurate for higher N ). In

this regime, the fluctuations are suppressed, with two-point and three-point functions

given by

〈δt(x) δt(0)〉 ≈ ∆2(x)

2λ2N
,

〈δt(x) δt(y) δt(0)〉 ≈ −∆(|x− y|)∆(x)∆(y)

λ3N 2
. (3.61)

Although this reduces the spike in the spectrum, for any moderate value of N , such

as N = 3, 4, 5, the amplitude of the spike is still quite large (orders of magnitude

larger than the ∼ 10−5 level fluctuations on larger scales relevant to the CMB), and

may have significant astrophysical consequences. Also, the relative size of the three-

point function to the 3/2 power of the two-point function scales as ∼ 1/
√
N . In

accordance with the central limit theorem, the fluctuations become more Gaussian at

large N . This will make the analysis of the subsequent cosmological evolution more

manageable, as this provides a simple spectrum for initial conditions. We note that

since we are considering small scales compared to the CMB, then this non-Gaussianity

evades Planck bounds [6].

Constraints: We mentioned that hybrid models avoid topological defects for large

N and satisfy constraints on tensor modes for any N . A very serious constraint on

hybrid models comes from the observed spectral index ns ≈ 0.96, which requires the
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potential to flatten at large field values. One consequence of this is that the timer field

mass mψ needs to be only a little smaller than the Hubble parameter during inflation

H, or else the model is significantly fine tuned. For a large value of the waterfall field

mass m0, this would imply a large growth rate of fluctuations, a rapid termination

of inflation, and in turn a density spike on very small scales. Otherwise, we need to

make the waterfall field mass m0 somewhat close to H, but this faces problems with

eternal inflation. However, by using a large number of waterfall fields N , it is safer

to make the waterfall field mass m0 somewhat close to H. This reduces the growth

rate of fluctuations, prolonging the waterfall phase for many e-foldings.

Thus large N presents a plausible setup to establish a spike in the density

perturbations on astrophysically large length scales that is consistent with other

constraints.

Outlook: It may be possible that these perturbations seed primordial black holes,

which may be relevant to supermassive black holes, or an intriguing form of dark

matter. An investigation into these topics is underway. It would be important to

fully explore the eternal inflation bound and the effects on the spectrum for relatively

light waterfall field masses. Finally, it would be of interest to try to embed these large

N models into fundamental physics, such as string theory, and to explore reheating

[36] and baryogenesis [37, 38] in this framework.
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3.8 Appendix

3.8.1 Series Expansion to Higher Orders

Earlier we computed the two-point correlation function for the time-delay at quadratic

order, and then stating the results at all orders. Here we mention the results order

by order.

a. Cubic Order

At cubic order ∼ Φ3 we find

(2λ)2〈δt(x)δt(0)〉3 = −8∆2

N 2
(3.62)

b. Quartic Order

At quartic order ∼ Φ4 we find

(2λ)2〈δt(x)δt(0)〉4 =
8∆2 + 2∆4

N 2
+

40∆2 + 4∆4

N 3
(3.63)

c. Quintic Order

At quintic order ∼ Φ5 we find

(2λ)2〈δt(x)δt(0)〉5 = −96∆2 + 32∆4

N 3

−256∆2 + 64∆4

N 4
(3.64)

d. Sextic Order
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At sextic order ∼ Φ6 we find

(2λ)2〈δt(x)δτ(0)〉6 =
168∆2 + 72∆4 + 16∆6

3N 3

+
1056∆2 + 464∆4 + 32∆6

N 4

+
6144∆2 + 2496∆4 + 128∆6

3N 5
(3.65)

e. Septic Order

At septic order ∼ Φ7 we find

(2λ)2〈δt(x)δt(0)〉7 = −32(43∆2 + 22∆4 + 6∆6)

N 4

+O
(

1

N 5

)
(3.66)

f. Octic Order

At octic order ∼ Φ8 we find

(2λ)2〈δt(x)δt(0)〉8 =
8(72∆2 + 39∆4 + 16∆6 + 3∆8)

N 4

+O
(

1

N 5

)
(3.67)

3.8.2 Two-Point Function for Even Number of Fields

When N is even the expression always involves the polylog function that we found

for N = 2, plus corrections that depend on N . We find that the form of the answer

is

(2λ)2〈δt(x)δt(0)〉 = Li2(∆2) +
PN (∆2)

∆N−4

+
P̄N (∆2) ln(1−∆2)

∆N−2
, (3.68)
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where

PN (∆2) is a polynomial of degree (N − 4)/2, (3.69)

P̄N (∆2) is a polynomial of degree (N − 2)/2. (3.70)

For N = 4, we find

P4(∆2) = −1, (3.71)

P̄4(∆2) = −1 + ∆2. (3.72)

For N = 6, we find

P6(∆2) =
1

2
− 7

4
∆2, (3.73)

P̄6(∆2) =
1

2
− 2∆2 +

3

2
∆4. (3.74)

For N = 8, we find

P8(∆2) = −1

3
+

4

3
∆2 − 85

36
∆4, (3.75)

P̄8(∆2) = −1

3
+

3

2
∆2 − 3∆4 +

11

6
∆6. (3.76)

3.8.3 Alternative Derivation of Time-Delay Spectra

Here we write the two-point function as a multidimensional integral. It is convenient

now to switch to a vector notation thus making the components of φ explicit.

φ̃(0, t) ≡ ~φx ≡ (X1, X2, X3, . . . , XN ), (3.77)

φ̃(x, t) ≡ ~φ0 ≡ (XN+1, XN+2, XN+3, . . . , X2N ), (3.78)

~X ≡ (X1, X2, X3, . . . , X2N ). (3.79)

116



The average value of a function F of a random variable ~X with probability distribution

function p(X) is given by

〈F [X]〉 =

∫
dXp(X)F [X]. (3.80)

Since we are using a free field approximation, ~X follows a joint Gaussian distri-

bution

p(X) =
1

(2π)N
√

det(Σ)
exp

(
−1

2
XTΣ−1X

)
, (3.81)

where

Σij = 〈XiXj〉, (3.82)

is the correlation matrix. The components of Σ can be easily calculated using the

commutation relations for the creation and annihilation operators in φ(x, t), from

Eq. (3.11). Due to the high degree of symmetry the matrix itself has a very simple

structure:

Σij =
1

N
(δi,j + δi,(j±N )∆). (3.83)

Finally, we can write the two-point function as:

(2λ)2〈δt(x)δt(0)〉

=

∫
N 2d ~X

(2π)N (1−∆2)
N
2

log(|~φ0|2) log(|~φx|2)×

exp{− N
2(1−∆2)

[|~φ0|2 + |~φx|2 − 2N∆~φ0 ·~φx]}. (3.84)

Then we can Taylor expand the integrand in powers of ∆. We see that all odd

powers of ∆ vanish, leaving only even powers in the expansion. Performing these

integrals term by term in the Taylor expansion, leads to the results reported earlier

in eqs. (3.35, 3.36, 3.37).
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Chapter 4

Primordial Bispectrum from

Multifield Inflation with

Nonminimal Couplings

Realistic models of high-energy physics include multiple scalar fields. Renormalization

requires that the fields have nonminimal couplings to the spacetime Ricci curvature

scalar, and the couplings can be large at the energy scales of early-universe inflation.

The nonminimal couplings induce a nontrivial field-space manifold in the Einstein

frame, and they also yield an effective potential in the Einstein frame with nontrivial

curvature. The ridges or bumps in the Einstein-frame potential can lead to primor-

dial non-Gaussianities of observable magnitude. We develop a covariant formalism to

study perturbations in such models and calculate the primordial bispectrum. As in

previous studies of non-Gaussianities in multifield models, our results for the bispec-

trum depend sensitively on the fields’ initial conditions.

4.1 Introduction

Inflationary cosmology remains the leading account of the very early universe, consis-

tent with high-precision measurements of the cosmic microwave background radiation

(CMB) [1, 2, 3]. A longstanding challenge, however, has been to realize success-
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ful early-universe inflation within a well-motivated model from high-energy particle

physics.

Realistic models of high-energy physics routinely include multiple scalar fields

[4, 5]. Unlike single-field models, multifield models generically produce entropy (or

isocurvature) perturbations. The entropy perturbations, in turn, can cause the gauge-

invariant curvature perturbation, ζ, to evolve even on the longest length-scales, after

modes have been stretched beyond the Hubble radius during inflation [6, 7, 8, 9, 10,

11, 12, 13]. Understanding the coupling and evolution of entropy perturbations in

multifield models is therefore critical for studying features in the predicted power

spectrum, such as non-Gaussianities, that are absent in simple single-field models.

(For reviews see [14, 12, 13, 15, 16, 17].)

Recent reviews of primordial non-Gaussianities have emphasized four criteria, at

least one of which must be satisfied as a necessary (but not sufficient) condition for

observable power spectra to deviate from predictions of single-field models. These

criteria include [17, 15]: (1) multiple fields; (2) noncanonical kinetic terms; (3) vio-

lation of slow-roll; or (4) an initial quantum state for fluctuations different than the

usual Bunch-Davies vacuum. As we demonstrate here, the first three of these criteria

are generically satisfied by models that include multiple scalar fields with nonminimal

couplings to the spacetime Ricci curvature scalar.

Nonminimal couplings arise in the action as necessary renormalization countert-

erms for scalar fields in curved spacetime [18, 19, 22, 23, 20, 21]. In many models the

nonminimal coupling strength, ξ, grows without bound under renormalization-group

flow [21]. In such models, if the nonminimal couplings are ξ ∼ O(1) at low energies,

they will rise to ξ � 1 at the energy scales of early-universe inflation. We therefore

expect realistic models of inflation to incorporate multiple scalar fields, each with a

large nonminimal coupling. (Non-Gaussianities in single-field models with nonmini-

mal couplings have been studied in [24].)

Upon performing a conformal transformation to the Einstein frame — in which

the gravitational portion of the action assumes canonical Einstein-Hilbert form —

the nonminimal couplings induce a field-space manifold that is not conformal to
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flat [25]. The curvature of the field-space manifold, in turn, can induce additional

interactions among the matter fields, beyond those included in the Jordan-frame

potential. Moreover, the scalar fields necessarily acquire noncanonical kinetic terms

in the Einstein frame. These new features can have a dramatic impact on the behavior

of the fields during inflation, and hence on the primordial power spectrum.

Chief among the multifield effects for producing new features in the primordial

power spectrum is the ability of fields’ trajectories to turn in field-space as the system

evolves. Such turns are not possible in single-field models, which include only a single

direction of field-space. In the case of multiple fields, special features in the effec-

tive potential, such as ridges or bumps, can focus the background fields’ trajectories

through field space or make them diverge. When neighboring trajectories diverge,

primordial bispectra can be amplified to sufficient magnitude that they should be

detectable in the CMB [26, 14, 30, 16, 15, 13, 32, 31, 27, 28, 29].

To date, features like ridges in the effective potential have been studied for the

most part phenomenologically rather than being strongly motivated by fundamental

physics. Here we demonstrate that ridges arise naturally in the Einstein-frame effec-

tive potential for models that incorporate multiple fields with nonminimal couplings.

Likewise, as noted above, models with multiple nonminimally coupled scalar fields

necessarily include noncanonical kinetic terms in the Einstein frame, stemming from

the curvature of the field-space manifold. Both the bumpy features in the potential

and the nonzero curvature of the field-space manifold routinely cause the fields’ evo-

lution to depart from slow-roll for some duration of their evolution during inflation.

Recent analyses of primordial non-Gaussianities have emphasized two distinct

types of fine-tuning needed to produce observable bispectra: fine-tuning the shape

of the effective potential to include features like ridges; and separately fine-tuning

the fields’ initial conditions so that the fields begin at or near the top of these ridges

[30, 29, 32, 31]. Here we show that the first of these types of fine-tuning is obviated

for multifield models with nonminimal couplings; such features of the potential are

generic. The second type of fine-tuning, however, is still required: even in the presence

of ridges and bumps, the fields’ initial conditions must be fine-tuned in order to
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produce measurable non-Gaussianities.

In Section II we examine the evolution of the fields in the Einstein frame and em-

phasize the ubiquity of features such as ridges that could make the fields’ trajectories

diverge in field space. Section III introduces our covariant, multifield formalism for

studying the evolution of background fields and linearized perturbations on the curved

field-space manifold. In Section IV we analyze adiabiatic and entropy perturbations

and quantify their coupling using a covariant version of the familiar transfer-function

formalism [11, 13, 35]. In Section V we build on recent work [36, 37, 38] to calcu-

late the primordial bispectrum for multifield models, applying it here to models with

nonminimal couplings. We find that although the nonminimal couplings induce new

interactions among the entropy perturbations compared to models in which all fields

have minimal coupling, the dominant contribution to the bispectrum remains the fa-

miliar local form of fNL, made suitably covariant to apply to the curved field-space

manifold. Concluding remarks follow in Section VI. We collect quantities relating to

the curvature of the field-space manifold in the Appendix.

4.2 Evolution in the Einstein Frame

We consider N scalar fields in (3 + 1) spacetime dimensions, with spacetime met-

ric signature (−,+,+,+). We work in terms of the reduced Planck mass, Mpl ≡

(8πG)−1/2 = 2.43 × 1018 GeV. Greek letters label spacetime indices, µ, ν = 0, 1, 2, 3;

lower-case Latin letters label spatial indices, i, j = 1, 2, 3; and upper-case Latin letters

label field-space indices, I, J = 1, 2, ...,N .

In the Jordan frame, the scalar fields’ nonminimal couplings to the spacetime Ricci

curvature scalar remain explicit in the action. We denote quantities in the Jordan

frame with a tilde, such as the spacetime metric, g̃µν(x). The action for N scalar

fields in the Jordan frame may be written

SJordan =

∫
d4x
√
−g̃
[
f(φI)R̃− 1

2
G̃IJ g̃µν∂µφI∂νφJ − Ṽ (φI)

]
, (4.1)
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where f(φI) is the nonminimal coupling function and Ṽ (φI) is the potential for the

scalar fields in the Jordan frame. We have included the possibility that the scalar fields

in the Jordan frame have noncanonical kinetic terms, parameterized by coefficients

G̃IJ(φK). Canonical kinetic terms correspond to G̃IJ = δIJ .

We next perform a conformal transformation to work in the Einstein frame, in

which the gravitational portion of the action assumes Einstein-Hilbert form. We

define a rescaled spacetime metric tensor, gµν(x), via the relation,

gµν(x) = Ω2(x) g̃µν(x), (4.2)

where the conformal factor is related to the nonminimal coupling function as

Ω2(x) =
2

M2
pl

f(φI(x)). (4.3)

Eq. (4.1) then takes the form [25]

SEinstein =

∫
d4x
√
−g
[
M2

pl

2
R− 1

2
GIJgµν∂µφI∂νφJ − V (φI)

]
. (4.4)

The potential in the Einstein frame is scaled by the conformal factor,

V (φI) =
1

Ω4(x)
Ṽ (φI) =

M4
pl

4f 2(φI)
Ṽ (φI). (4.5)

The coefficients of the noncanonical kinetic terms in the Einstein frame depend on

the nonminimal coupling function, f(φI), and its derivatives, and are given by [39, 25]

GIJ(φK) =
M2

pl

2f(φI)

[
G̃IJ(φK) +

3

f(φI)
f,If,J

]
, (4.6)

where f,I = ∂f/∂φI .

As demonstrated in [21], the nonminimal couplings induce a field-space manifold

in the Einstein frame, associated with the metric GIJ(φK) in Eq. (4.6), which is not

conformal to flat for models in which multiple scalar fields have nonminimal cou-
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plings in the Jordan frame. Thus there does not exist any combination of conformal

transformation plus field-rescalings that can bring the induced metric into the form

GIJ = δIJ . In other words, multifield models with nonminimal couplings necessar-

ily include noncanonical kinetic terms in the Einstein frame, even if the fields have

canonical kinetic terms in the Jordan frame, G̃IJ = δIJ . When analyzing multifield

inflation with nonminimal couplings, we therefore must work either with a noncanon-

ical gravitational sector or with noncanonical kinetic terms. Here we adopt the latter.

Because there is no way to avoid noncanonical kinetic terms in the Einstein frame in

such models, we do not rescale the fields. For the remainder of the chapter, we restrict

attention to models with canonical kinetic terms in the Jordan frame, G̃IJ = δIJ , in

which the curvature of the field-space manifold in the Einstein frame depends solely

upon f(φI) and its derivatives.

Varying the action of Eq. (4.4) with respect to gµν(x) yields the Einstein field

equations,

Rµν −
1

2
gµνR =

1

M2
pl

Tµν , (4.7)

where

Tµν = GIJ∂µφI∂νφJ − gµν
[

1

2
GIJgαβ∂αφI∂βφJ + V (φI)

]
. (4.8)

Varying Eq. (4.4) with respect to φI yields the equation of motion,

�φI + gµνΓIJK∂µφ
J∂νφ

K − GIKV,K = 0, (4.9)

where �φI ≡ gµνφI;µ;ν and ΓIJK(φL) is the Christoffel symbol for the field-space

manifold, calculated in terms of GIJ .

We expand each scalar field to first order around its classical background value,

φI(xµ) = ϕI(t) + δφI(xµ), (4.10)

and also expand the scalar degrees of freedom of the spacetime metric to first order,

perturbing around a spatially flat Friedmann-Robertson-Walker (FRW) metric [40,
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11, 12],

ds2 = gµν(x) dxµdxν

= − (1 + 2A) dt2 + 2a (∂iB) dxidt+ a2 [(1− 2ψ)δij + 2∂i∂jE] dxidxj,
(4.11)

where a(t) is the scale factor. To background order, the 00 and ij components of Eq.

(4.7) may be combined to yield the usual dynamical equations,

H2 =
1

3M2
pl

[
1

2
GIJ ϕ̇Iϕ̇J + V (ϕI)

]
,

Ḣ = − 1

2M2
pl

GIJ ϕ̇Iϕ̇J ,
(4.12)

where H ≡ ȧ/a is the Hubble parameter, and the field-space metric is evaluated at

background order, GIJ = GIJ(ϕK).

Both the curvature of the field-space manifold and the form of the effective po-

tential in the Einstein frame depend upon the nonminimal coupling function, f(φI).

The requirement of renormalizability for scalar matter fields in a (classical) curved

background spacetime dictates the form of f(φI) [18, 19, 20, 21]:

f(φI) =
1

2

[
M2

0 +
∑
I

ξI
(
φI
)2

]
, (4.13)

where M0 is some mass-scale that could be distinct from Mpl, and the nonminimal

couplings ξI are dimensionless constants that need not be equal to each other. If any

of the fields develop nonzero vacuum expectation values, 〈φI〉 = vI , then one may

expect M2
pl = M2

0 +
∑

I ξI(v
I)2. Here we will assume either that vI = 0 for each field

or that
√
ξI v

I �Mpl, so that M0 'Mpl.

The nonminimal couplings ξI could in principle take any “bare” value. (Conformal

couplings correspond to ξI = −1/6; we only consider positive couplings here, ξI >

0.) Under renormalization-group flow the constants vary logarithmically with energy

scale. The exact form of the β functions depends upon details of the matter sector,

but for models whose content is akin to the Standard Model the β functions are
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positive and the flow of ξI has no fixed point, rising with energy scale without bound

[21]. Studies of the flow of ξ in the case of Higgs inflation [41] indicate growth of ξ

by O(101 − 102) between the electroweak symmetry-break scale, Λ ∼ 102 GeV, and

typical inflationary scales, Λ ∼ 1016 GeV [42]. Hence we anticipate that realistic

models will include nonminimal couplings ξI � 1 during inflation.

Renormalizable potentials in (3+1) spacetime dimensions can include terms up to

quartic powers of the fields. A potential in the Jordan frame that assumes a generic

renormalizable, polynomial form such as

Ṽ (φI) =
1

2

∑
I

m2
I

(
φI
)2

+
1

2

∑
I<J

gIJ
(
φI
)2 (

φJ
)2

+
1

4

∑
I

λI
(
φI
)4

(4.14)

will yield an effective potential in the Einstein frame that is stretched by the conformal

factor in accord with Eq. (4.5). As the Jth component of φI becomes arbitrarily large

the potential in that direction will become asymptotically flat,

V (φI) =
M4

pl

4

Ṽ (φI)

f 2(φI)
→

M4
pl

4

λJ
ξ2
J

(4.15)

(no sum on J), unlike the quartic behavior of the potential in the large-field limit in

the Jordan frame. (The flatness of the effective potential for large field values was

one inspiration for Higgs inflation [41].) Inflation in such models occurs in a regime of

field values such that ξJ(ϕJ)2 �M2
pl for at least one component, J . As emphasized in

[41], for large nonminimal couplings, ξJ � 1, all of inflation therefore may occur for

field values that satisfy |ϕJ | < Mpl, unlike the situation for ordinary chaotic inflation

with polynomial potentials and minimal couplings.

Although the effective potential in the Einstein frame will asymptote to a constant

value in any given direction of field space, the constants will not, in general, be equal

to each other. Thus at finite values of the fields, the potential will generically develop

features, such as ridges or bumps, that are absent from the Jordan-frame potential.

Because the asymptotic values of V (φI) in any particular direction are proportional

to 1/ξ2
J , the steepness of the ridges depends sharply on the ratios of the nonminimal
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coupling constants. If some explicit symmetry, such as the SU(2) electroweak gauge

symmetry obeyed by the Higgs multiplet in Higgs inflation [41], forces all the couplings

to be equal — ξI = ξ, m2
I = m2, and λI = gIJ = λ for all I, J — then the ridges

in the Einstein-frame potential disappear and the potential asymptotes to the same

constant value in each direction of field space. We study the dynamics of such special

cases in [43]. For the remainder of this chapter, we consider models in which the

constants are of similar magnitude but not exactly equal to each other.

For definiteness, consider a two-field model with a potential in the Jordan frame

of the form

Ṽ (φ, χ) =
1

2
m2
φφ

2 +
1

2
m2
χχ

2 +
1

2
gφ2χ2 +

λφ
4
φ4 +

λχ
4
χ4 (4.16)

and nonminimal coupling function given by

f(φ, χ) =
1

2

[
M2

pl + ξφφ
2 + ξχχ

2
]
. (4.17)

In the Einstein frame the potential becomes

V (φ, χ) =
M4

pl

4

(
2m2

φφ
2 + 2m2

χχ
2 + 2gφ2χ2 + λφφ

4 + λχχ
4
)[

M2
pl + ξφφ2 + ξχχ2

]2 . (4.18)

See Fig. 4-1.

In addition to the ridges shown in Fig. 4-1, other features of the Einstein-frame

potential can arise depending on the Jordan-frame couplings. For example, the tops

of the ridges can develop small indentations, such that the top of a ridge along χ ∼ 0

becomes a local minimum rather than a local maximum. In that case, field trajectories

that begin near the top of a ridge tend to focus rather than diverge, keeping the

amplitude of non-Gaussianities very small. For the two-field potential of Eq. (4.18),

we find [44]

(
∂2
χV
)
|χ=0

=
1[

M2
pl + ξφφ2

]3 [(gξφ − λφξχ)φ4 +
(
ξφm

2
χ − 2ξχm

2
φ + gM2

pl

)
φ2 +m2

χM
2
pl

]
.

(4.19)
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Figure 4-1: The Einstein-frame effective potential, Eq. (4.18), for a two-field model. The
potential shown here corresponds to the couplings ξχ/ξφ = 0.8, λχ/λφ = 0.3, g/λφ = 0.1,
and m2

φ = m2
χ = 10−2 λφM

2
pl.

For realistic values of the masses that satisfy m2
φ,m

2
χ � M2

pl, and at early times

when ξφφ
2 � M2

pl, the top of the ridge along the χ ∼ 0 direction will remain a local

maximum if

gξφ < λφξχ. (4.20)

When the couplings satisfy Eq. (4.20), the shape of the potential in the vicinity of

its ridges is similar to that of the product potential, V = m2e−λφ
2
χ2, which has been

studied in detail in [30, 32]. Trajectories of the fields that begin near each other close

to the top of a ridge will diverge as the system evolves; that divergence in trajectories

can produce a sizeable amplitude for the bispectrum, as we will see below.

Even potentials with modest ratios of the nonminimal couplings can produce tra-

jectories that diverge sharply, as shown in Fig. 4-2. As we will see in Section V,

trajectory 2 of Fig. 4-2 (solid red line) yields a sizeable amplitude for the bispectrum

that is consistent with present bounds, whereas trajectories 1 and 3 produce negligi-

ble non-Gaussianities. We will return to the three trajectories of Fig. 2 throughout

the chapter, as illustrations of the types of field dynamics that yield interesting pos-

sibilities for the power spectrum.

Unlike the product potential studied in [30, 32], the potential of Eq. (4.18) con-
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Figure 4-2: Parametric plot of the fields’ evolution superimposed on the Einstein-frame
potential. Trajectories for the fields φ and χ that begin near the top of a ridge will diverge.
In this case, the couplings of the potential are ξφ = 10, ξχ = 10.02, λχ/λφ = 0.5, g/λφ = 1,
and mφ = mχ = 0. (We use a dimensionless time variable, τ ≡

√
λφ Mpl t, so that

the Jordan-frame couplings are measured in units of λφ.) The trajectories shown here
each have the initial condition φ(τ0) = 3.1 (in units of Mpl) and different values of χ(τ0):
χ(τ0) = 1.1× 10−2 (“trajectory 1,” yellow dotted line); χ(τ0) = 1.1× 10−3 (“trajectory 2,”
red solid line); and χ(τ0) = 1.1× 10−4 (“trajectory 3,” black dashed line).
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Figure 4-3: The evolution of the Hubble parameter (black dashed line) and the background
fields, φ(τ) (red solid line) and χ(τ) (blue dotted line), for trajectory 2 of Fig. 2. (We use
the same units as in Fig. 2, and have plotted 100H so its scale is commensurate with the
magnitude of the fields.) For these couplings and initial conditions the fields fall off the
ridge in the potential at τ = 2373 or N = 66.6 efolds, after which the system inflates for
another 4.9 efolds until τend = 2676, yielding Ntotal = 71.5 efolds.

tains valleys in which the system will still inflate. For trajectories 1 (orange dotted

line) and 2 (red solid line) in Fig. 4-2, for example, the system begins near χ ∼ 0

and rolls off the ridge; because λχ/ξ
2
χ 6= 0, the valleys in the χ direction are also false

vacua and hence the system continues to inflate as the fields relax toward the global

minimum at φ = χ = 0. Near the end of inflation, when ξφφ
2 + ξχχ

2 < M2
pl, the

fields oscillate around the global minimum of the potential, which can drive a period

of preheating. See Fig. 4-3.

Evolution of the fields like that shown in Fig. 4-3 is generic for this class of

models when the fields begin near the top of a ridge, and can produce interesting

phenomenological features in addition to observable bispectra. For example, the

oscillations of φ around φ = 0 when the system first rolls off the ridge could produce

an observable time-dependence of the scale factor during inflation, as analyzed in

[45]. The added period of inflation from the false vacuum of the χ valley could lead

to scale-dependent features in the power spectrum associated with double-inflation

[46].
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Figure 4-4: Models with nonzero masses include additional features in the Einstein-frame
potential which can also cause neighboring field trajectories to diverge. In this case, we
superimpose the evolution of the fields φ and χ on the Einstein-frame potential. The
parameters shown here are identical to those in Fig. 4-2 but with m2

φ = 0.075 λφM2
pl and

m2
χ = 0.0025 λφ M2

pl rather than 0. The initial conditions match those of trajectory 3 of
Fig. 4-2: φ(τ0) = 3.1 and χ(τ0) = 1.1× 10−4 in units of Mpl.

In the class of models we consider here, neighboring trajectories may also diverge

if we include small but nonzero bare masses for the fields. For example, in Fig. 4-4

we show the evolution of the fields for the same initial conditions as trajectory 3 of

Fig. 4-2 — the black, dashed curve that barely deviates from the middle of the ridge.

The evolution shown in Fig. 4-2 was for the case mφ = mχ = 0. If, instead, we

include nonzero masses, then the curvature of the effective potential at small field

values becomes different from the zero-mass case. In particular, for positive, real

values of the masses, the ridges develop features that push the fields off to one side,

recreating behavior akin to what we found in trajectories 1 and 2 of Fig. 4-2.

Because the field-space manifold is curved, the fields’ trajectories will turn even

in the absence of tree-level couplings from the Jordan-frame potential: the fields’

geodesic motion alone is nontrivial. The Ricci scalar for the field-space manifold in

the two-field case is given in Eq. (4.115). In Fig. 4-5 we plot the fields’ motion in

the curved manifold for the case when Ṽ (φ, χ) = V (φ, χ) = 0. The curvature of the

manifold is negligible at large field values but grows sharply near φ ∼ χ ∼ 0.
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Figure 4-5: Parametric plot of the evolution of the fields φ and χ superimposed on the
Ricci curvature scalar for the field-space manifold, R, in the absence of a Jordan-frame
potential. The fields’ geodesic motion is nontrivial because of the nonvanishing curvature.
Shown here is the case ξφ = 10, ξχ = 10.02, φ(τ0) = 0.75, χ(τ0) = 0.01, φ′(τ0) = −0.01, and
χ′(τ0) = 0.005.
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Given the nonvanishing curvature of the field-space manifold, we must study the

evolution of the fields and their perturbations with a covariant formalism, to which

we now turn.

4.3 Covariant Formalism

A gauge-invariant formalism for studying perturbations in multifield models in the

Jordan frame was developed in [47, 48]. In this chapter we work in the Einstein

frame, following the approach established in [7, 8, 9, 10, 27, 29, 30, 31, 28, 35, 33,

34, 32, 36, 37, 38]. Our approach is especially indebted to the geometric formulation

of [32]. In [32], the authors introduce a particular tetrad construction with which to

label the field-space manifold locally, which they dub the “kinematical basis.” The

adoption of the kinematical basis simplifies certain expressions and highlights features

of physical interest in the primordial power spectrum, but it does so at the expense of

obscuring the relationship between observable quantities and the fields that appear

in the original Lagrangian, in terms of which any given model is specified. Rather

than adopt the kinematical basis here, we develop a covariant approach in terms of

a single coordinate chart that covers the entire field manifold. This offers greater

insight into the global structure of the manifold, as illustrated in Fig. 4-5. We also

keep coordinate labels explicit, which facilitates application of our formalism to the

original basis of fields, φI , that appears in the governing Lagrangian. Also unlike [32],

we work in terms of cosmic time, t, rather than the number of efolds during inflation,

N , because we are interested in applying our formalism (in later work) to eras such

as preheating, for which N is a poor dynamical parameter. Because of these formal

distinctions from [32], we briefly introduce our general formalism in this section.

We expand each scalar field to first order around its classical background value,

as in Eq. (4.10). The background fields, ϕI(t), parameterize classical paths through

the curved field-space manifold, and hence can be used as coordinate descriptions of

the trajectories. Just like spacetime coordinates in general relativity, xµ, the array ϕI

is not a vector in the field-space manifold [49]. Infinitesimal displacements, dϕI , do
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behave as proper vectors, and hence so do derivatives of ϕI with respect to an affine

parameter such as t.

For any vector in the field space, AI , we define a covariant derivative with respect

to the field-space metric as usual by

DJAI = ∂JA
I + ΓIJKA

K . (4.21)

Following [?, ?, 18], we also introduce a covariant derivative with respect to cosmic

time via the relation

DtAI ≡ ϕ̇JDJAI = ȦI + ΓIJKA
J ϕ̇K , (4.22)

where overdots denote derivatives with respect to t. The construction of Eq. (4.22)

is essentially a directional derivative along the trajectory.

For models with nontrivial field-space manifolds, the tangent space to the manifold

at one time will not coincide with the tangent space at some later time. Hence

the authors of [36, 37] introduce a covariant means of handling field fluctuations,

which we adopt here. As specified in Eq. (4.10), the value of the physical field at

a given location in spacetime, φI(xµ), consists of the homogenous background value,

ϕI(t), and some gauge-dependent fluctuation, δφI(xµ). The fluctuation δφI represents

a finite coordinate displacement from the classical trajectory, and hence does not

transform covariantly. This motivates a construction of a vector QI to represent the

field fluctuations in a covariant manner. The two field values, φI and ϕI , may be

connected by a geodesic in the field-space manifold parameterized by some parameter

λ, such that φI(λ = 0) = ϕI and φI(λ = 1) = ϕI + δφI . These boundary conditions

allow us to identify a unique vector, QI , that connects the two field values, such that

DλφI |λ=0 = QI . One may then expand δφI in a power series in QI [36, 37],

δφI = QI − 1

2!
ΓIJKQJQK +

1

3!

(
ΓILMΓMJK − ΓIJK,L

)
QJQKQL + ... (4.23)

where the Christoffel symbols are evaluated at background order in the fields, ΓIJK =
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ΓIJK(ϕL). To first order in fluctuations δφI → QI , and hence at linear order we

may treat the two quantities interchangeably. When we consider higher-order com-

binations of the field fluctuations below, however, such as the contribution of the

three-point function of field fluctuations to the bispectrum, we must work in terms

of the vector QI rather than δφI .

We introduce the gauge-invariant Mukhanov-Sasaki variables for the perturbations

[40, 11, 12],

QI ≡ QI +
ϕ̇I

H
ψ. (4.24)

Because both QI and ϕ̇I are vectors in the field-space manifold, QI is also a vector.

The Mukhanov-Sasaki variables, QI , should not be confused with the vector of field

fluctuations, QI . The QI are gauge-invariant with respect to spacetime gauge trans-

formations up to first order in the perturbations, and are constructed from a linear

combination of field fluctuations and metric perturbations. The quantity QI does

not incorporate metric perturbations; it is constructed from the (gauge-dependent)

field fluctuations and background-order quantities such as the field-space Christoffel

symbols. At lowest order in perturbations, QI → QI in the spatially flat gauge.

Using Eq. (4.24), Eq. (4.9) separates into background and first-order expressions,

Dtϕ̇I + 3Hϕ̇I + GIKV,K = 0, (4.25)

and

D2
tQ

I + 3HDtQI +

[
k2

a2
δIJ +MI

J −
1

M2
pla

3
Dt
(
a3

H
ϕ̇Iϕ̇J

)]
QJ = 0. (4.26)

The mass-squared matrix appearing in Eq. (4.26) is given by

MI
J ≡ GIK (DJDKV )−RI

LMJ ϕ̇
Lϕ̇M , (4.27)

where RI
LMJ is the Riemann tensor for the field-space manifold. All expressions in

Eqs. (4.25), (4.26), and (4.27) involving GIJ , ΓIJK , RI
LMJ , and V are evaluated at
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background order in the fields, ϕI .

The system simplifies further if we distinguish between the adiabatic and entropic

directions in field space [7]. The length of the velocity vector for the background

fields is given by

|ϕ̇I | ≡ σ̇ =
√
GIJ ϕ̇Iϕ̇J . (4.28)

Introducing the unit vector,

σ̂I ≡ ϕ̇I

σ̇
, (4.29)

the background equations, Eqs. (4.12) and (4.25), simplify to

H2 =
1

3M2
pl

[
1

2
σ̇2 + V

]
,

Ḣ = − 1

2M2
pl

σ̇2

(4.30)

and

σ̈ + 3Hσ̇ + V,σ = 0, (4.31)

where we have defined

V,σ ≡ σ̂IV,I . (4.32)

The background dynamics of Eqs. (4.30) and (4.31) take the form of a single-field

model with canonical kinetic term, with the exception that V (ϕI) in Eqs. (4.30) and

(4.31) depends on all N independent fields, ϕI .

The directions in field space orthogonal to σ̂I are spanned by

ŝIJ ≡ GIJ − σ̂I σ̂J . (4.33)
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The quantities σ̂I and ŝIJ obey the useful relations

σ̂I σ̂
I = 1,

ŝIJ ŝIJ = N − 1,

ŝIAŝ
A
J = ŝIJ ,

σ̂I ŝ
IJ = 0 for all J.

(4.34)

Therefore we may use σ̂I and ŝIJ as projection operators to decompose any vector in

field space into components along the direction σ̂I and perpendicular to σ̂I as

AI = σ̂I σ̂JA
J + ŝIJA

J . (4.35)

In particular, ṠI ≡ ŝIJ ϕ̇
J vanishes identically, ṠI = 0. Thus all of the dynamics of

the background fields are captured by the behavior of σ̇ and σ̂I .

Given the simple structure of the background evolution, Eqs. (4.30) and (4.31),

we introduce slow-roll parameters akin to the single-field case. We define

ε ≡ − Ḣ

H2
=

3σ̇2

(σ̇2 + 2V )
(4.36)

and

ησσ ≡M2
pl

Mσσ

V
, (4.37)

where we have defined

MσJ ≡ σ̂IMI
J = σ̂K (DKDJV ) ,

Mσσ ≡ σ̂I σ̂
JMI

J = σ̂K σ̂J (DKDJV ) .
(4.38)

The term in MI
J involving RI

LMJ vanishes when contracted with σ̂I or σ̂J due to

the first Bianchi identity (since the relevant term is already contracted with σ̂Lσ̂M),

and henceMσσ is independent of RI
LMJ . For trajectory 2 of Fig. 4-2 (solid red line),

we see that slow-roll is temporarily violated when the fields roll off the ridge of the

potential. See Fig. 4-6.
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Figure 4-6: The slow-roll parameters ε (blue dashed line) and |ησσ| (solid red line) versus
N∗ for trajectory 2 of Fig. 2, where N∗ is the number of efolds before the end of inflation.
Note that |ησσ| temporarily grows significantly larger than 1 after the fields fall off the ridge
in the potential at around N∗ ∼ 5.

A central quantity of interest is the turn-rate [32], which we denote ωI . The

turn-rate is given by the (covariant) rate of change of the unit vector, σ̂I ,

ωI ≡ Dtσ̂I = − 1

σ̇
V,K ŝ

IK , (4.39)

where the last expression follows upon using the equations of motion, Eqs. (4.25) and

(4.31). Because ωI ∝ ŝIK , we have

ωI σ̂I = 0. (4.40)

Using Eqs. (4.33) and (4.39), we also find

DtŝIJ = −σ̂IωJ − ωI σ̂J . (4.41)

For evolution of the fields like that shown in Fig. 4-2, the turn-rate peaks when the

fields roll off the ridge; see Fig. 4-7.

We may decompose the perturbations along directions parallel to and perpendic-
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Figure 4-7: The turn-rate, ω = |ωI |, for the three trajectories of Fig. 4-2: trajectory
1 (orange dotted line); trajectory 2 (red solid line); and trajectory 3 (black dashed line).
The rapid oscillations in ω correspond to oscillations of φ in the lower false vacuum of the
χ valley. For trajectory 1, ω peaks at N∗ = 34.5 efolds before the end of inflation; for
trajectory 2, ω peaks at N∗ = 4.9 efolds before the end of inflation; and for trajectory 3, ω
remains much smaller than 1 for the duration of inflation.

ular to σ̂I :

Qσ ≡ σ̂IQ
I ,

δsI ≡ ŝIJQ
J .

(4.42)

Note that δsI may be defined either in terms of the field fluctuations or the Mukhanov-

Sasaki variables, since ŝIJδφ
J = ŝIJQ

J . Though δsI is a vector in field-space with

N components, only N − 1 of these components are linearly independent. We will

isolate particular components of interest in Section IV.

Taking a Fourier transform, such that for any function F (t, xi) we have a2(t)∂i∂
iF (t, xi) =

−k2Fk(t) where k is the comoving wavenumber, Eq. (4.26) separates into two equa-

tions of motion (we suppress the label k on Fourier modes),

Q̈σ + 3HQ̇σ +

[
k2

a2
+Mσσ − ω2 − 1

M2
pla

3

d

dt

(
a3σ̇2

H

)]
Qσ

= 2
d

dt

(
ωJδs

J
)
− 2

(
V,σ
σ̇

+
Ḣ

H

)(
ωJδs

J
) (4.43)
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and

D2
t δs

I +
[
3HδIJ + 2σ̂IωJ

]
DtδsI +

[
k2

a2
δIJ +MI

J − 2σ̂I
(
MσJ +

σ̈

σ̇
ωJ

)]
δsJ

= −2ωI

[
Q̇σ +

Ḣ

H
Qσ −

σ̈

σ̇
Qσ

]
.

(4.44)

Although the effective mass of the adiabatic perturbations, m2
eff = Mσσ − ω2, is

independent of RI
LMJ , the curvature of the field-space manifold introduces couplings

among components of the entropy perturbations, δsI , by means of the MI
J term in

Eq. (4.44). The quantities Qσ and (ωJδs
J) are scalars in field space, so the covariant

time derivatives in Eq. (4.43) reduce to ordinary time derivatives.

From Eqs. (4.43) and (4.44), it is clear that the adiabatic and entropy pertur-

bations decouple if the turn-rate vanishes, ωI = 0. Moreover, Eq. (4.43) for Qσ is

identical in form to that of a single-field model (with m2
eff =Mσσ − ω2), but with a

nonzero source term that depends on the combination ωJδs
J . Even in the presence

of significant entropy perturbations, δsI , the power spectrum for adiabatic pertur-

bations will be devoid of features such as non-Gaussianities unless the turn-rate is

nonzero, ωI 6= 0.

4.4 Adiabatic and Entropy Perturbations

In Section III we identified the vector of entropy perturbations, δsI , which includes

N −1 physically independent degrees of freedom. As we will see in this section, these

N −1 physical components may be further clarified by introducing a particular set of

unit vectors and projection operators in addition to σ̂I and ŝIJ . With them we may

identify components of δsI of particular physical interest.

We denote the gauge-invariant curvature perturbation as Rc, not to be confused

with the Ricci scalar for the field-space manifold, R. The perturbation Rc is defined

as [40, 11, 12]

Rc ≡ ψ − H

(ρ+ p)
δq, (4.45)
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where ρ and p are the background-order energy density and pressure for the fluid

filling the FRW spacetime, and δq is the energy-density flux of the perturbed fluid,

T 0
i ≡ ∂iδq. Given Eq. (4.8), we find

ρ =
1

2
σ̇2 + V,

p =
1

2
σ̇2 − V,

δq = −GIJ ϕ̇IδφJ = −σ̇σ̂JδφJ ,

(4.46)

and hence, upon using Eqs. (4.24) and (4.42),

Rc = ψ +
H

σ̇
σ̂Jδφ

J =
H

σ̇
Qσ. (4.47)

We thus find that Rc ∝ Qσ, and that the righthand side of Eq. (4.44) is proportional

to Ṙc. Recall that these expressions hold to first order in fluctuations, for which

δφI → QI .

In the presence of entropy perturbations, the gauge-invariant curvature pertur-

bation need not remain conserved, Ṙc 6= 0. In particular, the nonadiabatic pressure

perturbation is given by [11, 12]

δpnad ≡ δp− ṗ

ρ̇
δρ = − 2V,σ

3Hσ̇
δρm + 2σ̇

(
ωJδs

J
)
, (4.48)

where δρm ≡ δρ − 3Hδq is the gauge-invariant comoving density perturbation. The

perturbed Einstein field equations (to linear order) require [11, 12]

δρm = −2M2
pl

k2

a2
Ψ, (4.49)

where Ψ is the gauge-invariant Bardeen potential [40, 11, 12]

Ψ ≡ ψ + a2H

(
Ė − B

a

)
. (4.50)

Therefore in the long-wavelength limit, for k � aH, the only source of nonadiabatic
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pressure comes from the entropy perturbations, δsI . Using the usual relations [11, 12]

among the gauge-invariant quantities Rc and ζ ≡ −ψ + (H/ρ̇)δρ, we find

Ṙc =
H

Ḣ

k2

a2
Ψ +

2H

σ̇

(
ωJδs

J
)
. (4.51)

Thus even for modes with k � aH, Rc will not be conserved in the presence of

entropy perturbations if the turn-rate is nonzero, ωI 6= 0.

Eqs. (4.43) and (4.51) indicate that a particular component of the vector δsI is of

special physical relevance: the combination (ωJδs
J) serves as the source for Qσ and

hence for Ṙc. Akin to the “kinematical basis” of [32], we may therefore introduce a

new unit vector that points in the direction of the turn-rate, ωI , together with a new

projection operator that picks out the subspace perpendicular to both σ̂I and ωI :

ŝI ≡ ωI

ω
,

γIJ ≡ GIJ − σ̂I σ̂J − ŝI ŝJ ,
(4.52)

where ω = |ωI | is the magnitude of the turn-rate vector. Using the relations in Eq.

(4.34), the definitions in Eq. (4.52) imply

ŝIJ = ŝI ŝJ + γIJ ,

γIJγIJ = N − 2,

ŝIJ ŝJ = ŝI ,

σ̂I ŝ
I = σ̂Iγ

IJ = ŝIγ
IJ = 0 for all J.

(4.53)

We then find

DtŝI = −ωσ̂I − ΠI ,

DtγIJ = ŝIΠJ + ΠI ŝJ
(4.54)

where

ΠI ≡ 1

ω
MσKγ

IK , (4.55)
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and hence, from Eq. (4.53),

σ̂IΠ
I = ŝIΠ

I = 0. (4.56)

The vector of entropy perturbations, δsI , may then be written as

δsI = ŝIQs +BI , (4.57)

where

Qs ≡ ŝJQ
J ,

BI ≡ γIJQ
J .

(4.58)

The quantity that sources Qσ and Rc is now easily identified as the scalar, ωJδs
J =

ωQs, which corresponds to just one component of the vector δsI .

Making use of Eqs. (4.30), (4.47), and (4.51), the equation of motion for δsI in

Eq. (4.44) separates into

Q̈s + 3HQ̇s +

[
k2

a2
+Mss + 3ω2 − Π2

]
Qs

= 4M2
pl

ω

σ̇

k2

a2
Ψ−Dt

(
ΠJB

J
)
− ΠJDtBJ −MsJB

J − 3H
(
ΠJB

J
)

(4.59)

and

D2
tB

I +
[
3HδIJ + 2

(
σ̂IωJ − ŝIΠJ

)]
DtBJ

+

[
k2

a2
δIJ + γIAMAJ − σ̂IMσJ − ŝI (3HΠJ +DtΠJ)

]
BJ

= 2ΠIQ̇s − γIAMAsQs +
(
3HΠI +DtΠI

)
Qs.

(4.60)

In analogy to (4.38), we have introduced the projections

MsJ ≡ ŝIMI
J ,

Mss ≡ ŝI ŝ
JMI

J .
(4.61)
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Note, however, that unlike MσJ , the term in MI
J proportional to RI

LMJ does not

vanish upon contracting with ŝI or ŝJ . Hence the Riemann-tensor term in MI
J

induces interactions among the components of δsI .

For models with N ≥ 3 scalar fields, we may introduce additional unit vectors

and projection operators with which to characterize components of BI . The next in

the series are given by

ûI ≡ ΠI

Π
,

qIJ ≡ γIJ − ûI ûJ .
(4.62)

Repeating steps as before, we find

DtûI = ΠŝI + τ I ,

DtqIJ = −ûIτJ − τ I ûJ ,
(4.63)

where

τ I ≡ 1

Π

[
MsK +

σ̇

ω
σ̂Aσ̂L

(
DAML

K

)]
qIK . (4.64)

We then have

BI = ûIQu + CI (4.65)

in terms of

Qu ≡ ûJQ
J ,

CI ≡ qIJQ
J .

(4.66)

This decomposition reproduces the structure in the “kinematical basis” [32] but can

be applied in any coordinate basis for the field-space manifold: Qσ is sourced by

Qs; Qs is sourced by Qσ and Qu (though we have used Eq. (4.51) to substitute

the dependence on Q̇σ for the ∇2Ψ term in Eq. (4.59)); Qu is sourced by Qs and

Qv ≡ τJQ
J/|τ I |, and so on.

For our present purposes the two-field model will suffice. The perturbations then

consist of two scalar degrees of freedom, Qσ and Qs, which obey Eqs. (4.43) and
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Figure 4-8: The effective mass-squared of the entropy perturbations relative to the Hubble
scale, (µs/H)2, for the trajectories shown in Fig. 4-2: trajectory 1 (orange dotted line);
trajectory 2 (red solid line); and trajectory 3 (black dashed line). For all three trajectories,
µ2
s < 0 while the fields remain near the top of the ridge, since µ2

s is related to the curvature
of the potential in the direction orthogonal to the background fields’ evolution. The effective
mass grows much larger than H as soon as the fields roll off the ridge of the potential.

(4.59) (with BI = ΠI = 0) respectively. The effective mass-squared of the entropy

perturbations becomes

µ2
s ≡Mss + 3ω2. (4.67)

If the entropy perturbations are heavy during slow-roll, with µs > 3H/2, then the

amplitude of long-wavelength modes, with k � aH, will fall exponentially: Qs ∼

a−3/2(t) during quasi-de Sitter expansion. For trajectories that begin near the top

of a ridge, on the other hand, the entropy modes will remain light or even tachyonic

at early times, since µ2
s is related to the curvature of the potential in the direction

orthogonal to the background fields’ trajectory. Once the background fields roll off

the ridge, the entropy mass immediately grows very large, suppressing further growth

in the amplitude of Qs. See Fig. 4-8.

The perturbations in the adiabatic direction are proportional to the gauge-invariant

curvature perturbation, as derived in Eq. (4.47). Following the usual convention [35],
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we may define a normalized entropy perturbation as

S ≡ H

σ̇
Qs. (4.68)

In the long-wavelength limit, the coupled perturbations obey general relations of the

form [35]

Ṙc = αHS +O
(

k2

a2H2

)
,

Ṡ = βHS +O
(

k2

a2H2

)
,

(4.69)

in terms of which we may write the transfer functions as

TRS(t∗, t) =

∫ t

t∗

dt′ α(t′)H(t′)TSS(t∗, t
′),

TSS(t∗, t) = exp

[∫ t

t∗

dt′ β(t′)H(t′)

]
.

(4.70)

The transfer functions relate the gauge-invariant perturbations at one time, t∗, to their

values at some later time, t. We take t∗ to be the time when a fiducial scale of interest

first crossed outside the Hubble radius during inflation, defined by a2(t∗)H
2(t∗) = k2

∗.

In the two-field case, both Rc and S are scalars in field space, and hence α, β, TRS ,

and TSS are also scalars. Thus there is no time-ordering ambiguity in the integral for

TSS in Eq. (4.70).

In the two-field case, Eq. (4.51) becomes

Ṙ = 2ωS +O
(

k2

a2H2

)
. (4.71)

Comparing with Eq. (4.69), we find

α(t) =
2ω(t)

H(t)
. (4.72)

The variation of the gauge-invariant curvature perturbation is proportional to the
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turn-rate. For Ṡ we take the long-wavelength and slow-roll limits of Eq. (4.59):

Q̇s ' −
µ2
s

3H
Qs. (4.73)

Eq. (4.69) then yields

β = − µ2
s

3H2
− ε+

σ̈

Hσ̇
. (4.74)

Taking the slow-roll limit of Eq. (4.31) for σ̇, we have

3Hσ̇ ' −σ̂IV,I . (4.75)

Taking a covariant time derivative of both sides, using the definition of ωI in Eq.

(4.39), and introducing the slow-roll parameter

ηss ≡M2
pl

Mss

V
, (4.76)

we arrive at

β = −2ε− ηss + ησσ −
4

3

ω2

H2
, (4.77)

where ησσ is defined in Eq. (4.37). For trajectories that begin near the top of a ridge,

ηss will be negative at early times (like µ2
s), which can yield β > 0. In that case,

TSS(t∗, t) will grow. If one also has a nonzero turn-rate, ω — and hence, from Eq.

(4.72), a nonzero α within the integrand for TRS(t∗, t) — then the growing entropy

modes will source the adiabatic mode.

The power spectrum for the gauge-invariant curvature perturbation is defined by

[11, 12]

〈Rc(k1)Rc(k2)〉 = (2π)3δ(3)(k1 + k2)PR(k1), (4.78)

where the angular brackets denote a spatial average and PR(k) = |Rc|2. The dimen-

sionless power spectrum is then given by

PR(k) =
k3

2π2
|Rc|2, (4.79)
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and the spectral index is defined as

ns ≡ 1 +
∂ lnPR
∂ ln k

. (4.80)

Using the transfer functions, we may relate the power spectrum at time t∗ to its value

at some later time, t, as

PR(k) = PR(k∗)
[
1 + T 2

RS(t∗, t)
]
, (4.81)

where k corresponds to a scale that crossed the Hubble radius at some time t > t∗.

The scale-dependence of the transfer functions becomes [13, 12, 35, 32],

1

H

∂TRS
∂t∗

= −α− βTRS ,

1

H

∂TSS
∂t∗

= −βTSS ,
(4.82)

and hence the spectral index for the power spectrum of the adiabatic fluctuations

becomes

ns = ns(t∗) +
1

H

(
∂TRS
∂t∗

)
sin (2∆) (4.83)

where

cos ∆ ≡ TRS√
1 + T 2

RS
. (4.84)

Given Eq. (4.43) in the limit ωJδs
J = ωQs � 1, the spectral index evaluated at t∗

matches the usual single-field result to lowest order in slow-roll parameters [11, 12, 50]:

ns(t∗) = 1− 6ε(t∗) + 2ησσ(t∗). (4.85)

Scales of cosmological interest first crossed the Hubble radius between 40 and

60 efolds before the end of inflation. In each of the scenarios of Fig. 4-2 the fields

remained near the top of the ridge in the potential until fewer than 40 efolds before

the end of inflation. As indicated in Fig. 4-9, TRS remains small between N∗ = 60 and

40 for each of the three trajectories, with little sourcing of the adiabatic perturbations
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Figure 4-9: The transfer function TRS for the three trajectories of Fig. 4-2: trajectory
1 (orange dotted line); trajectory 2 (red solid line); and trajectory 3 (black dashed line).
Trajectories 2 and 3, which begin nearer the top of the ridge in the potential than trajectory
1, evolve as essentially single-field models during early times, before the fields roll off the
ridge.

by the entropy perturbations. This behavior of TRS is consistent with the behavior

of ω = αH/2 as shown in Fig. 4-7: ω (and hence α) remains small until the fields

roll off the ridge in the potential. Only in the case of trajectory 1, which began

least high on the ridge among the trajectories and hence fell down the ridge soonest

(at N∗ = 34.5 efolds before the end of inflation), does TRS become appreciable by

N∗ = 40. In particular, we find TRS(N40) = 0.530 for trajectory 1; TRS(N40) = 0.011

for trajectory 2; and TRS(N40) = 0.001 for trajectory 3.

Fixing the fiducial scale k∗ to be that which first crossed the Hubble radius N∗ =

60 efolds before the end of inflation, we find ns(t∗) = 0.967 for each of the three

trajectories of Fig. 4-2, in excellent agreement with the observed value ns = 0.971±

0.010 [3]. Corrections to ns from the scale-dependence of TRS remain negligible as

long as TRS remains small between N∗ = 60 and 40. Consequently, we find negligible

tilt in the spectral index across the entire observational window for trajectories 2

and 3, whereas the spectral index for trajectory 1 departs appreciably from ns(t∗) for

scales that crossed the Hubble radius near N∗ = 40. See Fig. 4-10.
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Figure 4-10: The spectral index, ns, versus N∗ for the three trajectories of Fig. 4-2:
trajectory 1 (orange dotted line); trajectory 2 (red solid line); and trajectory 3 (black
dashed line). The spectral indices for trajectories 2 and 3 coincide and show no tilt from
the value ns(N60) = 0.967.

4.5 Primordial Bispectrum

In the usual calculation of primordial bispectra, one often assumes that the field fluc-

tuations behave as nearly Gaussian around the time t∗, in which case the three-point

function for the field fluctuations should be negligible. Using the QI construction

of Eq. (4.23), the authors of [36, 37] calculated the action up to third order in per-

turbations and found several new contributions to the three-point function for field

fluctuations, mediated by the Riemann tensor for the field space,RI
JKL. The presence

of the new terms is not surprising; we have seen that RI
JKL induces new interactions

among the perturbations even at linear order, by means of the mass-squared matrix,

MI
J in Eq. (4.27). Evaluated at time t∗, the three-point function for QI calculated

in [37] takes the form

〈QI(k1)QJ(k2)QK(k3)〉∗ = (2π)3δ(3)(k1 + k2 + k3)
H4
∗

k3
1k

3
2k

3
3

×
[
AIJK∗ + BIJK∗ + CIJK∗ +DIJK∗

]
.

(4.86)
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Upon using the definition of σ̂I in Eq. (4.29), the background equation of Eq. (4.30)

to relate Ḣ to σ̇2, and the definition of ε in Eq. (4.36), the terms on the righthand

side of Eq. (4.86) may be written [37, 51]

AIJK∗ =

√
2ε

Mpl

σ̂IGJKfA(k1,k2,k3) + cyclic permutations,

BIJK∗ =
4Mpl

√
2ε

3
σ̂ARI(JK)AfB(k1,k2,k3) + cyclic permutations,

CIJK∗ =
2M2

pl ε

3
σ̂Aσ̂BR(I|AB|J ;K)fC(k1,k2,k3) + cyclic permutations,

DIJK∗ = −
8M2

pl ε

3
σ̂Aσ̂BRI(JK)A;BfD(k1,k2,k3) + cyclic permutations,

(4.87)

where RIABJ ;K = GKMDMRIABJ , and fI(ki) are shape-functions in Fourier space

that depend on the particular configuration of triangles formed by the wavevectors

ki. Comparable to the findings in [28, 29], each of the contributions to the three-point

function for the field fluctuations is suppressed by a power of the slow-roll parameter,

ε� 1.

The quantity of most interest to us is not the three-point function for the field

fluctuations but the bispectrum for the gauge-invariant curvature perturbation, ζ,

which may be parameterized as

〈ζ(k1)ζ(k2)ζ(k3)〉 ≡ (2π)3δ(3) (k1 + k2 + k3)Bζ(k1,k2,k3). (4.88)

Recall that the two gauge-invariant curvature perturbations, Rc and ζ, coincide in the

long-wavelength limit when working to first order in metric perturbations [11, 12]. In

terms of QI , the δN expansion [53, 54, 56, 55] for ζ on super-Hubble scales becomes

[?]

ζ(xµ) = (DIN)QI(xµ) +
1

2
(DIDJN)QI(xµ)QJ(xµ) + ... (4.89)

where N = ln |a(tend)H(tend)/k∗| is the number of efolds after a given scale k∗ first

crossed the Hubble radius until the end of inflation. At t∗, Eqs. (4.86) and (4.89)
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yield

〈ζ(k1)ζ(k2)ζ(k3)〉∗ = N,IN,JN,K〈QI(k1)QJ(k2)QK(k3)〉∗

+
1

2
(DIDJN)N,KN,L

×
∫

d3q

(2π)3
〈QI(k1 − q)QK(k2)〉∗〈QJ(q)QL(k3)〉∗ + cyclic perms.

(4.90)

The bottom two lines on the righthand side give rise to the usual form of fNL, made

suitably covariant to reflect GIJ 6= δIJ . Adopting the conventional normalization, this

term contributes [13, 12, 14, 15, 16]:

〈ζ(k1)ζ(k2)ζ(k3)〉fNL = (2π)3δ(3) (k1 + k2 + k3)
H4
∗

k3
1k

3
2k

3
3

×
[
−6

5
fNL

(
N,IN

,I
)2
] [
k3

1 + k3
2 + k3

3

] (4.91)

where

fNL = −5

6

N ,AN ,BDADBN
(N,IN ,I)2 . (4.92)

The term on the first line of Eq. (4.90), proportional to the nonzero three-point

function for the field fluctuations, yields new contributions to the bispectrum. How-

ever, the three-point function 〈QIQJQK〉∗ is contracted with the symmetric object,

N,IN,JN,K . Hence we must consider each term within AIJK with care.

In general, the field-space indices, I, J,K, and the momentum-space indices, ki,

must be permuted as pairs: (I,k1), (J,k2), (K,k3). This is because the combina-

tions arise from contracting the external legs of the various propagators, such as

〈QI(k1)QJ(k2)〉 and 〈QJ(k2)QK(k3)〉, with the internal legs of each three-point ver-

tex [37, 57]. Let us first consider the special case of an equilateral arrangement in

momentum space, in which k1 = k2 = k3 = k∗. Then the term proportional to AIJK
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contributes

〈ζ(k1)ζ(k2)ζ(k3)〉A = (2π)3δ(3)(k1 + k2 + k3)
H4
∗

4k9
∗

×
√

2ε

Mpl

(N,IN,JN,K)
[
σ̂IGJK + σ̂JGKI + σ̂KGIJ

]
fA(k)

= (2π)3δ(3)(k1 + k2 + k3)
H4
∗

4k9
∗

× 3
√

2ε

Mpl

[(
σ̂IN,I

) (
N,AN

,A
)]
fA(k),

(4.93)

where fA(k) depends only on k. Taking the equilateral limit of the relevant expression

in Eq. (3.17) of [37], we find fA(k)→ −5k3
∗/4. Using Eqs. (4.22), (4.29), (4.30), and

(4.36), we also have

σ̂IN,I =
1

σ̇
ϕ̇IDIN =

1

σ̇
DtN =

H

σ̇
=

1

MplH
√

2ε
, (4.94)

and hence

〈ζ(k1)ζ(k2)ζ(k3)〉A = (2π)3δ(3)(k1 + k2 + k3)
H4
∗

4k9
∗

[
3

M2
pl

(
N,AN

,A
)]
fA(k). (4.95)

The term arising from BIJK contributes

〈ζ(k1)ζ(k2)ζ(k3)〉B = (2π)3δ(3)(k1 + k2 + k3)
H4
∗

4k9
∗

× 4Mpl

√
2ε

3
σ̂AN,IN,JN,K

[
RIJKA +RIKJA + cyclic

]
fB(k).

(4.96)

But from the symmetry properties of the Riemann tensor we have RIJKA = RKAIJ =

−RAKIJ , and from the first Bianchi identity,

RA[KIJ ] = 0. (4.97)
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The antisymmetry of the Riemann tensor in its last three indices means that any

contraction of the form

OIJKRAKIJ = 0 (4.98)

for objects OIJK that are symmetric in the indices I, J,K. In our case, we have

OIJK = N,IN,JN,K and thus every term in the square brackets of Eq. (4.96) including

the cyclic permutations may be put in the form of Eq. (4.98). We therefore find

〈ζ(k1)ζ(k2)ζ(k3)〉B = 0 (4.99)

identically in the equilateral limit.

The term arising from CIJK contributes

〈ζ(k1)ζ(k2)ζ(k3)〉C = (2π)3δ(3)(k1 + k2 + k3)
H4

4k9
∗

×
2M2

pl ε

3
σ̂Aσ̂BN,IN,JN,KR(I|AB|J ;K)fC(k).

(4.100)

In the equilateral limit, we find fC(k∗) ' 15k3
∗, based on the limit of the appropriate

expression in Eq. (3.17) of [37]. We may identify the nonzero terms in Eq. (4.100)

using the Bianchi identities. The first Bianchi identity is given in Eq. (4.97), and the

second Bianchi identity may be written

RAB[CD;E] = 0. (4.101)

Using the (anti)symmetry properties of the Riemann tensor and Eqs. (4.97) and

(4.101), together with the fact that the combinations OIJK ≡ N,IN,JN,K and ΩAB ≡

σ̂Aσ̂B are symmetric in their indices, we find the only nonzero term within Eq. (4.100)

to be

〈ζ(k1)ζ(k2)ζ(k3)〉C = (2π)3δ(3)(k1 + k2 + k3)
H4

4k9
∗

×
2M2

pl ε

3
σ̂Aσ̂BN,IN,JN,KRIABJ ;KfC(k).

(4.102)
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The final term to consider arises from DIJK . In particular, in the equilaterial limit

we have

〈ζ(k1)ζ(k2)ζ(k3)〉D = (2π)3δ(3)(k1 + k2 + k3)
H4

4k9
∗

×−
4M2

pl ε

3
σ̂Aσ̂BN,IN,JN,K

[
RIJKA;B +RIKJA;B + cyclic

]
fD(k).

(4.103)

Again we may use RIJKA = RKAIJ = −RAKIJ and Eq. (4.97) to put the first term

in square brackets in Eq. (4.103) in the form

OIJKRAKIJ ;B = 0 (4.104)

for OIJK symmetric. The same occurs for the second term in square brackets in Eq.

(4.103) and for all cyclic permutations of I, J,K. Hence we find

〈ζ(k1)ζ(k2)ζ(k3)〉D = 0 (4.105)

identically in the equilateral limit.

The new nonvanishing terms in Eqs. (4.95) and (4.102) remain considerably

smaller than the fNL term of Eq. (4.91) for the family of models of interest. The

term stemming from AIJK in Eq. (4.95) is proportional to (N,AN
,A), whereas the

fNL term is multiplied to the square of that term. For models of interest here, in

which the potential includes ridges, the gradient term is significant. For each of the

three trajectories of Fig. 2, for example, (N,AN
,A) = O(103) across the full range

N∗ = 60 to N∗ = 40. The gradient increases as the ratio of ξχ/ξφ increases, and hence

the fNL term will dominate the term coming from AIJK whenever |fNL| > 10−3.

For the term involving RIABJ ;K in Eq. (4.102), we may take advantage of the fact

that for two-field models the Riemann tensor for the field space may be written

RABCD = K(φI) [GACGBD − GADGBC ] , (4.106)
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where K(φI) is the Gaussian curvature. In two dimensions, K(φI) = 1
2
R(φI), where

R is the Ricci scalar. Since DKGAB = GAB;K = 0 and K(φI) is a scalar in the field

space, the covariant derivative of the Riemann tensor is simply proportional to the

ordinary (partial) derivative of the Gaussian curvature, K. In particular, we find

σ̂Aσ̂BN,IN,JN,KRIABJ ;K = −
(
ŝIJN,IN,J

) (
N,KK,K

)
, (4.107)

where ŝIJ ≡ GIJ − σ̂I σ̂J is the projection operator for directions orthogonal to the

adiabatic direction. We calculate K in Eq. (4.115). At early times, as the system

undergoes slow-roll inflation, we have ξφφ
2 + ξχχ

2 � M2
pl. For the trajectories as in

Fig. 2, moreover, the system evolves along a ridge such that ξφφ
2 � ξχχ

2. In that

case, we find

K ' 1

108ξ2
φM

2
pl

[1 + 6(ξφ + ξχ) + 36ξφ(ξχ − ξφ)] ∼ φ0, χ0, (4.108)

and hence K,I ∼ 0. Thus, in addition to being suppressed by the slow-roll factor, ε,

the contribution to the primordial bispectrum from the RIABJ ;K term is negligible in

typical scenarios of interest, because of the weak variation of the Gaussian curvature

of the field-space manifold around the times N∗ = 60 to N∗ = 40 efolds before the end

of inflation. This matches the behavior shown in Fig. 4-5: the field-space manifold is

nearly flat until one reaches the vicinity of φ, χ ∼ 0, near the end of inflation.

Though these results were derived in the equilateral limit, for which k1 = k2 =

k3 = k∗, we expect the same general pattern to apply more generally, for example,

to the squeezed local configuration in which k1 ' k2 = k∗ and k3 ' 0. As one

departs from the equilateral limit the exact cancellations of Eqs. (4.99) and (4.105)

no longer hold, though each of the components of the field-space Riemann tensor

and its gradients remains small between N∗ = 60 to N∗ = 40 efolds before the end

of inflation for models of the class we have been studying here. Meanwhile, the k-

dependent functions, fI(ki) in Eq. (4.87), remain of comparable magnitude to the

k-dependent contribution in Eq. (4.91) [37] — each contributes as [O(1)−O(10)]×k3
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— while the coefficients of the additional terms arising from AIJK , BIJK , CIJK , and

DIJK are further suppressed by factors of ε. For models of the class we have been

studying here, we therefore expect the (covariant version of the) usual fNL term

to dominate the primordial bispectrum. Moreover, given the weak dependence of

the Gaussian curvature K(φI) with φI between N∗ = 60 and N∗ = 40, we do not

expect any significant contributions to the running of fNL with scale to come from

the curvature of the field-space manifold, given the analysis in [38].

We calculate the magnitude of fNL numerically, following the definition in Eq.

(4.92). The discrete derivative of N along the φ direction is constructed as

N,φ =
N(φ+ ∆φ, χ)−N(φ−∆φ, χ)

2∆φ
, (4.109)

where N(φ, χ) is the number of efolds between t∗ and tend, where tend is determined

by the physical criterion that ä = 0 (equivalent to ε = 1). For each quantity, such as

N(φ+ ∆φ, χ), we re-solve the exact background equations of motion numerically and

measure how the small variation in field values at t∗ affects the number of efolds of

inflation between t∗ and the time at which ä = 0. The discrete derivatives along the

other field directions and the second derivatives are constructed in a corresponding

manner. Covariant derivatives are calculated using the discrete derivatives defined

here and the field-space Christoffel symbols evaluated at background order. For the

trajectories of interest, the fields violate slow-roll late in their evolution (after they

have fallen off the ridge of the potential), but they remain slowly rolling around the

time t∗; if they did not, as we saw in Section IV, then the predictions for the spectral

index, ns(t∗) would no longer match observations. We therefore do not consider

separate variations of the field velocities at the time t∗, since in the vicinity of t∗ they

are related to the field values. Because the second derivatives of N are very sensitive

to the step sizes ∆φ and ∆χ, we work with 32-digit accuracy, for which our numerical

results converge for finite step-sizes in the range ∆φ,∆χ = {10−6, 10−5}.

For the three trajectories of Fig. 4-2, we find the middle case, trajectory 2, yields

a value of fNL of particular interest: |fNL| = 43.3 for fiducial scales k∗ that first
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Figure 4-11: The non-Gaussianity parameter, |fNL|, for the three trajectories of Fig. 4-
2: trajectory 1 (orange dotted line); trajectory 2 (solid red line); and trajectory 3 (black
dashed line). Changing the fields’ initial conditions by a small amount leads to dramatic
changes in the magnitude of the primordial bispectrum.

crossed the Hubble radius N∗ = 60 efolds before the end of inflation. Note the strong

sensitivity of fNL to the fields’ initial conditions: varying the initial value of χ(τ0) by

just |∆χ(τ0)| = 10−3 changes the fields’ evolution substantially — either causing the

fields to roll off the hill too early (trajectory 1) or not to turn substantially in field

space at all (trajectory 3) — both of which lead to negligible values for fNL. See Fig.

4-11.

4.6 Conclusions

We have demonstrated that multifield models with nonminimal couplings generically

produce the conditions required to generate primordial bispectra of observable mag-

nitudes. Such models satisfy at least three of the four criteria identified in previous

reviews of primordial non-Gaussianities [17, 15], namely, the presence of multiple

fields with noncanonical kinetic terms whose dynamics temporarily violate slow-roll

evolution.

Two distinct features are relevant in this class of models: the conformal stretching
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of the effective potential in the Einstein frame, which introduces nontrivial curvature

distinct from features in the Jordan-frame potential; and nontrivial curvature of the

induced manifold for the field space in the Einstein frame. So long as the nonminimal

couplings are not precisely equal to each other, the Einstein-frame potential will

include bumps or ridges that will tend to cause neighboring trajectories of the fields

to diverge over the course of inflation. Such features of the potential are generic to

this class of models, and hence are strongly motivated by fundamental physics.

We have found that the curvature of the potential dominates the effects of interest

at early and intermediate stages of inflation, whereas the curvature of the field-space

manifold becomes important near the end of inflation (and hence during preheating).

The generic nature of the ridges in the Einstein-frame potential removes one of the

kinds of fine-tuning that have been emphasized in recent studies of non-Gaussianities

in multifield models, namely, the need to introduce potentials of particular shapes

[16, 29, 31, 32]. (We are presently performing an extensive sweep of parameter space

to investigate how fNL behaves as one varies the couplings ξI , λI , and mI . This

will help determine regions of parameter space consistent with current observations.)

On the other hand, much as in [16, 29, 31, 32], we find a strong sensitivity of the

magnitude of the bispectrum to the fields’ initial conditions. Thus the production

during inflation of bispectra with magnitude |fNL| ∼ O(50) requires fine-tuning of

initial conditions such that the fields begin at or near the top of a ridge in the potential.

A subtle question that deserves further study is whether the formalism and results

derived in this chapter show any dependence on frame. Although we have developed

a formalism that is gauge-invariant with respect to spacetime gauge transformations,

and covariant with respect to the curvature of the field-space manifold, we have

applied the formalism only within the Einstein frame. The authors of [48] recently

demonstrated that gauge-invariant quantities such as the curvature perturbation, ζ,

can behave differently in the Jordan and Einstein frames for multifield models with

nonminimal couplings. The question of possible frame-dependence of the analysis

presented here remains under study. Whether quantities such as fNL show significant

evolution during reheating for this family of models, as has been emphasized for
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related models [31, 58], likewise remains a subject of further research.
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4.8 Appendix

4.8.1 Field-Space Metric and Related Quantities

Given f(φI) in Eq. (4.17) for a two-field model, the field-space metric in the Einstein

frame, Eq. (4.6), takes the form

Gφφ =

(
M2

pl

2f

)[
1 +

3ξ2
φφ

2

f

]
,

Gφχ = Gχφ =

(
M2

pl

2f

)[
3ξφξχφχ

f

]
,

Gχχ =

(
M2

pl

2f

)[
1 +

3ξ2
χχ

2

f

]
.

(4.110)

The components of the inverse metric are

Gφφ =

(
2f

M2
pl

)[
2f + 6ξ2

χχ
2

C

]
,

Gφχ = Gχφ = −

(
2f

M2
pl

)[
6ξφξχφχ

C

]
,

Gχχ =

(
2f

M2
pl

)[
2f + 6ξ2

φφ
2

C

]
,

(4.111)
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where we have defined the convenient combination

C(φ, χ) ≡M2
pl + ξφ(1 + 6ξφ)φ2 + ξχ(1 + 6ξχ)χ2

= 2f + 6ξ2
φφ

2 + 6ξ2
χχ

2.
(4.112)

The Christoffel symbols for our field space take the form

Γφφφ =
ξφ(1 + 6ξφ)φ

C
− ξφφ

f
,

Γφχφ = Γφφχ = −ξχχ
2f

,

Γφχχ =
ξφ(1 + 6ξχ)φ

C
,

Γχφφ =
ξχ(1 + 6ξφ)χ

C
,

Γχφχ = Γχχφ = −ξφφ
2f

,

Γχχχ =
ξχ(1 + 6ξχ)χ

C
− ξχχ

f

(4.113)

For two-dimensional manifolds we may always write the Riemann tensor in the

form

RABCD = K(φI) [GACGBD − GADGBC ] , (4.114)

where K(φI) is the Gaussian curvature. In two dimensions, K(φI) = 1
2
R(φI), where

R(φI) is the Ricci scalar. Given the field-space metric of Eq. (4.110), we find

R(φI) = 2K(φI) =
2

3M2
plC

2

[
(1 + 6ξφ)(1 + 6ξχ)(4f 2)− C2

]
. (4.115)
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Chapter 5

Multifield Dynamics of Higgs

Inflation

Higgs inflation is a simple and elegant model in which early-universe inflation is

driven by the Higgs sector of the Standard Model. The Higgs sector can support

early-universe inflation if it has a large nonminimal coupling to the Ricci spacetime

curvature scalar. At energies relevant to such an inflationary epoch, the Goldstone

modes of the Higgs sector remain in the spectrum in renormalizable gauges, and hence

their effects should be included in the model’s dynamics. We analyze the multifield

dynamics of Higgs inflation and find that the multifield effects damp out rapidly

after the onset of inflation, because of the gauge symmetry among the scalar fields

in this model. Predictions from Higgs inflation for observable quantities, such as the

spectral index of the power spectrum of primordial perturbations, therefore revert to

their familiar single-field form, in excellent agreement with recent measurements. The

methods we develop here may be applied to any multifield model with nonminimal

couplings in which the N fields obey an SO(N ) symmetry in field space.

5.1 Introduction

The recent discovery at CERN of a scalar boson with Higgs-like properties [1] height-

ens the question of whether the Standard Model Higgs sector could have played inter-
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esting roles in the early universe, at energies well above the electroweak symmetry-

breaking scale. In particular, the suggestive evidence for the Higgs boson raises the

possibility to return to an original motivation for cosmological inflation, namely, to

realize a phase of early-universe acceleration driven by a scalar field that is part of a

well-motivated model from high-energy particle physics [2, 3, 4].

Higgs inflation [5] represents an elegant approach to building a workable inflation-

ary model based on realistic ingredients from particle physics. In this model, a large

nonminimal coupling of the Standard Model electroweak Higgs sector drives a phase

of early-universe inflation. Such nonminimal couplings are generic: they arise as nec-

essary renormalization counterterms for scalar fields in curved spacetime [6, 7, 8, 9].

Moreover, renormalization-group analyses indicate that for models with matter akin

to the Standard Model, the nonminimal coupling, ξ, should grow without bound

with increasing energy scale [9]. Previous analyses of Higgs inflation have found

that ξ typically grows by at least an order of magnitude between the electroweak

symmetry-breaking scale and the inflationary scale [10, 11, 12].

The Standard Model Higgs sector includes four scalar degrees of freedom: the

(real) Higgs scalar and three Goldstone modes. In renormalizable gauges, all four

scalar fields remain in the spectrum at high energies [13, 14, 12, 16, 17]. Thus the

dynamics of Higgs inflation should be studied as a multifield model with nonminimal

couplings. An important feature of multifield models, which is absent in single-

field models, is that the fields’ trajectories can turn within field space as the system

evolves. Such turns are a necessary (but not sufficient) condition for multifield models

to depart from the empirical predictions of simple single-field models [18, 19, 20, 21,

22, 23, 24].

In this chapter we analyze the background dynamics of Higgs inflation, in which all

four scalar fields of the Standard Model electroweak Higgs sector have nonminimal

couplings. We find that multifield dynamics damp out quickly after the onset of

inflation, before perturbations on cosmologically relevant length scales first cross the

Hubble radius. As regards observable quantities like the power spectrum of primordial

perturbations, the model therefore behaves effectively as a single-field model. The
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multifield dynamics remain subdominant in Higgs inflation because of the particular

symmetries of the Higgs sector. Closely related models, which lack those symmetries,

can produce conspicuous departures from the single-field case [24].

We are principally interested here in the behavior of classical background fields

and long-wavelength perturbations, which behave essentially classically. Therefore we

bracket, for this analysis, the question of the unitarity of Higgs inflation. Conflicting

conclusions have been advanced regarding whether the appropriate renormalization

cut-off scale for this model should be Mpl, Mpl/
√
ξ, or Mpl/ξ, where Mpl ≡ (8πG)−1/2

is the reduced Planck mass [14, 15, 12, 16, 25]. Even if Higgs inflation might conclu-

sively be shown to violate unitarity, the techniques developed here for the analysis

of multifield dynamics will be relevant for related models that incorporate multiple

scalar fields with nonminimal couplings and symmetries (such as gauge symmetries)

that enforce specific relations among the couplings of the model. In particular, we

expect that multifield effects in models with N scalar fields, in which the scalar fields

obey an SO(N ) symmetry, should damp out rapidly.

In Section II, we briefly introduce the multifield formalism and establish notation.

We apply the formalism to Higgs inflation in Section III, and in Section IV we analyze

the behavior of the turn-rate, which quantifies the rate at which the background

trajectory of the system deviates from a single-field case. We study how quickly

the turn-rate damps to zero, both analytically and numerically, confirming that for

Higgs inflation the turn-rate becomes negligible within a few efolds after the start

of inflation. In Section V we turn to implications for observable features of the

primordial power spectrum, confirming that multifield Higgs inflation reproduces the

empirical predictions of previous single-field studies. Concluding remarks follow in

Section VI.

5.2 Multifield Dynamics

Following the approach established in [24], we consider models with N scalar fields

in (3 + 1) spacetime dimensions. We use Greek letters to label spacetime indices,
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µ, ν = 0, 1, 2, 3; lower-case Latin letters to label spatial indices, i, j = 1, 2, 3; and

upper-case Latin letters to label field-space indices, I, J = 1, 2, ...,N . We also work

in terms of the reduced Planck mass, Mpl ≡ (8πG)−1/2. In the Jordan frame, the

action takes the form

SJordan =

∫
d4x
√
−g̃
[
f(φI)R̃− 1

2
δIJ g̃

µν∂µφ
I∂νφ

J − Ṽ (φI)

]
. (5.1)

Here f(φI) is the nonminimal coupling function, and we use tildes for quantities in

the Jordan frame. We perform a conformal transformation to the Einstein frame by

rescaling the spacetime metric tensor,

gµν(x) =
2

M2
pl

f(φI(x)) g̃µν(x), (5.2)

so that the action in the Einstein frame becomes [26]

SEinstein =

∫
d4x
√
−g
[
M2

pl

2
R− 1

2
GIJgµν∂µφI∂νφJ − V (φI)

]
. (5.3)

The potential in the Einstein frame, V , is related to the Jordan-frame potential, Ṽ ,

as

V (φI) =
M4

pl

4f 2(φI)
Ṽ (φI), (5.4)

and the coefficients of the noncanonical kinetic terms are [27, 26]

GIJ(φK) =
M2

pl

2f(φI)

[
δIJ +

3

f(φI)
f,If,J

]
, (5.5)

where f,I = ∂f/∂φI . The nonminimal couplings induce a field-space manifold in the

Einstein frame that is not conformal to flat; GIJ serves as a metric on the curved

manifold [26]. Therefore we adopt the covariant approach of [24], which respects the

curvature of the field-space manifold.

Varying Eq. (5.3) with respect to φI yields the equation of motion,

�φI + gµνΓIJK∂µφ
J∂νφ

K − GIKV,K = 0, (5.6)
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where �φI ≡ gµνφI;µ;ν and ΓIJK(φL) is the Christoffel symbold for the field-space

manifold, calculated in terms of GIJ . We expand each scalar field to first order

around its classical background value,

φI(xµ) = ϕI(t) + δφI(xµ), (5.7)

and also expand the scalar degrees of freedom of the spacetime metric to first order

around a spatially flat Friedmann-Robertson-Walker (FRW) metric [28, 29, 30]

ds2 = −(1 + 2A)dt2 + 2a(∂iB)dxidt+ a2 [(1− 2ψ)δij + 2∂i∂jE] dxidxj, (5.8)

where a(t) is the scale factor. We further introduce a covariant derivative with respect

to the field-space metric and a directional derivative along the background fields’

trajectory, such that for any vector AI in the field-space manifold we have

DJAI = ∂JA
I + ΓIJKA

K ,

DtAI ≡ ϕ̇JDJAI = ȦI + ΓIJKA
J ϕ̇K ,

(5.9)

where overdots denote derivatives with respect to cosmic time, t.

To background order, Eq. (5.6) becomes

Dtϕ̇I + 3Hϕ̇I + GIKV,K = 0, (5.10)

where all quantities involving GIJ(φK), V (φI), and their derivatives are evaluated at

background order in the fields: GIJ → GIJ(ϕK) and V → V (ϕI). Following [18] we

distinguish between adiabatic and entropic directions in field space by introducing a

unit vector

σ̂I ≡ ϕ̇I

σ̇
, (5.11)

where

σ̇ ≡ |ϕ̇I | =
√
GIJ ϕ̇Iϕ̇J . (5.12)
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The operator

ŝIJ ≡ GIJ − σ̂I σ̂J (5.13)

projects onto the subspace orthogonal to σ̂I . Eq. (5.10) then simplifies to

σ̈ + 3Hσ̇ + V,σ = 0 (5.14)

where

V,σ ≡ σ̂IV,I . (5.15)

The background dynamics likewise take the simple form

H2 =
1

3M2
pl

[
1

2
σ̇2 + V

]
,

Ḣ = − 1

2M2
pl

σ̇2,

(5.16)

where H ≡ ȧ/a is the Hubble parameter.

We may also separate the perturbations into adiabatic and entropic directions.

Working to first order in perturbations, we introduce the gauge-invariant Mukhanov-

Sasaki variables [28, 29, 30, 31]

QI ≡ δφI +
ϕ̇I

H
ψ (5.17)

and the projections

Qσ ≡ σ̂IQ
I ,

δsI ≡ ŝIJQ
J .

(5.18)

The gauge-invariant curvature perturbation may be defined asRc ≡ ψ−[H/(ρ+p)]δq,

where the perturbed energy-momentum flux is given by T 0
i = ∂iδq [29, 30]. We then

find that Rc is proportional to Qσ [24]

Rc =
H

σ̇
Qσ. (5.19)
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Expanding Eq. (5.6) to first order and using the projections of Eq. (5.18), the

perturbations Qσ and δsI obey [24]

Q̈σ + 3HQ̇σ +

[
k2

a2
+Mσσ − ω2 − 1

M2
pla

3

d

dt

(
a3σ̇2

H

)]
Qσ

= 2
d

dt

(
ωJδs

J
)
− 2

(
V,σ
σ̇

+
Ḣ

H

)(
ωJδs

J
) (5.20)

and

D2
t δs

I +
[
3HδIJ + 2σ̂IωJ

]
DtδsI +

[
k2

a2
δIJ +MI

J − 2σ̂I
(
MσJ +

σ̈

σ̇
ωJ

)]
δsJ

= −2ωI

[
Q̇σ +

Ḣ

H
Qσ −

σ̈

σ̇
Qσ

]
,

(5.21)

where the mass-squared matrix is

MI
J ≡ GIK (DJDKV )−RI

LMJ ϕ̇
Lϕ̇M ,

MσJ ≡ σ̂IMI
J , Mσσ ≡ σ̂I σ̂

JMI
J .

(5.22)

The turn-rate [23, 24] is given by

ωI ≡ Dtσ̂I = − 1

σ̇
V,K ŝ

IK , (5.23)

and ω ≡ |ωI |. Eqs. (5.20) and (5.21) decouple if the turn-rate vanishes, ωI = 0. In

that case, Qσ evolves just as in the single-field case [28, 29, 30, 23, 24]. Given Eq.

(5.19), that means that the power spectrum of primordial perturbations, PR, would

also evolve as in single-field models. Thus a necessary (but not sufficient) condition

for multifield models of this form to deviate from the empirical predictions of simple

single-field models is for the turn-rate to be nonnegligible for some duration of the

fields’ evolution, ωI 6= 0.
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5.3 Application to Higgs Inflation

The matter contribution to Higgs inflation [5] consists of the Standard Model elec-

troweak Higgs sector, which may be written as a doublet of complex scalar fields,

h =

 h+

h0

 . (5.24)

The complex fields h+ and h0 may be further decomposed into (real) scalar degrees

of freedom,

h+ =
1√
2

(
χ1 + iχ2

)
,

h0 =
1√
2

(
φ+ iχ3

)
,

(5.25)

where φ is the Higgs scalar and χa (with a = 1, 2, 3) are the Goldstone modes. In the

Jordan frame, the potential Ṽ (φI) depends only on the combination

h†h =
1

2

[
φ2 + χ2

]
, (5.26)

where χ = (χ1, χ2, χ3) is a 3-vector of the Goldstone fields. In particular, the

symmetry-breaking potential may be written

Ṽ (φI) =
λ

4

(
φ2 + χ2 − v2

)2
, (5.27)

in terms of the vacuum expectation value, v. For the Standard Model, v = 246 GeV

�Mpl. For Higgs inflation, the nonminimal coupling function is given by

f(φI) =
M2

0

2
+ ξh†h =

1

2

[
M2

0 + ξ
(
φ2 + χ2

)]
, (5.28)

where M2
0 ≡M2

pl− ξv2 and ξ > 0 is the dimensionless nonminimal coupling constant.

In Higgs inflation, we take ξ ∼ O(104) [5], and therefore we may safely set M2
0 =

M2
pl. In the Einstein frame, the potential gets stretched by the nonminimcal coupling
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function f(φI) according to Eq. (5.4). Given Eqs. (5.27) and (5.28), this yields

V (φI) =
λM4

pl (φ2 + χ2 − v2)
2

4
[
M2

pl + ξ (φ2 + χ2)
]2 . (5.29)

The model is thus symmetric under rotations among φ and χa that preserve the mag-

nitude
√
φ2 + χ2. When written in the “Cartesian” field-space basis of Eq. (5.25), in

other words, the SU(2) electroweak gauge symmetry manifests as an SO(4) spherical

symmetry in field space.

For any model with N real-valued scalar fields that respects an SO(N ) sym-

metry, the background dynamics depend on just three initial conditions: the initial

magnitude and initial velocity along the radial direction in field space, and the initial

velocity perpendicular to the radial direction. Without loss of generality, therefore,

we may analyze the background dynamics of Higgs inflation in terms of just two

real-valued scalar fields, φ and χ, and we may set χ(0) = 0, specifying only initial

values for φ(0), φ̇(0), and χ̇(0). This reduction in the effective number of degrees of

freedom stems entirely from the gauge symmetry of the Standard Model electroweak

sector. The remaining dependence on χ̇, meanwhile, distinguishes the background

dynamics from a genuinely single-field model, in which one neglects the Goldstone

fields altogether. For the remainder of this chapter, we exploit the gauge symmetry

to consider only a single Goldstone mode, χ→ χ, reducing the problem to that of a

two-field model. Then f(φI) and V (φI) depend on the background fields only in the

combination

r ≡
√
φ2 + χ2. (5.30)

Previous analyses [5, 27, 32, 33, 34] which considered single-field versions of this

model (neglecting the Goldstone modes) found successful inflation for field values

ξφ2 � M2
pl. We confirm this below for the multifield case including the Goldstone

modes. The reason is easy to see from Eq. (5.29). In the limit ξ(φ2+χ2) = ξr2 �M2
pl,
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Figure 5-1: The potential for Higgs inflation in the Einstein frame, V (φ, χ). Note the
flattening of the potential for large field values, which is quite distinct from the behavior of
the Jordan-frame potential, Ṽ (φ, χ) in Eq. (5.27).

the potential in the Einstein frame becomes very flat, approaching

V (φI)→
λM4

pl

4ξ2

[
1 +O

(
M2

pl

ξr2

)]
. (5.31)

See Fig. 5-1.

Given ξ ∼ 104, the initial energy density for this model lies well below the Planck

scale, ρ ' V ' λM4
pl/ξ

2 ∼ 10−9M4
pl. In fact, as we will see, successful slow-roll in-

flation (producing at least 70 efolds of inflation) occurs for initial values of the fields

below the Planck scale, unlike in models of chaotic inflation with polynomial poten-

tials that lack nonminimal couplings. Moreover, as emphasized in [5], the flattening

of the potential in the Einstein frame at large field values makes Higgs inflation easily

compatible with the latest observations of the spectral index, ns. Ordinary chaotic

inflation with a λφ4 potential and minimal coupling, on the other hand, yields a

spectral index outside the 95% confidence interval for the best-fit value of ns [35, 36].

Below we confirm this behavior for Higgs inflation even when the Goldstone degrees

of freedom are included.

The field-space metric GIJ is determined by the nonminimal coupling function,

f(φI), and its derivatives. Explicit expressions for the components of GIJ for a two-
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field model with arbitrary couplings, ξφ and ξχ, are given in the Appendix of [24]. In

the case of Higgs inflation, the SU(2) gauge symmetry enforces ξφ = ξχ = ξ. Given

this symmetry, the convenient combination, C(φI), introduced in the Appendix of

[24] becomes

C(φI) = 2f + 6ξ2
(
φ2 + χ2

)
= M2

pl + ξ(1 + 6ξ)r2. (5.32)

For ξφ = ξχ = ξ, the Ricci curvature scalar for the field-space manifold, as calculated

in [24], takes the form

R =
4ξ

C2

[
C + 3ξM2

pl

]
. (5.33)

During inflation, when ξr2 �M2
pl, this reduces to

R → 2

3ξr2
�M−2

pl , (5.34)

indicating that the field-space manifold has a spherical symmetry with radius of

curvature rc ∼
√
ξ r. As shown in [24], the curvature of the field-space manifold

remains negligible in such models until the fields satisfy ξr2 � M2
pl, near the end of

inflation.

From Eq. (5.10), and using the expressions for GIJ and ΓIJK in the Appendix of

[24], the equation of motion for the background field φ(t) takes the form

φ̈+ 3Hφ̇+
ξ(1 + 6ξ)

C
φ
(
φ̇2 + χ̇2

)
− ḟ

f
φ̇+ λM4

pl

φ(φ2 + χ2)

2fC
= 0. (5.35)

The equation for χ follows upon replacing φ←→ χ. Using Eq. (5.12), the square of

the fields’ velocity vector becomes

σ̇2 =

(
M2

pl

2f

)[(
φ̇2 + χ̇2

)
+

3ḟ 2

f

]
, (5.36)

and the gradient of the potential in the direction σ̂I becomes

σ̂IV,I = V,σ =
λM6

pl (φ2 + χ2)

ξ(2f)3

ḟ

σ̇
. (5.37)
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We may verify that multifield Higgs inflation exhibits slow-roll behavior for typical

choices of couplings and initial conditions. First consider the single-field case, in which

we set χ = χ̇ = 0. Near the start of inflation (with ξφ2 � M2
pl), the terms in Eq.

(5.35) that stem from the field’s noncanonical kinetic term take the form

ξ(1 + 6ξ)

C
φφ̇2 − ḟ

f
φ̇→ − φ̇

2

φ
. (5.38)

The usual slow-roll requirement for single-field models, |φ̇| � |Hφ|, ensures that the

terms in Eq. (5.38) remain much less than the 3Hφ̇ term in Eq. (5.35). Neglecting

φ̈, the single-field, slow-roll limit of Eq. (5.35) becomes

3Hφ̇ ' −
λM4

pl

6ξ3φ
, (5.39)

or, upon using H2 ' V/(3M2
pl),

φ̇ ' −
√
λM3

pl

3
√

3 ξ2φ
. (5.40)

Setting ξ = 104 and fixing the initial field velocity by Eq. (5.40) requires φ(0) ≥

0.1Mpl to yield N ≥ 70 efolds of inflation in the single-field case.

A much broader range of initial conditions yields N ≥ 70 efolds in the two-field

case. From Eq. (5.16) we see that inflation (with ä > 0) requires σ̇2 � V . Given the

SO(N ) symmetry of the model, we may set χ(0) = 0 without loss of generality, and

parameterize the fields’ initial velocities as

φ̇(0) =

√
λM3

pl

3
√

3 ξ2φ(0)
x,

χ̇(0) =

√
λM3

pl

3
√

3 ξ2φ(0)
y

(5.41)

in terms of dimensionless constants x and y. (The single-field case corresponds to

x = −1, y = 0.) Near the start of inflation, when ξr2 = ξφ2 � M2
pl, Eq. (5.36)
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becomes

σ̇2|χ(0)=0 →
(
λM4

pl

4ξ2

)(
M2

pl

ξφ2(0)

)2
4

27ξ

[
(1 + 6ξ)x2 + y2

]
. (5.42)

The first term in parentheses is just the value of the potential, V , near the start

of inflation, as given in Eq. (5.31). The second term in parentheses is small near

the beginning of inflation, given ξr2 � M2
pl. Hence the initial values for φ̇ and χ̇,

parameterized by the coefficients x and y, may be substantially larger than in the

single-field case while still keeping σ̇2 � V .

Fig. 5-2 shows H(t), φ(t), and χ(t) for a scenario in which φ̇(0) and χ̇(0) greatly

exceed the single-field relation of Eq. (5.40): |x| = 102 and |y| = 106. As is evident

in the figure, the large initial velocities cause the fields to oscillate rapidly. The extra

kinetic energy makes the initial value of H(t) larger than in the corresponding single-

field case. The increase in H, in turn, causes the fields’ velocities to damp out even

more quickly, due to the 3Hφ̇ and 3Hχ̇ Hubble-drag terms in each field’s equation of

motion. Thus the system rapidly settles into a slow-roll regime that continues for 70

efolds. As shown in Fig. 3, we may achieve N ≥ 70 efolds with even smaller initial

field values by making the initial field velocities correspondingly larger.

5.4 Turn Rate

The components of the turn-rate, ωI in Eq. (5.23), take the form

ωφ = −
λM4

pl

σ̇

r2

2f

[
φ

C
−
M2

pl

4f 2

φ̇

σ̇2

(
φφ̇+ χχ̇

)]
. (5.43)

The other component, ωχ, follows upon replacing φ ←→ χ. The length of the turn-

rate vector is given by

ω = |ωI | =
√
GIJωIωJ =

1

σ̇

√
ŝKMV,KV,M , (5.44)
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Figure 5-2: The evolution of H(t) (black dashed line) and the fields φ(t) (red solid line) and
χ(t) (blue dotted line). The fields are measured in units of Mpl and we use the dimensionless
time variable τ =

√
λ Mplt. We have plotted 103H so that its scale is commensurate with

the magnitude of the fields. The Hubble parameter begins large, H(0) = 8.1 × 10−4, but
quickly falls by a factor of 30 as it settles to its slow-roll value of H = 2.8× 10−5. Inflation
proceeds for ∆τ = 2.5× 106 to yield N = 70.7 efolds of inflation. The solutions shown here
correspond to ξ = 104, φ(0) = 0.1, χ(0) = 0, φ̇(0) = −2× 10−6, and χ̇(0) = 2 × 10−2. For
the same value of φ(0), Eq. (5.40) corresponds to φ̇(0) = −2×10−8 for the single-field case.

where the final expression follows upon using the definition of ωI in Eq. (5.23) and

the identity ŝKM = ŝKAŝ
MA, which follows from Eq. (5.13). We find

σ̇2ω2 = ŝKMV,KV,M =
λ2M10

pl

(2f)5C
r6
[
C − ξ2r2

]
− (V,σ)2 . (5.45)

The evolution of the turn rate for typical initial conditions is shown in Fig. 5-4.

In order to analyze the evolution of the background fields, it is easier to move

from Cartesian to polar coordinates, in which the angular velocity and turn rate have

more intuitive behavior. In addition to the radius, r2 = φ2 + χ2, we also define the

angle

γ ≡ arctan

(
χ

φ

)
. (5.46)

Single-field trajectories correspond to constant γ(t). In the polar coordinate system,
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Figure 5-3: Contour plots showing the number of efolds of inflation as one varies the fields’
initial conditions, keeping ξ = 104 fixed. In each panel, the vertical axis is χ̇(0) and the
horizontal axis is φ̇(0). The panels correspond to φ(0) = 10−1 Mpl (top left), 10−2 Mpl

(top right), 5 × 10−3 Mpl (bottom left) and 10−4 Mpl (bottom right), and we again use
dimensionless time τ =

√
λMplt. In each panel, the line for N = 70 efolds is shown in bold.

Note how large these initial velocities are compared to the single-field expectation of Eq.
(5.40).
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Figure 5-4: Evolution of the turn rate. The left picture shows the evolution with initial
conditions as in Fig. 5-2. The right figure has initial conditions φ(0) = 0.1, χ(0) = φ̇(0) = 0,
and χ̇(0) = 2× 10−5 in units of Mpl and τ =

√
λMplt. In both cases we set ξ = 104. Recall

from Fig. 5-2 that inflation lasts until τend ∼ O(106) for these initial conditions; hence we
find that ω damps out within a few efolds after the start of inflation.

the background dynamics of Eq. (5.16) may be written

H2 =
1

12f

[
ṙ2 + r2γ̇2 +

3ξ2

f
r2ṙ2 +

λM2
pl

2

r4

(M2
pl + ξr2)

]
,

Ḣ = − 1

4f

[
ṙ2 + r2γ̇2 +

3ξ2

f
r2ṙ2

]
.

(5.47)

The equations of motion become

r̈ + 3Hṙ − rγ̇2 +
ξ(1 + 6ξ)

C
r
(
ṙ2 + r2γ̇2

)
− ξ

f
ṙ2r + λM4

pl

r3

2fC
= 0 (5.48)

and

γ̈ +

(
3H + 2

ṙ

r

M2
pl

(M2
pl + ξr2)

)
γ̇ = 0. (5.49)

In this new basis the turn rate may be written compactly as

ω2 =
λ2M8

pl

2fC

(
r4γ̇

r2γ̇2(M2
pl + ξr2) + ṙ2C

)2

(5.50)

This expression vanishes in both the limits |γ̇| → 0 and |γ̇| → ∞: if the angular

velocity is either too large or too small, the fields’ evolution reverts to effectively

190



single-field behavior (either purely radial motion or purely angular motion). Of the

two limits, however, only pure-radial motion is stable. It is ultimately the evolution

of γ(t) that will determine the fate of the turn rate.

It is obvious from Eq. (5.49) that the line γ̇ = 0 is the fixed point of the angular

motion. The character of the fixed point is defined by the sign of the γ̇ term, which

is less trivial. It can be negative close to r = 0 due to the high curvature of the field

manifold and the small value of the Hubble parameter, but in the slow-roll regime of

the radial field, with ξr2 �M2
pl, the sign of γ̇ is safely positive. That means that we

can treat the angular motion as damped throughout inflation.

For large nonminimal coupling and/or slow rolling of the radial field the last term

in Eq. (5.49) may be neglected, which yields

γ̈ + 3Hγ̇ = 0. (5.51)

The only complicated object in Eq. (5.51) is the Hubble parameter, which may be

simplified in the limit of a slow rolling radial field and large nonminimal coupling

upon making use of Eq. (5.47):

H ' 1√
6ξ

√
γ̇2 +

λM2
pl

2ξ
. (5.52)

Then Eq. (5.51) becomes

γ̈ +
3√
6ξ

√
γ̇2 +

λM2
pl

2ξ
γ̇ ' 0. (5.53)

Although Eq. (5.53) can be solved exactly (see the Appendix), it is instructive to

examine the two limits of large and small γ̇, which provide most of the relevant

information.

For small angular velocity, γ̇ �
√
λM2

pl/2ξ, we recover the linear limit

γ̈ +
3

ξ

√
λM2

pl

12
γ̇ ' 0 (5.54)
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with the solution

γ̇ = γ̇0 exp

[
−
√

3λ

2ξ
Mpl t

]
∝ e−3N , (5.55)

where N = Ht. It is very easy to measure time in efolds in this limit, since the

Hubble parameter is nearly constant. Eq. (5.55) illustrates that any small, initial

angular velocity will be suppressed within a couple of efolds, or equivalently within a

time of the order of ξ/(
√
λMpl).

In the opposite limit, γ̇ �
√
λM2

pl/2ξ, which we call the nonlinear regime, Eq.

(5.53) becomes

γ̈ + 3
1√
6ξ
γ̇2 ' 0 (5.56)

with the solution

γ̇ =

[
1

γ̇0

+
3t√
6ξ

]−1

. (5.57)

Given Eqs. (5.55) and (5.57), we may follow the evolution of any initial angular

velocity. If γ̇ begins large enough it will start in the nonlinear regime, where it will

stay until it becomes of order
√
λM2

pl/2ξ. We parameterize the cross-over regime as

γ̇ =
√
λMpl

z√
2ξ

(5.58)

where z is some constant of order one. The cross-over time may then be estimated

by inverting Eq. (5.57) to find

tnl =

√
6ξ

3

[√
2ξ

λ

1

Mpl z
− 1

γ̇0

]
. (5.59)

There exists an upper limit on the time it takes for the angular velocity to decay,

namely
√
λMpl tnl,max =

2√
3

ξ

z
. (5.60)

We have verified all of these analytic predictions using numerical calculations of

the exact equations for the coupled two-field system in an expanding universe. In

Fig. 5-5 we plot the number of efolds from the beginning of inflation at which the
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turn rate reaches its maximum value, as we vary the fields’ initial velocities. Note

that for any combination of initial conditions that yields at least Ntot = 70 efolds, ω

reaches its maximum value between N(ωmax) = 3.5 and 5 efolds from the start of the

fields’ evolution (for the range of initial conditions considered there). In Fig. 5-6 we

plot ω as a function of time as we vary the initial angular velocity, γ̇(0). The curves

in red correspond to initial conditions in the linear regime, while the curves in blue

start in the nonlinear regime. Note that the curves starting in the nonlinear regime

have the same amplitude. The existence of a maximum time, tnl,max, is evident from

the bunching of the blue curves. We find
√
λMpl tnl,max = τnl,max ∼ few × ξ ∼ 104, as

expected from Eq. (5.60). In these units and for the initial conditions used in Fig.

5-6, inflation lasts until τend ∼ O(106), so τnl,max occurs very early after the onset of

inflation.

Eq. (5.55) shows that the linear region lasts at most a few efolds, so the duration

of the nonlinear region is what will ultimately determine whether or not multifield

effects will persist until observationally relevant length scales first cross the Hubble

radius. In the nonlinear regime, Eq. (5.52) yields H ' γ̇/
√

6ξ with γ̇ given by Eq.

(5.57). The number of efolds for which the nonlinear regime persists is given by

Nnl =

∫ tnl

0

Hdt ' 1√
6ξ

∫ tnl

0

γ̇dt =
1

3
ln

(√
2ξ

λ

γ̇0

Mpl z

)
. (5.61)

We examine Eq. (5.61) numerically by fixing ξ = 104 and φ(0) = 0.1Mpl and choosing

pairs of initial velocities, φ̇(0) and χ̇(0), that yield 70 efolds (see Fig. 5-7, left); and

also by setting φ̇(0) to various constant values and varying χ̇(0) (Fig. 5-7, right). The

results fall neatly along a least-squares logarithmic fit, as expected from Eq. (5.61).

The function Nnl grows slowly. In order for multifield effects to remain important

more than a few efolds after the start of inflation, the initial angular velocity would

need to be enormous: at least ten orders of magnitude larger than typical values of

the initial field velocity for single-field inflation, as given in Eq. (5.40). We do not

know of any realistic mechanism that could generate initial field velocities so large.

Moreover, for many combinations of initial conditions shown in the righthand side of
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Figure 5-5: Contour plots showing the number of efolds at which the maximum of the
turn rate occurs, as one varies the fields’ initial conditions. In each panel, the vertical axis
is χ̇(0) and the horizontal axis is φ̇(0). The panels correspond to φ(0) = 10−1 Mpl (top
left), 10−2Mpl (top right), 5× 10−3Mpl (bottom left) and 10−4Mpl (bottom right). We set
ξ = 104 and use the dimensionless time-variable τ =

√
λMplt. The thick black curve is the

contour line of initial conditions that yield N = 70 efolds.
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Figure 5-6: The turn rate as a function of time for different values of the initial angular
velocity. The parameters used are ξ = 104, φ(0) = 0.1Mpl, φ̇(0) = χ(0) = 0, and 0.01√

2ξ
≤

γ̇(0) ≤ 100√
2ξ

, in terms of dimensionless time, τ =
√
λ Mplt. In these units and for φ(0) =

0.1Mpl, inflation lasts until τend ∼ O(106).

Fig. 5-7, Ntot > 70 efolds (several sets of initial conditions yield Ntot ∼ 90 efolds). For

those scenarios, the turn rate reaches its maximum value deep within the early phase

of the system’s evolution, long before observationally relevant perturbations first cross

the Hubble radius. The multifield dynamics for this model thus behave similarly to

those in related multifield models of inflation that involve the Higgs sector, such as

[37].

We may consider the behavior of a(t) and H(t) in the two different regimes more

closely. From the definition of H and Ḣ in Eq. (5.47) and neglecting the terms

proportional to ṙ (which is equivalent to requiring the field to be slow rolling along

the radial direction), we find

ä

a
= Ḣ +H2 =

1

12f

(
−2r2γ̇2 +

λM2
pl

2

r4

M2
pl + ξr2

)
. (5.62)

When the potential dominates we recover what we called the linear regime in the

analysis of the decay of ω. In that regime

ä

a
> 0, (5.63)

which is an accelerated expansion or cosmological inflation. However, in the nonlinear
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Figure 5-7: Number of efolds until the maximum value of the turn rate is reached, as a
function of χ̇(0). On the left we plot N(ωmax) for initial conditions that yield Ntot = 70
efolds; on the right we plot the same quantity for various values of φ̇(0). The logarithmic
fit is an excellent match to our analytic result, Eq. (5.61).

regime, when γ̇ dominates, the situation reverses and we find

ä

a
= − 1

6f
r2γ̇2 < 0, (5.64)

which is an expansion and a very rapid one (because of the large value of H), but it is

not inflation. Regardless of whether we have true inflation or simply rapid expansion

at early times, we may always define the number of efolds as

N =

∫ tend

tin

Hdt. (5.65)

Thus we may use N as our clock and measure time in efolds from the beginning of the

system’s evolution, regardless of whether it is in the inflationary phase or not. The

fact that in the nonlinear regime the universe is not inflating only makes our results

stronger: all multifield effects decay before the observable scales exit the horizon in a

model that produces enough inflation to solve the standard cosmological problems.

As a final test of our analysis we set ξ = 102 instead of ξ = 104. The smaller value

of the nonminimal coupling does not lead to a viable model of Higgs inflation — the

WMAP normalization of the power spectrum requires a larger value of ξ [5] — but

we may nonetheless study the dynamics of such a model. We collect the important
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information about the dynamics of this model in Fig. 5-8. As expected, the model

can provide 70 or more efolds of inflation for a wide range of parameters, and the

corresponding turn rate peaks well before observationally relevant length scales first

crossed the Hubble radius, even when we increase χ̇(0) to a few hundred in units

of τ =
√
λMplt. The excellent logarithmic fit of the time at which the turn rate is

maximum versus χ̇(0) is again evident. Finally the curves of the turn rate versus time

show the same qualitative and quantitative characteristics as Fig. 5-6 for ξ = 104.

Specifically, if one rescales time and the turn rate appropriately by ξ, the two sets of

curves would be hardly distinguishable.

5.5 Implications for the Primordial Spectrum

We have found that in models with an SO(N ) symmetry among the scalar fields, the

turn rate quickly damps to negligible magnitude within a few efolds after the start of

inflation. In this section we confirm that such behavior yields empirical predictions

for observable quantities like the primordial power spectrum of perturbations that

reproduce expectations from corresponding single-field models.

For models that behave effectively as two-field models, which includes the class of

SO(N )-symmetric models we investigate here, we may distinguish two scalar pertur-

bations: the perturbations in the adiabatic direction, Qσ defined in Eq. (5.18), and

a scalar entropic perturbation [24],

Qs ≡
ωI
ω
δsI . (5.66)

We noted in Eq. (5.19) that Qσ is proportional to the gauge-invariant curvature

perturbation, Rc. We adopt a similar normalization for the entropy perturbation,

S ≡ H

σ̇
Qs. (5.67)
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Figure 5-8: Dynamics of our two-field model with ξ = 102, φ(0) = 1Mpl, and χ(0) = 0.
Clockwise from top left: (1) Contour plot showing the number of efolds as one varies the
fields’ initial conditions. The thick curve corresponds to 70 efolds. (2) Contour plot showing
the number of efolds at which the maximum of the turn rate occurs, as one varies the fields’
initial conditions. The thick curve corresponds to Ntot = 70 efolds. (3) Number of efolds
until the maximum value of the turn rate is reached for initial conditions giving Ntot = 70
efolds, along with a logarithmic fit. (4) The turn rate as a function of time for different
values of the initial angular velocity, with φ̇(0) = 0 and 0.01√

2ξ
≤ γ̇(0) ≤ 100√

2ξ
, in units of

τ =
√
λMplt.
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In the long-wavelength limit, the adiabatic and entropic perturbations obey [38, 24]

Ṙc = αHS +O
(

k2

a2H2

)
,

Ṡ = βHS +O
(

k2

a2H2

)
,

(5.68)

so that we may define the transfer functions

TRS(t∗, t) =

∫ t

t∗

dt′ α(t′)H(t′)TSS(t∗, t
′),

TSS(t∗, t) = exp

[∫ t

t∗

dt′ β(t′)H(t′)

]
.

(5.69)

We take t∗ to be the time when a fiducial scale of interest first crossed the Hubble

radius during inflation, defined by a2(t∗)H
2(t∗) = k2

∗. In [24], we calculated

α(t) =
2ω(t)

H(t)
(5.70)

and

β(t) = −2ε− ηss + ησσ −
4

3

ω2

H2
, (5.71)

where ε ≡ −Ḣ/H2 and the other slow-roll parameters are defined as

ησσ ≡M2
pl

Mσσ

V
,

ηss ≡M2
pl

ωIω
JMI

J

ω2V
.

(5.72)

The dimensionless power spectrum is given by

PR =
k3

2π2
|Rc|2 (5.73)

and hence, from Eqs. (5.68) and (5.69),

PR(k) = PR(k∗)
[
1 + T 2

RS(t∗, t)
]
, (5.74)
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where k corresponds to a length scale that crossed the Hubble radius at some time

t > t∗. The spectral index is then given by

ns(t) = ns(t∗)− [α(t) + β(t)TRS(t, t∗)] sin(2∆), (5.75)

where

cos ∆ ≡ TRS√
1 + T 2

RS
. (5.76)

In the limit (ω/H)� ησσ, the spectral index evaluated at N∗ assumes the single-field

form [29, 30, 34],

ns(t∗) = 1− 6ε(t∗) + 2ησσ(t∗). (5.77)

Crucial to note is that the turn rate, ω, serves as a window function within

TRS(t, t∗): once the coefficient α = 2ω/H becomes negligible, there will effectively be

no transfer of power from the entropic to the adiabatic perturbations, much as we

had found by examining the source terms on the righthand sides of Eqs. (5.20) and

(5.21). The question then becomes whether ω(t), and hence TRS(t∗, t), can depart

appreciably from zero at times when perturbations on length scales of observational

interest first cross the Hubble radius.

The longest length scales of interest are often taken to be those that first crossed

the Hubble radius N∗ = 55 ± 5 efolds before the end of inflation [28, 29, 30]. Closer

analysis suggests that length scales that first crossed the Hubble radius N∗ = 62− 63

efolds before the end of inflation correspond to the size of the present horizon [39].

Meanwhile, we follow [29] in assuming that successful inflation requires Ntot ≥ 70

efolds to solve the horizon and flatness problems. The question then becomes whether

ω(t), and hence TRS(t∗, t), can differ appreciably from zero for N∗ ≤ 63. Given the

analysis in Section IV, the best chance for this to occur is for initial conditions that

produce the minimum amount of inflation, Ntot = 70.

In Table I, we present numerical results for key measures of multifield dynamics.

In each case we set ξ = 104, φ(0) = 0.1Mpl, and χ(0) = 0. We vary χ̇(0) as shown

and adjust φ̇(0) in each case so as to produce exactly Ntot = 70 efolds of inflation.
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χ̇(0) ω(N∗ = 63) TRS(max) ns(N∗ = 63) ns(N∗ = 60)
10−2 1.16× 10−10 2.68× 10−6 0.969 0.967
10−1 1.20× 10−9 2.76× 10−5 0.969 0.967

1 9.41× 10−9 2.18× 10−4 0.969 0.967
101 1.18× 10−7 2.72× 10−3 0.969 0.967
102 1.12× 10−6 2.59× 10−2 0.973 0.967

Table 5.1: Numerical results for measures of multifield dynamics for Higgs inflation with
ξ = 104. We use dimensionless time τ =

√
λMplt.

Because TRS remains so small in each of these cases, there is no discernible running

of the spectral index within the window N∗ = 63 to N∗ = 40 efolds before the end

of inflation. If we consider a fiducial scale k∗ that first crosses the Hubble radius

at N∗ = 63 efolds before the end of inflation, then we find ns = 0.97 across the

whole range of initial conditions, in excellent agreement with the measured value of

ns = 0.971± 0.010 [36]. If instead we set k∗ as the scale that first crossed the Hubble

radius N∗ = 60 efolds before the end of inflation, we find ns = 0.967 across the entire

range of initial conditions, again in excellent agreement with the latest measurements.

5.6 Conclusions

In this chapter we have analyzed Higgs inflation as a multifield model with nonmin-

imal couplings. Because the Goldstone modes of the Standard Model electroweak

Higgs sector remain in the spectrum at high energies in renormalizable gauges, we

have incorporated their effects in the dynamics of the model. Because of the high

symmetry of the Higgs sector — guaranteed by the SU(2) electroweak gauge sym-

metry, which manifests as an SO(4) symmetry among the scalar fields of the Higgs

sector — the nonmiminal couplings for the various scalar fields take precisely the

same value (ξφ = ξχ = ξ), as do the tree-level couplings in the Jordan-frame potential

(λφ = λχ = λ, and so on). The effective potential in the Einstein frame therefore con-

tains none of the irregular features, such as bumps or ridges, that were highlighted in

[24] for the case of multiple fields with arbitrary couplings. With no features such as

ridges off of which the fields may fall during their evolution, Hubble drag will always
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cause any initial angular motion within field space to damp out rapidly. Increasing

the initial angular velocity to arbitrarily large values — well into what we call the

nonlinear regime — only increases the value of H at early times, which makes the

Hubble drag even more effective and hence hastens the damping out of the multifield

effects.

The rapidity with which the turn-rate damps to zero combined with the require-

ment of Ntot ≥ 70 efolds for successful inflation means that the multifield dynamics

become negligible before perturbations on scales of observational relevance first cross

the Hubble radius. Even if we push the observational window of interest back to

N∗ = 63 efolds before the end of inflation, rather than the usual assumption of

N∗ = 55± 5, we find that the model relaxes to effectively single-field dynamics prior

to N∗. Hence the predictions from Higgs inflation for observable quantities, such as

the spectral index of the power spectrum of primordial perturbations, reduce to their

usual single-field form. Moreover, the absence of multifield effects for times later

than N∗ means that this model should produce negligible non-Gaussianities during

inflation, in contrast to the broader family of models studied in [24].

The methods we introduce here may be applied to any multifield model with

nonminimal couplings and an SO(N ) symmetry among the fields in field space. The

conclusion therefore appears robust that such highly symmetric models should behave

effectively as single-field models, at least within the observational window of interest

between N∗ = 63 and N∗ = 40 efolds before the end of inflation. Of course, multfield

effects could become important in such models at the end of inflation, during epochs

such as preheating [40]. Such processes remain under study.
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5.8 Appendix

5.8.1 Angular Evolution of the Field

For completeness, let us integrate the angular equation of motion, Eq. (5.53), for all

values of γ̇ (in the slow roll regime of the radial field). This yields

γ̇(t)
(√

λMpl +
√

2ξγ̇2
0 + λM2

pl

)
γ̇0

(√
λMpl +

√
2ξγ̇2(t) + λM2

pl

) = exp

[
−
√

3λMplt

2ξ

]
. (5.78)

In the two limits, γ̇0 �
√
λMpl/

√
2ξ and γ̇0 �

√
λMpl/

√
2ξ, we may solve Eq. (5.78)

and recover the forms of γ(t) presented in Eqs. (5.55) and (5.57).
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Chapter 6

Multifield Inflation after Planck:

The Case for Nonminimal

Couplings

Multifield models of inflation with nonminimal couplings are in excellent agreement

with the recent results from Planck. Across a broad range of couplings and initial

conditions, such models evolve along an effectively single-field attractor solution and

predict values of the primordial spectral index and its running, the tensor-to-scalar

ratio, and non-Gaussianities squarely in the observationally most-favored region. Such

models also can amplify isocurvature perturbations, which could account for the low

power recently observed in the CMB power spectrum at low multipoles. Future

measurements of primordial isocurvature perturbations could distinguish between the

currently viable possibilities.

6.1 Introduction

Early-universe inflation remains the leading framework for understanding a variety

of features of our observable universe [1, 2]. Most impressive has been the prediction

of primordial quantum fluctuations that could seed large-scale structure. Recent

measurements of the spectral tilt of primordial (scalar) perturbations, ns, find a
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decisive departure from a scale-invariant spectrum [3, 4]. The Planck collaboration’s

value, ns = 0.9603± 0.0073, differs from ns = 1 by more than 5σ. At the same time,

observations with Planck constrain the ratio of tensor-to-scalar perturbations to r <

0.11 (95% CL), and are consistent with the absence of primordial non-Gaussianities,

fNL ∼ 0 [4, 5].

The Planck team also observes less power in the angular power spectrum of tem-

perature anisotropies in the cosmic microwave background radiation (CMB) at low

multipoles, ` ∼ 20−40, compared to best-fit ΛCDM cosmology: a 2.5−3σ departure

on large angular scales, θ > 5◦ [6]. Many physical processes might ultimately account

for the deviation, but a primordial source seems likely given the long length-scales af-

fected. One plausible possibility is that the discrepancy arises from the amplification

of isocurvature modes during inflation [4].

In this brief chapter we demonstrate that simple, well-motivated multifield models

with nonminimal couplings match the latest observations particularly well, with no

fine-tuning. This class of models (i) generically includes potentials that are concave

rather than convex at large field values, (ii) generically predicts values of r and ns in

the most-favored region of the recent observations. (iii) generically predicts fNL ∼ 0

except for exponentially fine-tuned initial field values, (iv) generically predicts ample

entropy production at the end of inflation, with an effective equation of state weff ∼

[0, 1/3], and (v) generically includes isocurvature perturbations as well as adiabatic

perturbations, which might account for the low power in the CMB power spectrum

at low multipoles.

We consider this class of models to be well-motivated for several reasons. Realistic

models of particle physics include multiple scalar fields at high energies. In any

such model, nonminimal couplings are required for self-consistency, since they arise

as renormalization counterterms when quantizing scalar fields in curved spacetime

[7]. Moreover, the nonminimal coupling constants generically rise with energy under

renormalization-group flow with no UV fixed-point [8], and hence one expects |ξ| � 1

at inflationary energy scales. In such models inflation occurs for field values and

energy densities well below the Planck scale (see [9, 10, 11] and references therein).
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Higgs inflation [11] is an elegant example: in renormalizable gauges (appropriate for

high energies) the Goldstone modes remain in the spectrum, yielding a multifield

model [10, 12, 13].

We demonstrate here for the first time that models of this broad class exhibit an

attractor behavior: over a wide range of couplings and fields’ initial conditions, the

fields evolve along an effectively single-field trajectory for most of inflation. Although

attractor behavior is common for single-field models of inflation [14], the dynamics

of multifield models generally show strong sensitivity to couplings and initial condi-

tions (see, e.g., [15] and references therein). Not so for the class of multifield models

examined here, thanks to the shape of the effective potential in the Einstein frame.

The multifield attractor behavior demonstrated here means that for most regions of

phase space and parameter space, this general class of models yields values of ns,

r, the running of the spectral index α = dns/d ln k, and fNL in excellent agreement

with recent observations. The well-known empirical success of single-field models

with nonminimal couplings [16, 11] is thus preserved for more realistic models in-

volving multiple fields. Whereas the attractor behavior creates a large observational

degeneracy in the r vs. ns plane, the isocurvature spectra from these models depend

sensitively upon couplings and initial conditions. Future measurements of primordial

isocurvature spectra could therefore distinguish among models in this class.

6.2 Multifield Dynamics

In the Jordan frame, the fields’ nonminimal couplings remain explicit in the action,

SJ =

∫
d4x
√
−g̃
[
f(φI)R̃− 1

2
δIJ g̃

µν∂µφ
I∂νφ

J − Ṽ (φI)

]
, (6.1)

where quantities in the Jordan frame are marked by a tilde. Performing the usual

conformal transformation, g̃µν(x) → gµν(x) = 2M−2
pl f(φI(x)) g̃µν(x), where Mpl ≡

(8πG)−1/2 = 2.43× 1018 GeV is the reduced Planck mass, we may write the action in
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the Einstein frame as [9]

SE =

∫
d4x
√
−g
[
M2

pl

2
R− 1

2
GIJgµν∂µφI∂νφJ − V (φI)

]
. (6.2)

The potential in the Einstein frame, V (φI), is stretched by the conformal factor

compared to the Jordan-frame potential:

V (φI) =
M4

pl

4f 2(φI)
Ṽ (φI). (6.3)

The nonminimal couplings induce a curved field-space manifold in the Einstein frame

with metric GIJ(φK) = (M2
pl/(2f))[δIJ +3f,If,J/f ], where f,I = ∂f/∂φI [9]. We adopt

the form for f(φI) required for renormalization [7],

f(φI) =
1

2

[
M2

pl +
∑
I

ξI(φ
I)2

]
. (6.4)

Here we consider two-field models, I, J = φ, χ.

As emphasized in [11, 10, 9], the conformal stretching of the Einstein-frame po-

tential, Eq. (6.3), generically leads to concave potentials at large field values, even for

Jordan-frame potentials that are convex. In particular, for a Jordan-frame potential

of the simple form Ṽ (φI) =
λφ
4
φ4+ g

2
φ2χ2+ λχ

4
χ4, Eqs. (6.3) and (6.4) yield a potential

in the Einstein frame that is nearly flat for large field values, V (φI) → λJM
4
pl/(4ξ

2
J)

(no sum on J), as the Jth component of φI becomes arbitrarily large. This basic fea-

ture leads to “extra”-slow-roll evolution of the fields during inflation. If the couplings

λJ and ξJ are not equal to each other, V (φI) develops ridges separated by valleys [9].

Inflation occurs in the valleys as well as along the ridges, since both are regions of

false vacuum with V 6= 0. See Fig. 1.

Constraints on r constrain the energy scale of inflation, H(t∗)/Mpl < 3.7 × 10−5

[4]. For Higgs inflation, with λI = g = λφ and ξI = ξφ, the Hubble parameter during

slow roll is given by H/Mpl '
√
λφ/(12ξ2

φ). Measurements of the Higgs mass near

the electroweak symmetry-breaking scale require λφ ' 0.13. Under renormalization-

group flow, λφ will fall to the range 0 < λφ < 0.01 at the inflationary energy scale;
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Figure 6-1: Potential in the Einstein frame, V (φI). Left: λχ = 0.75λφ, g = λφ, ξχ = 1.2ξφ.
Right: λχ = g = λφ, ξφ = ξχ. In both cases, ξI � 1 and 0 < λI , g < 1.

λφ = 0.01 requires ξφ ≥ 780 to satisfy the constraint on H(t∗)/Mpl, which in turn

requires ξφ ∼ O(101 − 102) at low energies [17]. For our general class of models, we

therefore consider couplings at the inflationary energy scale of order λI , g ∼ O(10−2)

and ξI ∼ O(103) [18].

Expanding the scalar fields to first order, φI(xµ) = ϕI(t) + δφI(xµ), we find [9, 10]

σ̇2 = GIJ ϕ̇Iϕ̇J =

(
M2

pl

2f

)[
φ̇2 + χ̇2 +

3ḟ 2

f

]
. (6.5)

We also expand the spacetime metric to first order around a spatially flat Friedmann-

Robertson-Walker metric. Then the background dynamics are given by [9]

H2 =
1

3M2
pl

[
1

2
σ̇2 + V

]
, Ḣ = − 1

2M2
pl

σ̇2,

Dtϕ̇I + 3Hϕ̇I + GIKV,K = 0,

(6.6)

where Dt is the (covariant) directional derivative, DtAI ≡ ϕ̇JDJAI = ȦI +ΓIJKA
J ϕ̇K

[19, 9]. The gauge-invariant Mukhanov-Sasaki variables for the linearized perturba-

tions, QI , obey an equation of motion with a mass-squared matrix given by [19, 9]

MI
J ≡ GIJ (DJDKV )−RI

LMJ ϕ̇
Lϕ̇M , (6.7)

where RI
LMJ is the Riemann tensor for the field-space manifold.
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To analyze inflationary dynamics, we use a multifield formalism (see [2, 20] for

reviews) made covariant with respect to the nontrivial field-space curvature (see [9, 19]

and references therein). We define adiabatic and isocurvature directions in the curved

field space via the unit vectors σ̂I ≡ ϕ̇I/σ̇ and ŝI ≡ ωI/ω, where the turn-rate vector

is given by ωI ≡ Dtσ̂I , and ω = |ωI |. We also define slow-roll parameters [9, 19]:

ε ≡ − Ḣ

H2
, ησσ ≡M2

pl

σ̂I σ̂
JMI

J

V
, ηss ≡M2

pl

ŝI ŝ
JMI

J

V
. (6.8)

Using Eq. (6.6), we have the exact relation, ε = 3σ̇2/(σ̇2 + 2V ). The adiabatic

and isocurvature perturbations may be parameterized as Rc = (H/σ̇)σ̂IQ
I and S =

(H/σ̇)ŝIQ
I , where Rc is the gauge-invariant curvature perturbation. Perturbations of

pivot-scale k∗ = 0.002 Mpc−1 first crossed outside the Hubble radius during inflation

at time t∗. In the long-wavelength limit, the evolution of Rc and S for t > t∗ is given

by the transfer functions [9, 19]

TRS(t∗, t) =

∫ t

t∗

dt′ 2ω(t′)TSS(t∗, t
′),

TSS(t∗, t) = exp

[∫ t

t∗

dt′ β(t′)H(t′)

]
,

(6.9)

with β(t) = −2ε− ηss + ησσ− 4
3
ω2

H2 . Given the form of TRS , the perturbations Rc and

S decouple if ωI = 0.

The dimensionless power spectrum for the adiabatic perturbations is defined as

PR(k) = (2π)−2k3|Rc|2 and the spectral index is defined as ns − 1 ≡ ∂ lnPR/∂ ln k.

Around t∗ the spectral index is given by [9, 2, 20, 19]

ns(t∗) = 1− 6ε(t∗) + 2ησσ(t∗). (6.10)

At late times and in the long-wavelength limit, the power spectrum becomes PR =

PR(k∗) [1 + T 2
RS ], and hence the spectral index may be affected by the transfer of

power from isocurvature to adiabatic modes: ns(t) = ns(t∗)+H−1
∗ (∂TRS/∂t∗) sin(2∆),

with cos ∆ ≡ TRS(1 + T 2
RS)−1/2.
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The mass of the isocurvature perturbations is µ2
s = 3H2(ηss + ω2/H2) [9]. For

µs < 3H/2 we have PS(k∗) ' PR(k∗) and hence PS ' PR(t∗)T
2
SS at late times. In

the Einstein frame the anisotropic pressure Πi
j ∝ T ij for i 6= j vanishes to linear

order, so the tensor perturbations hij evolve just as in single-field models with PT '

128 [H(t∗)/Mpl]
2(k/k∗)

−2ε, and therefore r ≡ PT/PR = 16ε/[1 + T 2
RS ] [2, 20, 19].

6.3 The Single-Field Attractor

To study the single-field attractor behavior, we first consider the case in which the

system inflates in a valley along the χ = 0 direction, perhaps after first rolling off a

ridge. In the slow-roll limit and with χ ∼ χ̇ ∼ 0, Eq. (6.6) reduces to [10]

φ̇SR ' −
√
λφM

3
pl

3
√

3 ξ2
φφ

. (6.11)

Using H/Mpl '
√
λφ/(12ξ2

φ) we may integrate Eq. (6.11),

ξφφ
2
∗

M2
pl

' 4

3
N∗, (6.12)

where N∗ is the number of efolds before the end of inflation, and we have used φ(t∗)�

φ(tend). (We arrive at comparable expressions if the system falls into a valley along

some angle in field space, θ ≡ arctan (φ/χ).) Eq. (6.5) becomes σ̇2|χ=0 ' 6M2
plφ̇

2/φ2

upon using ξφ � 1. Using V ' λφM
4
pl/(4ξ

2
φ) and Eqs. (6.11), (6.12) in Eq. (6.8) we

find

ε ' 3

4N2
∗
. (6.13)

To estimate ησσ we use ησσ = ε− σ̈/(Hσ̇) +O(ε2) [2], and find

ησσ ' −
1

N∗

(
1− 3

4N∗

)
. (6.14)

All dependence on λI and ξI has dropped out of these expressions for ε and ησσ

in Eqs. (6.13) and (6.14). For a broad range of initial field values and velocities —
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and independent of the couplings — this entire class of models should quickly relax

into an attractor solution in which the fields evolve along an effectively single-field

trajectory with vanishing turn-rate, ωI ∼ 0. Within this attractor solution we find

analytically ε∗ = 2.08× 10−4 and ησσ∗ = −0.0165 for N∗ = 60; and ε∗ = 3.00× 10−4

and ησσ∗ = −0.0197 for N∗ = 50. To test this attractor behavior, we performed

numerical simulations with a sampling of couplings and initial conditions. We fixed

λφ = 0.01 and ξφ = 103 and looped over λχ = {0.5, 0.75, 1} λφ, g = {0.5, 0.75, 1} λφ,

and ξχ = {0.8, 1, 1.2}ξφ. These parameters gave a variety of potentials with combina-

tions of ridges and valleys along different directions in field space. We set the initial

amplitude of the fields to be
√
φ2

0 + χ2
0 = 10×max[ξ

−1/2
φ , ξ

−1/2
χ ] (in units ofMpl), which

generically produced 70 or more efolds of inflation. We varied the initial angle in field

space, θ0 = arctan (φ0/χ0), among the values θ0 = {0, π/6, π/3, π/2}, and allowed for

a relatively wide range of initial fields velocities: φ̇0, χ̇0 = {−10 |φ̇SR|, 0,+10 |φ̇SR|},

where φ̇SR is given by Eq. (6.11).

Typical trajectories are shown in Fig. 6-2a. In each case, the fields quickly rolled

into a valley and, after a brief, transient period of oscillation, evolved along a straight

trajectory in field-space for the remainder of inflation with ωI = 0. Across this entire

range of couplings and initial conditions, the analytic expressions for ε and ησσ in

Eqs. (6.13)-(6.14) provide close agreement with the exact numerical simulations. See

Fig. 2b.

We confirmed numerically that for much larger initial field velocities, up to φ̇0, χ̇0 ∼

106|φ̇SR|, such that the initial kinetic energy is larger than the difference between

ridge-height and valley in the potential, the system exhibits a very brief, transient

period of rapid angular motion (akin to [10]). The fields’ kinetic energy rapidly red-

shifts away so that the fields land in a valley of the potential within a few efolds,

after which slow-roll inflation continues along a single-field attractor trajectory just

like the ones shown in Fig. 6-2a. Moreover, the attractor behavior is unchanged

if one considers bare masses mφ,mχ � Mpl or a negative coupling g < 0, so long

as one imposes the fairly minimal constraint that V ≥ 0 and hence g > −
√
λφλχ.

(Each of these features could affect preheating dynamics but not the attractor be-
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Figure 6-2: Left: Field trajectories for different couplings and initial conditions (here for
φ̇0, χ̇0 = 0). Open circles indicate fields’ initial values. The parameters {λχ, g, ξχ, θ0} are
given by: {0.75λφ, λφ, 1.2ξφ, π/4} (red), {λφ, λφ, 0.8ξφ, π/4} (blue), {λφ, 0.75λφ, 0.8ξφ, π/6}
(green), {λφ, 0.75 λφ, 0.8ξφ, π/3} (black). Right: Numerical vs. analytic evaluation of the
slow-roll parameters, ε (numerical = blue, analytic = red) and ησσ (numerical = black,
analytic = green), for λφ = 0.01, λχ = 0.75 λφ, g = λφ, ξφ = 103, and ξχ = 1.2 ξφ, with
θ0 = π/4 and φ̇0 = χ̇0 = +10 |φ̇SR|.

havior during inflation.) Lastly, we performed numerical simulations for the case of

three fields rather than two, and again found that the dynamics quickly relax to the

single-field attractor since the effective potential contains ridges and valleys, so the

fields generically wind up within a valley.

6.4 Observables and the Attractor Solution

As we have confirmed numerically, trajectories in the single-field attractor solution

generically have ωI ∼ 0 between t∗ and tend (which we define as ε(tend) = 1, or

ä(tend) = 0); hence TRS ∼ 0 for these trajectories. The spectral index ns(t) therefore

reduces to ns(t∗) of Eq. (6.10), and r reduces to r = 16ε [1 +O(T 2
RS)] ' 16ε. Using

Eqs. (6.13) and (6.14), we then find

ns ' 1− 2

N∗
− 3

N2
∗
, r ' 12

N2
∗
, (6.15)

and hence ns = 0.966 and r = 0.0033 for N∗ = 60; and ns = 0.959 and r = 0.0048

for N∗ = 50. We also calculated ns and r numerically for each of the trajectories
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described above, and found ns = 0.967 and r = 0.0031 for N∗ = 60, and ns = 0.960

and r = 0.0044 for N∗ = 50. These values sit right in the most-favored region of the

latest observations. (See Fig. 1 in [4].) Even for a low reheat temperature, we find

ns within 2σ of the Planck value for N∗ ≥ 38. The predicted value r ∼ 10−3 could be

tested by upcoming CMB polarization experiments.

For the running of the spectral index, α ≡ dns/d ln k, we use Eq. (6.15), the

general relationship (dx/d ln k) |∗ ' (ẋ/H) |∗ [2], and N∗ = Ntot −
∫ t∗
ti
Hdt to find

α =
dns
d ln k

' − 2

N2
∗

(
1 +

3

N∗

)
, (6.16)

which yields α = −5.83 × 10−4 for N∗ = 60 and α = −8.48 × 10−4 for N∗ = 50,

fully consistent with the result from Planck, α = −0.0134 ± 0.0090, indicating no

observable running of the spectral index [4].

Meanwhile, for every trajectory in our large sample we numerically computed fNL

following the methods of [9]. Across the whole range of couplings and initial conditions

considered here, we found |fNL| < 0.1, consistent with the latest observations [5]. In

these models fNL is exponentially sensitive to the fields’ initial conditions, requiring

a fine-tuning of O(10−4) to produce |fNL| > 1 [9]. In the absence of such fine-tuning

these models generically predict |fNL| � O(1).

Unlike several models with concave potentials analyzed in [4], multifield models

with nonminimal couplings should produce entropy efficiently at the end of inflation,

when ξI(φ
I)2 < M2

pl. The energy density and pressure are given by ρ = 1
2
σ̇2 + V (φI)

and p = 1
2
σ̇2 − V (φI) [9]. We confirmed numerically that for every trajectory in

our large sample, the effective equation of state w = p/ρ averaged to 0 beginning at

tend (when ε = 1) and asymptoted to 1/3 within a few oscillations. This behavior

may be understood analytically from the virial theorem, which acquires corrections

proportional to gradients of the field-space metric coefficients, just like applications

in curved spacetime [21]. We find 〈σ̇2〉 = 〈V,JϕJ〉 + 〈C〉 = 〈2M4
plV/f〉 + 〈C〉, where

C ≡ −1
2
(∂JGKL)ϕ̇Kϕ̇LϕJ . More generally, inflation in these models ends with one or

both fields oscillating quasi-periodically around the minimum of the potential, and
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hence preheating should be efficient [2, 22, 23].

6.5 Isocurvature Perturbations

The models in this class predict three basic possibilities for isocurvature perturbations,

depending on whether inflation occurs while the fields are in a valley, on top of a ridge,

or in a symmetric potential with λI = g = λ and ξI = ξ and hence no ridges (like

Higgs inflation). The fraction βiso(k) ≡ PS(k)/[PR(k)+PS(k)] = T 2
SS/[1+T 2

RS+T 2
SS ]

[4] may distinguish between the various situations. In each of these scenarios, ωI ∼

0 and hence TRS ∼ 0. Inflating in a valley, ηss > 1 so µ2
s/H

2 > 9/4 and the

(heavy) isocurvature modes are suppressed, TSS → 0 and hence βiso ∼ 0 for scales k

corresponding to N∗ = 60− 50. Inflating on top of a ridge, ηss < 0 so µ2
s/H

2 < 0 and

the isocurvature modes grow via tachyonic instability, TSS � 1, and hence βiso ∼ 1

across the same scales k. Scenarios in which the fields begin on top of a ridge and roll

off at intermediate times can give any value 0 ≤ βiso ≤ 1 depending sensitively upon

initial conditions [24]. In the case of symmetric couplings, µ2
s/H

2 ' 0 [10], yielding

TSS ∼ O(10−3) and βiso = 2.23×10−5 for N∗ = 60 and βiso = 3.20×10−5 for N∗ = 50

[25].

6.6 Conclusions

Multifield models of inflation with nonminimal couplings possess a strong single-

field attractor solution, such that they share common predictions for ns, r, α, fNL,

and for efficient entropy production across a broad range of couplings and initial

conditions. The predicted spectral observables provide excellent agreement with the

latest observations. These models differ, however, in their predicted isocurvature

perturbation spectra, which might help break the observational degeneracy among

members of this class.

Note. While the paper, which the present chapter is based on, was under review,

similar results regarding attractor behavior in models with nonminimal couplings
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were presented in [26].
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Chapter 7

Multifield Inflation after Planck :

Isocurvature Modes from

Nonminimal Couplings

Recent measurements by the Planck experiment of the power spectrum of temperature

anisotropies in the cosmic microwave background radiation (CMB) reveal a deficit of

power in low multipoles compared to the predictions from best-fit ΛCDM cosmology.

If the low-` anomaly persists after additional observations and analysis, it might

be explained by the presence of primordial isocurvature perturbations in addition

to the usual adiabatic spectrum, and hence may provide the first robust evidence

that early-universe inflation involved more than one scalar field. In this chapter we

explore the production of isocurvature perturbations in nonminimally coupled two-

field inflation. We find that this class of models readily produces enough power in

the isocurvature modes to account for the Planck low-` anomaly, while also providing

excellent agreement with the other Planck results.

7.1 Introduction

Inflation is a leading cosmological paradigm for the early universe, consistent with

the myriad of observable quantities that have been measured in the era of precision
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cosmology [1, 2, 3]. However, a persistent challenge has been to reconcile successful

inflationary scenarios with well-motivated models of high-energy physics. Realistic

models of high-energy physics, such as those inspired by supersymmetry or string

theory, routinely include multiple scalar fields at high energies [4]. Generically, each

scalar field should include a nonminimal coupling to the spacetime Ricci curvature

scalar, since nonminimal couplings arise as renormalization counterterms when quan-

tizing scalar fields in curved spacetime [5, 6, 7, 8]. The nonminimal couplings typically

increase with energy-scale under renormalization-group flow [7], and hence should be

large at the energy-scales of interest for inflation. We therefore study a class of infla-

tionary models that includes multiple scalar fields with large nonminimal couplings.

It is well known that the predicted perturbation spectra from single-field models

with nonminimal couplings produce a close fit to observations. Following conformal

transformation to the Einstein frame, in which the gravitational portion of the action

assumes canonical Einstein-Hilbert form, the effective potential for the scalar field is

stretched by the conformal factor to be concave rather than convex [9, 10], precisely

the form of inflationary potential most favored by the latest results from the Planck

experiment [11].

The most pronounced difference between multifield inflation and single-field infla-

tion is the presence of more than one type of primordial quantum fluctuation that can

evolve and grow. The added degrees of freedom may lead to observable departures

from the predictions of single-field models, including the production and amplification

of isocurvature modes during inflation [12, 13, 14, 15, 16, 17, 18, 19].

Unlike adiabatic perturbations, which are fluctuations in the energy density, isocur-

vature perturbations arise from spatially varying fluctuations in the local equation

of state, or from relative velocities between various species of matter. When isocur-

vature modes are produced primordially and stretched beyond the Hubble radius,

causality prevents the redistribution of energy density on super-horizon scales. When

the perturbations later cross back within the Hubble radius, isocurvature modes create

pressure gradients that can push energy density around, sourcing curvature perturba-

tions that contribute to large-scale anisotropies in the cosmic microwave background
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radiation (CMB). (See, e.g., [20, 11].)

The recent measurements of CMB anisotropies by Planck favor a combination of

adiabatic and isocurvature perturbations in order to improve the fit at low multipoles

(` ∼ 20− 40) compared to the predictions from the simple, best-fit ΛCDM model in

which primordial perturbations are exclusively adiabatic. The best fit to the present

data arises from models with a modest contribution from isocurvature modes, whose

primordial power spectrum PS(k) is either scale-invariant or slightly blue-tilted, while

the dominant adiabatic contribution, PR(k), is slightly red-tilted [11]. The low-`

anomaly thus might provide the first robust empirical evidence that early-universe

inflation involved more than one scalar field.

Well-known multifield models that produce isocurvature perturbations, such as

axion and curvaton models, are constrained by the Planck results and do not improve

the fit compared to the purely adiabatic ΛCDM model [11]. As we demonstrate here,

on the other hand, the general class of multifield models with nonminimal couplings

can readily produce isocurvature perturbations of the sort that could account for the

low-` anomaly in the Planck data, while also producing excellent agreement with the

other spectral observables measured or constrained by the Planck results, such as the

spectral index ns, the tensor-to-scalar ratio r, the running of the spectral index α,

and the amplitude of primordial non-Gaussianity fNL.

Nonminimal couplings in multifield models induce a curved field-space manifold

in the Einstein frame [21], and hence one must employ a covariant formalism for

this class of models. Here we make use of the covariant formalism developed in

[22], which builds on pioneering work in [13, 18]. In Section 7.2 we review the most

relevant features of our class of models, including the formal machinery required to

study the evolution of primordial isocurvature perturbations. In Section 7.3 we focus

on a regime of parameter space that is promising in the light of the Planck data,

and for which analytic approxmations are both tractable and in close agreement with

numerical simulations. In Section 7.4 we compare the predictions from this class of

models to the recent Planck findings. Concluding remarks follow in Section 7.5.
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7.2 Model

We consider two nonminimally coupled scalar fields φI ε {φ, χ}. We work in 3+1

spacetime dimensions with the spacetime metric signature (−, +, +, +). We express

our results in terms of the reduced Planck mass, Mpl ≡ (8πG)−1/2 = 2.43 × 1018 GeV.

Greek letters (µ, ν) denote spacetime 4-vector indices, lower-case Roman letters (i,

j) denote spacetime 3-vector indices, and capital Roman letters (I, J) denote field-

space indices. We indicate Jordan-frame quantities with a tilde, while Einstein-frame

quantities will be sans tilde. Subscripted commas indicate ordinary partial derivatives

and subscripted semicolons denote covariant derivatives with respect to the spacetime

coordinates.

We begin with the action in the Jordan frame, in which the fields’ nonminimal

couplings remain explicit:

S̃ =

∫
d4x
√
−g̃
[
f(φI)R̃− 1

2
G̃IJ g̃µν∂µφI∂νφJ − Ṽ (φI)

]
, (7.1)

where R̃ is the spacetime Ricci scalar, f(φI) is the nonminimal coupling function, and

G̃IJ is the Jordan-frame field space metric. We set G̃IJ = δIJ , which gives canonical

kinetic terms in the Jordan frame. We take the Jordan-frame potential, Ṽ (φI), to

have a generic, renormalizable polynomial form with an interaction term:

Ṽ (φ, χ) =
λφ
4
φ4 +

g

2
φ2χ2 +

λχ
4
χ4, (7.2)

with dimensionless coupling constants λI and g. As discussed in [22], the inflationary

dynamics in this class of models are relatively insensitive to the presence of mass

terms, m2
φφ

2 or m2
χχ

2, for realistic values of the masses that satisfy mφ,mχ � Mpl.

Hence we will neglect such terms here.
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7.2.1 Einstein-Frame Potential

We perform a conformal transformation to the Einstein frame by rescaling the space-

time metric tensor,

g̃µν(x) = Ω2(x) gµν(x), (7.3)

where the conformal factor Ω2(x) is related to the nonminimal coupling function via

the relation

Ω2(x) =
2

M2
pl

f
(
φI(x)

)
. (7.4)

This transformation yields the action in the Einstein frame,

S =

∫
d4x
√
−g
[
M2

pl

2
R− 1

2
GIJgµν∂µφI∂νφJ − V (φI)

]
, (7.5)

where all the terms sans tilde are stretched by the conformal factor. For instance,

the conformal transformation to the Einstein frame induces a nontrivial field-space

metric [21]

GIJ =
M2

pl

2f

[
δIJ +

3

f
f,If,J

]
, (7.6)

and the potential is also stretched so that it becomes

V (φ, χ) =
M4

pl

(2f)2
Ṽ (φ, χ)

=
M4

pl

(2f)2

[
λφ
4
φ4 +

g

2
φ2χ2 +

λχ
4
χ4

]
.

(7.7)

The form of the nonminimal coupling function is set by the requirements of renor-

malization [5, 6],

f(φ, χ) =
1

2
[M2 + ξφφ

2 + ξχχ
2], (7.8)

where ξφ and ξχ are dimensionless couplings and M is some mass scale such that when

the fields settle into their vacuum expectation values, f → M2
pl/2. Here we assume

that any nonzero vacuum expectation values for φ and χ are much smaller than the

Planck scale, and hence we may take M = Mpl.

The conformal stretching of the potential in the Einstein frame makes it concave
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Figure 7-1: Potential in the Einstein frame, V (φI) in Eq. (7.7). The parameters
shown here are λχ = 0.75 λφ, g = λφ, ξχ = 1.2 ξφ, with ξφ � 1 and λφ > 0.

and asymptotically flat along either direction in field space, I = φ, χ,

V (φI)→
M4

pl

4

λI
ξ2
I

[
1 +O

(
M2

pl

ξJ(φI)2

)]
(7.9)

(no sum on I). For non-symmetric couplings, in which λφ 6= λχ and/or ξφ 6= ξχ, the

potential in the Einstein frame will develop ridges and valleys, as shown in Fig. 7-1.

Crucially, V > 0 even in the valleys (for g > −
√
λφλχ), and hence the system will

inflate (albeit at varying rates) whether the fields ride along a ridge or roll within a

valley, until the fields reach the global minimum of the potential at φ = χ = 0.

Across a wide range of couplings and initial conditions, the models in this class

obey a single-field attractor [19]. If the fields happen to begin evolving along the top

of a ridge, they will eventually fall into a neighboring valley. Motion in field space

transverse to the valley will quickly damp away (thanks to Hubble drag), and the

fields’ evolution will include almost no further turning in field space. Within that

single-field attractor, predictions for ns, r, α, and fNL all fall squarely within the

most-favored regions of the latest Planck measurements [19].

The fields’ approach to the attractor behavior — essentially, how quickly the fields

roll off a ridge and into a valley — depends on the local curvature of the potential

near the top of a ridge. Consider, for example, the case in which the direction χ = 0

corresponds to a ridge. To first order, the curvature of the potential in the vicinity
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Figure 7-2: The spectral index ns (red), as given in Eq. (7.61), for different values
of κ, which characterizes the local curvature of the potential near the top of a ridge.
Also shown are the 1σ (thin, light blue) and 2σ (thick, dark blue) bounds on ns from
the Planck measurements. The couplings shown here correspond to ξφ = ξχ = 103,
λφ = 10−2, and λχ = g, fixed for a given value of κ from Eq. (7.10). The fields’ initial
conditions are φ = 0.3, φ̇0 = 0, χ0 = 10−3, χ̇0 = 0, in units of Mpl.

of χ = 0 is proportional to (gξφ − λφξχ) [22]. As we develop in detail below, a

convenient combination with which to characterize the local curvature near the top

of such a ridge is

κ ≡ 4(λφξχ − gξφ)

λφ
. (7.10)

As shown in Fig. 7-2, models in this class produce excellent agreement with the

latest measurements of ns from Planck across a wide range of parameters, where ns ≡

1 + d lnPR/d ln k. Strong curvature near the top of the ridge corresponds to κ� 1:

in that regime, the fields quickly roll off the ridge, settle into a valley of the potential,

and evolve along the single-field attractor for the duration of inflation, as analyzed in

[19]. More complicated field dynamics occur for intermediate values, 0.1 < κ < 4, for

which multifield dynamics pull ns far out of agreement with empirical observations.

The models again produce excellent agreement with the Planck measurements of ns

in the regime of weak curvature, 0 ≤ κ ≤ 0.1.

As we develop below, other observables of interest, such as r, α, and fNL, like-

wise show excellent fit with the latest observations. In addition, the regime of weak
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curvature, κ � 1, is particularly promising for producing primordial isocurvature

perturbations with characteristics that could explain the low-` anomaly in the recent

Planck measurements. Hence for the remainder of this chapter we focus on the regime

κ� 1, a region that is amenable to analytic as well as numerical analysis.

7.2.2 Coupling Constants

The dynamics of this class of models depend upon combinations of dimensionless

coupling constants like κ defined in Eq. (7.10) and others that we introduce below.

The phenomena analyzed here would therefore hold for various values of λI and ξI ,

such that combinations like κ were unchanged. Nonetheless, it is helpful to consider

reasonable ranges for the couplings on their own.

The present upper bound on the tensor-to-scalar ratio, r < 0.12, constrains the

energy-scale during inflation to satisfy H(thc)/Mpl ≤ 3.7 × 10−5 [11], where H(thc)

is the Hubble parameter at the time during inflation when observationally relevant

perturbations first crossed outside the Hubble radius. During inflation the dominant

contribution to H will come from the value of the potential along the direction in

which the fields slowly evolve. Thus we may use the results from Planck and Eq.

(7.9) to set a basic scale for the ratios of couplings, λI/ξ
2
I . For example, if the fields

evolve predominantly along the direction χ ∼ 0, then during slow roll the Hubble

parameter will be

H '
√

λφ
12ξ2

φ

Mpl, (7.11)

and hence the constraint from Planck requires λφ/ξ
2
φ ≤ 1.6× 10−8.

We adopt a scale for the self-couplings λI by considering a particularly elegant

member of this class of models. In Higgs inflation [10], the self-coupling λφ is fixed

by measurements of the Higgs mass near the electroweak symmetry-breaking scale,

λφ ' 0.1, corresponding to mH ' 125 GeV [23, 24]. Under renormalization-group

flow, λφ will fall to the range 0 < λφ < 0.01 at the inflationary energy scale [28]. Eq.

(7.11) with λ = 0.01 requires ξφ ≥ 780 at inflationary energy scales to give the correct

amplitude of density perturbations. For our general class of models, we therefore
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consider couplings at the inflationary energy scale of order λI , g ∼ O(10−2) and ξI ∼

O(103). Taking into account the running of both λI and ξI under renormalization-

group flow, these values correspond to λI ∼ O(10−1) and ξI ∼ O(102) at low energies

[28].

We consider these to be reasonable ranges for the couplings. Though one might

prefer dimensionless coupling constants to be O(1) in any “natural” scenario, the

ranges chosen here correspond to low-energy couplings that are no more fine-tuned

than the fine-structure constant, αEM ' 1/137. Indeed, our choices are relatively

conservative. For the case of Higgs inflation, the running of λφ is particularly sensitive

to the mass of the top quark. Assuming a value for mtop at the low end of the present

2σ bound yields λφ ' 10−4 rather than 10−2 at high energies, which in turn requires

ξφ ≥ 80 at the inflationary energy scale rather than ξφ ≥ 780 [29]. Nonetheless,

for illustrative purposes, we use λI , g ∼ 10−2 and ξI ∼ 103 for the remainder of our

analysis.

We further note that despite such large nonminimal couplings, ξI ∼ 103, our

analysis is unhindered by any potential breakdown of unitarity. The energy scale

at which unitarity might be violated for Higgs inflation has occasioned a great deal

of heated debate in the literature, with conflicting claims that the renormalization

cut-off scale should be in the vicinity of Mpl, Mpl/
√
ξφ, or Mpl/ξφ [30]. Even if one

adopted the most stringent of these suggested cut-off scales, Mpl/ξφ ∼ 10−3 Mpl,

the relevant dynamics for our analysis would still occur at energy scales well below

the cut-off, given the constraint H(thc) ≤ 3.7 × 10−5 Mpl. (The unitarity cut-off

scale in multifield models in which the nonminimal couplings ξI are not all equal to

each other has been considered in [31], which likewise identify regimes of parameter

space in which Λeff remains well above the energy scales and field values relevant to

inflation.) Moreover, models like Higgs inflation can easily be “unitarized” with the

addition of a single heavy scalar field [32], and hence all of the following analysis could

be considered the low-energy dynamics of a self-consistent effective field theory. The

methods developed here may be applied to a wide class of models, including those

studied in [39, 40, 41, 42].
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Finally, we note that for couplings λI , g ∼ 10−2 and ξI ∼ 103 at high energies, the

regime of weak curvature for the potential, κ < 0.1, requires that the couplings be

close but not identical to each other. In particular, κ ∼ 0.1 requires g/λφ ∼ ξχ/ξφ ∼

1±O(10−5). Such small differences are exactly what one would expect if the effective

couplings at high energies arose from some softly broken symmetry. For example, the

field χ could couple to some scalar cold dark matter (CDM) candidate (perhaps a

supersymmetric partner) or to a neutrino, precisely the kinds of couplings that would

be required if the primordial isocurvature perturbations were to survive to late times

and get imprinted in the CMB [20]. In that case, corrections to the β functions for

the renormalization-group flow of the couplings λχ and ξχ would appear of the form

g2
X/16π2 [7, 33], where gX is the coupling of χ to the new field. For reasonable values

of gX ∼ 10−1 − 10−2, such additional terms could easily account for the small but

non-zero differences among couplings at the inflationary energy scale.

7.2.3 Dynamics and Transfer Functions

When we vary the Einstein-frame action with respect to the fields φI , we get the

equations of motion, which may be written

�φI + ΓIJK∂µφ
J∂µφK − GIJV,K = 0, (7.12)

where �φI ≡ gµνφI;µ;ν and ΓIJK is the field-space Christoffel symbol.

We further expand each scalar field to first order in perturbations about its clas-

sical background value,

φI(xµ) = ϕI(t) + δφI(xµ) (7.13)

and we consider scalar perturbations to the spacetime metric (which we assume to

be a spatially flat Friedmann-Robertson-Walker metric) to first order:

ds2 = −(1 + 2A)dt2 + 2a(t)(∂iB)dxidt+

a(t)2[(1− 2ψ)δij + 2∂i∂jE]dxidxj,
(7.14)
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where a(t) is the scale factor and A, B, ψ and E are the scalar gauge degrees of

freedom.

Under this expansion, the full equations of motion separate into background and

first-order equations. The background equations are given by

Dtϕ̇I + 3Hϕ̇I + GIJV,J = 0, (7.15)

where DJAI ≡ ∂JA
I+ΓIJKA

K for an arbitrary vector, AI , on the field-space manifold;

DtAI ≡ ϕ̇JDJAI is a directional derivative; and H ≡ ȧ/a is the Hubble parameter.

The 00 and 0i components of the background-order Einstein equations yield:

H2 =
1

3M2
pl

[
1

2
GIJ ϕ̇Iϕ̇J + V (ϕI)

]
Ḣ = − 1

2M2
pl

GIJ ϕ̇Iϕ̇J .
(7.16)

Using the covariant formalism of [22], we find the equations of motion for the pertur-

bations,

D2
tQ

I + 3HDtQI+[
k2

a2
δIJ +MI

J −
1

M2
pla

3
Dt
(
a3

H
ϕ̇Iϕ̇J

)]
QJ = 0,

(7.17)

where QI is the gauge-invariant Mukhanov-Sasaki variable

QI = QI +
ϕ̇I

H
ψ, (7.18)

and QI is a covariant fluctuation vector that reduces to δφI to first order in the

fluctuations. Additionally, MI
J is the effective mass-squared matrix given by

MI
J ≡ GIKDJDKV −RI

LMJ ϕ̇
Lϕ̇M , (7.19)

where RI
LMJ is the field-space Riemann tensor.

The degrees of freedom of the system may be decomposed into adiabatic and
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entropic (or isocurvature) by introducing the magnitude of the background fields’

velocity vector,

σ̇ ≡ |ϕ̇I | =
√
GIJ ϕ̇Iϕ̇J , (7.20)

with which we may define the unit vector

σ̂I ≡ ϕ̇I

σ̇
(7.21)

which points along the fields’ motion. Another important dynamical quantity is the

turn-rate of the background fields, given by

ωI = Dtσ̂I , (7.22)

with which we may construct another important unit vector,

ŝI ≡ ωI

ω
, (7.23)

where ω = |ωI |. The vector ŝI points perpendicular to the fields’ motion, ŝI σ̂I = 0.

The unit vectors σ̂I and ŝI effectively act like projection vectors, with which we may

decompose any vector into adiabatic and entropic components. In particular, we may

decompose the vector of fluctuations QI ,

Qσ ≡ σ̂IQ
I

Qs ≡ ŝIQ
I ,

(7.24)

in terms of which Eq. (7.17) separates into two equations of motion:

Q̈σ + 3HQ̇σ +

[
k2

a2
+Mσσ − ω2 − 1

M2
pla

3

d

dt

(
a3σ̇2

H

)]
Qσ

= 2
d

dt
(ωQs)− 2

(
V,σ
σ̇

+
Ḣ

H

)
ωQs,

(7.25)

Q̈s + 3HQ̇s +

[
k2

a2
+Mss + 3ω2

]
Qs = 4M2

pl

ω

σ̇

k2

a2
Ψ, (7.26)
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where Ψ is the gauge-invariant Bardeen potential [3],

Ψ ≡ ψ + a2H

(
Ė − B

a

)
, (7.27)

and where Mσσ and Mss are the adiabatic and entropic projections of the mass-

squared matrix, MI
J from (7.19). More explicitly,

Mσσ = σ̂I σ̂
JMI

J

Mss = ŝI ŝ
JMI

J .
(7.28)

As Eqs. (7.25) and (7.26) make clear, the entropy perturbations will source the

adiabatic perturbations but not the other way around, contingent on the turn-rate ω

being nonzero. We also note that the entropy perturbations have an effective mass-

squared of

µ2
s =Mss + 3ω2. (7.29)

In the usual fashion [3], we may construct the gauge-invariant curvature pertur-

bation,

Rc ≡ ψ − H

(ρ+ p)
δq (7.30)

where ρ and p are the background-order density and pressure and δq is the energy-

density flux of the perturbed fluid. In terms of our projected perturbations, we find

[22]

Rc =
H

σ̇
Qσ. (7.31)

Analogously, we may define a normalized entropy (or isocurvature) perturbation as

[3, 13, 14, 16, 18, 22]

S ≡ H

σ̇
Qs. (7.32)

In the long-wavelength limit, the coupled perturbations obey relations of the form

[3, 13, 14, 16, 18, 22]:

Ṙc ' αHS

Ṡ ' βHS,
(7.33)
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which allows us to write the transfer functions as

TRS(thc, t) =

∫ t

thc

dt′ α(t′)H(t′)TSS(thc, t
′)

TSS(thc, t) = exp

[∫ t

thc

dt′ β(t′)H(t′)

]
,

(7.34)

where thc is the time when a fiducial scale of interest first crosses the Hubble radius

during inflation, khc = a(thc)H(thc). We find [22]

α =
2ω

H

β = −2ε− ηss + ησσ −
4ω2

3H2
,

(7.35)

where ε, ησσ, and ηss are given by

ε ≡ − Ḣ

H2

ησσ ≡
M2

plMσσ

V

ηss ≡
M2

plMss

V
.

(7.36)

The first two quantities function like the familiar slow-roll parameters from single-

field inflation: ησσ = 1 marks the end of the fields’ slow-roll evolution, after which

σ̈ ∼ Hσ̇, while ε = 1 marks the end of inflation (ä = 0 for ε = 1). The third quantity,

ηss, is related to the effective mass of the isocurvature perturbations, and need not

remain small during inflation.

Using the transfer functions, we may relate the power spectra at thc to spectra at

later times. In the regime of interest, for late times and long wavelengths, we have

PR(k) = PR(khc)
[
1 + T 2

RS(thc, t)
]

PS(k) = PR(khc)T
2
SS(thc, t).

(7.37)

242



Ultimately, we may use TRS and TSS to calculate the isocurvature fraction,

βiso ≡
PS

PS + PR
=

T 2
SS

T 2
SS + T 2

RS + 1
, (7.38)

which may be compared to recent observables reported by the Planck collaboration.

An example of the fields’ trajectory of interest is shown in Fig. 7-3. As shown

in Fig. 7-4, while the fields evolve near the top of the ridge, the isocurvature modes

are tachyonic, µ2
s < 0, leading to the rapid amplification of isocurvature modes.

When the turn-rate is nonzero, ω 6= 0, the growth of Qs can transfer power to

the adiabatic perturbations, Qσ. If TRS grows too large from this transfer, then

predictions for observable quantities such as ns can get pulled out of agreement with

present observations, as shown in the intermediate region of Fig. 7-2 and developed

in more detail in Section 7.4. On the other hand, growth of Qs is strongly suppressed

when fields evolve in a valley, since µ2
s/H

2 � 1. In order to produce an appropriate

fraction of isocurvature perturbations while also keeping observables such as ns close

to their measured values, one therefore needs field trajectories that stay on a ridge for

a significant number of e-folds and have only a modest turn-rate so as not to transfer

too much power to the adiabatic modes. This may be accomplished in the regime of

weak curvature, κ� 1.

7.3 Trajectories of Interest

7.3.1 Geometry of the Potential

As just noted, significant growth of isocurvature perturbations occurs when µ2
s < 0,

when the fields begin near the top of a ridge. If the fields start in a valley, or if the

curvature near the top of the ridge is large enough (κ� 1) so that the fields rapidly

fall into a valley, then the system quickly relaxes to the single-field attractor found in

[19], for which βiso → 0. To understand the implications for quantities such as βiso,

it is therefore important to understand the geomtery of the potential. This may be
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Figure 7-3: The fields’ trajectory (red) superimposed upon the effective potential in
the Einstein frame, V , with couplings ξφ = 1000, ξχ = 1000.015, λφ = λχ = g = 0.01,
and initial conditions φ0 = 0.35, χ0 = 8.1× 10−4, φ̇0 = χ̇0 = 0, in units of Mpl.

accomplished by working with the field-space coordinates r and θ, defined via

φ = r cos θ , χ = r sin θ. (7.39)

(The parameter θ was labeled γ in [27].) Inflation in these models occurs for ξφφ
2 +

ξχχ
2 � M2

pl [22]. That limit corresponds to taking r → ∞, for which the potential

becomes

Vr→∞(θ) =
M4

pl

4

2g cos2 θ sin2 θ + λφ cos4 θ + λχ sin4 θ(
ξφ cos2 θ + ξχ sin2 θ

)2 . (7.40)

We further note that for our choice of potential in Eq. (7.7), V (φ, χ) has two discrete

symmetries, φ → −φ and χ → −χ. This means that we may restrict our attention

to only one quarter of the φ − χ plane. We choose φ > 0 and χ > 0 without loss of

generality.

The extrema (ridges and valleys) are those places where V,θ = 0, which formally
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Figure 7-4: The mass of the isocurvature modes, µ2
s/H

2 (blue, solid), and the turn
rate, (ω/H) × 103 (red, dotted), versus e-folds from the end of inflation, N∗, for the
trajectory shown in Fig. 7-3. Note that while the fields ride along the ridge, the
isocurvature modes are tachyonic, µ2

s < 0, leading to an amplification of isocurvature
perturbations. The mass µ2

s becomes large and positive once the fields roll off the
ridge, suppressing further growth of isocurvature modes.

has three solutions for 0 < θ < π/2 and r →∞:

θ1 = 0, θ2 =
π

2
, θ3 = cos−1

[ √
Λχ√

Λφ + Λχ

]
, (7.41)

where we have defined the convenient combinations

Λφ ≡ λφξχ − gξφ

Λχ ≡ λχξφ − gξχ.
(7.42)

In order for θ3 to be a real angle (between 0 and π/2), the argument of the inverse

cosine in Eq. (7.41) must be real and bounded by 0 and 1. If Λχ and Λφ have the

same sign, both conditions are automatically satisfied. If Λχ and Λφ have different

signs then the argument may be either imaginary or larger than 1, in which case there

is no real solution θ3. If both Λχ and Λφ have the same sign, the limiting cases are:

for Λχ � Λφ, then θ3 → 0, and for Λχ � Λφ then θ3 → π/2.

In each quarter of the φ−χ plane, we therefore have either two or three extrema, as

shown in Fig. 7-5. Because of the mean-value theorem, two ridges must be separated
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Figure 7-5: The asymptotic value r → ∞ for three potentials with Λχ = −0.001
(blue dashed), Λχ = 0 (red solid), and Λχ = 0.001 (yellow dotted), as a function of
the angle θ = arctan(χ/φ). For all three cases, Λφ = 0.0015, ξφ = ξχ = 1000, and
λφ = 0.01.

by a valley and vice versa. If Λχ and Λφ have opposite signs, there are only two

extrema, one valley and one ridge. This was the case for the parameters studied in

[22]. If Λφ and Λχ have the same sign, then there is a third extremum (either two

ridges and one valley or two valleys and one ridge) within each quarter plane. In the

case of two ridges, their asymptotic heights are

Vr→∞(θ1) =
λφM

4
pl

4ξ2
φ

,

Vr→∞(θ2) =
λχM

4
pl

4ξ2
χ

,

(7.43)

and the valley lies along the direction θ3. In the limit r → ∞, the curvature of the

potential at each of these extrema is given by

V,θθ|θ=0 = −
ΛφM

4
pl

ξ3
φ

, V,θθ|θ=π/2 = −
ΛχM

4
pl

ξ3
χ

,

V,θθ|θ=θ3 =
2ΛχΛφ(Λφ + Λχ)2M4

pl

(ξχΛφ + ξχΛχ)3
.

(7.44)

In this section we have ignored the curvature of the field-space manifold, since for
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large field values the manifold is close to flat [22], and hence ordinary and covariant

derivatives nearly coincide. We demonstrate in Appendix B that the classification of

local curvature introduced here holds generally for the dynamics relevant to inflation,

even when one takes into account the nontrivial field-space manifold.

7.3.2 Linearized Dynamics

In this section we will examine trajectories for which ω is small but nonzero: small

enough so that the isocurvature perturbations do no transfer all their energy away

to the adiabatic modes, but large enough so that genuine multifield effects (such as

βiso 6= 0) persist rather than relaxing to effectively single-field evolution.

We focus on situations in which inflation begins near the top of a ridge of the

potential, with φ0 large and both χ0 and χ̇0 small. Trajectories for which the fields

remain near the top of the ridge for a substantial number of e-folds will produce

a significant amplification of isocurvature modes, since µ2
s < 0 near the top of the

ridge and hence the isocurvature perturbations grow via tachyonic instability. From

a model-building perspective it is easy to motivate such initial conditions by postu-

lating a waterfall transition, similar to hybrid inflation scenarios [38], that pins the

χ field exactly on the ridge. Anything from a small tilt of the potential to quantum

fluctuations would then nudge the field off-center.

With χ0 small, sufficient inflation requires ξφφ
2
0 � M2

pl, which is easily accom-

plished with sub-Planckian field values given ξφ � 1. We set the scale for χ0 by

imagining that χ begins exactly on top of the ridge. In the regime of weak curvature,

κ� 1, quantum fluctuations will be of order

〈
χ2
〉

=
H2

2π
⇒ χrms =

H√
2π

(7.45)

where we take χrms ≡
√
〈χ2〉 to be a classical estimator of the excursion of the field

away from the ridge. The constraint from Planck that H/Mpl ≤ 3.7 × 10−5 during

inflation then allows us to estimate χrms ∼ 10−5 Mpl at the start of inflation. (A

Gaussian wavepacket for χ will then spread as
√
N , where N is the number of e-folds
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of inflation.) This sets a reasonable scale for χ0; we examine the dynamics of the

system as we vary χ0 around χrms.

We may now expand the full background dynamics in the limit of small κ, χ, and

χ̇. The equation of motion for φ, given by Eq. (7.15), does not include any terms

linear in χ or χ̇, so the evolution of φ in this limit reduces to the single-field equation

of motion, which reduces to

φ̇SR ' −
√
λφM

3
pl

3
√

3ξ2
φφ

(7.46)

in the slow-roll limit [27]. To first approximation, the φ field rolls slowly along the

top of the ridge. Upon using Eq. (7.11), we may integrate Eq. (7.46) to yield

ξφφ
2
∗

M2
pl

' 4

3
N∗, (7.47)

where N∗ is the number of e-folds from the end of inflation, and we have used φ(t∗)�

φ(tend). The slow-roll parameters may then be evaluated to lowest order in χ and χ̇

and take the form [19]

ε ' 3

4N2
∗

ησσ ' −
1

N∗

(
1− 3

4N∗

)
.

(7.48)

Expanding the equation of motion for the χ field and considering ξφ, ξχ � 1 we

find the linearized equation of motion

χ̈+ 3Hχ̇−
ΛφM

2
pl

ξ2
φ

χ ' 0, (7.49)

which has the simple solution

χ(t) ' χ0 exp

[(
−3H

2
±

√
9H2

2
+

ΛφM2
pl

ξ2
φ

)
N(t)

]
, (7.50)

where we again used Eq. (7.11) for H, and N(t) ≡
∫ t
t0
Hdt′ is the number of e-folds
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since the start of inflation. If we assume that ΛφM
2
pl/ξ

2
φ � 9H2/4, which is equivalent

to Λφ/λφ � 3/16, then we may Taylor expand the square root in the exponent of

χ(t). This is equivalent to dropping the χ̈ term from the equation of motion. In this

limit the solution becomes

χ(t) ' χ0e
κN(t), (7.51)

where κ is defined in Eq. (7.10). Upon using the definition of Λφ in Eq. (7.42), we

now recognize κ = 4Λφ/λφ. Our approximation of neglecting χ̈ thus corresponds to

the limit κ� 3/4.

When applying our set of approximations to the isocurvature mass in Eq. (7.29),

we find that the Mss term dominates ω2/H2, and the behavior of Mss in turn is

dominated by DJDKV rather than the term involving RI
JKL. Since we are projecting

the mass-squared matrix orthogonal to the fields’ motion, and since we are starting on

a ridge along the φ direction, the derivative of V that matters most to the dynamics

of the system in this limit is DχχV evaluated at small χ. To second order in χ, we

find

DχχV = −
ΛφM

4
pl

ξ3
φφ

2

+
M6

pl

ξ3
φ(1 + 6ξφ)φ4

[
2Λφ

(1 + 6ξφ)

ξφ
− λφε

]
+

M4
pl χ

2

ξ3
φ(1 + 6ξφ)φ4

[
3(1 + 6ξφ)Λχ+

+ (1− ε)(1 + 6ξχ)Λφ

+ 6(1− ε)(1 + 6ξφ)Λφ − Λφε
]
,

(7.52)

where we have used Λφ and Λχ as given in Eq. (7.42) and also introduced

ε ≡ ξφ − ξχ
ξφ

= 1− ξχ
ξφ
. (7.53)

These terms each illuminate an aspect of the geometry of the potential: as we found

in Eq. (7.44), Λφ and Λχ are proportional to the curvature of the potential along the
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φ and χ axes respectively, and ε is the ellipticity of the potential for large field values.

Intuition coming from these geometric quantities motivates us to use them as a basis

for determining the dynamics in our simulations. The approximations hold well for

the first several e-folds of inflation, before the fields fall off the ridge of the potential.

Based on our linearized approximation we may expand all kinematical quantities

in power series of χ0 and 1/N∗. We refer to the intermediate quantities in Appendix B

and report here the important quantities that characterize the generation and transfer

of isocurvature perturbations. To lowest order in χ and χ̇, the parameter ηss defined

in Eq. (7.36) takes the form

ηss ' −κ−
3

4N∗

(
κ+

2ε

3

)
+

3

8N2
∗

(1− ε) , (7.54)

showing that to lowest order in 1/N∗, ηss ∼ −κ < 0 and hence the isocurvature modes

begin with a tachyonic mass. The quantities α and β from Eq. (7.35) to first order

are

α ' κχ0 exp [κ(Ntot −N∗)]√
2 ξφMpl

√
N∗,

β ' κ+
1

N∗

[
3κ

4
+
ε

2
− 1

]
+

1

N2
∗

[
3ε

8
− 9

8

]
,

(7.55)

where Ntot is the total number of e-folds of inflation. These expansions allow us to

approximate the transfer function TSS of Eq. (7.34),

TSS '
(
N∗
Nhc

)1− 3κ
4
− ε

2

× exp

[
κ (Nhc −N∗)−

3

8
(3− ε)

(
1

N∗
− 1

Nhc

)]
,

(7.56)

where Nhc is the number of e-folds before the end of inflation at which Hubble crossing

occurs for the fiducial scale of interest. We may then use a semi-analytic form for

TRS by putting Eq. (7.56) into Eq. (7.34). This approximation is depicted in Fig.

7-6.

Our analytic approximation for TSS vanishes identically in the limit N∗ → 0 (at
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Figure 7-6: The evolution of TSS (top) and TRS (bottom) using the exact and approx-
imated expressions, for κ ≡ 4Λφ/λφ = 0.06, 4Λχ/λχ = −0.06 and ε = −1.5 × 10−5,
with φ0 = 0.35 Mpl, χ0 = 8.1 × 10−4 Mpl, and φ̇0 = χ̇0 = 0. We take Nhc = 60
and plot TSS and TRS against N∗, the number of e-folds before the end of inflation.
The approximation works particularly well at early times and matches the qualitative
behavior of the exact numerical solution at late times.

the end of inflation), though it gives an excellent indication of the general shape of

TSS for the duration of inflation. We further note that TSS is independent of χ0 to

lowest order, while TRS ∝ α ∝ κχ0 and hence remains small in the limit we are

considering. Thus for small κ, we expect βiso to be fairly insensitive to changes in χ0.

7.4 Results

We want to examine how the isocurvature fraction βiso varies as we change the shape of

the potential. We are particularly interested in the dependence of βiso on κ, since the

leading-order contribution to the isocurvature fraction from the shape of the potential

is proportional to κ. Guided by our approximations, we simulated trajectories across

1400 potentials and we show the results in Figures 7-7 - 7-10. The simulations were

done using zero initial velocities for φ and χ, and were performed using both Matlab

and Mathematica, as a consistency check. We compare analytical approximations in

certain regimes with our numerical findings.

As expected, we find that there is an interesting competition between the degree

to which the isocurvature mass is tachyonic and the propensity of the fields to fall off

the ridge. More explicitly, for small κ we expect the fields to stay on the ridge for

most of inflation with a small turn rate that transfers little power to the adiabatic
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modes. Therefore, in the small-κ limit, TRS remains small while TSS (and hence

βiso) increases exponentially with increasing κ. Indeed, all the numerical simulations

show that βiso vs. κ increases linearly on a semilog scale for small κ. However, in

the small-κ limit, the tachyonic isocurvature mass is also small, so βiso remains fairly

small in that regime. Meanwhile, for large κ we expect the fields to have a larger

tachyonic mass while near the top of the ridge, but to roll off the ridge (and transfer

significant power to the adiabatic modes) earlier in the evolution of the system. There

should be an intermediate regime of κ in which the isocurvature mass is fairly large

(and tachyonic) and the fields do not fall off the ridge too early. Indeed, a ubiquitous

feature of our numerical simulations is that βiso is always maximized around κ . 0.1,

regardless of the other parameters of the potential.

7.4.1 Local curvature of the potential

In Fig. 7-7, we examine the variation of βiso as we change χ0 and κ. As expected,

βiso has no dependence on χ0 for small κ. Increasing κ breaks the χ0 degeneracy: the

closer the fields start to the top of the ridge, the more time the fields remain near the

top before rolling off the ridge and transferring power to the adiabatic modes. Just

as expected, for the smallest value of χ0, we see the largest isocurvature fraction.

Even for relatively large χ0, there is still a nontrivial contribution of isocurvature

modes to the perturbation spectrum. Therefore, our model generically yields a large

isocurvature fraction with little fine-tuning of the initial field values in the regime

κ� 1.

We may calculate βiso for the limiting case of zero curvature, κ→ 0, the vicinity

in which the curves in Fig. 7-7 become degenerate. Taking the limit κ → 0 means

essentially reverting to a Higgs-like case, a fully SO(2) symmetric potential with no

turning of the trajectory in field space [27]. As expected, our approximate expression

in Eq. (7.56) for TRS → 0 in the limit κ→ 0, and hence we need only consider TSS .

As noted above, our approximate expression for TSS in Eq. (7.56) vanishes in

the limit N∗ → 0. Eq. (7.56) was derived for the regime in which our approximate

expressions for the slow-roll parameters ε and ησσ in Eq. (7.48) are reasonably ac-
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Figure 7-7: The isocurvature fraction for different values of χ0 (in units of Mpl) as a
function of the curvature of the ridge, κ. All of the trajectories began at φ0 = 0.3Mpl,
which yields Ntot = 65.7. For these potentials, ξφ = 1000, λφ = 0.01, ε = 0, and
Λχ = 0. The trajectories that begin closest to the top of the ridge have the largest
values of βiso, with some regions of parameter space nearly saturating βiso = 1.

curate. Clearly the expressions in Eq. (7.48) will cease to be accurate near the end

of inflation. Indeed, taking the expressions at face value, we would expect slow roll

to end (|ησσ| = 1) at N∗ = 1/2, and inflation to end (ε = 1) at N∗ = 2/
√

3, rather

than at N∗ = 0. Thus we might expect Eq. (7.48) to be reliable until around N∗ ' 1,

which matches the behavior we found in a previous numerical study [19]. Hence we

will evaluate our analytic approximation for TSS in Eq. (7.56) between Nhc = 60 and

N∗ ' 1, rather than all the way to N∗ → 0. In the limit κ→ 0 and ε→ 0 and using

N∗ = 1, Eq. (7.56) yields

TSS '
1

Nhc

exp [−9/8] , (7.57)

upon taking Nhc � N∗. For Nhc = 60, we therefore find TSS ' 5.4 × 10−3, and

hence βiso ' 2.9×10−5. This value may be compared with the exact numerical value,

βiso = 2.3× 10−5. Despite the severity of our approximations, our analytic expression

provides an excellent guide to the behavior of the system in the limit of small κ.

As we increase κ, the fields roll off the ridge correspondingly earlier in their evolu-

tion. The nonzero turn-rate causes a significant transfer of power from the isocurva-

ture modes to the adiabatic modes. As TRS grows larger, it lowers the overall value
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Figure 7-8: Contributions of TRS and TSS to βiso. The parameters used are φ0 =
0.3 Mpl, χ0 = 10−3 Mpl, ξφ = 103, λφ = 0.01, ε = 0 and Λχ = 0. For small κ, βiso is
dominated by TSS ; for larger κ, TRS becomes more important and ultimately reduces
βiso.

of βiso. See Fig. 7-8.

7.4.2 Global structure of the potential

The previous discussion considered the behavior for Λχ = 0. As shown in Fig. 7-5,

the global structure of the potential will change if Λχ 6= 0. In the limit κ � 1, the

fields never roll far from the top of the ridge along the χ = 0 direction, and therefore

the shape of the potential along the χ direction has no bearing on βiso. However,

large κ breaks the degeneracy in Λχ because the fields will roll off the original ridge

and probe features of the potential along the χ direction. See Fig. 7-9.

In the case Λχ = 0, the fields roll off the ridge and eventually land on a plain,

where the isocurvature perturbations are minimally suppressed, since µ2
s ∼ 0. For

Λχ > 0, there is a ridge along the χ direction as well as along χ = 0, which means

that there must be a valley at some intermediate angle in field space. When the

fields roll off the original ridge, they reach the valley in which µ2
s > 0, and hence the

isocurvature modes are more strongly suppressed than in the Λχ = 0 case.

Interesting behavior may occur for the case Λχ < 0. There exists a range of κ

for which the isocurvature perturbations are more strongly amplified than a naive
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Figure 7-9: The isocurvature fraction for different values of Λχ as a function of the
curvature of the ridge, κ. All of the trajectories began at φ0 = 0.3 Mpl and χ0 =
10−4 Mpl, yielding Ntot = 65.7. For these potentials, ξφ = 1000, λφ = 0.01, and
ε = 0. Potentials with Λχ < 0 yield the largest βiso peaks, though in those cases
βiso falls fastest in the large-κ limit due to sensitive changes in curvature along the
trajectory. Meanwhile, potentials with positive Λχ suppress the maximum value of
βiso once κ & 0.1 and local curvature becomes important.

estimate would suggest, thanks to the late-time behavior of ηss ∼ (DχχV )/V . If the

second derivative decreases more slowly than the potential itself, then the isocurvature

modes may be amplified for a short time as the fields roll down the ridge. This added

contribution is sufficient to increase βiso compared to the cases in which Λχ ≥ 0.

However, the effect becomes subdominant as the curvature of the original ridge, κ,

is increased. For larger κ, the fields spend more time in the valley, in which the

isocurvature modes are strongly suppressed.

In Figure 7-10, we isolate effects of ε and κ on βiso. From Eq. (7.52), when Λφ is

small (which implies that κ is small), ε sets the scale of the isocurvature mass. Positive

ε makes the isocurvature mass-squared more negative near κ = 0, which increases the

power in isocurvature modes. Conversely, negative ε makes the isocurvature mass-

squared less negative near κ = 0, which decreases the power in isocurvature modes.

In geometrical terms, in the limit Λφ = Λχ = 0, equipotential surfaces are ellipses

with eccenticity
√
ε for ε > 0 and

√
ε/(ε− 1) for ε < 0. In this limit we may calculate

βiso exactly as we did for the case of ε = 0.

The other effect of changing ε is that it elongates the potential in either the φ
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or χ direction. This deformation of the potential either enhances or decreases the

degree to which the fields can turn, which in turn will affect the large-κ behavior. In

particular, for ε > 0 the potential is elongated along the φ direction, which means

that when the fields roll off the ridge, they immediately start turning and transferring

power to the adiabatic modes. Conversely, for ε < 0 the potential is elongated along

the χ direction, so once the fields fall off the ridge, they travel farther before they

start turning. Therefore, in the large-κ limit, βiso falls off more quickly for ε > 0 than

for ε < 0.
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Figure 7-10: The isocurvature fraction for different values of ε as a function of the
curvature of the ridge, κ. All of the trajectories began at χ0 = 10−3 Mpl and φ0 =
0.3 Mpl, with Ntot = 65.7. For these potentials, ξφ = 1000, λφ = 0.01, and Λχ = 0.
Here we see the competition between ε setting the scale of the isocurvature mass and
affecting the amount of turning in field-space.

We may use our analytic expression for TSS in Eq. (7.56) for the case in which

κ → 0 with ε 6= 0. We find the value of βiso ' T 2
SS changes by a factor of 11 when

we vary ε ± 1/2, while our numerical solutions in Fig. 7-10 vary by a factor of 21.

Given the severity of some of our analytic approximations, this close match again

seems reassuring.

7.4.3 Initial Conditions

The quantity βiso varies with the fields’ initial conditions as well as with the param-

eters of the potential. Given the form of TRS and TSS in Eq. (7.34), we see that the
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value of βiso depends only on the behavior of the fields between Nhc and the end of

inflation. This means that if we were to change φ0 and χ0 in such a way that the

fields followed the same trajectory following Nhc, the resulting values for βiso would

be identical.

We have seen in Eq. (7.47) that we may use φ as our inflationary clock, ξφφ
2
∗/M

2
pl '

4N∗/3, where N∗ = Ntot − N(t) is the number of e-folds before the end of inflation.

We have also seen, in Eq. (7.51), that for small κ we may approximate χ(t) '

χ0 exp[κN(t)]. If we impose that two such trajectories cross Nhc with the same value

of χ, then we find

∆(logχ0) = κ∆N = −3

4
ξφκ ∆

(
φ2

0

M2
pl

)
. (7.58)

We tested the approximation in Eq. (7.58) by numerically simulating over 15,000

trajectories in the same potential with different initial conditions. The numerical

results are shown in Fig. 7-11, along with our analytic predictions, from Eq. (7.58),

that contours of constant βiso should appear parabolic in the semilog graph. As

shown in Fig. 7-11, our analytic approximation matches the full numerical results

remarkably well. We also note from Fig. 7-11 that for a given value of χ0, if we

increase φ0 (thereby increasing the total duration of inflation, Ntot), we will decrease

βiso, behavior that is consistent with our approximate expressions for TRS and TSS in

Eq. (7.56).

7.4.4 CMB observables

Recent analyses of the Planck data for low multipoles suggests an improvement of fit

between data and underlying model if one includes a substantial fraction of primor-

dial isocurvature modes, βiso ∼ O(0.1). The best fits are obtained for isocurvature

perturbations with a slightly blue spectral tilt, nI ≡ 1 + d lnPS/d ln k ≥ 1.0 [11]. In

the previous sections we have demonstrated that our general class of models read-

ily produces βiso ∼ O(0.1) in the regime κ . 0.1. The spectral tilt, nI , for these
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Figure 7-11: Numerical simulations of βiso for various initial conditions (in units of
Mpl). All trajectories shown here were for a potential with κ = 4Λφ/λφ = 0.116,
4Λχ/λχ = −160.12, and ε = −2.9 × 10−5. Also shown are our analytic predictions
for contours of constant βiso, derived from Eq. (7.58) and represented by dark, solid
lines. From top right to bottom left, the contours have βiso = 0.071, 0.307, 0.054,
0.183, and 0.355.

perturbations goes as [14, 18]

nI = 1− 2ε+ 2ηss, (7.59)

where ε and ηss are evaluated at Hubble-crossing, Nhc. Given our expressions in Eqs.

(7.48) and (7.54), we then find

nI ' 1− 2κ− 3

2N∗

(
κ+

2ε

3

)
− 3

4N2
∗

(1 + ε) . (7.60)

For trajectories that produce a nonzero fraction of isocurvature modes, the isocurva-

ture perturbations are tachyonic at the time of Hubble-crossing, with ηss ∝ Mss ∼

µ2
s < 0. Hence in general we find nI will be slightly red-tilted, nI ≤ 1. However, in

the regime of weak curvature, κ� 1, we may find nI ∼ 1. In particular, in the limit

κ→ 0 and ε→ 0, then nI → 1−3/(4N2
∗ ) ∼ 1−O(10−4), effectively indistinguishable
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Figure 7-12: Two trajectories from Fig. 7-11 that lie along the βiso = 0.183 line, for
φ0 = 0.3 Mpl and φ0 = 0.365 Mpl. The dots mark the fields’ initial values. The two
trajectories eventually become indistinguishable, and hence produce identical values
of βiso.

from a flat, scale-invariant spectrum. In general for κ < 0.02, we therefore expect

nI > ns, where ns ∼ 0.96 is the spectral index for adiabatic perturbations. In that

regime, the isocurvature perturbations would have a bluer spectrum than the adia-

batic modes, albeit not a genuinely blue spectrum. An important test of our models

will therefore be if future observations and analysis require nI > 1 in order to ad-

dress the present low-` anomaly in the Planck measurements of the CMB temperature

anisotropies.

Beyond βiso and nI , there are other important quantities that we need to address,

and that can be used to distinguish between similar models: the spectral index for

the adiabatic modes, ns, and its running, α ≡ dns/d ln k; the tensor-to-scalar ratio, r;

and the amplitude of primordial non-Gaussianity, fNL. As shown in [19], in the limit

of large curvature, κ� 1, the system quickly relaxes to the single-field attractor for

which 0.960 ≤ ns ≤ 0.967, α ∼ O(10−4), 0.0033 ≤ r ≤ 0.0048, and |fNL| � 1. (The

ranges for ns and r come from considering Nhc = 50 − 60.) Because the single-field
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attractor evolution occurs when the fields rapidly roll off a ridge and remain in a

valley, in which µ2
s > 0, the models generically predict βiso � 1 in the limit κ� 1 as

well. Here we examine how these observables evolve in the limit of weak curvature,

κ� 1, for which, as we have seen, the models may produce substantial βiso ∼ O(0.1).

Let us start with the spectral index, ns. If isocurvature modes grow and transfer

substantial power to the adiabatic modes before the end of inflation, then they may

affect the value of ns. In particular, we have [14, 18, 22]

ns = ns(thc) +
1

H
[−α(thc)− β(thc)TRS ] sin(2∆), (7.61)

where

ns(thc) = 1− 6ε+ 2ησσ (7.62)

and α and β are given in Eq. (7.35). The angle ∆ is defined via

cos ∆ ≡ TRS√
1 + T 2

RS
. (7.63)

The turn rate α = 2ω/H is small at the moment when perturbations exit the Hubble

radius, and the trigonometric factor obeys −1 ≤ sin(2∆) ≤ 1. We also have β '

κ+O(N−1
∗ ) at early times, from Eq. (7.55). Hence we see that TRS must be significant

in order to cause a substantial change in ns compared to the value at Hubble crossing,

ns(thc). Yet we found in Fig. 7-8 that TRS grows large after βiso has reached its

maximum value. We therefore expect ns to be equal to its value in the single-field

attractor for κ . 0.1.

This is indeed what we find when we study the exact numerical evolution of ns

over a wide range of κ, as in Fig. 7-2, as well as in the regime of weak curvature,

κ � 1, as shown in Fig. 7-13. For κ . 0.1 and using Nhc = 60, we find ns well

within the present bounds from the Planck measurements: ns = 0.9603 ± 0.0073

[11]. Moreover, because the regime κ . 0.1 corresponds to TRS � 1, the analysis

of the running of the spectral index, α, remains unchanged from [19], and we again

find α ∼ −2/N2
∗ ∼ O(10−4), easily consistent with the constraints from Planck,
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Figure 7-13: The spectral index ns for different values of the local curvature κ. The
parameters used are φ0 = 0.3 Mpl, χ0 = 10−3 Mpl, ξφ = 1000, λφ = 0.01, ε = 0 and
Λχ = 0. Comparing this with Fig. 7-7 we see that the peak in the βiso curve occurs
within the Planck allowed region.

α = −0.0134± 0.0090 [11].

Another important observational tool for distinguishing between inflation models

is the value of the tensor-to-scalar ratio, r. Although the current constraints are at

the 10−1 level, future experiments may be able to lower the sensitivity by one or two

orders of magnitude, making exact predictions potentially testable. For our models

the value of r is given by [19]

r =
16ε

1 + T 2
RS
. (7.64)

We see that once TRS ∼ O(1), the value of r decreases, as is depicted in Fig. 7-14.

One possible means to break the degeneracy between this family of models, apart

from βiso, is the correlation between r and ns. In the limit of vanishing TRS , both ns

and r revert to their single-field values, though they both vary in calculable ways as

TRS grows to be O(1). See Fig. 7-15.

We studied the behavior of fNL in our family of models in detail in [22]. There we

found that substantial fNL required a large value of TRS by the end of inflation. In

this chapter we have found that TRS remains small in the regime of weak curvature,

κ . 0.1. Using the methods described in detail in [22], we have evaluated fNL

numerically for the broad class of potentials and trajectories described above, in the
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Figure 7-15: The correlation between r and ns could theoretically break the degen-
eracy between our models. The parameters used for this plot are φ0 = 0.3 Mpl,
χ0 = 10−3 Mpl, ξφ = 1000, λφ = 0.01, ε = 0 and Λχ = 0, with 0 ≤ κ ≤ 0.1.
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limit of weak curvature (κ � 1), and we find |fNL| � O(1) for the entire range of

parameters and initial conditions, fully consistent with the latest bounds from Planck

[35].

Thus we have found that there exists a range of parameter space in which multi-

field dynamics remain nontrivial, producing βiso ∼ O(0.1), even as the other impor-

tant observable quantities remain well within the most-favored region of the latest

observations from Planck.

7.5 Conclusions

Previous work has demonstrated that multifield inflation with nonminimal couplings

provides close agreement with a number of spectral observables measured by the

Planck collaboration [19] (see also [40]). In the limit of strong curvature of the effective

potential in the Einstein frame, κ� 1, the single-field attractor for this class of models

pins the predicted value of the spectral index, ns, to within 1σ of the present best-fit

observational value, while also keeping the tensor-to-scalar ratio, r, well below the

present upper bounds. In the limit of κ� 1, these models also generically predict no

observable running of the spectral index, and (in the absence of severe fine-tuning of

initial conditions [22]) no observable non-Gaussianity, |α|, |fNL| � 1. In the limit of

the single-field attractor, however, these models also predict no observable multifield

effects, such as amplification of primordial isocurvature modes, hence βiso ∼ 0 in the

limit κ� 1.

In this chapter, we have demonstrated that the same class of models can produce

significant isocurvature modes, βiso ∼ O(0.1), in the limit of weak curvature of the

Einstein-frame potential, κ ≤ 0.1. In that limit, these models again predict values for

ns, α, r, and fNL squarely within the present best-fit bounds, while also providing a

plausible explanation for the observed anomaly at low multipoles in recent measure-

ments of CMB temperature anisotropies [11]. These models predict non-negligible

isocurvature fractions across a wide range of initial field values, with a dependence

of βiso on couplings that admits an analytic, intuitive, geometric interpretation. Our
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geometric approach provides an analytically tractable method in excellent agreement

with numerical simulations, which could be applied to other multifield models in

which the effective potential is “lumpy.”

The mechanism for generating βiso ∼ 0.1 that we have investigated in this chapter

is based on the idea that a symmetry among the fields’ bare couplings λI , g, and ξI is

softly broken. Such soft breaking would result from a coupling of one of the fields (say,

χ) to either a CDM scalar field or to a neutrino species; some such coupling would

be required in order for the primordial isocurvature perturbations to survive to the

era of photon decoupling, so that the primordial perturbations could be impressed in

the CMB [20]. Hence whatever couplings might have enabled primordial isocurvature

modes to modify the usual predictions from the simple, purely adiabatic ΛCDM model

might also have generated weak but nonzero curvature in the effective potential,

κ� 1. If the couplings λI , g, and ξI were not subject to a (softly broken) symmetry,

or if the fields’ initial conditions were not such that the fields began near the top of

a ridge in the potential, then the predictions from this class of models would revert

to the single-field attractor results analyzed in detail in [19].

Inflation in this class of models ends with the fields oscillating around the global

minimum of the potential. Preheating in such models offers additional interesting

phenomena [37], and further analysis is required to understand how the primordial

perturbations analyzed here might be affected by preheating dynamics. In particular,

preheating in multifield models — under certain conditions — can amplify perturba-

tions on cosmologically interesting length scales [43]. Thus the behavior of isocurva-

ture modes during preheating [44] requires careful study, to confirm whether preheat-

ing effects in the family of models considered here could affect any of the predictions

for observable quantities calculated in this chapter. We are presently studying effects

of preheating in this family of models.

Finally, expected improvements in observable constraints on the tensor-to-scalar

ratio, as well as additional data on the low-` portion of the CMB power spectrum,

could further test this general class of models and perhaps distinguish among members

of the class.
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7.7 Appendix

7.7.1 Approximated Dynamical Quantities

In this appendix, we present results for dynamical quantities under our approxima-

tions that ξφ, ξχ � 1, ξφφ
2 �M2

pl, and χ0 �Mpl.

First we expand quantities associated with field-space curvature, starting with the

field-space metric, GIJ , using the definition from Eq. (7.6). We arrive at the following

expressions:

Gφφ '
6M2

pl

φ2

Gφχ = Gχφ '
6M2

plξχχ

ξφφ3

Gχχ '
M2

pl

ξφφ2
.

(7.65)

We also find

Gφφ ' φ2

6M2
pl

Gφχ = Gχφ ' −ξχφχ
M2

pl

Gχχ ' ξφφ
2

M2
pl

.

(7.66)
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Next we expand the field-space Christoffel symbols, ΓIJK , and find

Γφφφ ' −
1

φ

Γφχφ = Γφφχ ' −
ξχχ

ξφφ2

Γφχχ '
ξχ
ξφφ

Γχφφ '
ξχχ

ξφφ2

Γχχφ = Γχφχ ' −
1

φ

Γχχχ ' −
ξχχ (2ξφ − ξχ)

ξ2
φφ

2
.

(7.67)

The nonzero components of the field-space Riemann curvature tensor become

Rφ
φφχ = −Rφ

φχφ ' ε(ε− 1)
χ

φ3

Rφ
χφχ = −Rφ

χχφ ' −
ε

6ξφφ2

Rχ
φχφ = −Rχ

φφχ ' −
ε

φ2

Rχ
χφχ = −Rχ

χχφ ' ε(1− ε) χ
φ3
.

(7.68)

We also expand dynamical quantities, beginning with the fields’ velocity:

σ̇ '
√

2λφM
4
pl

3ξ2
φφ

2
, (7.69)

and the turn rate ω in the φ and χ directions:

ωφ ' 0

ωχ '
3φ2

(
2MplΛφχ−

√
3λφξφχ̇

)
2
√

2λφM3
pl

.
(7.70)
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7.7.2 Covariant formalism and potential topography

We have defined the character of the maxima and minima of the potential using the

(normal) partial derivative at asymptotically large field values, where the manifold

is asymptotically flat, hence the normal and covariant derivatives asymptote to the

same value. By keeping the next to leading order term in the series expansion, we

can test the validity of this approach for characterizing the nature of the extrema.

We take as an example the potential parameters used in Fig. 7-3, specifically

ξφ = 1000, ξχ = 999.985, λφ = 0.01, λχ = 0.01, g = 0.01. The ridge of the potential

occurs at χ = 0.

The asymptotic value of the second partial derivative is

V,χχ|χ=0 →
−M4

plΛφ

ξ3
φφ

2
=
−M4

pl × 1.5 · 10−5

ξφφ2
(7.71)

Let us look at the partial second derivative for χ = 0 and finite φ:

V,χχ|χ=0 = M4
plφ

2

[
−Λφξφφ

2 + gξφM
2
pl

]
ξφ(M2

pl + ξφφ2)3

∝
[
−0.015 ξφφ

2 + 10M2
pl

]
. (7.72)

We see that the two terms can be comparable. In particular, the second derivative

changes sign at

V,χχ|χ=0 = 0⇒ ξφφ
2
tr ≈ 667M2

pl (7.73)

which is a field value larger than the one we used for our calculation. In order to get

70 efolds of inflation, ξφφ
2 ∼ 100M2

pl, significantly smaller than the transition value.

For φ < φtr the second derivative is positive, meaning there is a transition where the

local maximum becomes a local minimum. This means that if one was to take our

Einstein frame potential as a phenomenological model without considering the field

space metric, even at large field values, where slow roll inflation occurs, the results

would be qualitatively different.

Let us now focus our attention on the covariant derivative, keeping in mind that
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in a curved manifold it is a much more accurate indicator of the underlying dynamics.

DχχV = V,χχ − ΓφχχV,φ − ΓχχχV,χ. (7.74)

Looking at the extra terms and keeping the lowest order terms we have V,χ = 0 by

symmetry, V,φ ≈ λφ/(ξ
3
φφ

3), and Γφχχ = ξφ(1 + 6ξχ)φ/C ≈ ξχ/(ξφφ).

We will now expand the covariant derivative term in 1/φ and also in ξφ and ξχ.

This way we will make sure that there is no transition in the behavior of the extremum

for varying field values, that is to say the character of the extremum will be conserved

term by term in the expansion (we only show this for the first couple of terms, but

the trend is evident). We find

DχχV =
−ΛφM

4
pl

ξ3
φφ

2

+
M6

pl

ξ3
φφ

2(ξφφ2)

[
2Λφ −

λφε

6

(
1− 1

6ξφ

)
+ ...

]
+

M8
pl

ξ3
φφ

2(ξφφ2)2
×[

−3Λφ +
λφ
6

(1 + 2ε)− λφ
36ξφ

(1 + ε) + ...

]
+ ...

(7.75)

We have written the covariant derivative using the geometrically intuitive com-

binations of parameters, which was done in the main text in a more general setting

(χ 6= 0). It is worthwhile to note that we did not write the closed form solution

for DχχV (which is straightforward to calculate using the Christoffel symbols, given

explicitly in [22]), since this power series expansion is both more useful and more

geometrically transparent, since it is easy to see the order at which each effect is first

introduced.

We see that once we take out the (1/ξ3
φφ

2) behavior there remains a multiple series

expansion as follows

• Series in (1/ξφφ
2)
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• Each term of the above series is expanded in inverse powers of ξφ.

For the example of Fig. 7-3 the relevant quantity that defines to lowest order in

ξφ and ξχ all terms of the series is Λφ = 0.015.

By inspection of the terms, we can see that for our choice of parameters the first

term defines the behavior of the covariant derivative, which is also the asymptotic

value of the normal second derivative that we used to characterize the character of

the extremum. In the case when Λφ = 0 the ellipticity term e is dominant. Even if

λφ = ε = 0 then the dominant term comes at an even higher order and is proportional

to λφ.

In other words, the character of the extremum is conserved if one considers the

covariant derivatives. For asymptotically large field values the two coincide, since the

curvature vanishes. It is thus not only quantitatively but also qualitatively essential

to use our covariant formalism for the study of these models, even at large field values

where the curvature of the manifold is small.

Now that the character of the maximum is clear we can proceed to calculating all

ηss. We neglect the term in Mss that is proportional to RI
JKL, since the curvature

of the field-space manifold is subdominant for ξφφ
2
0 � M2

pl and the RI
JKL term is

multiplied by two factors of the fields’ velocity. If in addition we take χ = χ̇ = 0,

then Mss becomes

Mss ' ŝχŝχDχχV =
ξφφ

2

M2
pl

(
1 +

M2
pl

ξφφ2

)
DχχV. (7.76)

Using the double series expansion of Eq. (7.75) the entropic mass-squared becomes

MssV =
−ΛφM

2
pl

ξ2
φ

+
M4

pl

ξ2
φ(ξφφ2)

[
Λφ −

λφε

6

(
1− 1

6ξφ

)
+ ...

]
+

M6
pl

ξ2
φ(ξφφ2)2

[
−Λφ +

λφ
6

(1 + ε) + ...

]
+ ...

(7.77)

To find the generalized slow roll parameter ηss we need to divide by the potential,
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which again can be expanded in a power series for χ→ 0 as

V = M4
pl

λφ
4ξ2
φ

−M6
pl

λφ
2ξ3
φφ

2
+M8

pl

3λφ
4ξ4
φφ

4
+ ... (7.78)

The calculation of ηss is now a straightforward exercise giving

ηss ≈
M2

plMss

V
=
−4Λφ

λφ

+
M2

pl

ξφφ2

[
−4Λφ

λφ
− 2ε

3
+O

(
1

ξφ

)]
+

M4
pl

(ξφφ2)2

[
2

3
(1− ε) +O

(
1

ξφ

)]
+O

(
1

(ξφφ2)3

)
≈ −κ+

3

4N∗

[
−κ− 2ε

3

]
+

9

16N2
∗

[
2

3
(1− ε)

]
(7.79)

where we used the slow-roll solution for φ from Eq. (7.47), identifying it as the

inflationary clock and the definition κ = 4Λφ/λφ. By setting κ = ε = 0 we see that

even in the fully symmetric case the isocurvature mass is small but positive.

In the limit of χ→ 0 there is no turning (ω = 0), and hence TRS = 0. In order to

calculate TSS we need

β = −2ε− ηss + ησσ

' κ+
1

N∗

[
3κ

4
+
ε

2
− 1

]
+

1

N2
∗

[
3ε

8
− 9

8

]
. (7.80)

From Eq. (7.34), we see that TSS depends on the integral

∫ t

thc

βHdt′ =

∫ Nhc

N∗

βdN ′. (7.81)
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Plugging in the expression for β from Eq. (7.80)

∫ Nhc

N∗

βdN ′ = κ(Nhc −N∗)

− c1 ln

(
Nhc

N∗

)
− c2

(
1

N∗
− 1

Nhc

) (7.82)

where

c1 = 1− 3κ

4
− ε

2
(7.83)

c2 =
9

8
− 3ε

8
. (7.84)

Of course there is the ambiguity of stopping the integration one e-fold before the end

of inflation. If one plots β vs. N∗ and does a rough integration of the volume under

the curve, one finds this area giving an extra contribution
∫ 0

1
βdN ∼ −1. This is a

change, but not a severe one. We will neglect it for now, keeping in mind that there is

an O(1) multiplicative factor missing from the correct result. However since β varies

over a few orders of magnitude, we can consider this factor a small price to pay for

such a simple analytical result.
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