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ABSTRACT

Essay I

This Essay studies the properties of fixed-price
equilibrium and related concepts. Fixed-price allocations
possess two basic properties: implementability (they are
decentralized by a set of quantity constraints) and order
(only one side of a given market is constrained). Their
characterization as social Nash optima stresses the lack of
coordination between markets, and furthermore provides easy
proof of existence and study of dimensionality. Then
optimality properties are examined. Constrained Pareto
optima are generically not implementable, and thus are not
K-equilibria. On the other hand, even a K-equilibrium which
is not dominated by any other K-equilibrium need not be
optimal in the class of implementable allocations, and
moreover an implementable Pareto optimum need not be orderly.

Essay II

This Essay analyzes how an early entrant in a market
can exploit its headstart by strategic investment. The
answer depends crucially on the solution used. We argue
that "perfect equilibrium" is the most appropriate concept
for the study of dynamic rivalry.

Our analysis is based on Spence's (1979) paper, "Invest-
ment Strategy and Growth in a New Market". We establish the
existence of the set of perfect equilibria in the no-discounting
case, and suggest that one particular equilibrium is most
reasonable. This equilibrium, also valid with discounting,
involves the follower firm being forever deterred from investing
to its steady-state reaction curve, in contrast to Spence's
proposed solution. Finally, we consider entry deterrence.



Essay III

This Essay considers the possibility of static and
dynamic speculation when traders have rational expectations.
Its central theme is that, unless traders have different
priors or are able to obtain insurance in the market,
speculation relies on inconsistent plans, and thus is ruled
out by rational expectations. Static speculative markets
with and without insurance motives are characterized. Then
a sequential asset market with a finite number of traders
and differential information is described in order to study
the speculation created by potential capital gains. Price
bubbles and their martingale properties are examined. It
is argued that price bubbles rely on the myopia of traders
and that they disappear if traders adopt a truly dynamic
maximizing behavior.

Thesis Supervisor: Eric Maskin

Professor of EconomicsTitle:
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Chapter 1

Introduction

Theorems characterizing equilibrium in economies that

fail to satisfy some of the strictures of the Arrow-Debreu

model have recently abounded. In particular, papers by

Grossman [1977], Grossman and Hart [1979], and Hahn [1979]

have studied the efficiency properties of equilibrium with

incomplete market structures and have established analogues

of the two principal theorems of welfare economics. In

this paper we undertake a study of the efficiency of a model

with a different kind of imperfection, fixed prices.

More precisely, we start by showing (Proposition 2) that

Grandmont's [1977] notion of K-equilibrium (Keynesian

equilibrium) in fixed-price models, which embraces both

the Dreze [1975] and Benassy [1975] equilibrium concepts

is equivalent to a kind of social Nash optimum 2, in which

optimization is incompletely coordinated across markets

and where the control variables are quantity constraints.

Viewing K-equilibria as social Nash optima, we believe,

permits a better understanding of the structure of the set

of equilibria (see the existence theorem (Proposition 3)

and the study of local dimension (Chapter 6)}.

K-equilibria possess two important properties: order

(the requirement that at most one side of the market can

be quantity-constrained) and voluntary exchange (no one

2



trades more of any good than he wants to). We examine the

inter-relations among K-equilibria, order, and voluntary

exchange (sometimes called implementability) and their

connection with the two most natural concepts of optimality

in a fixed-price economy: constrained Pareto optimality

(optimality relative to trades that are feasible at the

fixed-prices 3) and implementable Pareto optimality (optimality

relative to feasible trades that satisfy voluntary exchange).

We show first (Proposition 5) that a common definition of

order (c.f., Grandmont [1977]), in fact, implies that exchange

is voluntary (assuming that preferences are convex and

differentiable). We, therefore, consider a less demanding

notion of order, weak order4 , which is distinct from voluntary

exchange. By analogy with weak order, we introduce a

5weaker form of voluntary exchange; viz., weak implementability

We prove (Proposition 7) that, with convexity and differen-

tiability, order is equivalent to the conjunction of weak

implementability (weak voluntary exchange) and weak order.

We then demonstrate (Proposition 8) that constrained Pareto

optima, although weakly orderly, are, except by accident,

non-implementable and, hence, non-orderly. Then Proposition

9 shows that a Pareto maximal element in the set of implement-

able allocations - i.e., an implementable Pareto optimum -

need not be weakly orderly, and thus need not be a

K-equilibrium. These last two results mean that whether the

economy is centralized or decentralized (i.e., whether or

3



not traders are compelled to make trades or are free to

make them), it may be efficient to "constrain" both sides

of the market.

As we have said, K-equilibria are equivalent to social

Nash optima. However, they are not optimal in the familiar

sense. In particular, it is quite possible for one

K-equilibrium to Pareto-dominate another. Proposition 10

demonstrates, moreover, that even non-dominated K-equilibria

(i.e., Keynesian Pareto optima) need not be implementable

Pareto optima. Although Proposition 9 and 10 apply when

the only restriction on preferencesare convexity and

differentiability, there is a subclass of preferences -

that of "no spillover effects" - for which the KPOs and

IPOs coincide (Proposition 11).
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Chapter 2

Notation and Definitions

Consider an economy of m + 1 goods indexed by

h(h = 0,1,...,m), whose price vector p is fixed (p0 = 1),

and n traders indexed by i(i = 1,...,n) where trader i

has a feasible net trade set X C Rm+l. We assume that

X is convex and contains the origin (so that trading

nothing is possible) and that trader i's preferences

(denoted by > ) are continuous and strictly convex on

this set. We will at times require preferences to be

differentiable as well. Following Grandmont [1977],

we define an equilibrium for such an economy as follows:

Definition 1: A K-equilibrium is a vector of net

1 n
trades (t ,...,tn) associated with the vector of quantity

constraints ((Z ,1 ),...,(Zn n)) (with Z < 0,

Sii> 0 Z = -o and Z 0 = +o) such that, for all i,

(a) t is feasible at prices p: t E X =X n
{t'jp.t' = 0}

(b) quantity constraints are observed: Z < t < i

(c) exchange is voluntary: t is the > - maximal

element among net trades satisfying (a) and (b).

(d) exchange is orderly: if, for some commodity h,

some agents i and j,

t ,t,) sy (Z,2) xy (Z,Z), t1 > t and ti >

then (t' - Y1 ) (tj - Zhj) > 0, where

Y {t1 E z1 < ti < Z Vk 0,h}

5



(e) aggregate feasibility: E t' = 0
i

For any trade t by trader i, we may confine our

attention to the "canonical" rations Z(t ) and T(t ),

associated with that trade: for h 0, if t' > 0, then

Yh(t') = t' and kh(t') = 0; if t' < 0, then Zh(t) = 0 and

h(t ) = t.

Voluntary exchange implies that agents are not forced

to trade more of any good than they want to. An allocation

characterized by voluntary exchange is said to be implementable.

Formally, we have:

Definition 2: An implementable allocation 6 is a vector

of net trades (t ,...,t ) satisfying conditions (a), (b), (c),

and (e) for the canonical rations associated with these

trades.

A market is orderly if buyers and sellers are not both

constrained on that market. The next two definitions repre-

sent alternative attempts to capture the idea of order.

First we introduce property (d'), which is equivalent to

(see Proposition 1),but somewhat easier to work with,than

(d). (d'): A vector of net trades (t ,... ,t n) satisfies

property (d') if, for all markets h, there exists no

alternative vector (t,.. ,tn)e 11y 1 (Z(t'), Z(t')) such that
i

t > t (with at least one strict preference) and

~i 7
Z th = 0.

The following definition is equivalent to one in

Grandmont [1977].

6



Definition 3: An orderly allocation is a vector of

net trades (t1 ,...,tn) satisfying (a), (b), (d'), and (e)

for the canonical rations associated with those trades.

The problem with the above definition of an orderly

allocation, if one is attempting to distinguish between

the notions of order and voluntary exchange, is that it

itself embodies elements of voluntary exchange. Indeed, we

will show below (Proposition 4) that, with differentiability,

the above concept of order implies voluntary exchange.

Heuristically, this is because, under the definition of

order, the trade t in y ( t ) could be preferred to t

simply because t involves forced trading on a market k h

and not because t relaxes a constraint on market h.

Therefore, we define an alternative notion of order (due to

Younes [1975]) that is free from the taint of voluntary

exchange. We first define property (d'):

(d'): A vector of net trades (t ,... ,t n) satisfies

property (d') if, for all markets h, there exists no alter-

native vector (t ... n) II Y (t1) such that, for each
t' >~t1  withat last =l

i, t > t (with at least one strict preference) and

t = 0, where y((t') = { c X' t , k ' o,h}
1

Notice that properties (d') and (d") are identical except

that the latter requires that alternative net trade vectors

be identical to the original trades in all markets other

than h and 0.

7



Definition 4: A weakly orderly allocation is a vector

of net trades (t ,... ,tn ) satisfying property (a), (b), (d"),

and (e) for the canonical rations associated with the trades.

An orderly allocation is obviously weakly orderly. By

analogy with weak order, we may define a concept of weak

implementability. We first introduce a weaker version of

property (c):

(c'): A vector of net trades (t ,... n) satisfies

property (c') if, for all markets h, there do not exist i

and t s (ti) such that t1 > t 1 (with at least one strict

1 1~i
preference) and zh (t ) < t < ). We now have:

Definition 5: A weakly implementable allocation is a

vector of net trades (t ,...,tn ) satisfying conditions (a),

(b), (c') and (e) for the canonical rations associated with

these trades.

Below we shall be interested in the Pareto-maximal

elements in the sets of K-equilibria, implementable alloca-

tions, orderly allocations and weakly orderly allocations,

which will be called K-Pareto optima (KPO), implementable

Pareto optima (IPO), orderly Pareto optima (OPO), and weakly

orderly Pareto optima (WPO), respectively. An ostensibly

still stronger notion of optimality, selecting Pareto-maximal

elements in the set of all feasible allocations, is

constrained Pareto optimality:

Definition 6: A constrained Pareto optimum (CPO) is

a Pareto optimum of the economy for feasible consumption

sets X = X 0) {t lp.t' = 0}, (i.e., it solves the program:

8



n
(*) max Z X1 u (t ) subject to t' e X and Z t' = 0,

i=l .i
for some choice of non-negative X 1 's, where the u 's are

utility functions representing preferences over net trades.

9



Chapter 3

Characterization and Existence of K-Equilibrium

We first check the consistency of the definitions:

Proposition 1: {K-equilibrium allocations} = {Implement-

able allocations} (I {Orderly alloca-

tions}.

Proof: We need just check that (d) and (d') are equiva-

lent .9 If (d') is not satisfied for (t ,.. ,t ), there

~. ~ n . .
exist h and (t ,...,tn) E II y((Z(tl), I (tl)) such that

i=1 ~
n) i 1  n ~ln

(t ,...,tn) Pareto-dominates (t ,...,tn). Because (t ,..,t)

maintains equilibrium on market h, we can infer that at least

one agent is demand-constrained and one supply-constrained

in (t ,. . ., tn), which contradicts (d). If, on the other

hand, (d) is not satisfied by (t ,...,t n), there exist h, i,

j, and

(t 1, t ) Y (Z (t 1), 1 (t 1)) x Y (Z (ti) r(t I)

such that (t ,ti) Pareto-dominates (t ,t ) and (tl - t1) x

(t3 - ti) < 0. Therefore, if the constraints on market h are

relaxed by the amount min {It' - t Zj, It3 - til}, property

(d') is contradicted. Q.E.D.

We now turn to the characterization of K-equilibria in

terms of social Nash optima. As indicated above, the idea

behind a social Nash optimum is to consider m uncoordinated

planners, one for each market h (h 0), who choose quantity

constraints to maximize a weighted sum of consumers' utilities,

subject to keeping equilibrium on their own market and given
10



the rations chosen by the other planners. A social Nash

optimum is then defined as a Nash equilibrium of that

"game". Formally:
0.

Definition 7: For each i, let t '(p,Z ,Z ) solve

trader i's preference maximization problem, given prices p

and rations Z and Y. Define the indirect utility func-

tion v(p ,Z ) = u (t 1 (p,Z ,Z')), where u is a utility

function representing i's preferences. Suppose that, for

fixed positive weights {fX}, the manager of market h chooses
n

Z and h for each i so as to maximize E X1v (p,Z , )
n . 1=1 .

subject only to the constraint E t h (pZ ,71) = 0 and
. i=1 .

taking as given the rations Z1 and 11 in each market k L h,
-k k

0. The allocation corresponding to the equilibrium of such

a "game" is a social Nash optimum.

By definition, a social Nash optimum is an implement-

able allocation. From the equivalence between (d) and

and (d') it is also orderly. Conversely, a K-equilibrium

is a social Nash optimum. We have thus characterized the

set of K-equilibria:

Proposition 2: {K-equilibria} = {Social Nash optima}

The set of weakly orderly and orderly allocations can

be characterized similarly. In particular, a weakly orderly

allocation is equivalent to a social Nash optimum where the

instruments of planner h are the trades {t} on his own

market. The characterization of orderly allocations, although

straightforward, is less natural because of the hybrid

11



nature of these allocations: an orderly allocation is a

social Nash optimum where each planner chooses trades on

his own market given the canonical rations associated with

the allocations chosen by the other planners. In other

words, each planner assumes that the others have the power

only to choose rations, whereas, in fact, they choose the

actual trades. Under differentiability, and with at

least three goods, Corollary 6 below guarantees that this

kind of social Nash optimum is identical to that of

Definition 7.

As a by-product of the characterization of K-equilibria

as social Nash optima, we obtain a straightforward proof of

the existence of a K-equilibrium at prices p based on the

Social Equilibrium Existence Theorem of Debreu [1952]:

Proposition 3: Under the above assumptions, for any

vector of positive prices p and any

choice of positive weights {X}, there

exists a social Nash optimum and, hence,

a K-equilibrium, associated with those

prices and weights.

Proof: We show that each planner faces a concave, con-

tinuous objective function and that his feasible strategy

space is a convex, compact valued and continuous

correspondence of the strategies of the other planners.

To see the concavity of the objective function, consider

two alternative choices of constraints, ((Z , ),...,(Zn ,Zn)
_1l --l n -

and((Z Z ),...,(Z in)). For any a, 0 < a < 1, the trade
010* -.- 4

at (pZ ,-) + (1-ot (p, ) is feasible for the constraints

12



(aZ + (1-a) Z , Z + (1-a)Z ). The concavity of the

utility functions then implies the concavity of the planner's

objective function. Continuity follows immediately from

the continuity of preferences. The set of feasible strate-

gies for planner h is defined by:

{((Z ,), (Zn 'n))I t (p,Z ,Z )h(, )h(=0}lO
i=)

and is denoted by Ph(Z)h(' (Z)h().Without loss of generality,

we can restrict Ph(Z)h('Z)h() to canonical quantity con-

straints. rh(Z)h('Z)h() is not empty because it contains

(0,0). It is bounded because if t is the preferred vector

in Yh(.)h(',)h() min {t ,0} < Z_ < 0 and 0 < V < max {t i,0}.

It is closed because of the continuity of the t i's. To

see that rh )h(' )h() is convex, choose (Zh = 1 -

,..., (ZnZ)) and (ZYh) in Fh(Z)h(' )h() and consider

a(Z h h) + (l-a) (Zh ,h) for 0 < c < 1. If, for example,

t ) = Z, then, because constraints

are canonical, t (p,Z ,Z-)('Z' Z )h() = and

t (p, 1Z) + (l-1)ZhAZhalh + ( Z-a) , )h() = ach +

(l-a) Z1 . Similarly, for the upper constraints. That the

correspondence rh is upper semi-continuous follows from the

continuity and convexity of preferences. It is also

immediate that rh is lower hemi-continuous. Finally, we can

restrict the domain of rh to only those rations (Z)h( z)h()

which could ever be canonical constraints. This domain is

obviously closed, bounded and convex. We can thus apply

the Social Equilibrium Existence Theorem to conclude that

a social Nash optimum exists. Q.E.D.
13



Chapter 4

Order and Voluntary Exchange

We next observe that under our hypotheses of convexity,

and differentiability, weak implementability is actually

no weaker than implementability.

Proposition 4: If preferences are differentiable (we

assume strict convexity throughout the

paper), a weak implementable allocation

is implementable.

Proof: If (t ,...,t n) is weakly implementable, then,

for each i and h 0, the partial derivative of i's utility

function with respect to good h is equal to: ph + -

where X(p.t') = 0, Pi Y(Z - t 1) 0, v i (tl - Z1) = 0. Thus,

the first order conditions for a utility maximum (subject to

the budget constraint, and the quantity constraints) are

satisfied. But, from convexity, the first order conditions

are sufficient for a maximum. Hence, (t ,...,t ) is

implementable. Q.E.D.

We can now demonstrate that if preferences are differ-

entiable and there are at least three markets, order implies

voluntary exchange.

Proposition 5: If preferences are differentiable

and m > 2, an orderly allocation is

implementable.

Proof: Consider an orderly allocation (t ,.i..,t

this allocation is not weakly implementable, then there exist

i, h, and t' cYjift) such that t' > li' and Z-1 ) < th <

Zh(t ), and, because t, = tb,, z tj , + ti, = 0. Thus,

14 j i



(ti..., ,.. .n) contradicts the order of (t1 ,...,tn), and

so we conclude that (t ,...,in ) must be weakly implement-

able after all. From Proposition 4, ( ,...Ptn is thus

implementable. Q.E.D.

That there be at least three markets and that preferences

be differentiable are hypotheses essential for the validity

of the preceeding proposition. Consider, for example, a two-

market economy as represented in the Edgeworth box in Figure 1.

Point A represents the initial endowment;

A

B

C

Figure 1

the line through A, prices; and the curves tangent to the

line, indifference curves. Any allocation between B and C

is clearly orderly, but not implementable since it involves

forced trading by the agent whose indifference curve is

tangent at B. To see that differentiability is crucial,

consider a two-person three-good economy where agents have

preferences of the form log min {x, x2 + log x 0. Given the

preferences, we can treat goods 1 and 2 together as a compos-

ite commodity, since traders will always hold goods 1 and 2

15



in equal amounts. Thus the economy is, in effect, reduced

to two goods, and so Figure 1 again becomes applicable.

A trivial corollary of Proposition 5 is: Corollary 6: If

preferences are differentiable and m > 2, {Orderly alloca-

tions} = {K - equilibrium allocations}.

We finally recall a result of Younes [1975] (also

proved by Sylvestre [1978]),which a special case of corollary

6 when m > 2.

Proposition 7: (Younes) If preferences are differenti-

able:{Implementable allocations}l {Weakly

orderly allocations} = {K-equilibrium

allocations}.

Proof: By definition, a K-equilibrium is implementable

and weakly orderly. Conversely consider an allocation which

is implementable and weakly orderly. From implementability,

differentiability and convexity of preferences, the first

order conditions are necessary and sufficient for

maximization. It is then easy to check that the restrictions

on the shadow prices of rations imposed by weak order and

order are the same (see Younes).

16



Chapter 5

Optimality

We next turn to constrained Pareto optimality. We

show that although a constrained Pareto optimal allocation

is weakly orderly, it is ordinarily neither implementable

nor orderly, at least when preferences are differentiable.

Proposition 8: A constrained Pareto optimum (CPO) is

(i) weakly orderly (which implies that

{Constrained Pareto optimal allocations}

{weakly orderly Pareto optimal alloca7

tions}) and (ii) with differentiable

preferences, neither implementable nor

(when m > 2) orderly, if it is not a
11

Walrasian equilibrium allocation , if

each trader is assigned a strictly

positive weight in the program (*),
and if there is some (i.e., non-zero)

trade on every market.

Proof: Let (t ,.. .,t n) be a CPO. If it were not weakly

orderly, then trades could be altered on some market h,

leaving trades on other markets undisturbed, in a Pareto-

improving way, a contradiction of optimality. Therefore,

(i) is established.

Suppose that (t , ... ,t ) is not a Walrasian equilibrium

allocation, that preferences are differentiable, that there

is non-zero trade on every market, and that all traders

have positive weight in program (*). We will establish that

(t ,... ,t n) is not implementable. Because it is not

Walrasian, there exists at least one market h and one agent
17



i who would prefer a trade different from t, given his

trades on other markets k A O,h. If, say, trader i is

a net buyer of h, either he would like to buy more or to

buy less of good h. If less, the non-implementability

of (t ,. ..,n) follows immediately. Assume, therefore, that

he would like to buy more. Because, by assumption, there

is non-zero trade on market h, there are traders who sell

positive quantities of good h. If among these traders,

there exists an agent j who would like to sell less of

good h, the proof is, again, complete. If there exists j

who would like to sell more than -tj units of good h (givenh

his trades on markets other than 0 and h), i and j can

arrange a mutually beneficial trade at prices p, contradic-

ting constrained Pareto optimality. Therefore, assume that

all sellers on market h are unconstrained. From differ-

entiability, forcing them to sell a bit more of good h does

not change their utility to the first order but does increase

i's utility. Therefore, if the allocation assigns positive

weight to i in (*), it involves forced trading. Thus

(tI ... ,tn is not implementable. If m > 2, Proposition 5

implies it is not orderly. Q.E.D.

The hypothesis of differentiability in Proposition 8 is,

as in previous results, essential. Crucial too is the assump-

tion that all traders have positive weight in the program (*).

To see this, refer again to Figure 1. Point B is both

constrained Pareto optimal and implementable. However, the

trader whose indifference curve is tangent to C has zero
18



weight. (Note, incidentally, that all the other CPO's -

which constitute the line segment between B and C - are

non-implementable). Finally, the hypothesis of non-zero

trade on each market is necessary. Refer, for example to

the Edgeworthbox economy in Figure 2. Initial endowments

A

Figure 2

are given by A, which is also a constrained Pareto optimum

relative to the price line drawn. Although A does not involve

forced trading, it does not violate the Proposition, as it

involves no trade at all.

Although differentiability is a restrictive assumption,

the non-zero weight and trade assumptions rule out only

negligibly many CPO's. On the basis of Proposition 8, we

may conclude that, with differentiability, CPO's are

generically non-implementable and non-orderly.

We now consider the set of Pareto optima among

implementable allocations: the implementable Pareto optima.

As opposed to a social Nash optimum where uncoordinated

planners choose the rations on their own market according
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to their own weights, an IPO is a Pareto optimum for a

unique planner choosing all the rations. Obvious questions

are whether IPO's are necessarily orderly or even weakly

orderly. The following proposition demonstrates that this

is not the case.

Proposition 9: Implementable Pareto optima need not be

weakly orderly (nor, a fortiori, orderly).

Proof: The proof takes the form of an example. Consider

a two-trader, three-good economy in which trader A derives

utility only from good 0 and has an endowment of one unit of

each of goods 1 and 2. Trader B has a utility function of

the form

15 3 2 2
U(x 0 'xlx 2) =-- x1 + 2 x 2 - 3x 1 x 2 - 3x1 - X 2 + X 0

where x is consumption of good i, and an endowment of one

unit of good 0. All prices are fixed at 1. It can be

verified that trader B's unconstrained demands for goods 1

1 1
and 2 at these prices are 12 and g , respectively. This is

an IPO in which all the weight is assigned to trader B.

In this IPO, trader A is constrained on both markets, and

buys 12 + 1 units of good 0. Now consider an IPO in

11
which trader A buys 48 units of good 0. If such an IPO

exists, trader B must be constrained either on market 1 or 2.

If the constraint is on market 2, we have:

B B 11 11
(1) x + x2 8 (because trader A buys - units of 0)(12 48 48

and
B B 7

(2) 6x + 3x2 B (from maximization of utility with
respect to good 1)
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B 1
Solving equations (1) and (2), we find x2= 1, which is

1
greater than B's unconstrained demand, -. Thus, if

the IPO exists, trader B must be constrained on market 1.

1
Now, if trader B is constrained from buying more than 24

units of good 1, demand for good 2 is Notice that
1+s 1 11

16+ = .4 Thus, if trader B is so constrained and

trader A is constrained from selling more than units24

of good 1 and 1 units of good 2, the resulting allocation

is an IPO. However, it is not weakly orderly, because

given a purchase of 6 units of good 2, trader

5 5 1B would like to buy D units of good 1. Since >6 2

both traders A and B are constrained on market 1. Q.E.D.

K-equilibria do not have the welfare properties associ-

ated with Walrasian equilibria. In particular, it is possible

for one K-equilibrium to Pareto dominate another. 12 None-

theless, one might expect the Keynesian Pareto optima - the

Pareto maximal allocations within the class of K-equilibria-

to have "good" welfare properties. For instance, one might

conjecture that they are IPO's. That this need not be so

is demonstrated by the following:

Proposition 10: A KPO need not be an IPO.

Proof: The proof is again by example. Consider an

economy similar to that of the proof of Proposition 9 but

with two additional goods. Specifically take:

A 15 3 2 2
U =8x + 8- 3 +1 4 -3x - 3x 3  4

B 15 3 2 2
U = x0  + xs l + x - 3x x 3x - x2

0 8 1 2  x 1x 2 - 1 2
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19 1 1
Suppose that trader A has endowments of 24' 3, and T units

of goods 0,1, and 2, respectively, whereas B's endowments

19 1 1
consist of -- 4, and X units of good 0, 3, and 4, respec-

tively. All prices are fixed at 1. It can be verified that

if unconstrained on markets 3 and 4, trader A demands 1and12

I units, respectively, independent of constraints he faces

1 1
on other markets. Similarly, trader B demands 1 and 1 units,

respectively, of goods 1 and 2 if unconstrained on those

markets. Thus, the unconstrained demand on all four markets

1
are less than the unconstrained supplies: units in each

case. Consequently, from order, the only possible K-equilibrium

is one in which demand is unconstrained on every market.

Trader A's equilibrium net trades vector is therefore

(0, 1 1 1 1 The two traders enjoy utilities of

205 each. Because this is the unique K-equilibrium it is a192

KPO. Now suppose that trader B is constrained from buying

1more than 4 units of good 1 and that A is constrained from

1buying more than 4 units of good 3. It is easily checked

3 3
that B will then demand 16 units of good 2 and A, -6 units16 16

of good 4. Thus, we obtain an implementable allocation in

w1 3 1 3which tracer A's net trade vector is (0, -4' ' 4 62 4 3P 16' N4' 170~
1 3 1 3and B's is (0, N' 16' N' 3 1 6 But these net trades

835
generate utilities of 8 for each trader. Because768

768 192' this implies that the KPO is not an IPO. Q.E.D.

We can summarize the results (with differentiability)

so far in a schematic diagram (Figure 3).
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Figure 3

The No Spillover Case

One "unappealing" feature of Figure 3 is that the set

of IPO's is neither completely within or without the set of

weekly orderly allocations, and, more specifically, the set

of KPO's. However, with an additional hypothesis, this

unaesthetic property disappears.

By the absence of spillovers, we mean that a change in

a constraint on a market does not alter net trades in any

of the other markets, except the unconstrained market.

A sufficient condition to obtain no spillovers is that the
23



. . n ..
traders' utility functions take the form u1 = t1 + E D 1 j(t').

h= 1
In the no spillover case, the only change in Figure 3 is

that the IPO set shrinks to coincide with the KPO and OPO

sets. We have:

Proposition 11: In the case of no spillovers,

{IPO} = {KPO} = {OPO}.

Proof: An IPO must be orderly. Otherwise, slightly

relaxing the constraints in market h for one demand-constrained

and one supply-constrained agent would be implementable (since

it would not disturb the other markets) and Pareto improving.

Q.E.D.
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Chapter 6

Structure of K-Equilibria, Constrained Pareto Optima and
Keynesian Pareto Optima Sets.

In this section we undertake a study of the local

dimension of the different sets.

K-Equilibria

Assume that at a K-equilibrium the m markets (h=l,...,m)

comprise at least one binding constraint (a constraint is

binding if the derivative of the indirect utility function

with respect to the constraint is different from zero). Let

us show that, on market h, the number of degrees of freedom

is equal to the number of binding constraints (b h), minus

one;13 for that let us remember that a K-equilibrium is

a social Nash optimum. The first order condition for a social

i 2
Nash optimum with a binding ration rh yields h v

r h
where Ph is the multiplier associated with market h's equil-

librium constraint. Let

= and F-
Ph

i V
h

rh

0.

Eth (p,Z ,Z )

Let Xh be the bh-dimensional vector of modified weights X1.

Consider the equation: F(Xh,rh) = 0, where rh is the bh -

dimensional vector of binding rations on market h. The

Jacobian of F is:

25

h



0 0

DF = h i
a h h2

h 0 rh

0.......0 1...........1

h h
DF is of rank (b, + 1). Because F is a function of (2bh)

variables, the inverse image F-1 (0) is a manifold of

dimension (bh-1). The next step consists in projecting this

manifold into the bh-dimensional space of rations. It is

easy to check that the projection has the same dimension

as F 1(0). The local dimension of the set of K-equilibria

is thus E(bh - 1) = b - m, where b is the total number of
h

binding constraints.

Constrained Pareto Optima

A constrained Pareto Optimum is a Pareto Optimum of

the economy with consumption sets X and induced preferences.

Since we have assumed differentiable convexity, the local

dimension of the set of constrained Pareto optima in the

space of feasible allocations is (n-1), where n is the

number of traders (A rigorous proof of this fact would follow

the line of Smale (1976)

Keynesian Pareto Optima

The only (direct) way to change the weight between

two traders is to change their rations for a market on which

they are both constrained. Call T = {(i,j)Ii and j are both

on at least one market}. T is obtained from T by eliminating

the redundant pairs; more precisely, in T, starting from i
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there can be at most one sequence of pairs:

(j ,k) , ... , (Z,i) leading back to i. The local dimension of

the set of Keynesian Pareto Optima

Min [ITI, n

is then:

- 1].
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Footnotes

1. Benassy's equilibrium is a K-equilibrium if preferences
are convex.

2. The term is due to Grossman (1977). Grossman's SNO,
however, is related only in spirit to our own.

3. Younes (1975) calls this concept p-optimality.

4. The concept of weak order is due to Younes (1975) and
Malinvaud-Youn'es (1977).

5. This concept was suggested to us by J.P. Benassy.

6. Younes (1977) calls this concept a p-equilibrium.

7. Grandmont, Laroque, and Younes (1978) call property (d')
market by market efficiency. We shall sometimes use
the shorter term:

4 (ti) for yj (Z(tl), Z(t)).

8. This equivalence is demonstrated by Grandmont, Laroque,
and Youn~s (1978).

9. Note that, by analogy with (d), one can define a concept
of weak order involving only two agents. It is easy to
check that this definition and (d") (the analog of
definition (d')) are equivalent.

10. If x is an m-dimensional vector, the notation x -h( denotes
the vector (x ,...,xh , x h+1 ''''xn), i.e., th (
vector obtainid by deieting component h.

11. With differentiable preferences, a Walrasian allocation
is simply an allocation such that for each agent i and
each good h, i's marginal rate of subtitution between h and
the numeraire is equal to Ph (for details on the
definitions of a Walrasian allocation under non-differen-
tiability, see Silvestre (1978).

12. To see that this is so, recall that Hahn (1978) has shown
that at Walrasian prices, a non-Walrasian K-equilibrium
can exist. But this equilibrium must be Pareto dominated
by the Walrasian equilibrium.

ii
13. A constraint r is binding if - - 0

1rh
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Chapter 1

Introduction

This paper analyzes the extent to which an early

entrant in a new market can exploit its head start by

investing more than it would, were all firms to choose

their steady-state capital levels simultaneously. In the

absence of depreciation, such "over-investment" by the lead

firm is locked in, forcing its rivals to make their subse-

quent decisions taking the leader's capital stock as given.

Their response, when anticipated by the leader, encourages

it to invest to reduce the investment of other firms.

This idea is due to Spence (1979), on whose model we base

our analysis.

The effects of this temporal asymmetry on the solution

to the investment game depend crucially on the solution

concept used. One of the main purposes of this paper is

to illuminate this point. We emphasize the shortcomings

of the Nash solution concept, which permits firms to make

empty threats; that is, threats which would not in fact be

in the firm's interest to carry out, were its bluff to be

called. In our model, firms have a quite powerful, although

self-destructive, threat which can be used to enforce many

seemingly implausible investment paths as Nash solutions.

Thus, we base our analysis on Selten's (1965) concept of

(subgame) "perfect equilibrium", which rules out empty
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threats. In extending Selten's discrete-time formulation

to continuous-time games, we notice that solution concepts

even more restrictive than our extension of perfectness

may be desirable.

We relate our work to the entry-deterrence literature

in Chapter 2. After laying out the model (Chapter 3) and

explaining perfect equilibrium (Chapter 4), we consider the

special case of no discounting (Chapter 5). We characterize

the set of perfect equilibria, which includes, but is not

confined to, Spence's solution. Chapter 6 singles out one

particular equilibrium as the most reasonable solution.

In the special case in which the two firms are identical,

and enter the market at the same time, the outcome of the

equilibrium we pick on the grounds of purely non-cooperative

considerations is nothing but the dynamic joint profit maxi-

mization path. This solution, though appealing, is here

justified by an ad-hoc argument which certainly merits a

more detailed treatment, but the problem of refining the

perfect equilibrium concept for infinite-horizon games is

beyond the scope of this paper. We then (Chapter 7)

analyze the discounting case. With discounting, Spence's

solution is not in general Nash, and a fortiori not perfect.

We conclude with a few remarks about entry deterrence.

In contrast to Spence's work, our results suggest that

the steady state of the game will usually be on neither firm's

steady-state reaction curve. The "follower" firm may be
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permanently restrained at some capital level below its

reaction curve by the leader's credible threat to respond

to investment by investing itself.
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Chapter 2

Background

The study of entry deterrence and strategic inter-

actions between firms with investments as the control

variables has been motivated in large part by the realiza-

tion that previous models using prices or quantities as

controls were unrealistic. In traditional limit-pricing

models, the monopolist's price (or quantity) before entry

was taken by prospective entrants as a signal, or threat, of

what the price (or quantity) would be post-entry, although

no reason was given that the post-entry levels would indeed

be the same. This lacuna prompted the criticism that the

perceptive entrant should not be misled by the pre-entry

level. The monopolist's threat was not credible, because it

could and would deviate from the threat in the event of

entry.

Capital levels, in contrast, do have commitment value.

That is, given a large pre-entry capital stock, the "threat"

to have a large post-entry stock is credible. However, for

this threat to matter, there must be a reason that

increasing the established firm's capital stock would

decrease the payoff to entry.

Spence (1977), in a seminal paper, analyzed pre-emptive

investment in a two-period model. In the first period,

existing firms optimized their capital levels, considering
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the response of their second-period payoff to their first-

period decision. If entry had occurred, established firms

were assumed to either produce to capacity or to charge

their marginal variable cost in the second period; however,

given entry, neither reaction was likely to be profit-

maximizing. While the assumption ensured that larger first-

period capital stocks would decrease the payoff to entry,

positing an ad-hoc rule for post-entry behavior finessed

the question of why capital levels should be threats. Dixit

(1980) considered the same two-period problem, using the

more reasonable assumption of Cournot-Nash behavior in the

second period. In his model, the established firm's first-

period capital stock was a meaningful threat because it

lowered the second-period marginal cost of the established

firm, thus inducing it to have higher Nash equilibrium

output in the second period.

Spence (1979) examined the problem in continuous time.

The continuous-time framework offers a way to explicitly

analyze post-entry behavior. The equilibrium payoffs thus

computed can be used as "second-period" payoffs to consider

the decision to enter and strategic pre-entry activity

by the established firm. The continuous time specification

also allows for varying degrees of headstart by the leader,

while in the two-period models established firms could build

up to any capital level before entry.
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Spence found that the equilibrium was for the lead

firm to invest as quickly as possible to some capital level

and then stop. As this level was chosen knowing the

follower's response, the result was much like the equilib-

rium in a static Stackelberg game.

While Spence used Nash equilibrium as the formal solution

concept, the idea of perfect equilibrium underlies his

paper and the historical development of the entry-deterrence

literature . The Nash concept in its usual formulation is

most appropriate in static games. Taking one's opponent's

strategies as given is reasonable when those strategies are

only their current moves, but taking as given strategies

which specify future moves, either as functions of time only,

("open-loop" strategies) or as functions of time and some

state variables, ("closed-loop" strategies) allows empty

threats. Thus the Nash concept is ill-suited to the investi-

gation of commitment and credibility. The more restrictive

perfectness concept is a refinement of Nash equilibrium which

allows only credible threats. This restriction greatly reduces

the size of the set of equilibria.
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Chapter 3

The Model

A. Description

Our model is that of Spence (1979). We consider a

market with two firms, firm one and firm two, each with an

associated capital stock K (t) (i = 1,2). At time zero, firm

two has just entered the market and has no capital, K 2(0) = 0;

while firm one has an exogenously given capital stock

1 1
K (0) = K0 . This is the "post-entry" game. Later, in

Chapter 8, we will discuss firm one's behavior before

2
firm two's entry

We assume that given the capital stocks K i(t), there is

at each time t an instantaneous equilibrium in the product

market, with associated net revenues (i.e., total revenues

minus operating costs) H (K (t), K 2(t)). The TI could,

for example, be the result of a Nash equilibrium in quanti-

ties given short-run costs at time t. This assumption

implies that the choice of quantities at time t has no

effect on the game later. Were it costly to change output

levels, or were firms to rely on self-financing, so that

by producing more now a firm could impair its rival's ability

to invest, this assumption would be inappropriate. We make

the assumptionas Spence did, to permit us to ignore quantity

3
decisions and to focus on commitment via investment

Capital is measured so that the (constant) price of

investment (new capital) is one. Thus, each firm's instan-

taneous profit stream is [H (K (t), K 2(t)) - I (t)], where I
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is firm i's investment at time t. Each firm tries to

maximize its net present value of profits.

i 0t 2 i
V - [T (K (t) ) - I (t)]e-r t dt

where r is i's discount rate. We assume that Hi is

differentiable, concave in K , and that H < 0. (See
1J

Appendix 1 for some examples). There is no depreciation

so K (t) = I (t). Finally, no firm may disinvest, and each

firm has a constant upper bound on the amount of its

investment:

vt, I E[0,I]

We next define the functions R1 (K ) and R2 (K ) by

2 2 1  H2 1 2

K1 (R (K2), K _ , and 2 (K 1 ,R2(K1)) (these are

indeed functions by the concavity of the H ). They are

the "steady-state reaction functions"; that is, they are

the reaction functions of the following game:

Firm i chooses K to maximize its steady-state value,

SSV- H (K ,K2) - K'. This is a one-move game in which the
r

firms simultaneously choose capital levels which they are

required to maintain forever. In a slight abuse of notation,

we will let R. denote both the function R. (K ) and its

graph. We assume that R1 and R2 have a unique intersection

which will be the Nash equilibrium of the steady-state game.

We will denote this intersection as N = (K (N), K 2(N))

(note that we will write both K (t) and K (P), where P is

a specified point). We further assume that at N the
38



absolute value of the slope of R is greater than that of

R2 so that the steady-state equilbrium is stable under the

usual myopic adjustment process. We denote by S1 the Stack-

elberg equilibriumofthe steady-state game with firm one as

the leader, which will be unique if, as we shall assume,
1 1 1 1 d 1 1H (K ,R2 (K )) is concave. K 1(S) satisfies d 1 1 (K 1 (S

1 1K
R2 (K (S))) = r . We make the symmetric assumption for

firm two.

We shall also wish to discuss the special case in which

firms do not discount their payoffs. In this "no-discounting"

case, firm i is assumed to maximize lim {l/T f T[i(Kl(t),K2 (t))-
T-o 0

I (t) ] dt}. We assume the monopoly profit is finite so

this limit is bounded above. The corresponding steady-state

game has objective functions SSV - H (K ,K 2), so the

corresponding reaction functions are defined by:4

H I(R(KJ),KJ) = 0.
DK

We shall model the firms' investment paths as solutions

to a non-cooperative game. Firm i's strategy is a function

I (K ,K ,t), specifying firm i's investment as a function of

the state (K ,K 2) and time. Note that firm i's investment

is assumed to depend on the history of the game only

through the current state.

Define the "Industry Growth Path" (IGP) from a given

initial position as the locus on which each firm invests as

quickly as possible. When the IGP from a given point goes
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to the right of N, we shall say that firm one is the

leader at that point. (See Figure 1).

As there is no depreciation, from a point P = (K (P),

K2 (P)) the state can only move to points Q with K (Q) > K (P)

and K 2(Q) > K 2(P). We shall say that such Q are "accessible

form", "after", or "above" P, and that P is "before" or

"below" Q. We note lastly that the investment game is

stationary.

B. Nash Equilibria

As a motivation for introducing perfect equilibrium,

we consider three elements of the set of Nash equilibria in

the special case in which firms do not discount their pay-

offs. Assume that in the initial position, K (0) < K (N)

and that firm one is the leader.

First Equilibrium: Firm i's strategy is "invest as

quickly as possible until K1 = K (N), then stop". Neither

firm can gain by deviating, given the other's strategy, for

if T2 is the (fixed) time at which firm two stops investing,

firm one is maximizing

lim {l/T [{H[ K (t),K2 t)) - I1 (t)]dt

T+co
T

+ f [H 1(K 1(t),. K 2(t)) - I 1(t)] dt]} =

T 2 T

0 + lim 1/T [H1(K1(t), K2(N)) - I (t)] dt
T+co T
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1 1 1which is maximized if 11 (K (t), K (N))= 0 (where the sub-

script indicates partial differentiation) for all t

sufficiently large, that is if firm one invests to K (N);

and similarly for firm two. Note that in this example the

speed of investment does not influence a firm's payoff

(only the final state matters); in particular investing as

quickly as possible to K (N) is a best response for firm one

to the given strategy of firm two.

Second Equilibrium: Firm one announces that if K2 is

ever greater than K2 = K 2(N) - A (A > 0), it will invest

until K equals some K such that max H2 (K ,K 2) < H 2(R 1 ( 2K 2

K2 1 -2
otherwise firm one stops investing when K reaches R1 (K ).

Note that if A is sufficiently small, K will exist. Let

2 ~2
firm two's strategy be to invest until K (t) = K . Observe

that this is a best response to firm one's strategy, and

that, given firm two's strategy, firm one maximizes its

payoff by stopping at K = R (K2 ), as its strategy prescribes.

Again, both firms are actually indifferent about the speed

of investment.

Third Equilibrium: Firm two's strategy is "invest as

fast as possible until the state hits (the graph of) R2 '

and then stop". Now define B(K (t), K 2(t)) = (K (B), K 2(B))

to be the point on R2 which maximizes firm one's payoff over

the subset of R2 which is attainable from (K (t), K2(t)) given

that firm two invests as quickly as possible to R2 . B is

firm one's preferred point on R2 between (K (t), R2 (K (t)))
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and the intersection of the IGP through (K 1 (t), K2 (t)) with

R2. if S1 , the Stackelberg point defined earlier, is

attainable, B = S . Let firm one's strategy be "invest as

quickly as possible until K (t) = K (B), then stop".

Let us verify that this is indeed a Nash equilibrium:

Given firm two's strategy, firm one maximizes its payoff

by investing to K 1 (B), and it may as well do so as quickly

as possible. Given firm one's strategy, if firm two invests

as quickly as possible to R2 the steady state will be at

B(K (0), K 2(0)). Now observe that if firm two deviates by

investing less quickly at some point below R2, firm one will

recalculate B as the attainable set will now include points

2
on R2 with lower K2. As, however, the "old" B is still

attainable, such a deviation by two cannot lead to a steady-

state with K 1 < K (B(K1 (0), K2 (0))), and thus cannot

increase firm two's payoff. In this equilibrium, the speed

with which firm two invests does matter. If it slowed and

if S were to the south-east of the attainable set on R2'

then firm one would have both the opportunity and the

incentive (from the concavity of H1 (K ,R2 (K ))) to drive the

steady-state to the south-east along R2 '

All three of the above equilibria are Nash, but

equilibria one and two rely on empty threats. That the

latter does we trust is obvious. The first equilibrium rests

on an empty threat in the following way. If firm one did not

stop at K (N) but at K (N) = K (N) + c, the state would still be

43



below R2 when firm one stops. Were firm two to optimize

from this point it would invest only to R2 (k 
1 ), not to

K2(N). Firm two threatens to invest to K 2(N) regardless

of what firm one does: but this threat is empty because

firm one could anticipate the threat would not be carried

out were firm one to present firm two with the fait accompli

of investment to K1 .

The first equilibrium is an "open-loop" equilibrium,

that is an equilibrium for the game in which the players

precommit themselves to time-paths of investment at the

start. The second equilibrium is a "closed-loop" equilib-

rium in that the strategies prescribe moves which depend

on the state, and not just on time. Note that open-loop

equilibria can be viewed as (trivial) closed-loop equilibria

in which the move at time t is a constant function of the

state. The third equilibrium is also closed-loop in that

the strategies depend on the state; moreover, it has the

appealing property of not being enforced by empty threats,

as we will show.
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Chapter 4

Perfect Equilibrium

To make this idea of "no empty threats" more precise,

we use Selten's (1975) concept of (subgame) perfect

equilibrium. Before giving the definition, we discuss

Selten's example. Figure 2 describes a game in extensive

form. Player one has a choice of up or down; if he plays

down, player two can choose up or down. The payoffs to

each player are indicated at the ends of the tree.

There are two Nash equilibria in this game. In the

first, player one plays up, and player two plays "if you

go down, I'll go up", in the other, player one plays down,

and two plays down. The first equilibrium is like the path

to N in our investment game in that it relies on a threat

by player two to do something he actually wouldn't do.

Were player one to play down, player two would play down.

Perfect equilibrium requires that players predict their

opponents' future moves on the basis of their knowledge of

the game, instead of being "deceived" by announcements.

Definition: A set of strategies for a game in exten-

sive form is a perfect equilibrium if the strategies yield

a Nash equilibrium for every subgame; where for every node

of the game tree, the associated subgame is the game

beginning at that node.

In Selten's example, the only Nash equilibrium at the

lower node is "player two plays down", since the Nash
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equilibrium of a one-player game is equivalent to that

player making an optimal choice. Thus, only the "good" Nash

equilibrium, (Down, Down), is perfect. Note that in finite-

horizon discrete-time games of perfect information, such

as the example, perfect equilibria are obtained by back-

wards induction from the terminal nodes. In games of

perfect information this process will result in a simple

choice by one player at each node.

Note also that if we change the (1,0) payoff to (1,1)

there will be two Nash equilibria at the lower node, and

thus two different perfect equilibria, depending on which

Nash equilibrium we specify in the second period. In finite

games of perfect information one expects the perfect

equilibrium path will be unique, as the one-player games at

each node will typically have unique solutions, except

5
on small sets of singularities .

We extend the definition of perfect equilibrium in a

natural way to continuous-time by identifying nodes of the

game with points in state space. Thus, we require that

the strategies yield a Nash equilibrium for the sub-game

starting from any point (K ,K 2) in the state space (because

of the stationarity of the game, we will, after the

discussion of the previous equilibria, exclude time from the

state space).

The investment game is simultaneous-move and thus is

not a game of perfect information. When choosing a move at

time t, neither player knows the other's move at that
47



instant. Moreover, the investment game does not have a

fixed terminal time. For these reasons, we should not

expect the game to have a unique perfect equilibrium.

Indeed, we shall demonstrate the existence of an infinity

of perfect equilibria in the no-discounting case 6 .
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Chapter 5

Analysis of the No-Discounting Case

We now return to the no-discounting case, to see if

any of our proposed strategy pairs are perfect equilibria.

The strategies which gave the path to N are not perfect: if

firm one deviated by investing a bit past K (N), to K ,

firm two's only Nash response would be to invest only up

to R2(R), not up to K2 (N) as announced. Thus the strate-

gies are not Nash at the point (RK,R 2 (K )), where firm two's

Nash response would be to stop, but its strategy says to

invest. In the second equilibrium, firm one induced firm

two to stop at K by threatening to punish any further

investment by investing so much that firm two could not

possibly gain. The moves prescribed by the strategies at

(R(K 2) (K2 +s))are "firm one invests, firm two does not".

This investment by firm one drives the state to the east,

away from R1 ,and can only lower firm one's payoff. That is,

"firm one invests to K , firm two does not invest" is not

a Nash equilibrium for the subgame starting from

(R(K 2 ), 2 + e). So the second equilibrium is not perfect.

To show that the path of the third equilibrium is the

result of perfect equilibrium strategies, we must extend

the strategies given to cover the rest of the state-space.

We divide the state-space in four regions: (1) the set

not below either reaction curve; (II) the set below R2 and to
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the right of the IGP through N; (III) the IGP through N,

below the reaction curves; and (IV) the set below R1 to

the left of the IGP through N. (Figure 3). Next we

specify strategies for each region:

Region I:

Region II:

Region III:

Region IV:

Neither firm invests.

Firm one invests as quickly as possible

until K reaches the level associated with

the steady-state Stackelberg point, Sl,
1 -1 1 1

that is, I (t) = I if K (t) < K (S1 ), and

zero otherwise. Firm two invests as

quickly as possible.

Both firms invest as quickly as possible

(i.e., the state moves along the IGP).

Symmetric with Region II.

With these strategies each player is either investing

as fast as possible, or not investing. Thus we can

characterize the direction of movement at a point as one of

four vectors: t, +,A ,or.. The proposed strategies are

shown in Figure 4.

Proposition 1: These strategies form a perfect

equilibrium.

Although the proof is somewhat lengthy, we include it

in the text to help readers unfamiliar with perfect equilib-

rium with the style of reasoning involved; subsequent proofs

are given in appendices. Readers familiar with extensive

form games may easily convince themselves of Proposition 1 by

looking at Figure 4, and skip the proof.
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Proof: We must check that the strategies yield a Nash

equilibrium at every point. We first examine the strategies

in Region I. Once the state is in this region, it can never

leave. Each firm takes its rival's strategy as given, and

so assumes its rival will never resume investment. Each

firm will thus maximize its payoff given its rival's fixed

capital stock. As the HI were assumed to be concave in K '

each firm wishes to be as close to its reaction curve as

possible, which, in Region I, requires that the firm not

invest. So the strategies yield a Nash equilibrium in

Region I.

Next we consider starting at an arbitrary point in

Region II. Is firm two's strategy optimal from any initial

point in the Region, given firm one's strategy? First we

will show that, given firm one's strategy, the best firm

two can do, starting from a point in the Region, is to choose

an investment path which leads to a steady-state on R2. No

investment path of firm two could lead the state into

Regions III or IV. Moreover, starting at any point in Region

II, firm one will stop investing in finite time, for any

investment path of firm two. Then, because when firm one

stops the state will be on or below R2, the best firm two

can do is to choose a path leading to a steady-state on R2'

as we already know that once the state reaches R2 the best

firm two can do is to stop.
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Firm two's proposed strategy in Region II is to invest

as quickly as possible, so it can deviate only by investing

less quickly. But we observe that, given firm one's strategy,

such a deviation can never lead to a steady-state

preferred by firm two. Therefore, firm two cannot gain by

deviating.

Is firm one's strategy optimal from any initial point

in Region II, given firm two's strategy? Assume for the

moment that firm one is constrained to investment paths such

that the state does not enter Regions III or IV. [We will

later show that this constraint is not binding]. This

means that whatever firm one does, given firm two's strategy,

the state will go to R2, where, as we have seen, it will remain

forever. Consider the following maximization problem for

firm one: choose a steady-state Q* in the set of points on

R2 which are attainable from the initial point, given that

firm two invests as quickly as possible. From our assumption

that IT (K ,R2 (K1)) is concave, Q* is unique and is either S1

or the attainable point nearest it. The proposed strategy

for firm one in Region II "invest as quickly as possible

until K1 = K1 (S )" is equivalent to "invest as quickly as

possible until K (t) = K (Q*)" and is thus optimal for firm

one, given firm two's strategy and given that the state does

not enter Regions III and IV.

We now check that firm one could not gain from choosing

an investment path which allowed the state to enter Regions

III or IV. By an argument analogous to that for firm two
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in Region II, the best firm one can do in Regions III or IV

is to arrive at a steady-state on R1. However, this steady-

state can not be better for firm one than the one at N,

which is attainable from the initial point in Region II

whenever firm one can send the state in Regions III or IV.

So firm one's strategy in Region II is a best response to

that of firm two, and we have shown that the strategies

yield a Nash equilibrium from any initial point in Region II.

In Region III, a deviation by either firm makes the

other the leader, and we have seen that firm one will not

do this. The argument for firm two here, and for both

firms in Region IV, are exactly symmetric. Q.E.D.

So we do have a perfect equilibrium. This equilibrium

is the solution proposed by Spence. The lead firm invests

past its steady state reaction curve to deter investment

by its rival. When firm one is able to invest to K (Sl)

before the state reaches R2, the steady state Stackelberg

point is the outcome. When this is not possible, the

firms are in a race to R2 '

While the solution is asymmetric, it does not rely,

as does Stackelberg equilibrium in quantities on the assump-

tion of asymmetric behavior. Instead, the asymmetry is

derived from asymmetric initial conditions. Of course, the

Stackelberg equilibrium quantities can be viewed as a

(perfect) Nash equilibrium in which the leader chooses its

quantity first. A frequent criticism of the Stackelberg equilibrium
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in quantities is given that both firms would like to move

first, why should one firm let another be the leader?

Both firms would prefer to be the leader in the investment

game as well. The point is that it is easier to believe

that a firm might start investing first, than to believe

that it might always manage to produce first.

We have demonstrated one perfect equilibrium for the

no-discounting case; it is far from unique. Moreover, as

we shall show in Chapter 7, it will not in general be an

equilibrium with discounting. We now establish the

existence of a set of perfect equilibria, and indicate

which equilibrium in the set we consider to be the most

reasonable; this equilibriummoreover has the advantage of

carrying over to the discounting case.

Notice that, along an IGP in Region II, there exists a

point P such that firm two prefers that the state remain

constant forever to the state moving along the IGP to

R2 and stopping there forever; and that, past RI, firm one

always prefers that all investment cease (see Figure 5).

Assume that P is to the north-west of the IGP going to S1 .

Then, as we have seen, the strategies "invest as quickly

as possible to R2" are a Nash equilibrium for the subgame

starting at P. Given the strategies at all points above P

("stop, "stop") at (K (P), K 2(P)) is also a Nash Equilibrium

at P. We will use this observation to construct a set of

perfect equilibria, each with this "early stopping"

property.
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To do so, we define U2 as the set of points at which

firm two is just indifferent between the state remaining

constant forever, and the state moving along the IGP to R2

and then staying there; define U1 similarly and let U be

the upper envelope of U1 and U2. Let C1 (respectively C2)

for "credible", be the IGP from U2 (U1 ) to S1 (S2 ). At all

points southeast of C "stop" is firm one's Nash response

to "invest to R2", so firm one cannot credibly threaten to

invest to R2, and there cannot be an early stopping

equilibrium. To the northwest of C "invest to R2" is

firm one's best reply to "invest to R2", so there firm

one does have a credible threat to invest.

We now state:

Proposition 2: Take any downward sloping line E connect-

ing C1 and C2, above U and below the

upper envelope of the reaction curves.

Call T - for terminal surface - the line

formed by E, C1 and C2 between E and the

reaction curves, R1 to the left of S2 and

R2 to the right of S 1(one such T is

depicted in Figure 5). One can construct

perfect equilibrium strategies such that

the equilibrium path stops on T. More-

over, the terminal point will be on E if
1 1 - 22
K(0) < K (S) and K (0) < K (S2 ), where

S. is the intersection of E and C.

Proof: The proof, essentially identical to the proof

of Proposition 1, is given in Appendix Two.

Note that all the steady states between U2 and R2 are

Pareto-superior to the steady state on R2 where the state
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would end up if both players invested as fast as possible.

Once the state crosses R1 , firm one's only incentive for

investing is to reduce firm two's investment, so it

definitely prefers that they both stop sooner.

Above U2, while firm two would prefer to invest were

firm one to uncontingently stop, firm two is deterred from

investment by firm one's credible threat to invest up to

R2. This threat is not credible to the right of C1 , because

here firm one prefers either the point on R2 directly above

(which would be the steady state were firm two alone to

invest), or S1, to the point where the IGP intersects R2 '

In this region firm one cannot deter two's investment.

In summary, while the concept of perfect equilibrium

allowed us to discard Nash equilibria based on empty

threats, it does not yield a unique solution to the no-

discounting game. For this reason, we proceed in the next

section to further restrict the equilibrium set.
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Chapter 6

Restricting the Set of Perfect Equilibria

We feel that not all of the perfect equilibria described

above are equally reasonable. Unfortunately, no refinement

of the perfect equilibrium concept which yields unique

solutions to infinite-horizon games is yet well-established.

For this reason, we shall content ourselves with a very

informal argument which we hope will convey our intuition.

We begin by adopting Harsanyi's ([1964], pp. 678-79)

view that "the essential difference between cooperative and

non-cooperative games consists only in the fact that in the

latter the players are unable to cooperate in achieving

a payoff vector outside the set of equilibrium points -

however desirable this may be for all of them - but there

is no reason whey they should not cooperate within the set

of equilibrium points". Thus, we shall speak of the firms

coordinating their strategies while insisting that we are

still discussing a non-cooperative game. The issue is

which equilibrium the players should expect. The search for

a unique equilibrium can be seen as an extension of the

idea of perfectness: What should the players expect to

happen in each subgame? Perfect equilibrium says that the

only reasonable thing to expect is a Nash equilibrium, but

does not suggest which of several Nash equilibriato expect.

We shall therefore base our argument for a particular
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equilibrium on a discussion of the coordination of the

players' expectations.

As a means of representing this coordination, we

introduce the idea of contracts between the players

(see Aumann): at any time, either player can propose a

contract which specifies a particular perfect equilibrium

from that point on. Let us emphasize that contracts are not

binding - they simply are a means of coordinating on a

perfect equilibrium. Each firm compares its payoff from

accepting the contract to what it can obtain by not accepting

and in making this comparison considers the possibility of

contracting later on. We impose perfectness on the con-

tracting process in the sense that no firm can threaten to

later refuse a contract which it would in fact accept. These

contracts will enable us to rule out a great many perfect

equilibria, and to say that the equilibrium should involve

"early stopping", but we will be forced to introduce a second

argument to obtain a unique equilibrium.

We first rule out any perfect equilibrium which involves

investment above the reaction curves. Such equilibria do

exist, with each firm investing only to limit the steady

state capital stock of the other. These equilibria can be

likened to two people beating each other the head, each

attacking only to induce the other to stop sooner. Both

firms have an incentive to propose ("stop", "stop") as the

equilibrium above the reaction curves, because ("stop", "stop")
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strictly Pareto dominates all other outcomes of subgames

starting in this region.

Having pinned down what happens in Region I, we now

turn to the game below R2 and to the right of the IGP

going to N. Past R , firm one is investing only to reduce

firm two's capital accumulation. Thus, firm two might be

able to anticipate that, past R1 , firm one would always be

willing to stop if firm two did; that is "stop" is firm

one's only Nash response to "stop". Roughly speaking firm

two could become the leader, in the sense that firm two

could choose its investment path knowing that when it

stopped, firm one would too.

We would therefore like to introduce the locus I2'

which is defined as those points at which firm two's

steady state isoprofit curve is tangent to the IGP. 12 is

below R2 ; its computation is performed for a simple case

in Appendix 3. The terminal surface constructed from

I2-1, (the analog of I1 with firm two as the leader), C1,C2
and the reaction curves will be called E* (see Figures 6 and

7). Firm two prefers the state to stop at any point on

or above 12 rather than moving along the IGP through that

point and then stopping. Thus on I2' firm two would prefer

to stop investing knowing that firm one will follow suit,

to investing and provoking strategic investment by firm one.

Were firm two faced with this choice at E*, either to stop

or to provoke firm one's investment, then E* would be a
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"natural" terminal surface, with firm two's (dominant)

strategy below E* being "invest".

We claim that equilibria which yield stopping below E*

are not reasonable. Whatever firm one's behavior below

12, firm two gains by investing up to I2, given that firm

two can arrange for the ("stop, "stop") equilibrium to

occur at 12. We now use the idea of mutually beneficial

contracts to argue that, at 12, firm two can indeed arrange

for the ("stop", "stop") equilibrium: This equilibrium is

the best possible outcome for firm one for the subgame

starting at 12, and firm one would therefore always accept

a contract which specified it. Note that while firm one

below 12 might like to claim that it would not agree to

stop at I2, we are imposing perfectness on the game with

contracts: regardless of firm one's announcements, firm

two correctly anticipates that firm one would indeed agree

to stop at I2 (or for that matter, anywhere above Rl).

Next we examine the game starting from any point A on

I2 (see Figure 8). First assume that the firms coordinate

at A, stipulating that they both stop on some terminal

surface. What are the reasonable stopping points? Intro-

duce firm two's isoprofit curve through A; any agreed upon

steady state has to be to the left of this curve, since

firm two can always guarantee itself the payoff corresponding

to the steady state at A. For a similar reason, the steady

state has to be below firm one's isoprofit curve through the

intersection of R2 and the IGP through A. We now have the set
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of potential cooperation steady states (see Figure 8) from

which we conclude that any equilibrium in the game with

contracts must be an "early-stopping" equilibrium, as were

the players to expect the equilibrium to go to R2 they could

find a contract which they both preferred. The "Pareto-

optimal" steady states in this set are the steady states

vertically above A, between A and B;; they all are the steady

states of some perfect equilibrium starting from A (take

horizontal terminal surfaces through the steady state).

Should firm one agree to coordinate on any "Pareto-

optimal" perfect equilibrium other than the one stopping

at A (on 12)? Although we have no formal argument to

offer, we feel that the answer is no. Our intuition

is based on the fact that advance contracts allow firm two

to commit itself to stop later and thus to prevent firm

one's strategic investment. It is not clear why firm one

would help firm two to so commit itself by accepting such

contracts. Assume that firm two proposes to coordinate

on a perfect equilibrium going to a steady state C above A;

should firm one believe firm two and stop investing until

the state reaches C? If it did, once at C, firm two could

again propose an equilibrium with a vertical path, say to C'

(see Figure 9), and so on, until the state reaches R2 so

that, a posteriori, firm one would have actually preferred

to invest until R2. Loosely speaking this situation may be

compared to a sequential blackmail game in which one player
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At A on I2, one perfect equilibrium has for terminal surface the

horizontal segment T. The two firms, if they coordinate on this perfect

equilibrium go to C. The difficulty is that at C, firm two has an incentive

to repropose an equilibrium with' another horizontal terminal surface, say

T', leading to C', and so on, up to C. Thus a posteriori firm one would have

preferred to go to C.
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(firm two) obtains a concession from the other (firm one)

on the pretext that the blackmain will then end; the

problem is that the blackmailer has no reason to stop, so

that it is rational for the victim to refuse the first

demand. What happens under both reaction curves? At a point

on the upper envelope of Il and I2, the Pareto frontier of

the contract zone is composed of two segments , one horizontal

and the other vertical. In this sense power is more equally

distributed among the two firms, and the bargaining argument

must be formulated both ways. Now, if the upper envelope of

11 and I2 isaterminal surface, it is clear that the state

will never stop under it, since it is a dominant strategy

for at least one firm to invest up to the terminal surface.

Alternatively one can analyze the game in which only

"immediate-stopping" contracts are considered (immediate

stopping contracts specify that both firms stop investing

at the state where the contract is concluded). Note that

in the region above the lower envelope of the reaction

curves (i.e., the region where at most one firm would like

to go on), this game is equivalent to the game where no con-

tracts are considered, but firms can blow up their invest-

ment plant. In this game, firm two is the only player able

to call a halt above R and below R2 (by proposing a con-

tract to stop immediately, which will be accepted by firm

one, or by blowing up its investment plant). This power

is actually self-destructive in the sense that, if firm two

does not propose an immediate contract or destroy its invest-
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ment facilities, firm one should presume that firm two

wants to invest more.

Our preferred perfect equilibrium has an interesting

property in the special case where the IGP through the

original point goes through the intersection I of I and I2'

The steady state of the non-cooperative game is I (see the

proof of proposition 2 for the description of the associated

strategies). At this point, the isoprofit curves of firm

one and firm two are tangent, since they are both tangent

to the IGP. This means that each firm's profit is maximized

given the other firm's profit level. In other words, the non-

cooperative outcome is constrained efficient from the point

of view of the two firms, given that monetary transfers are

prohibited. Moreover, if the maximum investment speeds

are equal, so that the slope of the IGP is equal to one,

the non-cooperative outcome is nothing but the joint-profit

maximization point. This in particular will be true in the

completely symmetric case, where both firms are identical

and enter the market at the same date (see Figure 10).

Deviations from joint-profit maximization are then due to the

eagerness of one of the firms to take advantage of the

temporal asymmetry. Even in this case purely non-cooperative

behavior leads to early stopping outcomes, i.e., to restricted

competition.
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Figure 10*: Symmetric Case: The Non-Cooperative Outcome is
the Joint-Profit Maximization Solution.

* This picture is drawn for the capacity constraint case
with linear demand and constant marginal cost (up to
the capacity constraint).
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We conclude that the only reasonable equilibrium on

which the firms could coordinate is the one which yields

stopping at E*. We recognize, however, that this coordination

process might break down. In this case, it is difficult to

say what would happen. The observed moves might not corres-

pond to any pair of perfect equilibrium strategies if the

two firms expect different equilibria to prevail. In any

case, a coordination equilibrium should not involve invest-

ing to R2 (early stopping property), and most reasonably

should stop on E*.
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Chapter 7

The Discounting Case

Now that we have explored the model, and perfect

equilibrium, in the no-discounting case, we proceed to the

more realistic situation in which firms do discount future

payoffs. Once time matters, firms must consider not only

the eventual steady state, but also the approach to it.

Recall the first perfect equilibrium discussed, in

which firm one acted as a Stackelberg leader, stopping below

its preferred attainable point on R2. This was Spence's

solution. It is not generally correct with discounting,

because such an investment path frequently will not be

optimal for firm one, as shown below. The optimal control

for firm one, when firm two invests as quickly as possible,

will typically be a "two-switchpoint path" on which firm

one invests, stops, and then invests again. Nor will a

"modified Spence solution" with a two-switch point path going

to R2 usually be an equilibrium: if the second switchpoint

occurs above the curve U2,which is defined as before, then

firm two will not want to invest to R2, but will prefer to

stop at a capital level just less than that at which firm one

resumes investment.

On the other hand, the "stop at 12" coordination equilib-

rium will be shown to carry over to the discounting case.

Firm one's use of a two-switchpoint path will not induce firm

two to want to stop earlier, as by definition below 12 firm

73



two prefers moving along the IGP to stopping.

We now discuss firm one's choice of an optimal path,

assuming that firm two invests as fast as possible, in order

to derive necessary (but not sufficient) conditions for a

perfect equilibrium in which firm two invests as quickly as

possible up to R2. Spence proved that the optimal path for

firm one to a point on R is to invest as quickly as possible

to the capital level associated with that point, and then

stop. Intuitively, the firm is trying to minimize the horizon-

tal distance betweeen the state and its reaction function,

K1(t) - R, (K 2(t)), and a "most-rapid approach" path is

at each instant no further away than any other feasible path.

Spence claimed that such a path was optimal for reaching

an arbitrary point. Were this true, then the solution he

proposed would have been a perfect equilibrium with discounting.

However, if the terminal point is above R1 , firm one will again

try to stay as near its reaction curve as possible. Below

R , this requires the most rapid approach path, and by

symmetry we expect that above R it will require a "least

rapid approach" path.

To verify this intuition, we state firm one's control

problem (i.e., for a given k (t), Vt)

Max ][1 (K (t), 2(t)) - I (t)]e r t

0<I1 (t)<I 0

s.t. N (t) = I1t) K (0) =R

-2 2 -

(K (t) = i t, T given by the "target" on R2)
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The Hamiltonian is:

H = e-rt IT - I] + XIl

First order conditions:

I maximizes H ' I -1 if A > e -r t

1~ -1et
I e [0,1 ] if A=e-t

I = 0 if A < e

1H e-rtl 1 2
and D -e Hi (K ,K )

We see immediately that as the Hamiltonian is linear in invest-

ment, the optimal control is bang-bang. The path cannot

involve an interval of singular control for if it did

= e -rt -r 1 er t + Ill = r1 and the interval would be

along R1 . As this is impossible in the absence of depreciation,

we conclude there can be no interval of indeterminate invest-

ment.

Next we argue that there can be at most two switchpoints,

and that the switch from investing to not investing must
1-r t

occur below R1 . Examine the switching equation, Z = A - e .

Below Rl, Z < 0, above R , Z > 0. Thus a switch from on to

off could not occur above R1 , as the on-off switch requires

that E be decreasing. Likewise, the off-on switch cannot

occur below R . As switches must alternate in type, there

can be at most one switchpoint in each region, and so no more

than two in all. As a corrolary, any vertical segment of the

path must intersect R .
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We will call one switch-point curves with switchpoints

below R (i.e., "on-off" switchpoints) "J-curves" and two

switch-point curves "S-curves". There can also be "upside-

down J-curves" with switchpoints above R, (i.e., "off-on"

switchpoints). The impossibility of a J-curve with switch-

point aboveR is easy to see in a diagram (Figure 11). In

FIgure 11, the dotted S-curve clearly dominates the J-curve

for firm one.

Now that we know how best for firm one to get to a given

point, we can ask which point on R2 firm one would choose,

again assuming that firm two invests as quickly as possible

to R2. In particular, we might want to know when firm one's

best reply involves choosing a J-curve. While we can not

answer this question in general, we can partially character-

ize firm one's choice, and can find examples in which an S-curve

is optimal.7

This completes our discussion of firm one's control

problem. Let us now see the implication of S-curves for perfect

equilibrium in the game.

Consider, for example, the perfect equilibrium path

going to R2. If the second switchpoint is above U2, then

firm two will prefer to stop below the switchpoint to forestall

firm one's resuming investment; that is, "invest as fast as

possible to R2" will not be a Nash response for two. It was

this observation which prompted our exploration of "early-

stopping" equilibria.
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Let us now define the analogs of the terms developed

for the no-discounting case. First the Stackelberg point

S on R2 is such that just under that point, firm one is

indifferent between letting firm two invest up to R2, and

limiting firm two's investment by investing (i.e.,

(K 1 (S), K 2 (S1 )) is given by the system of equations: I

2jK 1 ' ,K2) + ,2 dR2 ()

K = R (K 1 ) and -1 + =2 ,K )j 0).2r

The set of points above which firm one has a credible threat

to invest in response to firm two's investing, C1 , is defined

as the set of points where firm one would resume investment

given that firm two invests up to R2. In the no-discounting

case, C was part of the IGP going to S 1 ; whenever the state

was above C1 , firm one preferred moving along the IGP to

moving vertically, assuming that firm two invested up to R2.

In the discounting case, it is easily shown that S belongs

to C1 , that C1 is to the northwest of the IGP to S , and that

its slope is always less than the slope of the IGP through

the point.

We define 12 as before, to be the locus on which firm

two is indifferent between having the state remain constant

forever, and having it move a bit along the IGP, and stop
-l

12 2 1 2forever (i.e., the equation of 12 is: 112(K ,K2)+u11(K ,K2 I-~ _ r

As in the no-discounting case, the following defines a

perfect equilibrium. Let the terminal surface E* be the upper

envelope of I 1 and 12 between C2 and C1 , C1 and C2 between

the upper envelope of I and 12 and the reaction curves, and
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the reaction curves (R2 to the southeast of C1 , and R to

the northwest of C2), where IPC 2 are defined symmetrically

to I2, C Above the reaction curves, neither firm invests:2)1,

between E* and the reaction curves, both firms invest; and since E*

is a terminal surface, no firm invests on E*. Finally, when

firm one is the "leader", it solves a control problem knowing

that firm two invests up to the terminal surface, and firm

two invests as quickly as possible and symmetrically when

firm two is the "leader". See Figure 12.

The arguments in favor of this equilibrium are the same

as the ones in the notdiscounting case. First, firm two

would never agree to coordinate on a perfect equilibrium

stopping under E*, since it can at worst propose a contract

stopping all investment once on E*. The equilibria stopping

between E* and the reaction curves do not seem reasonable for

the same reason as in Chapter 6.

We conclude that our preferred "early stopping" equilib-

rium in the no-discounting case carries over to the discounting

case. It can be checked that in the completely symmetric

case where firms are identical and enter the market at the

same date, our preferred perfect equilibrium leads to a path

identical to the dynamic joint-profit maximizing path, i.e.,

the path that the firms would follow could they sign a binding

contract and transfer money between them.
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Chapter 8

Entry

Having analyzed the "post entry" game that corresponds

to the second period of two-period models, we turn to the

question of entry deterrence. The answers to this question

are a by-product of our previous analysis. Note that the

reduction of the equilibrium set to one element (Chapters

6 and 7), is necessary in order to have a well defined

trajectory from a given state point and therefore to discuss

entry. The established firm starts investing at time 0, and

firm two starts at time t 2 (i.e., t2 is time zero in the post-

entry game).

We consider two cases: "deterministic entry" in which

the date of firm two's earlier possible investment, t2, is

known; and "stochastic entry" in which firm one has an

exogenous subjective probability distribution over t2. In

both cases, firm two will enter if and only if the net

present value of doing so is positive; this net present

value V2 (K (t2)) is nothing but the present discounted value

at t2 of firm two's profits along the perfect equilibrium path

from (K (t2),0) to the stopping curve E*. Similarly one can

define V1 (K (t2)) as the present discounted value at t2 of

firm one's profits if firm two enters - let K ld be the entry

deterring level: V2(Kd) = 0. It is easy to see that firm

two will enter if and only if K (t2) < Kid. Define.
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1(K 1 (t2)) 1(K (t2)) if K (t2) < Kid

V (K(t 2 )) if K (t 2 )) > K

where Vm (K (t2)) is the present discounted value at t2 f

firm one's profits when it starts as K (t2) and acts as a

monopolist. V1 (K 1 (t2)) is discountinuous at K d (it jumps

up).

1. Deterministic Entry: The date of potential entry

t2 is known. Firm one's maximization problem is:

(A) Max { [ 1(K ) - I]e- r dt+e-r t2 -1 (K1 (t2 W

'l1
s.t. K = I

where H1 (K ) is the net (monopolistic) revenue of firm one.

Depending on the solution of this problem, firm one will either

deter entry by reaching (or overreaching) K ld, or choose to let

two enter. If it decides to overshoot Kld at t2, we shall

say that entry is blockaded. This happens when the entry

deterring level K is less than the level of capital given by

the intersection of firm one's reaction curve and the

horizontal axis (and t2 is "high enough") - this of course

is not the interesting case - In general, the entry deterrence

problem will be solved by computing the solution of (A).

2. Stochastic Entry: Let us assume that firm one has

some subjective probability distribution about t2 (for example

firm two's entry is conditioned by the acquisition of know-how,

whose date is uncertain). Let F(t2) be the cumulative distribu-

tion function of dates of entry. Firm one, assumed risk
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neutral, solves the following stochastic control problem:

(B) Max { { [ { (ll(K)-Il)e-r t dt+e-r t

{ V(K (t2))] dF(t2}

s.t. K I

The solution of (B) may involve different kinds of strategies;

a simple case to analyze has the conditional probability

of potential entry between t2 and (t2 + dt 2 ) independent

of time t2 ( exponential distribution case). Firm one will

then use one of the following two strategies. It may either

accumulate capital as quickly as possible up the deterring

level K (if firm two does not enter in between), and possibly

overshoot; or accumulate capital as quickly as possible up to

a given (non-deterring) level (if firm two does not enter in

between) and then wait for firm two's entry. Again after firm

two's entry the path followed is the perfect equilibrium

path from the point of entry. Firm one.'s choice is then

reduced to picking the level of capital ("target") which

maximizes its expected payoff.
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Chapter 9

Discussion

In closing, we would like to speculate on the extension

of our results to models with depreciation. Intuitively,

with high depreciation rates, the leader's capital stock

is not at all locked in, and we expect it will thus lack an

incentive to strategically overinvest. Were this intuition

to carry over to low depreciation rates, then strategic

investment would seem unlikely.

While we have been unable to find a perfect equilibrium

for the game with depreciation,we have found a family of Nash

equilibria with the following properties: for all positive

depreciation rates the only steady state is at N; for low

depreciation the path stays a long time above R ; and for

sufficiently high depreciation the path never goes above

R 1. This equilibrium thus supports our intuition about the

high-deprecation case, and yet exhibits strategic investment

for low depreciation, perhaps justifying some optimism as

to the reasonableness of such behavior. 8

We conclude that the temporal asymmetries do give the lead

firm an advantage, in that it may invest past its steady state

Nash level to deter investment by others. The lead firm

chooses its investment path considering the follower's eventual

choice of steady-state; however, past its reaction curve the

lead firm would always prefer both firms stopping to any

alternative, so the follower does not always invest to R2'
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but decides where to stop knowing that the leader will follow

suit. The steady state will typically be an "early stopping"

equilibrium below R2. Of course, below its reaction curve, the

follower would prefer to invest, ceteris paribus, but the

leader's credible threat precludes further investment.

This purely non-cooperative restriction of competition between

the firms is reinforced by the observation that in the

completely symmetric case, the outcome of the most reasonable

perfect equilibrium is nothing but the dynamic joint-profit

maximization path.

We argued that the study of entry deterrence, commitment,

and credible threats should proceed by restricting the Nash

equilibrium set to perfect equilibria. This restriction is

is both simple and compelling. Our work suggests that further

restrictions on the equilibrium set are desirable. While we

used an ad-hoc argument for singling out a particular "early

stopping" equilibrium, we hope that future research will develop

a rigorous and general approach useful for the many infinite

horizon, imperfect-information games that arise naturally in

economic modelling.
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Footnotes

1. Nick Papadopoulos has studied Spence's model using a
differential game approach. While the Starr-Ho
solution concept he usedis essentially that of
perfectness (with piecewise differentiable valuation
function), he based his analysis on the assumptions
that the state stopped on the reaction curves, and that
the valuation function was continuous below them, which
effectively imposed investing to the reaction curves
as the only possible solution.

2. We will not, however, discuss the determination of the
time period between the two entries. One could
imagine that firms engage in search for new investment
opportunities, with the probability of "discovery"
depending on search expenditures, observed profits of
other firms, and on potential profits for the searcher.
The last case would present no difficulties for our
analysis: One could "fold back" the post-discovery
game, replacing it with the associated payoffs. Were
firm one's conduct to affect the probability distribu-
tion of firm two's date of entry, then firm one would
need to consider new issues such as "lying low" to
avoid discovery, and our analysis would not be applic-
able.

3. In another paper, "Learning by Doing and Market Performance".
we analyze a game in which current quantity decisions
influence future costs and thus do have commitment
value.

4. Note that for this game to be interesting, and for the
reaction functions to be well-defined, there must be
a flow cost of capital, or firms would choose arbitrarily
large capital levels.

5. This claim can be made precise as follows: Consider an
n-player finite game of perfect information in exten-
sive form. Then associated with each path is a n-tuple
of payoffs for the n players; as the game is finite,
there are finitely many such paths; denote the number
of paths by I. Then, holding- the game tree fixed, we
can identify games with specifications of payoffs for
each path; that is, with elements of [Rn]I. The claim is
then that the complement of the closure of the set of
elements of [RnIT for which the associated game has
multiple perfect equilibria is of full measure.

6. We believe that the multiplicity of equilibria in the
investment game (see below) should be attributed to the
infinite horizon, and not to the imperfect information,
because multiplicity is also present in a discrete-time
sequential move analog of the game.
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7. We have shown:
1) If the optimal J-curve goes to the left of Sl, it

is dominated by an S-curve.

2) On the other hand, if Dill/DK2 is linear in K2, then
if the optimal J-curve ends to the right of Sl, it
is globally optimal.

3) The optimal S-curve always ends to the left of Sl.

4) With either S or J curves, the terminal point
chosen goes to Sl, when possible, as rigoes to zero.

If we had incorporated a financial constraint on investment
(such as requiring all investment to be financed by
retained earnings) as in Spence (1979), then J-curves
would be more often optimal. Such as integral constraint
would have greatly complicated the analysis.

8. This path is the one assumed by Eaton and Lipsey (1980)
who analyze entry-deterrence with depreciation in the
case of unbounded investment speed and arbitrarily small
difference in dates of entry.

87



References

Dixit, A. "A Model of Duopoly Suggesting a Theory of Entry
Barriers". Bell Journal of Economics, Vol. 10, No. 1
(Spring 1979), pp. 20-32.

Dixit, A., "The Role of Investment in Entry Deterrence".
Economic Journal 90 (March 1980), pp. 95-106.

Eaton, B.D. and Lipsey, R.G. "Capital, Commitment, and Entry
Equilibrium". Queen's University Discussion Paper No. 265
(July 1980).

Fudenberg, D. and Tirole, J. "Learning by Doing and Market
Performance" in preparation.

Harsanyi, J.C. "A General Solution for Finite Non-Cooperative
Games, Based on Risk-Dominance". Advances in Game Theory,
M. Dreshler et al., eds., Annals of Mathematics, Study
52, Princeton 1964, pp. 627-650.

Kydland, F.E. "Equilibrium Solutions in Dynamic Dominant
Player Models" Journal of Economic Theory, Vol. 15, No. 2
(August 1977), pp. 307-324.

Maskin, E., and Newberry, D. "Rational Expectations and Market
Power: The Paradox of the Disadvantageous Tariff on Oil"
M.I.T. Working Paper No. 227, November 1978.

Papadopolous, N. "Growth in a New Market". Harvard Univer-
sity, March 1980.

Schelling, T.C. The Strategy of Conflict. Cambridge, Harvard
University Press, 1980.

Schmalensee, R. "Economies of Scale and Barriers to Entry".
Sloan School Working Paper, M.I.T., June 1980, No. 1130-80.

Selten. R. "Spieltheoretische Behandlung eines Oligopolmodells
mit Nachfragertrdheit" Zeitschrift ftir die gesamte Staatswis-
senschaft, Vol. 12, 1965.

Selten, R. "Reexamination of the Perfectness Concept for
Equilibrium Points in Extensive Games". International
Journal of Game Theory, No. 1, 1975. pp. 25-55.

Spence, A.M. "Entry, Capacity, Investment, and Oligopolistic
Pricing". Bell Journal of Economics, Vol. 8, No. 2
(Autumn 1977). pp. 534-44.

Spence, A.M. "Investment Strategy and Growth in a New Market",
Bell Journal of Economics, Vol. 10, No. 1, 1979.
pp. 1-19.

88



Starr, A.W., and Ho, Y.L. "Further Properties of Nonzero-
Sum-Differential Games". Journal of Optimization Theory
and Applications, Vol. 3, No. 4 (1969). pp. 207-219.

89



Appendix 1

Examples of Instantaneous Payoff Functions

In this appendix we compute the H in two special cases

and verify that our assumptions hold for capital levels at

which strategic investment would occur.

The simplest example one can think of is that the instan-

taneous equilibrium be Cournot (i.e., Nash in quantities q')

given instantaneous costs, which are taken to be C (q ,K ) -

c K for q < K , with capital functioning solely as a capacity

constraint. Then, at each instant, firm i chooses q to

maximize q (p(q' + q) - i )with q1 < K1. When both capacity

constraints are binding, our assumptions on the Hi are

nothing but the usual assumptions in the static Cournot model

that: the profit function is concave (R . < 0); that the

reaction functions are downward sloping (H < 0) and have

a unique intersection, that the Cournot equilibrium is stable

under the usual dynamics and that there is a unique Stackelberg

point on each reaction curve. If the state (K ,K 2) is such

that firm i has excess capacity, then the state can never move

so as to make firm i's constraint binding. Therefore, nothing

firm i does can influence firm j's investment, and firm i will

not invest. Knowing this, firm j will simply invest until

its capital level is optimal given firm i's. So we can solve

directly the trivial game when at least one firm has excess

capacity, and need impose assumptions only in the complementary

case, which we discuss in the paper.
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Appendix 2

Proof of Proposition Two

Pick any point on E under both reaction curves. By

analogy with Chapter 5, the IGP going to this point will be

called Region III. Region II (IV) will be the region to the

right (left) of Region III and under T, and Region I is

defined as before as the region above both reaction curves.

Another area deliminated by E, C1 , C2 and the upper envelope

of R1 and R2, must still be named: Region V (see Figure 5).

In Region I, the strategies are the same as before

(no one invests). In Regions II, III and IV, the strategies

are defined as before except that the terminal surface is

taken to be T rather than the upper envelope of R1 and R2.

On T, both firms stop. Lastly in Region V, both firms invest.

We have to check that for each firm and for any initial

state, the firm's strategy as described above is an optimal

one, given the other firm's strategy. By our previous analysis

we know that this is true in Regions I and V. Since E is

located above U, no firm has an incentive to invest once

on E, since it would lead to the steady state on the upper

envelope of R1 and R2 on the IGP through the point on E. We

thus have to check that the strategies are Nash in Regions II,

III and IV. For that notice that firm two's (one's) (steady

state) payoff increases when the state moves towards

bigger K (K ) along T on the boarder of Region II (Region IV).

91



This, as shown in Chapter 5, implies that firm two's (one's)

best response to firm one's (two's) strategy at any point

of region II (Region IV) is to invest. Lastly firm one's

(two's) optimization problem at any point in Region II

(Region IV), given the other firm's strategy, induces a Nash

strategy at any point of Region II (Region IV). Thus the

strategies are in perfect equilibrium. Q.E.D.

Notice also that if for example K (0) > K (S1 ), the

outcome of the investment game is a steady state on T just

above (K (0),0) (i.e., on C1 or on the part of R2 to the

southeast of S1 )
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Appendix 3

Example of the Computation of the Curve 12

We consider the "capacity model" with C (q ,K ) -

c K for q < K , = 0 otherwise, linear demand, and no

discounting. Then when the capacity constraint is binding

T[ (K ,K 2) = K (1-K -K 2) - c K , R2 (K ) 1- 2 and

-? 2 c 1l+2c i-3c2
s ( 2 4 ) just as in the static Cournot

case.

We now compute 12: it is given by

2 -l 2 2-~7F _r -I
2 - I a 1 _ 3' (where i - - or

K 1- K K 3 K2

K2 _ 1- c2 . Firm one's preferred point on I2 is

K1

1 2+i 2 11C (+i + c (I)

2 , which can be greater than

or less than K (S1 ).
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Essay III

On the Possibility of Speculation

Under Rational Expectations
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Chapter 1

Introduction

Speculation is generally defined as a process for

transferring price risks. Given this (admittedly vague)

definition, there is considerable disagreement about the

conditions which allow a speculative market to arise. The

Working theory (see Hirshleifer [1975,1977], Feiger [1976])

makes differences in beliefs the key to speculative

behavior: in particular the degree of traders' risk aver-

sion affects only the size of their gamble. Associated

with this theory and (as we shall see below) potentially

at the root of its internal inconsistency is the idea that

better informed traders are able to make money on the

average. On the other hand, the Keynes-Hicks theory of

speculation emphasizes not differences in beliefs, but

differences in willingness to take risk or in initial

positions as the foundation of a speculative market. The

social function of speculation is thus to shift price risks

from more to less risk averse traders or from traders

with riskier positions to those with less risky positions.

In other words, speculation in the Keynes-Hicks tradition

is a substitute for insurance markets.

For markets with sequential trading (e.g., a stock

market), one can give a more precise definition of specula-

tion: Harrison and Kreps [1978], following Kaldor and Keynes,
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say that "investors exhibit speculative behavior if the

right to resell [an] asset makes them willing to pay more

for it than they would pay if obliged to hold it forever."

In this paper, we investigate the possibility of

speculative behavior when traders have rational expecta-

tions.

The idea behind a rational expectations equilibrium

(REE) is that each trader is able to make inferences from

the market price about the profitability of his trade.

Traders know the statistical relationship between the

market price and the realized value of their trade (the

"forecast function") and use the information conveyed by

the price as well as their private information to choose

their demands. As such the definition is still ambiguous,

and this ambiguity has led to some misinterpretation of

the concept of REE, particularly concerning speculation.

If an agent's utility function is not strictly concave,

his demand for an asset based on its price and his

information (including the information conveyed by the

price) may be multivalued. An auctioneer may then have

to choose a trade from the agent's demand correspondence

which depends on the other agents' trades to clear the

market. But because the agent's trade then depends on

those of others, it is not measurable with respect to the

price and his information. That is, as Kreps [1977]

recognized, the agent may then infer information not only
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from the price, but also paradoxically from the quantity

he trades. This may seem to be merely a technical point,

but it is important for our purpose, since many models of

speculation assume risk neutrality. To see how easily

the issue of measurability arises, let us describe an

extremely simplified version of Feiger's [1978] futures

market model. Consider a one-shot market for an asset the

unit value of which is a random variable equal to +1 with

probability 1/2, and -1 with probability 1/2. There are

two classes of risk neutral traders. The "informed

traders" know with certainty the realization of the random

variable (i.e., they receive a signal perfectly correlated

with it). The "uninformed traders" do not have any

information other than the prior probability distribution;

hence their expectation before looking at the market price

is 0. We assume, as Feiger does, that traders cannot buy

or sell more than their collateral constraint, taken to

be their wealth. Moreover, the wealth of the uninformed

traders exceeds that of the informed traders, which implies

that the uninformed traders "make the price" (if the price

were to differ from the expectation of the uninformed

traders, no matter how formed, the market would stay

unbalanced). In this model, there is a trivial (non-

informative) self-fulfilling forecast function: Whatever

the signal received by the informed traders, the market
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price is 0. Given this forecast function, uninformed

traders are indifferent between buying and selling.

Informed traders buy (sell) when their signal tells them

that the value of the asset is +1 (-1). Hence, whatever

the realization of the random variable, the uninformed

traders, as a group, lose an amount of money equal to the

wealth of the informed traders. Traders maximize their

expected pay-off using their own information and the self-

fulfilling forecast function, but they ignore the informa-

tion conveyed by the magnitude of their trade. 2

The concept of REE has been interpreted in two ways.

In the first interpretation the forecast function _ i.e.,

the statistical relationship between the market price and

the profitability of the trades - is learned over time by

the traders (see e.g., Bray [1980b]). The interpretation

of course does not apply to markets which open only

infrequently nor to markets which open repeatedly, but

involve frequent structural shifts. Alternatively, the

forecast function may be justified by an argument of the

same nature as the foundation of some other equilibrium

concepts in economic theory (Nash equilibrium, Bayesian

equilibrium ... ): vaguely speaking, there exists some

common knowledge about the structure of the market, or more

generally the game, and an equilibrium arises when each

trader presumes that the other traders use their equilib-

rium strategies. For a market with heterogeneous
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information, assume that it is common knowledge (in Aumann

[1976]'s sense) that a) trader i has utility function u

b) all the traders have the same prior3 and are rational;

c) the market clears. Then the traders can compute the

forecast function associated with a REE. The assumption

that the preferences are common knowledge is, of course,

very strong, and one might want to substitute a') for a):

a') trader i's utility function u belongs to set U (e.g.,

U is the set of concave utility functions). Then a REE

has the property that no trader can refute the forecast

function, in the following sense: Each trader i can con-

struct a utility function in-U3 , and a trade depending on

the price, j's information for each trader j different from

i, such that, for any set of signals the traders receive,

all the traders maximize given their information and the

market clears. The true utility functions and the REE

trades satisfy these requirements, by definition.4

The object of this paper it to explore some implica-

tions of the concept of REE for the theory of speculation.

We consider one-shot markets ("static speculation" -

Chapter 3, as well as markets with sequential trading

("dynamic speculation" - Chapter 4.)

First we argue in Chapter 3a that, contrary to the

Working-Hirshleifer - Feiger view, rational and risk averse

traders never trade solely on the basis of differences in

information. Risk neutral traders may trade, but do not
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expect any gain from their trade. The understanding of

this no-betting result is facilitated by the second inter-

pretation of a REE, where traders have some non-statistical

knowledge about the market. Consider a purely speculative

market (i.e., a market where the aggregate monetary gain

in zero and insurance plays no role). Assume that it is

common knowledge that traders are risk averse, rational,

have the same prior and that the market clears. Then it

is also common knowledge that a trader's expected

monetary gain given his information must be positive in

order for him to be willing to trade. The market clearing

condition then imposes that no trader expects a monetary

gain from his trade. This process can be illustrated by

the following elementary example: At the beginning of a

seminar the speaker states a proposition. Suppose that

the validity of the proposition is in question; and that

each member of the audience but the speaker either has no

information about its validity or else has some counter-

example in mind. In the first case, the member will not

be willing to bet with the speaker, who, after all, having

worked on the topic before the seminar, is endowed with

superior information. In the second case, he will be

willing to bet that the proposition is incorrect. The

speaker can therefore deduce that only members of the

audience having a counter-example in mind will be willing

to bet with him.5 Consequently, the speaker will not be

willing to bet at all.
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The idea behind this result is due to Stiglitz [1974]

and a formal treatment can be found in Kreps [1977].

Milgrom and Stokey [1980] deduce a similar result using an

interesting approach.

The motivation for recalling this theorem is that it

provides insight on the rest of the paper, and moreover

has important consequences for the theory of speculation.

In particular, it definitely contradicts the Working theory

for markets with rational traders having the same prior

(but differential information). Indeed one might ask what

is needed in order to observe speculative behavior; in

Chapter 3a, we give four conditions giving rise to static

speculation.

In Chapter 3b, we point out how the kind of reason-

ing used to show the impossibility of pure speculation can

be extended to derive characterizations of "non-zero-sum

games", e.g., of markets where trading is justified by

insurance. Consider a one-shot speculative market

("futures market") with two classes of traders: risk-averse

traders ("farmers") holding an initially risky position

("crop") and risk-averse traders endowed with information

("speculators"). Even in the case where all the relevant

information is revealed by the futures price, trade occurs

in agreement with the Keynes-Hicks theory, and the specula-

tors receive a risk premium for insuring farmers. Introduce

now into the market competitive, risk neutral traders

101



("insurance companies") who have the same information and

rationality as the farmers. It is shown that, in a REE,

speculators are deprived of their raison d'etre (insurance)

and do not trade any more. Indeed, the equilibrium

exhibits a very peculiar feature: Some or all of the

information retained by the speculators is revealed by the

price, in spite of the fact that they do not trade! The

usual justifications given for REE seem very weak in such

a context and certainly demand more analysis.

While Chapter 3 is concerned with the characteri-

zation of one period speculative markets, Chapter 4

considers a sequential market in order to focus on the

second definition of speculation - that investors exhibit

a speculative behavior if the right to resell an asset

makes them willing to pay more for it than they would pay

if obliged to hold it forever. To this purpose we describe

a stock market as a sequence of rational expectations

equilibria. The dividends of a given firm (d0 ,d1 ,..., d t )

are assumed to follow an exogenously given stochastic

process. Each trader, who is assumed to be risk neutral,

will have in each period some information (signal) about

the process. This information differs among traders. In

a sequential speculative market, the concept of REE can be

further refined. Often in markets with homogeneous

information, traders are assumed to base their behavior on

the comparison between the current price and (the
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probability distribution of) next period's price ; the

corresponding REE for a stock market with heterogeneous

information will be named "myopic REE". We show that, for

any given period, even if short sales are prohibited, a

trader will not expect a gain from his trade, regardless

of what information he may possess (of course, the price

expectation is taken relative to the trader's own informa-

tion and the information he can infer from the market).

This does not mean that the price of the stock has to be

equal to any market fundamental (i.e., the expected present

discounted value of dividends). The right to resell the

asset in general makes traders willing to pay more for it

than they would pay if obliged to hold it forever, i.e.,

more than their market fundamental. Moreover, in an

equilibrium of a stock market with infinite horizon, the

market fundamental will in general differ for all traders.

On the contrary, in a finite horizon stock market, it is

shown that the price is equal to the market fundamental

of any active trader (of any trader if short sales are

allowed). Next define for each active trader a price

bubble as the difference between the market price and his

market fundamental. The martingale properties of those

price bubbles are exhibited. Lastly, it is shown that, in

the special case where everyone has the same information

in every period, the uniqueness of the market fundamental

leads to a price bubble identical for all traders, and
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this price bubble follows a (discounted) martingale.

One may nevertheless dislike the concept of myopic

REE, especially in an economy with a finite number of

traders. Indeed, a sequence of myopic REE does not

necessarily lead to a well defined (i.e., converging)

expected gain function for each trader. In Chapter 4a

we exhibit an elementary example of myopic REE where any

optimal strategy (i.e., maximizing a trader's expected

pay-off over the whole time horizon) requires the trader

to realize his profits in finite time (i.e., quit the

market). This is inconsistent, as the set of traders is

finite. We are thus led to define a fully dynamic REE

as a sequence of self-fulfilling forecast functions such

that there exists for each agent a sequence of (informa-

tion contingent) stock holdings, called a "strategy",

satisfying the following properties: (1) in each period

t and for any information a trader i may have attime t,

the corresponding strategy maximizes i's expected present

discounted gain from t on (i's posterior being computed

from the common prior and i's information-acquired

individually and inferred from the market price); (2) the

market clears in each period and for any information

traders have in this period.

As one might expect, the definition of a fully dynamic

REE puts very strong restrictions on the type of price

and expectation functions which can arise in equilibrium.

104



In fact, Chapter 4b shows that in a fully dynamic REE,

price bubbles disappear and every trader's market funda-

mental equals the price of the stock, regardless of

whether short sales are allowed or not. This implies that

a speculative behavior in the Kaldor-Keynes-Harrison-Kreps

sense cannot be observed in a fully dynamic REE.

The paper is organized as follows: Chapter 2 provides

notation and defines a REE. Chapter 3 deals with static

speculation; Chapter 3a demonstrates the impossibility

of pure speculation under rational expectations and risk

aversion ("zero-sum game") and Chapter 3b considers the

link between insurance and information conveyed by prices

("non-zero sum game"). Chapter 4 develops a model of REE

in a sequential market with differential information,

and answers the question of whether dynamic speculation

in the Kaldor-Keynes-Harrison-Kreps sense is consistent

with rational expectations. Lastly the conclusion summar-

izes our results and considers their implications for real

world asset markets.
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Chapter 2

Notation and Definition of a REE

The definition given in this section is intentionally

vague and its content will be made precise in every

particular context. Consider a market with I risk averse

or risk neutral traders: i = 1 ... ,I. Their net trans-

actions {x } are effected at price p. The market clears

when: E x = 0. Let E be the set of pay-off relevant
i

environments (for example E may be the set of potential

spot prices next period). Each trader receives a private

i i
signal s belonging to a set S . The vector of all

signals is: s = (...,s ,...) belonging to a set S (con-

tained in X S ). Then Q = E x S is the set of states of
i

nature, and we assume that all the traders have the same

prior v on Q. Let T be a set contained in S; we shall

denote by v (s |T) the marginal probability of signal s

conditional on {s c T}. v (s ) will denote the prior
i

probability of signal s

Definition 1

A REE is a forecast function 0 which associates with

each set of signals s a price p = (s), and a set of trades

x (p,s ,S(p)) for each agent i, relative to information s

and s e S(p) = P~1(p), such that:
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1. x (p,s ,S(p)) maximizes i's expected utility

conditional on i's private information s ,

and the information conveyed by the price

S(p).

2. The market clears: E x (p,s ,S(p)) = 0
i

Note that by writing x (ps ,S(p)), we impose the

measurability requirement on trader i's demand, i.e., his

demand depends only on his information and not on the

other traders' signals or trades. Sometimes we shall use

the shorthand x (ps ) for x (p,s ,S(p)).

The application of the concept of REE to the charac-

terization of speculative markets is the central theme of

the rest of the paper. Since the diversity of the models

necessitated by the study of the different facets of

speculation may be disagreeable to a reader interested in

a particular aspect, the different parts are written so as

to be self-contained, and thus can be read more or less

independently.
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Chapter 3

Static Speculation

a. The Impossibility of Pure Speculation: In this

sub-section, we formalize the notion that pure speculation -

or participation in a zero-sum game - is inconsistent with

risk aversion and rational expectations. We shall say that

a market is purely speculative if the total monetary gain

is non positive and the participants' initial

positions (corresponding to no trade on the market) are

uncorrelated with the return of the asset.

Trader i (i = l,...,I) buys (sells), at price p, x

claims which entitle (force) him to receive (give up)

( x i) once the value of the random price P is known.

Every trader has a concave utility function, and his

initial position is uncorrelated with j. i's ex post

("realized") gain is: G - - . From the market

clearing condition: E G = 0.
i

Trader i's individual information is a signal s in

i
S . We shall assume that all signals have a positive

probability:

Vi, Vs 6 S : V i ) > 0

A REE of the purely speculative market is a forecast

function p = @(s)<-> se S(p) = 1(p) such that:

E X i,S(p)) = 0
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Since trader i has a concave utility function, and

has the option not to trade, he must expect a non-negative

gain:

E(Gilsi, S(p)) > 0 (1)

This has to be true for

the projection S (p) of S(p)

E(G'IS(p)) =

s E S (p)

any signal s belonging to

on S This implies:

E(Gl si,S(p)) v(s' S(p)) > 0

(2)

Because the market is purely speculative:

i
G= 0 + z E(G iS(p))

i
= 0 (3)

This implies in turn that:

Vi: E(G S(p)) = 0

Vi: E(G s i S(p)) = 0 (4)

In other words, no trader can expect a gain in a REE. We

can now state:

Proposition 1: In a REE of a purely speculative

market with risk averse or risk neutral

traders, risk averse traders do not

trade; risk neutral traders may trade,

but they do not expect any gain from

their trade.
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Note also that a self-fulfilling equilibrium need

not satisfy Proposition 1, as exemplified by the model

based on Feiger [1978] presented in the introduction

(equation (1) does not hold if the gain function G' is

not measurable with respect to p, s and S(p)). In this

model, the uninformed traders expect a zero gain for any

given trade, and the informed traders a gain equal to

their wealth. The problem is that the trade of the

uninformed traders depends on the signal received by the

informed traders, and that the former are not allowed to

make any inference from the quantity they trade.

Proposition 1 shows that one must relax at least one

of the previous assumptions in order to observe static

speculation:

(a) One may introduce risk loving traders.

(b) One may depart from the strict Bayesian

assumption that priors are identical for

everybody and that differences in beliefs

are simply the result of differences in

information.

(c) One other way of transforming the market

into a "positive-sum game" from the point

of view of the set of rational agents is

to introduce a non rational agent: A

related method consists in introducing

traders whose (possibly stochastic) demand

or supply is independent of the market

price (see Grossman [1976], [1977] and

110



Grossman-Stiglitz [1976]), although one must

be cautious and give a more complete descrip-

tion of the model before calling these

traders irrational. The set of all rational

players is then able to take advantage of

this type of players, who, roughly speaking,

face an unfair bet.

(d) The absence of correlation between the initial

position of the traders and the market outcome

(and the corresponding impossibility for

anyone to use the market to hedge) is a central

condition for the non-existence of a "pure

betting market". If this condition fails to

hold, the market can be seen as a means of

supplying insurance to traders with risky

positions. This view vindicates the Keynes-

Hicks position and is the essence of Danthine

[1978]'s model of a futures market (see

Chapter 3b.)

The distinction between (c) and (d) is not as clear-

cut as it might seem, if one considers the examples of

REE which can be found in the literature. Consider, for

example, Grossman [1976]'s one-period stock market; there

is a fixed supply x of the stock. If, following Grossman,

one assumes that traders have constant absolute risk aver-

sion utility functions, the demands are independent of

wealth and thus one does not have to specify who owns the

initial stock in order to compute the equilibrium price.

However, the stock market equilibrium may be interpreted
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in terms of (c) if the holders of the initial stock x sell

the whole stock to the set of rational buyers whatever

the price or in terms of (d) if the rational traders also

own the initial stock and thus try to hedge (or speculate)

on the market.

Let us now examine where the previous argument breaks

down when one of the assumptions is relaxed. First if

a trader either is risk loving or has an initially risky

position on the market (cases (a) and (d)), he may in

equilibrium expect a negative gain: Thus (1) does not

hold. (1) also fails to hold when one introduces irra-

tional agents or fixed supplies or demands into the

market (case (c)); to illustrate this simply, assume that

there is a fixed supply x of a risky asset, so that the

market clearing condition is: Z x = x. Assume further
i

that all traders have the same information and the same

constant absolute risk aversion utility function, and

that the distribution of the future price of the asset is

normal. It is well known7 that the demand of the rational

traders is proportional to (E(@) - p) where E(P) denotes

the expectation of the price relative to the common

information. Thus in equilibrium: k(E(p) - p) = x (k> 0).

The aggregate expected gain of the rational traders is

then: - 2 >0, whereas the traders with the fixed supplies
-2

expect an aggregate loss (-k) relative to their not selling

the asset. Finally, if traders have different priors
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(case (b)), the sum of the expected gains may well be

strictly positive: Since the posteriors have to be

computed from different priors, (3) does not hold.

b. Insurance and Information: Links between informa-

tion and insurance have been much studied in information

theory. In particular, a recurrent theme is that

information, by revealing to some traders their advantageous

position, will in general restrict trade, and thus destroy

the possibility of insurance. In this section we consider

the effect of the introduction of competitive, risk-neutral

traders, called "insurance companies", on a market where

transfers of information take place. We consider a futures

market analogous to that of Danthine [1978]9 where risk

averse farmers, who hold an initially risky position, sell

in order to obtain insurance, and risk averse speculators,

who are endowed with some information about the future spot

price, buy. This is not a "zero-sum game", since farmers

are willing to pay a risk premium in order to get

insurance; thus Proposition 1 of Chapter 3a-does not

hold. The futures price may reveal part of or all the

relevant information held by the speculators, but, even in

the fully revealing case, trade takes place in agreement

with the Keynes-Hicks theory. Imagine now that competitive,

risk neutral traders enter the futures market. They are

supposed to have the same information as the farmers - i.e.,
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the one conveyed by the futures price. Clearly they are

more efficient in insuring farmers than the speculators;

they deprive them of their raison d'etre. The speculators'

only motive to trade would be their superiority in

information, or, in other words, the insurance companies

have reduced the game between farmers and speculators to

a pure speculation game, which, we know from Chapter 3a

is impossible. Thus in a REE, the speculators do not trade.

Let us now give a sketch of the model (for more details,

see Danthine).

Risk averse farmers (i = 1,...,I) plant a crop in

period 1 and harvest it in period 2. The cost of planting

is c , and the quantity harvested q (c . The price of

the harvest in period 2 is some random variable j; to

simplify we assume that p is independent of the harvest,

i.e., the consumers have an infinitely elastic demand

curve. Every trader has the same prior on ,; to make

2
things concrete, let 9 = p + n, where q % N(o,a ).

Farmer i, who has an initially risky position sells f

units of futures contracts at price p at time 1.

The other participants in the futures market are

competitive, risk averse "speculators" (j = 1,... ,J).

Each speculator j has some information (signal) p- = + sJ

about the future spot price P, where si 1 N(o '2) (agains

the distribution is not essential for our purpose).

Speculator j buys bi in the futures market. As is usual
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in a REE, the market price p conveys some or all the rele-

vant information about the set of signals (s ,...,sj ).

Farmers and speculators have Von Neumann-Morgenstern

utility functions, so that their optimization problems are:

Farmer i:

Max E{u'( q (c') + (p - p) f - c )Ip}

{c ,f }

Speculator j:

Max E{u 3((@ - p)bJ)Is 39 p)}

{bd}

The futures market is in equilibrium when:

Sf 1 (p) = b b9 (s3 ,p)
i j

The derivations are given in Danthine; all we have to

observe is that even in the case where speculators have

no informational superiority (the price reveals the suffi-
EsJ

cient statistic j ), trade takes place and the specula-

tors make a profit by providing insurance to the farmers.

Introduce now competitive risk neutral traders

(k = 1,... ,K), called insurance companies. Insurance

k
company k buys b in the futures market on the basis of

the information revealed by the market price p. Equilibrium

in the futures market is now achieved when:

f f (p) = b (s3,p) + F bk (p)
i j k
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We now show that the presence of insurance companies

implies that in a REE speculators do not trade.

First observe that the risk neutrality of the insur-

ance companies implies that their price expectation:

EQp1p) (and thus the one of the farmers) is equal to the

futures price:

p = E(PJp) (5)

In passing, this implies that, whatever their optimal crop,

farmers buy complete insurance: Vi: f = q (c ). To con-

form to the notation of the introduction, let:

xE -_f (Vi), xJ = b (Vj),xk = bk(Vk) and

G - p) x

for 1 = i,j,k.

Market clearing requires that:

E G + E G + E Gk = 0 (6)
i j k

Assume now that for some signals s (...,sJ,...) and

associated price p = 4(s) (where 4 is the forecast func-

tion), there exists a speculator j that: x j (s ,p) 0.

This implies that:

E(G j s op) > 0

Since speculators are always free not to trade, we

know that for all signals and for each speculator j:
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E(GJIs 3 ,p) > 0

By integration with respect to s3 (consistent with p):

E(Glip) > 0 (7)

and for j :

E(G i p) > 0 (8)10

(6), (7) and (8) imply that:

Z E(Gjlp) + 7 E(G kip) < 0
i k

which contradicts (5).

We can now state:

Proposition 2: Consider a one-shot speculative market

with three classes of traders - risk

averse traders with initially risky

positions ("farmers"), - risk averse,

traders with initially riskless posi-

tions ("speculators") and - risk neutral

traders ("insurance companies"). In

a REE, speculators will not trade,

regardless of their and others'

information. 11

That the speculators do not trade any longer in equilib-

rium should not surprise us given that the justification of

their trade before the introduction of insurance companies

was insurance and not their superiority in information.

Note that, apparently paradoxically, if a REE exists,12 some
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or all the information of the speculators is revealed by

the price although they do not trade. This is straining

the credibility of a REE to the limit and it is difficult

to see how such an equilibrium could arise. The lack of

theory about how a REE is reached is of course a general

drawback of the REE analysis, but seems particularly

problematic in our context.

Also we have not found a definite answer to the welfare

implications of Proposition 2. Note that Proposition 2

does not say that the speculators' information (which has

a social value) is destroyed, i.e., is not transmitted by

the market price and thus remains unused. It is clear that

in the presence of insurance companies, the speculators are

worse off (whereas the insurance companies neither gain nor

lose). The farmers are better insured since they do not

pay a premium relative to their expectation. If the trans-

mission of information by the price does not "deteriorate"

with the introduction of insurance companies (i.e., V s c S,

Sins (s) c S(s) where S(s), S ins(s) are subsets of S repre-

senting the information conveyed by the price without and

with insurance companies), then the farmers are unambiguously

better off.
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Chapter 4

Dynamic Speculation: A Model of a Stock Market with Hetero-
keneous Information

This section is particularly concerned with the Kaldor-

Keynes-Harrison-Kreps definition of speculation, according

to which investors exhibit speculative behavior if the right

to resell an asset makes them willing to pay more for it

than they would pay if obliged to hold it forever. To this

intent we describe the market for a given stock as a sequence

of REE.

The stock may be traded at dates t = 0, 1, 2,... .The

(non-negative) dividend dt is declared immediately prior

to time t trading, and paid to traders who hold the stock

at (t-1). As in Harrison and Kreps [1978], we assume that

the sequence of dividends {do,d 1 ,... ,dt,...} is an exogen-

ously given stochastic process (for example driven by the

demand in the market of the firm's output,...). At time t,

the stock is traded at price pt.

There is a finite set of traders i = 1,... ,I. Trader i

is assumed to be risk neutral and to discount the future

with the discount factor y. His holding of the stock at

i 13time t is x t and given an aggregate stock x, the market

ii
clearing condition is Z xt = X (= x 1 ). If short sales

1. 1
are prohibited, we impose that x > 0. In this case we

shall say that trader i is active at time t if: either
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x( t x _1 or 0 < xt = xt_1 < X. If short sales are allowed,

the convention will be that every trader is active at every

period. The motivation for this definition will become

clear later. The market is active at time t if some traders

are active. Let us now describe the information available

to traders at each date, and then define selling strategies

and sequences of REE of the stock market.

Information

Let E be the set of pay-off relevant environments. E

is here taken to be the set of potential processes governing

the sequence of dividends. At each period t, trader i has

some private information about the underlying stochastic

process; this may include past dividends, past prices,

market studies, tips, etc. We represent trader i's informa-

tion at time t as an element (event) s i of a partition

F of a set Si. It is natural to assume that the partition

F becomes finer and finer over time: F CF +1. The
t - t~l

vector of all signals at time t is st = (... ,...) st

is subset of a set S contained in X S Let 0 = E x S
i

denote the set of states of nature. We shall assume that

all traders have the same prior v on Q. Let v denote the

marginal probability distribution on S ; for simplicity we

assume that all signals have positive measure: Vi, Vt, Vs't

F_ F : i (sl) > 0 (this assumption can easily be relaxed).

At each time t, trader i can derive some information

in addition to his private signal s simply by observing the
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current price pt. Anticipating ourselves a bit, a REE at

time t is characterized by a forecast function t, which

associates with any set of signals s t a price pt = ot(st)'

Conversely, the observation of price pt indicates that st

belongs to St(p) (pt). Stt) is an element of

{X F1}). For notational simplicity, we shall often use
St1

the shorthand St for St (pt). To summarize, at time t trader

i has information (s ,st) based on his private signal (st)

and the information conveyed by the price (S t)

Consider a trader i having at time t information (s ,S

This information can be regarded as a probability distribu-

1 -1i
tion on S (which takes zero values except on s t x S ,

where S denotes the projection of St on { X SJ}) and thus
j/i

on Q. This in turn induces a conditional probability distri-

bution on {X F3 +} V > 1: Trader i assigns a probability
J

to any set of signals st+, = (...,s(+T,...) in {X F3+ *
t+-1"**i t +T[

J
With a set of signals s t+T received by the traders at time

(t+T), there will be associated a price pt+T t+T(st+TE'

i = -
so that trader i will have information (s , St+T =t+

(pt+-)). To summarize, with each information (s at
t T

time t, trader i associates a probability of having at time

(t+T) information (s +T' St+) and facing price pt+T

In the following we shall define two types of REE:

myopic REE (4a) and fully dynamic REE (4b). For each

definition we shall characterize the equilibrium. (The

propositions which are proven only in the case where short
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sales are prohibited also hold in the simpler case where

they are allowed, following the convention that all traders

are active).

a. Myopic REE: It is often assumed in the literature

on sequential trading that traders choose their trades on

the basis of short run considerations; 4 more precisely, in

each period they compare their current trading opportunities

with the expected trading opportunities in the following period.

The application of this concept to a stock market with

heterogeneous information leads to the following definition:

Definition

A myopic REE is a sequence of self-fulfilling forecast

functions st = (...,s ,...) + pt t(st)<=>st St t ) =

(pt), such that there exists a sequence of associated stock

holdings {x1 (sl,pt)} for each trader, satisfying:

s i
1) Market Clearing: Vt, Vst Z t (stt X

2) Short Run Optimizing Behavior:

i) If short sales are allowed:

Vt, Vst pt = E[ydt+1 + ypt+11s I,St

ii) If short sales are prohibited:

If pt = E[ydt+1 + ypt+lsI ,St], then xt (s ,pt) F [0,x]

- -> - - - -0
- < - x
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The interpretation of 2) is that each trader maximi-

zes his expected short-run gain.

We now prove that even if short sales are prohibited,

the price pt must be equal to the expectation of the sum of

the discounted dividend and the discounted next period

price for any trader active at time t - i.e., no trader

expects a short-run gain from his trade.

Proposition 3: Even is short sales are prohibited,

for any trader i active at time t:

pt = E(ydt+ 1 + Ypt+1sSt
____ ngt+l t l

Proof: Let g -pt Ax and t +1 [p + d I Ax denote

the changes in i's cash flows at t and (t+l) resulting from

i~ 1 ihis trade Ax tE x - xt_1 at time t.

From the market clearing condition at time t: V st+l1

g= 0 and E t+1 = 0
ii

This implies:

[gt + Y t t+1 ] = 0

Taking the expectation relative to the set of signals con-

sistant with pt

E[g + y tg+ 1Is t 0

From the maximizing behavior of agent i:

V S S: E[gl + yt g+ 1Is , St 0
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Thus if for some information s t and some trader i0, we had:

E(gt0 + y g s St) > 0

we would conclude that:

E E(gl + 'Y g9 1 S > 0

a contradiction.

Q.E.D.

It is often thought that the price of an asset in a spec-

ulative market may reflect speculative attributes as well as

the asset's basic value, that is the price of an asset is

the sum of its fundamental value and its speculative value

("price bubble"). Sargent and Wallace [1973] and Flood and

Garber [1980] show in a monetary model with homogeneous

information that price bubbles are not inconsistent with

rational expectations; they are not even inconsistent with

a positive probability in any period that the bubble "bursts"

and the market "crashes down" to the market fundamental

(see Blanchard [1979]; now the price has to grow faster

during the duration of the bubble than in the previous case

in order for the asset holders to be compensated for the

probability of a crash). We study those price bubbles in

our stock market with heterogeneous information.

Given information (siSt), one can define a market

fundamental as the expectation of the present discounted
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value of future dividends:

F(s',S) E( E y' dt+ is 3,Stt=1

For the price pt consistent with St, the price bubble

as seen by an individual with information (s',St) is

defined by:

B(sl,pt) pt - F(s ,St

Note that the price bubble depends on the information,

and thus generally differs among individuals. Note also

that the Kaldor-Keynes definition of speculative behavior

of trader i amounts to:

B(sl,pt) > 0

We now formalize the idea that in a finite horizon

asset market, price bubbles can not exist, and thus that

no speculative behavior (in the previous sense) should be

observed.

Proposition 4: In a stock market with finite horizon

T, whether short sales are allowed or

not, the price bubbles are all equal to

zero for the traders active in the

market. Thus a market fundamental can

be uniquely defined as the common market

fundamental of all active traders, and

is equal to the price:

-t, Vi active at t: pt = E( Z
u=t+l

125

Yu-t dls ,St)



Proof: The price of the stock at T is 0. Consider a trader

i who is active at (T-1). Proposition 3 implies that:

P T- E(yd T-sT- ST-)

This means that at (T-1) an active trader is indifferent

between selling and holding the stock until the end period T.

Consider now an active trader i at time (i-2). According

to his information at (T-1), he will hold the stock until T

or trade at (i-1). But we saw that if he is active, he is

indifferent between trading and holding.

such that i is active at (i-2):

PT-2 =E +T 2ST-2

Proposition 4 is then proved by induction.

Thus: Vi, VsT-2

Q.E.D.

Thus in a finite horizon stock market, backward induc-

tion from the final "crash" leads to the absence of price

bubbles. The picture changes dramatically in the infinite

horizon case.

Let us now assume that the horizon is infinite , and

investigate the martingale properties of the price bubbles.
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Proposition 5: (a) If short sales are allowed, then

price bubbles are (discounted) martin-

gales: Vi, V(s ,S ), VT > 1:
t t-

B(sl,pt) y T E(B(s +T' pt+T st,St)

(b) If short sales are prohibited, the

price bubble of trader i endowed with

information (s',St) satisfies the

preceeding martingale property between

t and (t+T) if, conditionally on his

information at t, trader i is active

in each period t, t+1,. .. ,t+T-1.

Proof: The proof is a simple application of the law of iter-

ated projections.
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a) By definition of an equilibrium: Vt,

pt E(ydt+i
i

+ ypt+11s t'

= E[ydt+i + y[E[ydt+2

= E[ydt+i

+ ypt+2 st+1

+ y2dt+2 + Y2 t+2sttI

induction:

T
= E( Z

T=1
T

= E( E

T dt+T + pT s ,t1 )

TT dIs i
Y dt+Tst't)

(9)

T i
E(E( Z y dt+T+c Ist+T'

+ yT E(B(s+T t+T ) sls) (10)

Using the law of iterated projections:

yT d I1|s ,s )Y t+T t t
+ YT E(B(s ,p )|s St+T t+T t't

B(s",pt = yT E (B(s ,p) s',S) (11)

b) It is clear that the proof still holds without

short sales, if trader i is active in every intermediate

period for any state of information which can occur, given

that i's information at t is ( St ). Q.E.D.
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Special Case: Homogeneous Information (myopic REE

version of Radner [1972]'s equilibrium of plans, prices and

price expectations). Assume that all traders have at each

period the same information, i.e., receive the same signal

s t c Ft. *
The price pt conveys no extra information, and

traders base their expectation on st.

sition is trivial:

Proposition 6:

The following propo-

In a stock market with homogeneous

information, whether short sales are

allowed or not, the price bubble is

the same for every trader, and has the

martingale property.

Note that if a heterogeneous information REE is fully

revealing, i.e., St (pt) is a "sufficient statistic" for

the set of signals in each period, we are in a situation

analogous to the special case.

. As explained in the introduction, a myopic REE exhibits

some rather unattractive features. This can be illustrated

by a simple stock market with no uncertainty. Assume there

is one unit of a stock, whose price at time t is pt. A

constant dividend dt = 1 (t > 1) is distributed just before

1trading. If traders have a discount factor 1, the market

fundamental is (1 + 1 + ...) x = 1.

A myopic REE is simply a price function pt such that:

1
pt 2 ( + Pt+10
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The general solution is: pt = 1 + a2wt I

sents a price bubble. Assume there are two individuals (or

two types) A and B, and consider the following sequence

of traders (trader A is the initial owner of the stock):

At time 0, trader A sells the stock to trader B at

price 2

.. .. 1......

.2......

.3......

B ..... .... .. .... .. ..

A

B

A .......

B

A

3

.. 5

.. 9

etc.

This is a myopic REE. The first thing to observe

that, if we try to compute the discounted gains of the traders,

they do not converge:

1GA (3) + (5+1) 1
(9)

1
+ (17+1)

1 2k-1

2 2k-l (1+2 )

1
T

+ 1
2 2

(9+1)-17(5) +

(1 +2 2k

6 (17)

+ 1 2k-1l
+ 2k1 (1+2 +1)

2 2 -

Thus, it is not

+ 1) . .. .

+

- 1 2k
2 (1+2 ) .
2 2

possible to define present discounted gains

associated with the myopic REE strategies.

we may observe that A (resp. B) can always

Nevertheless,

guarantee himself

2 (resp. 0) by leaving the market just
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after selling.
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BG =
1 (3+1)
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where a2 t repre -



fact, if a trader wants to maximize his present discounted

gain, he has to "realize his profits" by refusing to

repurchase the stock at some date; this strategy can also

be viewed as a dominant strategy in that the trader avoids

running the risk of getting stuck with a devalued stock if

the other trader switches to a "finite time strategy". Thus

it would be natural to assume that A's payoff is 2 and B's

payoff is 0. But those payoffs are inconsistent since they

must add up to the market fundamental which is 1.

To summarize, in a myopic REE, each trader must 1)

believe that he will be able to sell the asset, 2) realize

his profits in finite time. These two conditions are incon-

sistent with the assumption that the number of traders is

finite.16

b. Fully Dynamic REE

Requiring that the strategy of each trader maximizes

his expected present discounted gain leads to the definition

of a fully dynamic REE.

Definition

A fully dynamic REE is a sequence of self-fulfilling

forecast functions: st = (... ,s,...) + pt = t(st) <=>

-l
st St t) t 1pt), such that there exists a sequence

of (information contingent) stock holdings (strategies)

x (s,pt) satisfying:
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(1) Market Clearing: Vt, Vs t Z x (s ,pt) = X.
1

(2) Maximizing Behavior: At each time t, and for any

information (s,St) trader i may possess, i's

strategy (restricted to the information sets

reachable from (s,St) at t),maximizes i's expected

present discounted gain from t on - i's posterior

being computed from the common prior and i's

information (s,St).

As the following proposition shows, long-run maximizing

behavior considerably restricts the eligible set of price

and forecast functions:

Proposition 7: Whether short sales are allowed or not,

price bubbles do not exist in a fully

dynamic REE:

Vt,Vst,i: F(s ,St Pt, i.e.,

B(s ,pt) = 0.

Proof: We prove proposition 7 in the case where short

sales are prohibited.

Let (x (s ,pt)) be a set of optimal strategies.

Let Gt Z y d x + + T pt+x -x
tt+T[ t+-l T 1t t+- t+T

be the discounted sum of realized dividends and capital gains

associated with i's optimal strategy.

Clearly the Gt 's add up to the market fundamental times

the quantity of the stock: 1 7
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ZG =( y' d tx=fx (12)
ST1 t+T t

where ft denotes the "realized market fundamental", i.e.,

the discounted sum of the realized dividends per unit of stock

from t on. The proof uses the following lemmas:

Lemma 1: The market fundamental relative to the market

information exceeds the price: Vs t: F(St )>pt

Proof of Lemma 1: Since trader i optimizes, he can not

gain by selling x and leaving the market at time t:

E(Glls ,S t Pt

Thus:

E(G'ISt) i i E(G js ,St) vi(s jSt)

t t

> i ti x1 (s ,p) 1 (sliSt
t t

where Si denotes the projection of St on F . The last

expression in brackets is nothing but the statistical average

of i's stockholding at price pt. This implies

E E(GJSt > Pt x
i t t

or

E(ft xIst Pt => F(St Pt Q.E.D.

Lemma 2: No trader expects a gain from his trade at

time t:

Vt,Vst,V-i: E(G js,St) = E(G(xt-1)isI,St

where G (x _) is defined as Gi except that

at t, i holds xt 1 instead of x (sl,pt) (the

holding strategies being unchanged after t).
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Proof of Lemma 2: From (12), the trading game at t,

given the holding strategies beyond t is a zero-sum game:

Vt, V3{s}: Z (G - G (x_)) = 0
.

=> E(G - G (xt-1 t) = 0

The optimizing trader i cannot improve upon {x1} by holdingt

x1 _at t, and following the same strategy beyond t:

Vt, Vst, Vi: E(G1 - G(xt)tS',St) - 0
t _

Now one can apply the same argument as in the proofs

of propositions 1,2, and 3 to the functions {G - G (x _ )}

Q.E.D.

Using Lemma 1: Vt, XLst' Vi i F(s',St) v' (s'st t

t t

Imagine now that the market fundamental of some agent

i who does not hold the whole stock at the start of the
0 ~i0

period (xt 1 < x) were to strictly exceed the price:

F(slo, St) > pt. Then i0 could buy and make a strictly

positive expected profit, contradicting Lemma 2. Thus: Vi

such that x1 _ , Vs: F(s',St) p Pt. Integrating thet-1l

previous equality gives: F(St) Pt. Now if i holds the

whole stock at the beginning of the period, his market funda-

mental can not be lower than pt without contradicting Lemma

2. Thus:

V sl: F(s',St) > pt - But then: F(s ,St) = Pt Q.E.D.
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Remark 1: Proposition 7- the law of equalization of

market fundamentals - does not imply that the price pt fully

reveals the complete signal st. Consider the following

example: There are two traders A and B and two Bernoulli

processes independent and uncorrelated over time:

0 with probability 1/2

1 with probability 1/2

B 0 with probability 1/2
s = 1
t 1l with probability 1/2

Assume that the dividend depends on the signals in the follow-

ing way:

d - A B
t+1 (s + mod 2

(i.e., dt+1(0,0) = dt+1(1,1) = 0, dt+1(0,1) = dt+ 1 (1,0) = 1)

With a discount factor 1/2, the market fundamental correspon-

ding to the absence of information is 1/2. It is easy to

see that the following non informative price function is a

fully dynamic REE.

Remark 2: Harrison and Kreps (1978) have shown that in

a stock market

knowledge, and

in which priors differ, yet are common

are never updated, the market price strictly

exceeds the market fundamental of the traders. Thus the right

135

5A 4s tt

B

Ast
s 0 1

0 1/2 1/2

1 1/2 1/2



to resell the stock gives traders the incentive to pay more

for it than if they were obliged to hold it forever.

Their result may still hold with identical priors,

differential information and updating, if one takes a self-

fulfilling equilibrium. Consider the following example (due

to David Kreps): The model is the same as in the previous

remark, except for the dividend process: dt+ 1
= s + s .

t

The following stationary price function leads to a self-

fulfilling equilibrium:

BFor example, when s B 1, B believes that the next

dividend will be 1 with probability 1/2 and 2 with prob-

ability 1/2, since he cannot infer anything from the price.

Thus he is willing to pay:

1 1 1+1 2) + 1 x 9 3 21 21
(7 x Tx ) ( 16 4 160 16

Now assume that (sA = (0,1). A is fully informed (and

17
is willing to pay 176); thus he does not want to hold the

stock (short sales are assumed to be prohibited). B, who

holds the stock, has for a market fundamental:

1 1 1 1 1 1  1
T(T x 1 + x 2) + (2- x 1 + 4 x 0 + x 2

20 21
+ 16< = Pt
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thus the Harrison-Kreps result holds.

The explanation of this result is the following: B anti-

cipates that he will be able to sell when information is

16
(0,1); since his market fundamental (1)will then be lower

than the price 21), he is now willing to pay more (21) than216

his market fundamental (20).

This should remind us of the Feiger model: When B

Bobserves st = 1, he ought to realize that he is playing

against a better informed trader. Of course if the quantity

Bx were "measurable" (i.e., depended only on B's information),

B would be willing to trade even if he realized that A is

better informed, but then equilibrium would be destroyed.

Even if B's information makes him indifferent to all feasible

trades, it makes a difference whether B lets an auctionner

(or the market) pick his trade, or if he chooses it

himself!18

Note that the kind of price bubble arising in the

previous example cannot be observed in a myopic REE (and

of course not in a fully dynamic REE where no price bubble

exists). Proposition 5 tells us that in a myopic REE prices

have to grow "on average" if price bubbles exist. On the

contrary the price function of the previous example is con-

stant over time; so are the price bubbles. 9 These price

bubbles come from the fact that traders never infer any

information from the quantity they trade. This lasting

"mistake" is permanently embodied in the price in addition
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to the market fundamental (note that one might add any

exponentially growing price bubble of the usual kind to

the self-fulfilling equilibrium).

To conclude, the Harrison-Kreps result still holds

with myopic REE, but the price bubbles are of the exponen-

tially growing kind. However, in a fully dynamic REE, no

speculation in the Kaldor-Keynes sense can be observed.
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Chapter 5

Conclusions

We first summarize our observations:

1. The Working theory of speculation - that specula-

tion is created by differences in expectations - relies on

irrationality of at least some traders or on differences

in priors. Differences in expectations, contrary to

differences in risk aversion or in riskiness of initial

positions, do not give rise to any gain from trade if the

priors are identical; it is then intuitive that the Working

theory is inconsistent with rationality of the traders.

2. Insurance motives create meaningful gains from

trade (non-zero-sum game) and may give rise to speculation.

This is demonstrated by a futures market with risk averse

traders with initially risky positions (farmers) and risk

averse traders with initially riskless positions and endowed

with information (speculators). To show that the raison

d'etre of the trade between farmers and speculators is in-

surance and not differences in information, we introduce

risk neutral traders (insurance companies) into the market.

Then speculators do not trade any more. We also indicate

that such an equilibrium strains the credibility of REE

to the limit, since some or all of the information detained

by the speculators is conveyed by the price.

3. Dynamic speculation can be characterized by the

same methods as static speculation. A handy way to represent
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a sequential asset market is to describe it as a sequence

of REE. We distinguished two kinds of REE's: Myopic REE's

where price bubbles may develop, but possess martingale

properties, and fully dynamic REE's where price bubbles do

not exist at all. The concept of REE rules out price bubbles

arising from differences in information whereas the inter-

temporal maximizing behavior and the equilibrium concept

rule out bubbles of the exponentially growing kind. We

indicated that the concept of fully dynamic REE was most

reasonable if one is willing to posit rationality of the

traders. This certainly does not deny the relevance of

(and the need for) positive models trying to describe actual

price bubbles by non-rational behaviors. 20

What are the implications of our results for a real

world asset market? It is clear that the assumptions

underlying a REE are very strong: in particular the exis-

tence of a self-fulfilling forecast function is by itself

difficult to justify. In some simple cases, such as the

one of the speaker in a seminar given in the introduction,

one may be able to appeal to the existence of some common

knowledge about the market; in particular, in the real

world, people should certainly worry about the quality of

their information relative to the other traders'.

Behind the mathematics lie two basic principles. First,

one should not count on differences in information in order

to achieve a speculative gain. This result is best under-

stood by using the second interpretation of a REE as a
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forecast function which cannot be refuted on the basis of

the common knowledge about the market described in the

introduction, and by observing that not everyone can possess

"better than average" information. Of course, in a market

where some other traders do rely on the belief that they

have superior information, it might pay to do so as well.

We then face a recursive problem. The question is: Can

rational traders expect in equilibrium a speculative gain

based on their allegedly superior information or their

information concerning the other traders' behavior? The

common knowledge version of a REE would require the answer

to be no. Second, in a dynamic framework with a finite

number of agents, a rational trader will not enter a market

where a bubble has already grown, since some traders have

already realized their gains and left a negative-sum game

to the other traders. Again, if one is able to find a

"sucker", it may pay to participate. The point is that in

an equilibrium with a finite number of traders, it is not

possible for everyone to find a buyer and avoid "getting

stuck with a hot potato". This is not to deny the positive

relevance of Keynes' "Castles in the Air" theory, which

undoubtedly explains a number of speculative phenomenons:

in fact, more research should be devoted to the manipul-

ability and controllability of speculative markets. But

section IV certainly vindicates the "Firm Foundation" asset

pricing theory as a normative concept; moreover, the views

developed above have some counterparts in the investment
141



literature (see, e.g., Malkiel [1975]).21
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Footnotes

1. This work arose from discussions I had with Drew
Fudenberg and Eric Maskin on speculation. I am also
very grateful to them as well as to Peter Diamond,
David Levine and David Kreps for helpful comments.
This paper has benefited from discussions in seminars
at MIT, Cambridge University and the Roy seminar in
Paris. Eric Maskin provided very helpful comments on
the current version.

2. Perhaps a better name than REE is "fulfilled expecta-
tions equilibrium" (see Kreps (1977)). In this paper,
we require the demand of a trader to depend only on
the price, the trader's private information and the
information conveyed by the price.

3. We shall assume throughout the paper that traders have
a common prior: Different beliefs are due solely to
differences in information (signals).

4. The first version of this paper used the definition of
a REE as a forecast function which cannot be refuted by
any trader on the basis of the above common knowledge
about the market. Eric Maskin pointed out to me that
this definition was equivalent to the usual definition
of a REE when one imposes measurability. Hence the
results derived in this paper do not depend on any
knowledge of the traders about the market other than the
price and the relationship between signals and prices.

5. This point may remind the reader familiar with the
literature on auctions of the winner's curse.

6. "Uncorrelated" is relative to the information of the
trader. This definition is more stringent than the
condition that the initial position be uncorrelated with
the return of the asset and the signal received by the
trader. Kreps (1977) observes that the information
conveyed by the price may introduce some correlation
between the initial position and the return of the asset
and thus create an insurance motive for speculation.
Hence, we assume that the initial positions of all
traders are uncorrelated with the return of the asset
and the set of signals.

7. See, for example, Grossman (1976, 1977).

8. See, for example, Harrison-Kreps (1978), Hirshleifer
(1975, 1977) and Miller (1977).
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9. For a more complete model of a futures market, see
Bray (1980a).

10. In Chapters3a and 4 where it is assumed that all signals
have a positive probability, the derivation of (8) is
straightforward. Here we assumed that sJO is drawn from
a continuous distribution; one must then be cautious
and invoke a continuity argument in order to derive (8).

11. Remember that "riskless" must not be taken too literally:
it simply means that the speculators' initial positions
are uncorrelated with p. Also Proposition 2 is stated
in slightly more general terms than would be allowed by
the proof. It is easy to check that even if farmers
and insurance companies have private information (signals),
speculators do hot trade in a REE.

12. For example if all speculators have the same information
(signal), it is easy to see that a REE exists-and is
unique. This is the fully revealing one: p = p + s.

13. Traders do not have a budget constraint at each period.
They can borrow and lend at the rate (1/y - 1).

14. See, for example, Sargent-Wallace (1973), Flood-Garber
(1979), Blanchard (1979) as well as some of the literature
on growth with heterogeneous capital goods.

15. Proposition 3 can be seen as a generalization to hetero-
geneous information of Samuelson (1973)'s theorem 3
(note also that Samuelson hypothesizes that a stock's
present price is set at the expected discounted value of
its future dividends, which we do not impose here). It
also shows that, even with differential information, no
trader can gain from his trade, which restricts the validity
of Samuelson's conjecture (p. 373) that "there is no
incompatibility in principle between behavior of stock
prices that behave like random walk at the same time that
there exists subsets of investors who can do systematically
better than the average investors" to subsets of traders
with "measure zero".

16. This is not true with infinite number of traders. For
example, in an overlapping generation model, a price
bubble is consistent with each generation leaving the
market after realizing its profit.

17. With an infinite number of traders, the adding up in (12)
may make no sense. Consider the perfect information stock
market described at the end of Chapter 4a. Assume now
that there exists a countable number of infinitely-lived
traders (A0, A1,...,At,...). Consider the following
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sequence of trades (A0 holds the stock initially):

At time 0, trader A0 sells the stock to trader Aiat
price 2

. .1, ........ 1 A 2..... .........  A2 ........ 3
t........ t, ........ At .............. At+l.......(1+2 )

then the present discounted pay-off for all traders
butA 0 is 0; for A0 , it is 2. But the market fundamental
is 1. This may remind the reader of the familiar paradoxes
of infinity. Note that this example does not depend
on non-maximizing behavior of the traders.

18. This point has already been recognized by David Kreps
((1977), section on "information from quantity").

1 5 119. The price bubbles, for trader A for example, are
when information is {(0,0), (0,1), (1,0) or (1,1)6 16" 16'

20. For an example of a behavioral theory of price bubbles,
see Levine (1980).

21. Does this imply that throwing darts on a financial page
of the Wall Street Journal is an optimal strategy for
portfolio selection? Not really, as evidenced by the
example of a player with a random demand in a model d la
Grossman (see end of Chapter 3a).
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