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Abstract

This thesis studies the problem of reproducing the world lighting from a single image

of an object covered with random specular microfacets on the surface. Such a reflector

can be interpreted as a randomized mapping from the lighting to the image. This

intrinsic randomness makes it challenging for humans to interpret the image of a

specular surface. We propose a system to solve it algorithmically and demonstrate

how a simple yet reliable method can calibrate the proposed system and do the

inference. The success of such system relies on accurate exposure of the specular

surfaces. However, such objects have very distinguished optical properties compared

with both diffuse surfaces and smooth specular objects like metals. So we design

a special imaging system to robustly and effectively photograph them. Finally we

conduct experiments to verify the correctness of our model assumptions and prove

the effectiveness of our pipeline.
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Title: John and Dorothy Wilson Professor of Vision Science
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Chapter 1

Introduction

1.1 Optical Arrangement of Sparkle Vision

An object's appearance depends on the properties of the object itself as well as the

surrounding light. How much can we tell about the light from looking at the object?

If the object is smooth and matte, we can tell rather little 13, 14, 13, 151. The reason

is that the surface of such objects uniformly reflects the incoming light into all of the

directions. As a consequence the light map of the world gets blurred together. A

simple example of such objects is a sheet of white paper whose appearance is always

the same to human eye whatever lighting environment it is in. A picture of such

(a) Matte paper (b) Cloud gate

Figure 1-1: Pictures of a piece of matte paper and Chicago cloud gate. The picture

of the paper on the left tells few information of the surrounding light while the cloud

gate acts as a slightly distorted mirror and its photo reveals so much information

about the environment.
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(a) Specular microfacets (b) Closer look (c) Reconstructed
lighting

Figure 1-2: Reproducing the world from a single image of specular random facets: (a)
shows the image of a surface covered with glitter illuminated by a screen showing the
image of Obama. (b) gives a close up look of (a), highlighting both the bright spots
and dark spots. (c) shows the lighting, i.e., the face of Obama the our algorithm
constructs from (a).

paper is shown in Figure 1-1(a). For such objects, it is not difficult to believe that

we cannot tell much about the light from an photo of them. However, if the object

is irregular and/or non-matte, there are more possibilities. For instance, an image

of the Cloud Gate at Chicago in Figure 1-1(b) reveals an distorted version of the

surrounding light, i.e., the appearance of the city and the sky.

In this work we are considering a more complicated class of irregular, non-matte

objects. Figure 1-2 shows a picture of a surface covered in glitter. The glitter is

sparkly, and the image shows a scattering of bright specularities. We may think of

the glitter as containing mirror facets randomly oriented. Each facet reflects light at

a certain angle. If we knew the optical and geometrical properties of the facets, we

could potentially decode the reflected scene.

Figure 1-3 to Figure 1-7 show a variety of optical arrangements in which light rays

travel from a scene to a camera sensor by way of a reflector. For simplicity we assume

the scene is planar; for example it could be a computer display screen showing a test

image. A subset of rays are "seen" by the sensor in the camera. Here we show a

pinhole camera for simplicity.

Fig. 1-3 shows the case of an ordinary flat mirror reflector. The pinhole camera

forms an image of the display screen (reflected in the mirror) in the ordinary way.

There is a simple one-to-one mapping between screen pixels and sensor pixels. The

mapping does not distort the light and hence the light map can be inverted from the

16



Flat mirror
reflector

Camera

Test
c'image

Figure 1-3: Optical arrangement with flat mirror.

image in a straight forward manner.

Fig. 1-4 shows the same arrangement with a curved mirror. Again there is a

simple mapping between screen pixels and sensor pixels. The field of view is wider

due to the mirror's curvature. However, the light is slightly distorted by the curved

mirror and therefore to invert the lighting we need to first calibrate the mapping.

Fig. 1-5 shows the case of a "smashed mirror", which forms an irregular array

of mirror facets. The ray directions are scrambled, but the mapping between screen

pixels and sensor pixels is still relatively simple. Intuitively the mapping in this case

is a random shuffling of the mappings discussed before. As a result, it is not obvious

for human eye to establish the mapping. This is the situation we consider in the

present work.

Figure 1-6 shows the case of an irregular matte reflector. Each sensor pixel sees a

particular point on the matte reflector, but that point integrates light from a broad

area of the display screen. Unscrambling the resulting image is almost impossible,

although there are cases where some information may be retrieved, as shown by [19]

in their discussion of accidental pinhole cameras.

Fig. 1-7 shows the case of an irregular mirror, but without benefit of a pinhole

camera restricting the rays hitting the sensor. This case corresponds to the "random

17



Curved mirror
reflector

Camera

Test
image

Figure 1-4: Optical arrangement with curved mirror.

Irregular mirror
reflector

Camera

Test
image

Figure 1-5: Optical arrangement with smashed mirror.
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Irregular matte
reflector

Camera

Test
e image

Figure 1-6: Optical arrangement with irregular matte reflectors.

camera" proposed by Fergus et al 181, in which the reflector itself is the only imag-

ing element. Since each pixel captures light from many directions, unscrambling is

extremely difficult.

The case in fig. 1-5, with a sparkly surface and a pinhole camera, deserves study.

We call this case "sparkle vision". It involves relatively little mixing of light rays, so

unscrambling seems feasible. Moreover it could be of practical value, since irregular

specular surfaces occur in the real world (e.g., with metals, certain fabrics, micaceous

minerals, and the Fresnel reflections from foliage or wet surfaces).

For a surface covered in glitter, it is difficult to build a proper physical model.

Instead of an explicit model, we can describe the sparkly surface plus camera as

providing a linear transform on the test image. With a planar display screen, each

sparkle provides information about some limited parts of the screen. Non-planar

facets and limited optical resolution will lead to some mixture of light from multiple

locations. However, the transform is still linear. There exists a forward scrambling

matrix, and in principle we can find its inverse and unscramble the image.

To learn the forward matrix we can probe the system by displaying a series of test

images. These could be orthogonal bases, such as a set of impulses, or the DCT basis

functions. They could also be non-orthogonal sets, and can be overcomplete. Having

19



Irregular mirror
reflector

Bare
sensor

Test
image

Figure 1-7: Optical arrangement with irregular mirror without pinhole camera.

determined the forward matrix we can compute its inverse.

All the optical systems shown in Fig. 1-5 implement linear transforms, and all

can be characterized in the same manner. However, if a system is ill-conditioned, the

inversion will be noisy and unreliable. The performance in practice is an empirical

question. We will show that the case in fig. 1-5, sparkle vision, allows one to retrieve

an image that is good enough to recognize objects and faces.

1.2 Related Work

The problem of estimating the environmental map or scene lighting from a single

image of an object has a long history in computer vision. To analyze the relation-

ship between the lighting and the appearance of the objects, researchers have built

many mathematical models to characterize the reflectance property of the objects.

The most classical model is rendering equation based on the bidirectional reflectance

distribution function (BRDF).

Let wi, w, be the direction of the incoming and outcoming light. The BRDF

function p(wi, wO) is a four-dimensional function that measures the amount of the light

coming from wi reflected to wo. Let L(x, w) be the irradiance of the light at spatial

20



location x with direction w. Let Li(x, wO) be the outcoming light and LO(x, wi) be the

incoming light. For simplicity, we assume that the object itself is not emitting any

light rays. Therefore, the rendering equation can be written as

LO(x, wo) = a(x)L(x, wi)p(wi, wo)V(x, wi) max (w -n, 0) dwi (1.1)

where x is a point on the surface, n is the surface normal, Q is the hemisphere above

the surface, cz(x) is the albedo of the surface, V(x, wi) is the visibility mask for the

specific light coming from wi.

Note that Eqn. (1.1) is linear with respect to L(x, wi), which respects the fact that

any passive optical system is linear. Under this model, the problem of inverting the

environmental map from the image can be rephrased as inverting the linear system

determined from the rendering equation. Several important factors, like the geometric

setup and the BRDF function p(., .), can affect how easily or difficult is it to invert

such a system.

A diffuse object like ping pong ball tells us little about the details of the lighting.

Such an object is usually modeled as a Lambertian object whose BRDF function

is constant with respect to wo. If a Lambertian object is convex, its appearance

approximately lies in a nine-dimensional subspace 13, 14, 13, 151, making it impossible

to reconstruct an environment map with resolution better than a 3 x 3. For non-

convex objects, thanks to the existence of strong shadows, many more images are

needed to cover its appearance under all possible lighting conditions 1211. These

additional images allow us to go beyond the 3 x 3 limitations and estimate a much

better lighting map. Furthermore, special geometric setups like occluding geometry

may help [9]. But in general, it is tough to work with these matte surfaces.

A smooth specular object like a curved mirror provides a distorted image of the

lighting. Humans are capable of inferring the shape of the surface[4]. Inspired by

humans, researchers have developed algorithms to enable computers to perform the

same taskf2, 5, 201. All these success suggests that it is not infeasible to invert the

light map for mirrors of reasonble shape.
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However, for specular random facets, it is hard even for humans to perceive a

coherent reflection of the world in the sparkling facets. This is because we add a layer

of random shuffling on top of everything. This additional complexity fails most of the

previous algorithms. We cannot rely on them to invert the optical arrangement that

sparkle vision studies.

It is worthy noting that there is a class of techniques called inverse light transport[16,

171 that swaps the role between the incoming and the outcoming light and study their

relationship accordingly. However, the theory developed for these techniques mostly

focuses on the Lambertian case which is easy to analyze. Moreover, it is usually

assumed that the BRDF is spatially invariant, which is far from true for the sparkle

vision, where the specular surface is highly spatially discontinous, let alone invariant.

Randomness plays an important role in sparkle vision. We can view the specular

microfacets scattered around the surface as a randomized mapping between the inci-

dent light and the image. This is related with the random measurement of the image

that researchers have worked on in the field of compressive sensing. They find it ac-

tually possible to reconstruct the original image exactly from multiple random linear

measurements of the lightfield. Based on this concept, they have built the "single

pixel camera" 1181, which employs specially designed optics to perform one random-

ized measurement over the world at a single pixel one at a time and use compressive

sensing techniques [6] to reconstruct the light map from multiple measurements.

Many ideas in this thesis are inspired by previous work on random camera [8].

The random camera basically replaces the lens in the usual camera with randomly

oriented reflector or refractor. Therefore, the mapping between the light and the

sensor output become randomized. However, the key difference between our work

and the random camera is that in [8] no lens is used and hence all the lights from

all directions in the lightfield get mixed up, making it difficult to reconstruct the

environment map from the sensor output. In our setup, we place a lens between the

world and the camera sensor, which restricts the light that hits a sensor to be from

only one particular direction. This makes the problem significantly easier and more

tractable to solve.
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In addition, researchers have applied micro-lens arrays to capture lightfields [1].

For a summary of the literature, please refer to [11]. To some extent, a specular

reflector can also be considered as a coded aperture of a general camera system{10].

Our work differs from the previous work in the sense that our setup is randomized

- to the best of our knowledge previous work in this domain mainly uses specially

manufactured array with known mapping whereas in our system the array is randomly

distributed.

The idea that some daily objects can accidentally serve as a camera has been

explored before. It is in shown in [121 that an photograph of a human eye reflects the

environment in front of the eye, and this can be for relighting. In addition, a window

or a door can act like a pinhole, in effect imaging the world outside the opening[191.
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Chapter 2

The notation and formulation of

sparkle vision

2.1 Notation

It is well known that any passive optical system is linear. Suppose the lightfield in

a particular environment is denoted as LW(p) where p E R' is any arbitrary point in

the space. We place a specular object 0 with random specular microfacets into the

environment. Further we use a camera C with a focused lens to capture the intensity

of the light reflected by 0. Let L'(q) be the sensor output and A(.) be the linear

mapping relating the lightfield Lw(p) to the sensor output of the camera Lc(p). To

digitally represent the system, we discretize it by dividing both the lightfield and the

image into blocks and then integrate over all the photons in each block. Let x be the

discretized version of the original continuous LW(p) and y be the discretized version

of LC(q). For ease of notation, we let x and y denote the stacked ID vector of the

light instead of the original 2D or 3D light. Doing this discretization will not hurt

the linearity property of the system. Thus, the linear operator A can be represented

with a matrix A so that y = Ax.

Note that all the above discussion makes no assumption on any material, albedo,

smoothness or continuity properties of the objects in the scene. Therefore, our linear

representation of the problem holds for any random specular microfacets we use. In
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this notation, the task of sparkle vision falls into two categories:

1. Determine the matrix A, which is a calibration task.

2. Infer the light x from the image y, which is an inference task.

In the later discussion, we will use many pairs of (x, y) so we use the subscript

(Xi, yi) to denote the i-th pair. In addition, let ei be the i-th unit vector of the

identity basis, i.e., a vector whose entries are all zero except the i-th entry which is

one. Similarly, let di represent the i-th unit vector of the bases of the Discrete Cosine

Transform (DCT). Also let A = [ai, a2 , ... , aN] with ai as its i-th column.

2.2 Imaging specular random facets through HDR

In this section we examine the properties of sparkling objects with microfacets. Their

special characteristics impose unique challenges to accurately capturing images of

them. To deal with these challenges, we use High Dynamic Ranging (HDR) imaging,

using multiple exposures of the same scene.

Specular random microfacets can be considered as a randomized mapping between

the world light and the camera. Each single facet faces a random orientation. It acts

as a mirror reflecting all the incoming lights. However, because of the existence

of a camera with focused lens and the small size of each facet, only lights from a

very narrow range of directions will be reflected into camera from any given facet.

Therefore, given a single point light source, only a very small number of the facets

will reflect light to the camera and therefore appear bright. The rest of the facets

will be unilluminated. This effect will tend to make the dynamic range of a photo of

specular facets extremely high, creating a unique challenge to photographing them.

Figure 2-1(a) and 2-1(b) plots the histogram of one such object.

Now suppose we slightly change the location of the impulse light, generating a

small disturbance to the direction of the incoming light to the facets. Thanks to

the narrow reflecting direction of each facet, this slight disturbance will cause a huge

change of light patterns on the random facets. Provided that the orientations of the
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Figure 2-1: Optical properties of specular random micro facets: (a) shows an image of

specular facet with scattered bright spots. (b) demonstrates its hsitogram, although

the bright spots in the image catch the eyes, most of spots are actually dark. (c) the

surface simultaneously illuminated by two impulses adjacent impulse lighting, one in

red and one in green. The green lights and red lights seldom overlap because few

spots in the image are yellow.

facets are truly random across all the surfaces, then we should expect that the set

of aligned facets will be significantly different. Figure 2-1(c) gives us an illustration

of this phenomenon. Intuitively, if our task is just to decide whether a certain point

light source is on or not, we could just count whether the corresponding set of facets

for that light's position is active or not.

As we have seen, the dynamic range of an image of a sparkling object is extremely

high. Dark regions are noisy and numerous throughout the image. To accurately

capture them, long exposure is needed. Unfortunately, long exposure makes the

bright spots saturated and therefore breaks the linearity assumption. If we adjust the

exposure for the sparse bright spots, the exposure time would be too short to capture

the dark spots, and we will suffer from noise in the dark regions. Therefore, it is not

practical to capture both high and low intensity illumination with just a single shot

with a commercial DSLR camera.

Our solution is to use multiple exposure imaging technique HDR [7]. Specifically

we take multiple shots of the same scene with K different exposure time tk. Let the

resulting images be 1, '2, .. ., Ik. We can then combine those K images into a single

image Io with much higher dynamic range than any of the original K images. It is

reasonable to assume that the intensities for different pixels are treated independently

by the camera hardware. Therefore, we only need to develop a way to decide Io(x)
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from Ik(x) for any arbitrary location x.

The Canon Rebel T2i camera that we use in our experiments has roughly linear

response with respect to the exposure time for a fairly large range - roughly when

the intensity ranges in (0.1, 0.7). When the intensity goes beyond 0.7 the response

function becomes curved and gradually saturated and hence the linearity assumption

breaks down. When the intensity is lower than 0.1 the image is very noisy, and so

we discard these intensities. Denote the remaining exposure time and intensity pairs

(ti, Ii(r)). The goal is to determine the value I(r) independently for each location r.

We solve this problem by fitting a least squares line to (ti, Ii(r)):

I(r) = argmin. Z(s - t 1 - I,(r))2  (2.1)

To get the optimal solution, we first compute the derivative of Ei(s . - II(r))2 with

respect to s,

a (
(s -tiIi(r))2 = 2 (s -ti -Ii(r)) ti = 2 t2s -2 tIi(r) (2.2)

Setting the derivative to 0, we derive the closed form optimal solution to Eqn (2.1),

I(r) - ZjtIi(r) (2.3)

This is sort of an average of intensities under different exposures weighted by the

exposure time. Unlike classic HDR techniques where registration is an issue, we use a

heavy tripod and conduct the experiments in a controlled lab environment to prevent

even the slightest movement, thus avoiding the registration step.
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Chapter 3

Calibration and Inference of Sparkle

Vision System

In this chapter, we examine the algorithm to calibrate the system and reconstruct

the environmental map x from y.

3.1 Calibration with Impulse Basis

The most straightforward method to determine the matrix A is to probe the system

y = Ax by illuminating the object with impulse lights ei. Let ai be the columns of

A, i.e., A = [ai, a 2 ,... , aN1. An impulse basis ei is a vector of length N with only the

i-th entry being 1 and all the other entries being 0. So we have

0

0

yi = [a,, a2, ... ,aN ai (3.1)
1

0

Therefore, to get the whole A, we just have to enumerate all the basis vectors ei, 1 <

i < N, image them to get column vectors ai = yi, and then organize the a into A.
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This simple method suffers from the noise present in the imaging system and hence

will not perform well when we use it to invert the light map. But at least it provides

us a functioning baseline to build upon.

3.2 Calibration with Overcomplete Basis to Reduce

Noise

In practice we do not live in the ideal world where noise is not present. Every

component of the imaging system is actually introducing noise. The commercial

computer screen that we are using cannot emit light with constant luminance. The

color shown on the screen can be biased. The camera sensor is not perfectly linear

and even the actual shutter speed can be slightly different from the specification. We

model all of the noise as zero-mean Gaussian noise and therefore the imaging system

becomes y = Ax + n.

If we invert the system with a ground-truth transformation matrix A, the small

noise n will not affect the quality of the recovered x too much. Analytically, let r'(A)

be the condition number of A, x' be the recovery. The error between relative error

between x and x' is A-'n. So the relative error can be bounded by

jjA-rnI/jjxI< A (3.2)
Irnjj/jyjI -

As we will show later, the system we work with in general has decent condition

number, typically around 10. It is fair to assume that n is small compared with the

intensity of the image and therefore the recovery should not be affected seriously.

However, we have no access to the ground-truth A. The matrix A we have is

calibrated through the output of the imaging system when showing basis on the

screen. Note that such images are exposed to noise, thus A is also noisy. As we will

show in the experimental section, the noise in A causes way more trouble than the

noise in y. To improve the quality of the reconstruction, we must reduce the noise in

A. This can be done by display more than one set of basis vectors, i.e., overcomplete
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basis on the screen, and try to learn a condensed dictionary from the images of them.

Therefore, in addition to the impulse basis ei, we further probe the system with

multiple different bases, for example the DCT basis di and the random basis bi.

Doing this we make the system over-complete and hence the estimated A becomes

more robust to noise. Let E be the N x N impulse basis matrix , D E RNxN be the

DCT basis matrix and BK E RNxK be the matrix of K random basis. This implies

the following optimization to do the calibration:

min| Y1 - AE||% + A||Y 2 - AD|| + Af|Y 3 - ABKf11 (3-3)
A

A here is a weight to balance the error since the illumination from impulse lights tend

to be much dimmer than the illumination from DCT and random lighting. In our

experiments we set A = to balance the two.

To further refine the quality of the calibrated A against the noise in the dominant

dark regions of A, we only retain intensities above a certain threshold during cali-

bration. Specifically let Qi be the set of the 1% brightest pixels in y, illuminated by

the impulse ei. Let Q = Ri Qi. We then only keep the pixels inside Q and throw the

rest away. Let PQ(-) represent such a projection. This turns the calibration into the

following optimization:

min|IPQ(Y) - AE| |+ Al|P 2(Y2) - AD| 1+ A||PQ(Y) - ABKII1 (3.4)
A

Note that the size of the output A from (3.5) is different from (3.3) due to the

projection Q(-).

To solve the optimization in (3.5), we first rewrite it in matrix form

PQ(Y 1 ) E

min _LP (Y2) -A 1D (3.5)

1PQ(Y 3 ) B.

With a substitute of variables, we can write the objective function above as IIY -
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AXI', whose derivative is -2(Y - AX)XT. Setting it to zero we get the solution

A = (XXT>1YXT.

3.3 Reconstruction

Given A, reconstructing an environment map from an image y is a classic inverse

problem. A straightforward approach to this problem is to solve it by least-squares.

However, this unconstrained least square may produce entries less than 0, which is not

physically meaningful. Instead we try to solve a constrained least squares problem:

min ly - Axfjl, s.t. x > 0 (3.6)

There exist several efficient solver to this problem, like the function lsqnonneq

implemented in MATLAB. However, through experiments we find they are actually

too slow for application. When the resolution of the screen is 20 x 20, i.e., x EE R400,

solving the inequality constrained least square is approximately 100 times slower.

Yet the improvement is minor. So we just solve the naive least square without non-

negative constraints and then crop the out-ranged pixels back to [0, 1].

In addition, we observe that there is room to further enhance the results by

smoothing the outcome of the above optimization. For example, we could impose

stronger image priors to make the result more visually appealing. However, doing so

would disguise some of the intrinsic physical behavior of sparkle vision, and hence we

decide to stick to the most naive optimization (3.6).

3.4 Extensions and implementation details

In this section, we examine several techniques that we utilize to help the implemen-

tation of the sparkle vision system physically in practice. Also, some design choices

in the actual implementation are discussed and elaborated in details.
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Using raw from the camera We use RAW files from the camera. Any post-

processing in other conventional image formats like JPEG and PNG is a non-linear

transformation of the image and hence violate the linearity assumption of the sys-

tem. In our experiments we observe that such non-linearity significantly hurts the

performance. Therefore we avoid this issue by just using the original RAW files.

Subtraction of the leaking light In our experiments, no matter how carefully

we control the experimental setup, it is inevitable that some ambient light will be

present in the scene beside the basis lights we use. For example, when we use the

screen to show the environmental light map the dark pixels are not perfectly dark.

This problem is more serious when the impulse light we use to probe the system

becomes small at a high resolution. To handle this, we assume that this leaking light

is static across the whole timespan when the images are taken. Therefore we can

model it as a constant vector eo. Let yo = Aeo be the image of this background light.

By default any image yi we use is already the post-processed version after subtracting

Yo off.

Repeatedly taking image of one scene For some critical images like the image of

the leaking light yo, which is subtracted off all the other images, we want to suppress

the noise level as much as possible. Since the camera noise is largely Poisson, we can

reduce the noise level of it by repeatedly photographing the same scene and averaging

the photos.

Handling Color Images The discussion above only applies to the gray-scale im-

ages. However, handling color images is no different in principle since the mapping

from the colored environmental light to the colored images is still linear. The only

difference is the size of the mapping. Suppose that the system maps a gray-scale

lightfield with N blocks to a gray-scale image with M pixels. Then the transforma-

tion matrix of the system A is RMxN. But for the colored system the matrix would

be R3Mx3N. Consequently, we need to stack all the three channels of either x or y into

a vector. Furthermore, to probe this colored system, we need to use 3N impulses,
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i.e., red, blue and green impulses for each block of the lightfield. Other than these

adjustments, our system works in the same way for color images as for gray-scale

images.
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Chapter 4

Simulated Analysis of Sparkle Vision

The physical characteristics of the system have huge impact on the intrinsic invertibil-

ity of the optical system in sparkle vision. The position and the size of the screen with

respect to the object determines the amount of the light that the sparkling surface

can reflect. The amount of the glitter on the object surface changes the probability

that a certain light ray from the screen can hit the camera. The pose of the camera

constraints the light that can potentially come in from the screen. Besides them, a

lot more other factors can potentially affect the performance of the system.

In this chapter, we conduct simulated experiment to study how those factors

impact the invertibility of the system. Understanding them helps us interpret the

experimental results from real data, and provides us guideline to tune the system to

get better performance.

4.1 Setup of the Simulated Experiment

We consider the setup where we have a simulated screen showing the pictures in front

of a sparkling surface. The microfacets on the surface randomly reflects the light to a

virtual pinhole camera. The sensor plane of the camera captures the incoming lights

and forms a photo. In order to render the image captured by the camera, we need

to simulate the physical process that transforms the lightmap shown on the screen to

the pinhole camera.
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First let us consider the screen. We uniformly divide a rectangular screen with

size H x W into M x M 2 pixels, thus the size of each pixel is J x 1. Without

loss of generality, we assume that a point on this screen is uniformly emiting light in

all directions. For simplicity we assume that there is no noise in the light from the

screen, and we do not consider any attenuation effect.

As with the object, we start with the simplest a planar surface filled with glitters.

Note that in practice the object surface has infinite resolution. Moreover, since micro

mirrors are randomly distributed and oriented, the light reflected by one mirror might

need to go through several inter reflection before reaching the camera. In the worst

case, one micro mirror may be completely occluded by another. Noticing that those

interreflectance and occlusion factors do not change the linearity of the system, we

skip them and model the specular facet in the following simplified way:

" The planar glitter is uniformly K 1 x K 2 rectangle blocks.

" At each block we place a mirror facing a random orientation to cover the block.

* We ignore the depth variation of the mirror caused by its orientation. This is

an approximation of a small randomly oriented mirror when no interreflection

and occlusion is considered.

" The light reflected by one mirror cannot be blocked by other mirrors.

For each mirror, we assume that its orientation follows a distribution. Let 0 E

[0, 7r/2] be the slant of the orientation and # E [0, 27r) be the its tilt. Then the

normal of the mirror in the coordinate of the surface is (sin 0 cos #, sin 0 sin #, cos 0).

We model the tilt / as uniformly distributed in [0, 27r). Ideally, we want the slant

to be also uniform. However, this does not match the specular surface in practice,

which is more likely leaning towards 0. Therefore we model it as positive half of the

Gaussian distribution with standard deviation o-O. Specifically, we have

Po(00) = exp 00 (4.1)
2ir-u 24J
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Note that the mean of 0 is actually not 0 and hence the actual standar deviation is

not o-0.

Therefore, the joint probability for (0, 0) is

Poo(0, #o) = exp (4.2)
o2-ru9 7 2o,

We further assume that the orientation of the different mirrors on the glittering

surface is independently sampled. In this way, we create a simplified reflector that

respects and the spirit of sparkle vision system.

For the rendering, we use the ray tracing algorithm to determine the amount of

light received by a pixel on the sensor of the pinhole camera. Specifically we apply

the following steps to determine the intensity at xi.

Step 1 We intersect the light-ray x'o with the object. If there is no interaction, just

return black.

Step 2 Suppose the intersection is ui with normal ni. Judge if (o7i, ni) > 0. If not,

return black.

Step 3 Compute the reflected light and intersect it with the screen. If there is no

intersection, return black.

Step 4 Output the pixel intensity from the screen.

Based on this model, we can conduct simulated experiments to test the per-

formance of the calibration and the reconstruction on physical setup with different

parameters.

4.2 Simulated Experiment Results

We first conduct the experiments in the noise free case and show that we can get

success. Specifically, we place a screen of size 100 x 100 on the plane z = 0. The top

left corner of the screen is placed at the origin (0, 0, 0) and the edges of the screen are
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Figure 4-1: Synthetic photographs of specular objects under impulse light

axis aligned. Then on the same scene, we place a rectangular planar random reflector

also with size 100 x 100 on the plane z = 25. Similarly we set its top left corner

to (0, 0, 25) and let it aligned with the axis. The virtual camera is located right at

the center of the screen, i.e., (50, 50, 0) and it is looking towards the direction of the

positive z-axis. The field of the view of the camera is chosen as 7r/2. The screen

resolution is set to be 10 x 10. The size of each micro facet on the reflector is 2 x 2.

Let the resolution of the camera be 20 x 20. Finally, let the standard deviation of the

slant be '.

Figure 4-1 shows a few sample photographs of the reflector illuminated by different

impulse light from the screen in the calibration stage. On each image, there are a few

bright spots meaning that the corresponding micro facets are reflecting the impulse

light from the screen to the camera sensor. Outside them most of the pixels are dark.

These characteristics are fairly consistent with the real photographs of the sparkling

surfaces. This validates the behavior of the synthetic model we develop.

Figure 4-2 shows the test light maps on the screen, the images of the sparkling

surface when reflecting those illuminations, and the reconstructed lights using the

algorithm we propose. As the figure suggests, the recovery is perfect. Honestly, this

success is largely due to the ideal setup and the lack of noise. But this at least gives

us confidence that under well controlled conditions sparkle vision is feasible and the

developed algorithm functions as is designed.
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(b) Test photo 2

(d) Ground truth light map 1 (e) Ground truth light map 2 (f) Ground truth light map 3

(g) Recovered light map 1 (h) Recovered light map 2 (i) Recovered light map 3

Figure 4-2: Test light maps, photographs and results. The first row shows the images
of the specular random surface illuminated by the test light. The second row presents
the ground-truth test light on the screen. The third row shows the recovery by our
algorithm.

4.3 Sensitivity to Noise

As we have argued before, the noise present in the optical setup can significantly affect

the performance of the algorithm. In this section, we verify this through synthetic

experiments following the set up in Section 4.2. The only difference is that we add

39

(a) Test photo 1 (c) Test photo 3



SSD v.s. standard deviation of the noise
350

300

250

200

150

100

-+*- Noisy dictionary

50 - Clean dictionary

0-,
0 0.02 0.04 0.06 0.08 0.1

Standard deviation of the noise

Figure 4-3: The stability of our algorithm to noise added to the calibration stage and

the test stage is different. The range of the image is in [0, 1].

noise to some of the photographs taken by the virtual camera.

In reality the noise level is dependent on the intensity of the pixel. However, to be

simple, we assume that the noise added in our synthetic experiment is independent

of the illumination. Therefore we model the noise as white gaussian with zero mean.

Suppose we have N test images I,1 <i < N and the recovered images are I. Then

the error of the recovery can be measured by the average sum of squared difference

(SSD) between I, and %, which is defined as

SSD (A, B) = (A(i, j) - B(i, i)) 2  (4.3)

It is worth noting that the noise in the training images during the calibration stage

will have different impact to the recovery compared with the noise present in the test

image. To demonstrate it, we conduct two groups of experiments. In the first group,

we add noise in both the calibration and the testing stage while in the second group
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SSD of recovery at noise level 0.01
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Figure 4-4: The error of the recovery at noise level - 0.01.

we only contaminate the testing images. Also, our system uses over-complete basis to

reduce the noise in the dictionary. To expose the impact of the noise in the dictionary,

we only use the impulse basis and skip the other basis, just for this section. Varying

the noise standard deviation from 0.01 to 0.1, we get two curves shown in Figure 4-3.

As we can see, our system is much more robust to the noise in the test image

than the noise in the images for calibration. In fact, when the standard deviation of

the noise is 0.1 the recovery is still great with the clean dictionary. On the contrary,

at the same noise level, the SSD on the recovery using polluted basis is three orders

of magnitude higher. Even at negligible noise with standard deviation 0.01 the error

with polluted basis is considerably higher than with clean basis, as is illustrated in

Figure 4-4.

All these synthetic results suggest that keeping the dictionary clean is the key to

the success of recovery. Thus it validates the need to use over-complete basis in our

proposed pipeline.
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(a) Image shown on the screen (b) Photography of a specular facet

Figure 4-5: Photography of a specular reflector with low spatial resolution.

4.4 Impact of Spatial Resolution

The spatial resolution of the random reflector determines the resolution of the light

map that we can recover. Keep in mind that each micro facet is a mirror and our

system relies on the light from the screen reflected by the facet to the camera. If some

part of the screen is never reflected to the camera, there is no hope to recover from

what that part of the screen is showing from the photograph taken by the camera.

Since the facets are randomly oriented, this undesirable situation may well happen.

Figure 4-5 demonstrates such phenomenon. Figure 4-7(d) shows a high-resolution

image shown on the screen serving as the light map. The lightings are reflected by

the micro facets to the camera sensor. However, the size of each micro facet is too

large and hence the number of the facets is limited. As a consequence, we observe

from Figure 4-5(b) that some blocks of the photo is dark and part of the light map is

missing. So the spatial resolution of the specular surface can affect the invertibility

of the system to a significant extend.

In this section, we develop a mathematical model to explicitly analyze the proba-

bility that a block of pixels on the screen will be reflected by at least one micro facet

to the camera sensor. Based on the model, we will discuss how the spatial resolution

of the reflector and the screen will affect the invertibility of the optical system.
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C -- '''

Figure 4-6: Configuration of the mathematical model to compute the probability that

pi will be reflected by qi to the camera.

Following the general setup in this section, we first calculate the probability that a

certain pixel pi on the screen gets reflected by the micro facet qi to the camera. Figure

4-6 elaborates the configuration visually. It is worth noting that we use small angle

approximation throughout the modeling process. Suppose the width of the pixel is w,

then the foreshortened area of the pixel with respect to the incoming light direction

p3 is w2 cos 0, where 0 is the angle between qi and the screen. Then the solid angle

of this foreshortened area with respect to qi is .,,

The normal n that just reflects p--2l to the camera C can be computed as the

normalized bisector of qU2 and q i. Since the incoming lights can vary in the solid

angle of 2 " 0, n can vary in W2" and still the mirror can reflect some light from

71 p q I-ITJ --- - Em-Ji 1-

the pixel on the screen to the camera. Let qi o pi be the event that the facet at qi

will reflect some light emitted from pi to the camera C. Then its chance is the same

as the probability for the orientation of the facet to be within that range, which is

approximated by

2 23 2 Cos 0(4)
Pr (qi o pi) =exp (4-4)V

Oo2(72 4||1pki||

Suppose there are M micro facets in total and we compute Pr (qi o pi) for all
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Figure 4-7: Probability map of light from a block pixels getting reflected by the
specular surface to the screen.

1 < i < M. Then we can compute the probability that the light from pixel qi is

reflected by at least one micro facet to the camera as follows.

Pr (Ej, qj o pi) = 1 - Pr (Vj, q 6pi) = 1 -- Pr (qj 6pi)

= 1 - (I - Pr (qj o pi)) (4.5)

Then we can make an image T(x, y) with the same resolution as the screen. The

intensity of each pixel of T(x, y) represents Pr (]j, qj o pi) for the corresponding pixel

pi. Figure 4-7 shows two such probability map when the resolution of the object is

10 x 10 / 20 x 20 and the resolution of the screen is 5 x 5 / 10 x 10.

From the results, we can see that overall higher resolution of the specular object
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and lower resolution of the screen will reduce the chance that some block of pixels on

the screen are not reflected to the sensor. In addition, on the same screen, the chance

to avoid such bad events are different for different blocks of pixels, which is due to

the different distance and relative angle between different parts of the screen and the

reflector. It suggests that for a specular object there will be a limit on the resolution

of the light map we can infer from it.
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Chapter 5

Experiments and Results

In this section, we conduct experiments to prove the effectiveness of sparkle vision

under controlled conditions in a lab. First of all, we verify that the assumptions we

make for specular random facets are actually satisfied in real life. Then we proceed

to present the results of reconstructing different environmental maps using different

specular objects with different algorithms. Most of the experiments are conducted

with gray-scale environment maps. Nevertheless we present a few examples in color

light field to demonstrate the capability of our system to handle them. Finally, we

study the robustness of the system to noise and misalignment. section

5.1 Experiment setup

We need the ground-truth environmental map either to calibrate the system or to

evaluate the quality of the reconstruction of the system. To achieve this, we place the

sparkling object in front of the computer screen in a dark room and use a camera to

photograph the object. The screen displays images that are used for both calibration

and testing. The light from the screen illuminates the sparkling object. The task then

is to reconstruct the displayed image on the screen from the object. Figure 5-1(a)

illustrates the setup.

Specifically in this experiment, we use a 24-inches ACER screen, a CANON rebel

T2i camera and a set of specular objects including a hair band, skull, and painted
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glitter board. The whole system is located in a dark room. The camera is placed on

a heavy tripod to prevent even the slightest movement. To demonstrate the concept

for most objects we only display the gray-scale image at resolution 20 x 20 pixels.

However, we also show that the system can reconstruct the world lighting with higher

resolution, showing results up to 30 x 30 pixels. At this resolution many objects, such

as faces, can be easily recognized.

5.2 Examine the assumption of the system

Overlapping of bright pixels An important factor to the success of sparkle vision

is that the location bright spots of an image changes drastically when the location

of impulse shown on the screen changes slightly. Let a, be the image of the object

illuminated by the i-th impulse light. Let Si be the set of bright pixels with intensities

larger than 1/10 of the brightest pixel in ai. Then the overlap between a, and aj,

i $ j can be defined as

O(Z, ) = snj (5.1)min(ISil, SjJ)

Here ISI denotes the number of elements in a set S. At resolution 10 x 10 pixels,

there are 100 basis images, and the overlap between each of them can be plotted in

a 100 x 100 figure where the entry at i-th row and y-th column representing O(i, j).
Note that the diagonal of this plot should be 1 and dwarfs all the rest off-diagonal

entries. Therefore we set those entries to 0 and thus emphasize only the overlap

between different images.

It can be seen from Figure 5-1(b) that most of the overlap happens between

images from neighboring impulses. For neighboring impulses, the maximal overlap

maxi$, O(i, j) < 0.2, hence the overlap of bright spots even between adjacent impulses

illuminated images is small. This implies that if what is shown on the screen is just

a collection of bright dots, and the task is to only guess whether or not each dot is

on or off, this system should have very good performance.
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(a) Experiment Setup

Figure 5-1: The left (a) shows the setup of the experiment in the lab. The right (b)
shows the overlap graph between images from different impulses. It can be seen from
the figure that only images from neighboring impulse have slight overlap.

Condition Number To analyze the capabilities of our system, we measure the

condition number of the transformation matrix A, n(A), for a piece of diffuse paper

and for many different sparkling objects. In general the condition number ri(A) of

the matrix A measures the stability of the system respect to the noise. Systems with

smaller condition number are more robust to noise. Mathematically r,(A) is defined

as

-(A) = Umax (5.2)
0min

where Umax and 0 min are the smallest singular values of the matrix A. For all the

optical systems shown in Figure 5-2, we plot all the singular values of their A in

descending order. From the figure, we can see that the best r,(A) ~ 4 which is pretty

good.

5.3 Experimental result

Here we show results of the glitters facing different images shown on the screen. For

the gray-scale setting, we push the resolution of the screen to 30 x 30. For the colored

setting, we just show presents a few test at a lower resolution 15 x 15 to demonstrate

that our system naturally generalizes to color ones. The gray scale results are shown

in Figure 5-3 and the color ones are shown in Figure 5-4.
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(a) diffuse paper (b) glitter (c) hairband (d) skull

Distribution of singular values. Distribution of singular values. Distribution of singular values. Distribution of singular values.
251

20 1- 08

(e) s 1846.31 (f) tn = 6.02 (g) i = 26.28 (h) i = 14.72

Figure 5-2: Singular value distribution of the transformation matrix of different ob-

jects. Also the condition number is given. Note that the sparkling reflectors create

systems with much lower conditional number compared with a diffuse object.

From the results one can easily perceive what the faces and the objects are. This

demonstrates the success of of our sparkle vision system.

5.4 Stability to Noise

As we have discussed before the system is substantially stable to noise thanks to the

good condition number. To demonstrate that, we perform synthetic experiments by

adding noise to the test image and compute the Root-mean-squared-error (RMSE)

between the noisy recovery and the non-noisy recovery. The reason that we do not

capture real noisy data is that we rely on clean real data to calibrate the system

well. We plot hwow the reconstructed lighting change as the noise level increases in

in Figure 5-5.

From the results, we conclude that our proposed method is indeed stable to noise.

5.5 Instability to misalignement

The success of sparkle vision relies largely the sensitivity of light pattern on a spec-

ular object to even a slight movement of the source light. However, this property
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Figure 5-3: Sparkle vision through glitter board: Row 1 and 4 present the sensor
output. Row 2 and 5 present the reconstruction, and Row 3 and 6 present the result
of "sparkle vision"
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Figure 5-4: Colored sparkle vision through glitter board: The first row presents the

images of sparkling surfaces. The second row presents the ground-truth light map

shown on the screen. The third row shows the reconstruction of sparkle-vision. The

test images in the first two columns are synthetic scatter dots with random colors.

The rest are real images from Internet. Although there is slight color distortion in

the reconstruction, overall the inferred light is very close to the ground-truth.

(a) No noise (b) 0.04 (c) 0.08

Figure 5-5: Stability to noise: title of the subfigure

pretty large considering the images are in [0,1 and

(d) 0.12 (e) 0.16

represents noise level. They are

only a few spots are bright.
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(c) 0.4 pixel (d) 0.8 pixel

Figure 5-6: Instability to misalignment: even if we shift the test image by one pixel
horizontally, there is significant degrade in the output.

simultaneously make the whole system extremely sensitive to subtle misalignment.

To show this we perform synthetic experiments by shifting the test image I by 6x

and examine the RMSE. Some representative results and the RMSE curve are shown

in Figure 5-6.
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Chapter 6

Discussions and Conclusion

In this paper we show that it is possible to infer an image of the world around an

object that is covered in random specular facets. This class of objects actually provide

rich information about the environmental map and is significantly different from the

objects with Lambertian surfaces and specular metals, which researchers in the field

of shape-from-X have worked on. The experiments verify that the information in

the random facets is enough to reconstruct the environmental map at reasonable

resolution. In particular, from the reconstructed images in our experiments, it is

generally easy to recognize the object that was displayed on the screen.

The contribution of the paper is twofold. First, we have presented the phenomenon

that specular random microfacets can encode a large amount of information about the

surrounding light. This property may seem surprising at first sight but indeed is intu-

itive and simple once we understand it. Second, we proposed a system and algorithm

that can efficiently perform the calibration and inference necessary to reconstruct

images of the world from the reflections on a sparkling surface.

Currently our approach only reconstructs a single image of the scene facing the

sparkling object. Such an image corresponds to a slice of the lightfield around the

object. Using an identical setup, it should be possible to reconstruct other slices of

the lightfield. Thus, our system could be naturally extended to work as a lightfield

camera. We leave this as an exciting direction for future work.
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