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Abstract

This work presents an end-to-end wearable system designed to learn and assist its (po-

tentially blind) wearers with daily social interactions. In particular, it visually identifies

nearby acquaintances and provides timely, discreet notifications of their presence to the

wearer. Offline, the system learns the people with whom the wearer interacts by automati-

cally detecting social interactions through egocentric audio, video and accelerometer data

and querying the wearer for the identities of persons unknown to the system.
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Chapter 1

Introduction

This work presents an end-to-end wearable system designed to learn and assist with its (po-

tentially blind) wearers daily social interactions. In particular, it visually identifies nearby

acquaintances and provides timely, discreet notifications of their presence to the wearer.

Offline, the system learns the people with whom the wearer interacts by automatically

detecting social interactions through egocentric audio, video and accelerometer data and

querying the wearer for the identities of previously unknown persons.

Particular to our work is the motivation to provide individuals who are blind or legally

blind with the ability to more independently engage in social interaction. This application

imposes constraints on how the user and system interact as, for example, a blind wearer

cannot visually identify new acquaintances to her wearable through conventional means.

While work on wearable computing is becoming increasingly common, much of it

focuses on passively modeling/predicting physical activities that the wearer engages in,

e.g. energy expenditure in exercise, whether a wearer has fallen, and, more recently, on

gaze/attention/role of social interaction. Little has been done in the way of using wearable

computers to actively and unilaterally (i.e. for just one party) augment social interaction.

Doing so requires unusual attention to the aesthetics of a wearable system lest the device do

more harm than help to the wearer's social interactions. Thus, softer considerations includ-

ing physical appearance, privacy, and methods of communication are considered through-

out this work.

We motivate the practical utility and academic interest of a system that learns its wearers
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social interactions from the perspectives of assistive technology and wearable computing.

Following, Chapter 2 details the system architecture, including how the system runs

online and how its models are built or updated offline. This chapter includes motivation of

and discussion on hardware, design, and interface considerations, and discusses how vision,

audio and motion data are brought together for determining likelihood of and participation

in social interactions.

Chapter 3 discusses the training of models necessary for our wearable system, acquain-

tance detection and social interaction detection in particular. Results on their performance

and future needs for improvement are discussed.

Subsequently, Chapter 4 details our approach to a blind-accessible labeling framework

in which a (potentially blind) wearer can teach their wearable system to assist with social

interactions. Rather than ask wearers to visually label training images as might be done

with sighted users they are instead asked to label small audio snippets localized in time

to the people they interact with. Taken together, with the results of Chapters 2 and 3, this

describes our end-to-end wearable system that can identify to and learn from its (potentially

blind) wearer the acquaintances s/he interacts with.

Chapter 5 concludes with discussion of future work, practical limitations of the current

system, and physical/privacy concerns for using wearable systems that attempt to augment

everyday living, in this case, with respect to assistance wearers in social interaction.

1.1 Social Interaction for the Blind

Considerable research has been conducted on the socialization of individuals who are blind

and visually-impaired. While there is consensus that they have fewer friends and engage in

fewer social interactions [16], much of the work appears appears to focus on deficiencies

in their ability to pick up on social cues, form accurate impressions of others, empathize or

express themselves ('bland look, fixed smile, limited gesturing) as well having a tendency

to exhibit maladaptive social behaviors, including inappropriate rocking, voice projection,

and turning away from the speaker [18]. Other works additionally consider the correla-

tion between physical attractiveness and the number and frequency of healthy friendships,
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and suggest this contributes to the social deficiencies in BVI due to commonly associated

aberrations in eye appearance or movement [32].

One issue that appears to have received little or no specific consideration is the reduced

ability in the blind and visually-impaired to initiate social interactions. Limited or no vision

reduces their ability to identify others and so it is reasonable to expect that they suffer from

many of the same challenges that Prosopagnosics (people with 'face blindness') do [39].

The analogy is particularly apt for individuals with limited vision, who may not show

obvious indicators of their impairment (e.g. use of a cane or seeing-eye dog). Challenges

that they inherit, then, include reduced ability or tendency in initiating social interactions

and inability to relate naturally to people that engage them in social interactions on account

of the low-vision person being unable to recognize them.

Furthermore, among the approximately 15 million blind and legally blind working-age

adults in the United States, fewer than 40% are employed. While significant effort towards

improving prospects for this population have been at play since the Vocational Rehabili-

tation Act of 1973, fundamental accessibility issues persist. Considerable legal and tech-

nological effort has gone into providing (and mandating) access to interfaces necessary for

engagement in education and the workforce, including alternative-format printed materi-

als and magnified or speech-enabled computer interfaces. But one "interface" that neither

policy nor technology have addressed is that of daily social interaction.

Individuals who are blind or legally blind remain disadvantaged when it comes to en-

gaging in social interaction, particularly of the serendipitous variety, in which encoun-

ters are unplanned and opportunistic (such as after a class, in the lunchroom, etc). While

blind/low-vision individuals may passively listen for familiar voices, they are less able, if at

all, to actively detect familiar individuals in proximity. This imposes a subtle but real limi-

tation in their ability to form relationships and collaborations as they often find themselves

at the mercy of circumstance, waiting for others to approach and identify themselves.

We take this difficulty in actively identifying others with whom a blind/low-vision

wearer has previously met as motivation for a system that provides timely and socially-

unobtrusive information about so-called proximate acquaintances. Such a system must

understand when and how best to provide the wearer with information that does not dis-
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tract from ongoing interactions, and must be able to curate training data on new people

with whom the wearer interacts without requiring help from sighted persons or burdening

the wearer with too many system maintenance tasks.

1.2 Wearable Computing and Social Interaction

Most work at the intersection of wearable computing and social interaction focuses on user

activity or social role recognition via gaze/attention tracking through egocentric vision and

eye-tracking data. In [10], a wide-angle camera is affixed to bill of a cap and social inter-

actions are classified via HMM as dialogue, discussion, monologue, walking dialogue or

walking discussion. [40] uses a head-mounted camera and wearable eye-tracking glasses

in combination with random forests to determine when eye contact is established between

conversation partners. [27] analyzes videos of ongoing social interactions to determine so-

cial roles (e.g. instructor / student, ...) by conducting variational inference on Conditional

Random Fields over features including dense HoG, inter-frame person movements, gen-

der classification, RGB-histograms taken on people to capture clothing and interpersonal

interactions.

Much less work is concerned with the use of wearable computers that are used to fa-

cilitate or augment social interaction. One of the most relevant, though nascent, works

in this space is Digikits [7], a concept wearable system separately worn by two people

that permits them to discreetly convey small messages to one another while in conversa-

tion with yet other people, without the notice of those other participants. In it, the authors

qualitatively compare different input (e.g. on-body buttons, dual-purpose gestures) and

output (e.g. tactile displays, vibration) methods with regard to how noticeable they might

to others. Our work builds on some of these ideas but is differentiated in that the wearable

system provides information about the wearer's environment that they might otherwise be

unaware of, and it seeks not so much to hide the communication from others as it attempts

to minimize distraction from an ongoing social interaction.

Our own work is distinguished from work in wearable computing and social interac-

tions in that it focuses on multiple data sources (vision, audio, motion) and uses these as
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part of a continuously active, end-to-end system that assists (potentially blind) wearers in

social interaction.
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Chapter 2

Wearable System

2.1 Overview

We set out to design a wearable system that can learn and assist with a (potentially blind)

wearer's social interactions. Its intended utility is to unobtrusively inform the wearer about

the presence of nearby acquaintances. Three scenarios we specifically design for are:

1. Spotting proximate acquaintances that are passing by or in a crowd, such as when

the wearer is walking between classes/offices, and identifying them in time for the

wearer to initiate a social interaction.

2. Quickly identifying proximate acquaintances that have just approached or already

engaged the wearer so that the wearer can respond with the appropriate level of fa-

miliarity.

3. Alerting the wearer about the presence of a specific acquaintance, as when the wearer

intends to meet an acquaintance at a particular time and location.

Each scenario requires that the system be able to accurately distinguish acquaintances

from non-acquaintances, and also among others or in a group. They further require that the

system be able to communicate information to the wearer in a timely and private manner.

In the case of scenarios one and two, the information to communicate is in the form of a

full name while, in the last scenario, any simple, distinct notification e.g. a tone or buzz,
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is sufficient, assuming the correspondence between notification and acquaintance is known

to the wearer a priori, though approach direction would also need to be conveyed.

Notification of full names is accomplished by broadcasting an audio message over

speaker or headset, or sent wirelessly to a wristwatch, which can communicate the infor-

mation of an acquaintance either by glanceable text display or vibration-encoded messages.

Notification of a single identification is accomplished with a short vibration to the wrist-

watch.

Identification of acquaintances is handled by face detection and recognition. Face de-

tection is a standard and well-known problem, and relies on models that can be trained

offline, prior to system use. Chapter 3 details the training and performance of one such fast

and scalable model. Detected faces are then normalized for contrast, size and pose before

being fed into facial recognition.

Facial recognition of acquaintances requires that a model be trained in which multiple

faces of each acquaintance are present: more are generally better but, empirically, three to

six images are enough for practical benefit. Whereas the traditional approach to training

a facial recognition engine would involve displaying images of unknown acquaintances to

the wearer, in this work, we assume that the wearer may be blind and thus unable to visually

identify such images. This constraint, combined with the desire to build a self-contained

wearable system that learns the acquaintances of its wearer solely from queries about rel-

evant sensor data, was the motivation for our novel work on the detection of egocentric

social interactions, discussed at greater length in Chapter 3.

While going about a typical day, a wearer will interact with acquaintances and non-

acquaintances alike. The former, they will want their system to subsequently be able to

identify, whereas the latter (e.g. a barista) may not be so important. Our wearable system

is designed to detect each of these social interactions and to later query the wearer about

each. This is presently done offline, but could be accomplished online at an appropriate

time as the feature extraction and learning algorithms are fast to run.

At the end of each day, the wearer is presented with an offline summary of their daily

social interactions and asked to label the people with whom they would like their wearable

to later recognize. Because the wearer may be blind and thus unable to see the images,
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s/he is instead presented with recorded audio snippets from the each social interaction,

ideally enough for identification but not so much as to provide significant details about the

exchange. This is accomplished by permitting a finite number of audio samples, each of

finite length, and is motivated by respect for the privacy of others.

Figure 2-1 visually depicts the workflows and important algorithmic components of

our wearable system. The Face and Interaction Models represent the models used for facial

and social interaction detection, respectively. In practice, each are trained once, prior to

system use, and rarely updated. The Acquaintance Model, in its current form, is simply a

face recognition model, and is updated frequently. While acquaintances are recognized in

real-time per the green workflow, the current work performs Interaction Detection, and the

subsequent user-labeling of audio subsamples (abstracted with the User Labeling step) for

the regular updating of the Acquaintance Model, offline. Chapter 3 discusses the training

of each model.

2.2 Design Considerations

Our system is built to help its (potentially blind) wearers in social interaction. But we

cannot hope to do so if the system is physically or socially uncomfortable to wear. If the

wearer finds it burdensome to travel with the system because it's too heavy or because ex-

posed wires encumber their range of motion, then they simply won't use it. Similarly, if

others find it awkward or difficult to engage the wearer because the system is too promi-

nent, or they believe themselves to be recorded, or that otherwise natural interactions are

interrupted with notifications, beeps or user fumbling, then there will not be people for the

wearer to interact with!

At the same time, we need to ensure a reasonable angle of view for an egocentric

camera such that it captures good detail on people, both in the area, and with whom the

wearer might currently be interacting. We must minimize any unnecessary motion that the

camera or accelerometer might be subjected to on account of standard wearer movements

like walking and sitting. Audio data must be of sufficient quality that the wearer's voice,

at least, can be understood when later reviewed by the wearer. There must be adequate
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Online

Sensing /
Recording

Face Face
Model Detection

I Offline

Face Acquaintance
Recognition Model

User
Labeling

Notify Interaction

User Detection

Interaction
Model

Figure 2-1: Workflows for our wearable system. Boxes in white are models that we build
and train prior to system use; they are updated infrequently. The green workflow is per-
formed in real-time whereas the red workflow is performed offline, at the end of each day
of use.

computational power to perform rapid detection and identification of nearby persons, and

a means to inform them quickly and discreetly.

In determining camera placement, we consulted models that depict how egocentric

cameras are affected by viewing angle and wearer motion during a walking movement,
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available from [24]. Shown in Figures 2-2i (angle of view) and 2-2ii (motion), we have

articulated models of the human form upon which a wearable vision sensor can be contin-

uously placed (at a set distance from the body; in this case, 37.5mm).

1.

1.4

1.2

0.8

0.6

0.4

0.2

(i)

I
(a) (b)

(ii)

Figure 2-2: Human models of wearable camera angle of view (i) and wearable camera

motion (ii). In Figure (i), angle of view is computed by casting rays 37.5mm from each

polygonal face of the body in all directions and rejecting those that are obscured by other

parts of the body. While all placements will be obscured by the body behind them, some

will be more obscured in outward views than others. In Figure (ii), (a) shows motion at

each step of a human walk while (b) shows the cumulative motion that a wearable camera

is subjected to throughout a complete walk. Darker regions are more desirable and mean

greater field of view (i) or less motion (ii). Figures adapted from [24].

In Figure 2-2i, angle of view for a camera is determined by casting rays from each point

(with the body in a standing position) and calculating the maximum view area possible by

25
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discarding rays that intersect with other parts of the body. No vision sensor will be able to

look backwards, of course, but even so, not all camera placements are equal. In the figure,

darker polygons correspond to greater angle of view and thus fewer expected occlusions.

We note that the head, shoulders, arms, outer legs and feet have the greatest possible views,

followed by the breast, chest and waist, all tailed by the stomach, waist and groin.

In Figure 2-2ii, the motion an egocentric vision sensor would be subjected to is de-

termined by simulation of the articulated body taking a full walking step (a), calculating

motion at each polygonal face at each of several points along the step, and then summing

the total motion experienced throughout the walking step by each polygonal face (b). In

the figure, darker polygons correspond to areas in which a vision sensor will be subjected

to less motion. We see that the human face experiences the least motion, followed by the

head, chest and stomach, then the upper forearms followed by the upper legs, and finally

the extremities.

We additionally considered the social acceptability of wearable camera placement by

querying the public. In particular, we asked 100 Mechanical Turk workers to rate the image

of one of four subjects (three male, one female) wearing cameras placed on the ear, chest,

top of the head and face. We additionally used a control picture for each participant, in

which no cameras were worn, and a picture of a large colored pinwheel on the chest, for

comparison.

Images of these configurations can be seen in Figure A-3 (appendix), and results in

Figure 2-3. We see that it is most acceptable to wear a small camera on the ear, followed

with considerably reduced acceptability on the chest. Wearing cameras on the head or

face are least acceptable, and invoke more ire than does wearing a large, rainbow-colored

pinwheel across the chest!

Considering angle of view, motion subjugation and social acceptability of an egocentric

camera, in combination with prototyping constraints, it was determined that although the

head would be ideal for angle of view and camera motion, it would be a difficult location

for a camera because the wearer and many around them would likely feel uncomfortable

during interaction. It would also require that we run cords between the camera and other

components, and thus risk physical encumberment.
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Ultimately, it was decided that the camera would be placed upon the chest. Ensuring

that it was flat would enable it to lay flush with the body rather than protrude uncomfortably.

Obscuring all but the lens would further diminish its presence. Using a smartphone for

its camera, audio and accelerometer sensors in addition to its processing, networking and

built-in battery, would mean that no backpack need be worn, or wires run. The primary

drawback, then, would be the limited ability to control for camera angle of view, as most

smartphones have relatively standard, non-wide angles of view, and options for a slender,

high-quality external lens were not available. This drawback was deemed acceptable in the

context of a prototype system.

Acceptability of Wearable Cameras

100%

80%

60%

40%

20%

0%
Control Ear Chest Wheel Head Face

U Weird U Peculiar U Normal

Figure 2-3: How does the public feel about wearable cameras? We asked 100 people to
rate the social acceptability of different wearable configurations worn by four people. Our

results (bottom) suggest that the best wearable camera may be the one that is not seen.

2.3 Physical Design

Our wearable system involves a custom jacket or lanyard, inside of which is a modern

Android phone equipped with the standard array of triaxial accelerometer, microphone,

camera and wireless (cellular, Bluetooth and WiFi) connectivity. The design of the jacket

or lanyard is such that the smartphone is covered save for the camera lens, which peers

out chest-level from the wearer. Connected via Bluetooth is a wristwatch capable of pro-

grammable text display and text-encoded vibration for user output. Also contained on the
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watch are three hardware buttons, for user input. Each watch button is capable of detect-

ing single, long and repeated presses, with programmable delays for the latter two options.

These configurations can be seen in Figures 2-4i and 2-4ii.

Because the watch is worn on one hand and manipulated with the other, it is sometimes

preferable to additionally have a slender Bluetooth remote contained within the wearer's

pocket, with buttons facing outward such that the user can quickly and discreetly press

them without placing their hand in the pocket.

An additional optional accessory is a Bluetooth headset so that the wearer may receive

private audio messages rather than having messages quietly broadcasted by the speaker,

sent to the watch display, or encoded as vibrations.

(i) Jacket Configuration (ii) Lanyard Configuration

Figure 2-4: Our wearable system in two configurations. It is most discreet in the Jacket
Configuration (a), but most easily donned and worn by different people in the Lanyard
Configuration (b).

2.4 Hardware

Our wearable system incorporates the following components:
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1. Jacket or Lanyard

The Jacket or Lanyard are interchangeable and used for securing the smartphone to

the wearer's person such that its camera points outward at chest height. The phone

and camera have a portrait orientation for physical comfort and so that human faces

tend to be in full view when the wearer interacts with them at normal interaction

distances (3ft - I Oft).

Whereas the Lanyard is simply a hole-punched leather pouch suspended around the

neck, the Jacket is more involved because it requires stitching and surging a form-

fitted pocket on the interior lining of a dark jacket, with a small hole through which

the camera can discreetly peer. Schematics for this are shown in Figures A-I and

A-2 in Appendix A.

2. Smartphone

The smartphone is used as a prototype wearable computer; that is, users do not in-

teract with it as though it were a phone. In fact, its screen is never powered during

normal use.

The phone is used for its image, audio and accelerometer sensors, for local com-

putation (including face detection), and network connections (WiFi or cellular for

connecting to a server to offload processing) and Bluetooth for sending/receiving

data from the watch, remote, or headset.

We use the Android platform, chosen for its native ability to indefinitely run pro-

grams without the screen being powered on. Our particular model is the Samsung

Galaxy S2, chosen on account of its smaller footprint (9.7mm thickness, 116g mass),

for its reasonable camera image quality at 800 x 600 preview resolution, and for the

ability to replace its battery as needed so that the system can be used all day. Used in

portrait orientation as we do for our work, this model has a somewhat limited angle

of view of 46.30 horizontal and 59.6' vertical, with a focal-length of 3.97mm.
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3. Smartwatch

Used for handling user-input via button presses and providing user-output via glance-

able text display or text-encoded vibration. The watch thus acts as a sort of dumb

wearable terminal, but is programmed so that the wearer can control the state of the

wearable system with button presses.

We use the Pebble Smartwatch, pictured in Figure 2-5 for its programmable, embedded-

C environment with 144 x 168 resolution e-ink display, programmable vibrating mo-

tor, three programmable physical button inputs, Bluetooth radio, which remains in

connection with the smartphone, and week-long battery life.

Figure 2-5: Watch used in our wearable system for user input (with the three buttons on the
right) and output (via glanceable text display or vibration-encoded text).

4. Pocket Remote (optional)

Optionally used for discreet, one-handed input, but restricted to signalling. It remains

in a jacket or pants pocket with buttons facing outward so that the wearer can press

them through the outside of their clothing.

We use a Satechi BT MediaRemote, pictured in Figure 2-6 (right), configured so

that all buttons perform the same function (so that the wearer doesn't need to attempt

precise inputs from within or outside the containing pocket.
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5. Bluetooth Headset (optional)

Optionally used for personal audio output to the wearer. This is the fastest commu-

nication medium available on our wearable system but is not typically used for the

perceived negative effects its presence has on the wearer's social interactions. We

used the Plantronics M155, shown in 2-6 (left).

Figure 2-6: Optional accessories for our wearable system. Left: a Bluetooth headset for

personal audio. Right: a Bluetooth remote placed within a pocket and used for discreet

cueing. All buttons are mapped to a common function so that the wearer need only press

against the outside of their pocket.

2.5 System Architecture

Our end-to-end system consists of the wearable system and a server. At the heart of the

wearable is the smartphone, which runs all local sensing, processing, network activity and

logging. Connected to the smartphone via Bluetooth is the smartwatch and either of the

optional accessories (headset, remote). The smartphone handles user inputs from the watch

or remote, and drives user output via the watch or, optionally, the headset or its own speaker.

The server runs a set of scripts so that it can receive online requests from the wearable (such

as for acquaintance recognition) through an Internet connection, and is also used to keep

the Acquaintance Model current by running and combining social interaction detections

on each day's wearable data with user-supplied labels of the people they interacted with

(obtained through audio clips).

31



The smartphone runs a custom application written for a standard Android 4 kernel.

Although Android makes background processes available as so-called Services, restrictions

placed upon them (such as sensor and peripheral access) make it more convenient to write

the application as a foreground process, called an Activity in Android, but with the screen

powered off. This reduces battery life, but improves ease of implementation, particularly

as ours is not the intended use of the standard Android platform.

The application can conceptually be thought to consist of three components: Handlers,

Modes and Preferences. Modes are states that the wearable can be configured to be in by

the user at runtime. Handlers are services that are either actively running regardless of

the current Mode, or else services that any Mode has the ability to control. Preferences

are a simple way of storing persistent flags and options like server address or bandwidth

management. Figure 2-7 shows the (simplified) layout of each of these components.

Handlers are built to handle the basic functionality that's shared by different Modes.

They are built so that Modes can be easily written or modified. User-input Handlers ex-

ist for each peripheral but, more typically, a programmer subscribes to the coarse-grained

RemoteControlHandler, which itself handles input from each peripheral and abstracts them

into a common interface. Handlers are available for each sensor (camera, audio, accelerom-

eter, battery-status) so that a Mode need only activate them synchronously and then sub-

scribe via callback to their (asynchronous) outputs. Higher-level functionality is also built

into Handlers, such as the NetworkHandler, which builds and maintains the system's wire-

less connections if they're broken. Notably, the UserOutputHandler is used to abstract the

way that information is conveyed to the user-a Mode need only provide the text of the

notification and it will be delivered to the user by glanceable text, vibration encoding, or

audio, as necessary. Although the system presently makes these output options available to

the user as a Preference, in the future, this will be handled by online detection of whether

the user is engaged in a social interaction.

Modes are high-level states that the wearer can put the system into. By default, the

wearable is in the NoneMode, in which no external network connections are opened, nor

any CPU-bound processes run. The system is effectively at rest, with a few Handlers peri-

odically running processes that ensure that the watch remains connected, and keep system
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Figure 2-7: Software architecture of our wearable system. The various Handlers (left) are
available to each user-visible Mode, which itself inherits from a VideationMode interface.
This design makes it easy to implement new or change existing Modes.

status (e.g. battery life for both the Smartphone and Smartwatch components) available to

the user.

The typical Mode for active use is the VideationMode. In it, camera images, micro-

phone audio, and accelerometer data are actively logged, and a connection with the server is

maintained through the Internet via WiFi or cellular network. Images are analyzed in real-

time for faces (either locally or remotely), and faces are checked against the Acquaintance

model (remotely), with user notifications made by audio, glanceable text and/or vibration

encoding (at the user's option). Offline, scripts are available on the server that sync system

logs and sensor data, perform social interaction detection, and instantiate a blind-accessible

interface in which users can label the identities of people they interacted with by listening

to audio clips from each interaction.

Other Modes can be written as well, with a minimum of effort thanks to the Handlers

and Preferences. In one, user-input cues the system to attempt synchronous detection and

identification of a nearby acquaintance (rather than doing so continuously). In another,

user-input cues audio clips to be recorded and sent to the server, which stores and attempts

to transcribe any proper nouns (such as a persons name, given during an introduction).
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2.5.1 Network Connections and Data Transport

Lightweight Communications and Marshalling (LCM) [13] is one standard robotics pack-

age for streaming message passing between systems. It is noteworthy for its low overhead,

fast UDP-based connection, static typing of messages and multi-platform capability. Un-

fortunately, LCM messages cannot easily traverse subnets. In fact, doing so requires that

it give up its fast UDP transport so that data can be tunneled via TCP. But even this is an

extension to its core code, and not available for all platforms, Android among them.

Porting this ability was considered but so were alternative message passing protocols.

Ultimately, the relatively new WebSockets protocol [12] was chosen for handling connec-

tions between the wearable system and the remote server. WebSockets is a TCP-based

protocol built for bidirectional communication of data sent over port 80 connections estab-

lished via standard HTTP handshakes. It is distinguished from previous HTTP-based meth-

ods in that it formalizes the idea of persistent Internet-based connections rather than using

workaround techniques such as "long-polling," in which an HTTP connection is made to

stay alive indefinitely by configuring the client and server to continuously send small mes-

sages.

Because WebSockets uses standard HTTP handshakes, it can easily traverse typical

network topologies including through proxies. The ability to communicate between subnets

is essential for our wearable system as the wearable may not always be on the same network

as the server, such as when the wearer leaves the building and the system connects to

another WiFi network or falls back to cellular access.

But, unlike LCM, WebSockets does not itself handle message serialization. For this,

we considered several alternatives: chiefly, the serialization component of LCM, Google's

open source Protocol Buffers1 , and MsgPack 2 . All serialize binary data and permit pre-

defined, statically-typed messages. We devised a simple experiment in which our wearable

system streamed VGA-resolution, JPEG-encoded images (with timestamps) to the server,

and marked average encoding and decoding times, as well as the size of the packed mes-

sage. Table 2.1 shows the results and Figure 2-8 shows the definitions of each message.

'https://developers.google.com/protocol-buffers/
2 http://msgpack.org/
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Averages were taken over multiple seconds of data streaming.

// lcm definition
package lcm-jacket;

struct jpgt {

int64_t utime;

int32_t nBytes;

byte jpg[nBytes];

}

// protobuf definition

message jpg-t {

required int64 utime = 1;

required bytes data = 2;

// msgpack definition

msgpass-jpgt {

public byte[] data;

public long utime;

}

Figure 2-8: Definitions for testing object serialization in the LCM, Protocol Buffer and

MsgPack Object Serialization libraries.

We see that LCM sends messages of more than double the size relative to either Pro-

tocol Buffers or MsgPack. It is considerably faster at encoding than either alternative, and

nearly fastest at decoding. Assuming, however, that we plan to transmit 30 frames per sec-

ond, we note that the total time spent encoding and decoding LCM messages is 2.19ms,

compared to 8.37ms for MsgPack messages, and 4.26ms for protocol Buffer messages.

Similarly, total network bandwidth for LCM messages is 1.84MB, compared to 0.77MB

for MsgPack messages and 0.84MB for Protocol Buffer messages. Considering that our

lcm protobuf msgpack

Packing Size (bytes) 64250.98 29235.71 27075.43
Encoding Time (ms) 0.057 0.111 0.267
Decoding Time (ms) 0.016 0.031 0.012

Table 2.1: Data serialization sizes and encode/decode times for streaming VGA-resolution

JPEG images along with a timestamp in three modem serialization libraries. Data is en-

coded an a dual-core Android platform and sent over the WebSockets protocol to a quad-

core Linux server.
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wearable system will sometimes be limited to upload speeds of less than 1Mbps on slow

3G cellular connections, it makes sense to minimize message sizes. But, protocol Buffers

offer additional conveniences beyond MsgPack that are worth the small increase in typi-

cal message size (and partially made up for by slight improvements in encoding/decoding

time).

message VideationMessage_t {
message ImageJpg {

required bytes data = 1;

message Audio3gp {
required bytes data = 1;

}

message SystemStatus

required float battery-percent = 1;
required string wifissid = 2;

required bool pref streamingdoHandshakeBetweenFrames = 4;
required bool pref cameragreyscale = 5;
required bool pref mode-person idstream-typeis-faces 6;

message PersonIDResponse

required int64 utime-query = 1;
optional string results = 2;

}

required int64 utime = 1;

optional string mode = 2;
optional SystemStatus systemstatus = 3;
optional ImageJpg image-jpg = 4;
optional Audio3gp audio_3gp = 5;
optional PersonIDResponse personidresponse = 6;

Figure 2-9: Serialization definition for the canonical VideationMessage, which gets passed
between the wearable system and server, with fields filled in as appropriate. Note that the
only required field is the timestamp, and that only the fields necessary for a given task are
transmitted (per the optional specifier).

Particularly useful within the Protocol Buffer standard is the ability to use nested class

definitions in combination with optional data field specifiers. Taken together, this allows a

single, canonical message to be defined, with only those optional data fields that are relevant

to the message filled in at any given time. We use this ability to good effect by making a
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single VideationMessage, shown in in Figure 2-9, that defines the format for messages

passed between the wearable system and the server. The smallest message contain only a

timestamp, as when a heartbeat is being sent. But in other cases, the wearable system will

attempt to transmit a SystemStatus message whenever the wearer changes the system's

mode. In its current form, the server responds only with PersonIDResponse messages,

which are returned only when it receives an ImageJpg message and previously knows that

the system is in a Mode that involves person identification (established by a previously-sent

message).

2.6 User I/O

User input is handled by the wearer pressing any of the three buttons (top, middle, bottom)

on the watch. A long-press on the middle button cues a Mode-select menu whose options

are acquired from the smartphone at runtime. This menu is scrolled through via the top and

bottom watch buttons, and selected with the middle button. Each Mode has access to the

three buttons and may use them however desired (with the exception of the middle long-

press). It is worth noting that although the default method for navigating this Mode-select

menu is by viewing the text on the watch screen, it is easy to augment it so that options are

made available to a blind wearer via audio or vibration encoding. In the standard Videation

Mode, the middle button is used to 'arm' or 'disarm' sensing for nearby acquaintances

and logging sensor data for offline social interaction detection. The top button is used for

marking events of interest in the system logs, and the bottom button is used to repeat the

last notification. The optional remote peripheral is treated as having a single button input

equivalent to a single-press of the watch's middle button.

Output is typically made available to the wearer on the watch. This can either be

through text on its display, which can be quickly glanced while traveling or interacting

with others, or by encoding the text through vibrations to the wrist. As an alternative, au-

dio can be delivered by speaker from the smartphone for the wearer and any nearby person

to hear, or through the headset.

While glanceable text and audio output are straightforward ways to convey information
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to the wearer, they are not without drawbacks. Glanceable text requires that the wearer

raise their hand and cast their eyes down. Audio requires that the wearer broadcast their

use of the wearable either through wearing a Bluetooth headset (still considered socially

undesirable in many circumstances) or else use speaker audio, in which the existence of

their system is made plain to others. As this work intends to assist the wearer in social in-

teractions, and these output methods can negatively impact them, we have opted to explore

alternatives, in particular, Morse-Coded messages delivered by vibration to the wearer's

wrist (via the smartwatch).

2.6.1 Vibration-Encoded Messages

The International Morse Code Standard [2] defines the dit as its atomic unit of time. There

is a short and long pulse (measured as one and three dits, respectively), as well as silent gaps

between pulses, characters, and words (measured as one, three and seven dits, respectively).

Words per minute (wpm) can be measured by the number of times that the word 'PARIS'

can be encoded in one minute (including the gaps between pulses, characters and words).

The specific word 'PARIS' is often used because it is representative of plain English text

with a normal distribution of characters.

Commercial radiotelegraph licensure in the United States requires that applicants be

capable of reading Morse code at 20wpm or 25wpm, depending on the license class, with

anecdotal evidence suggesting that expert rates hover around 35wpm, and record rates

around 75wpm for veteran operators. To put these rates in perspective, Figure 2-10 shows

the time to encode an average English letter (weighted by English usage or not) plotted

against encoding speed. We see that even at expert levels, each weighted character takes

about 150ms to encode. But, remembering that there is a single-dit of silence between each

pulse, and that the dit is, for instance, 60ms in duration at a rate of 20wpm, we see that

encoding a simple word (such as a name) takes nearly 2 seconds, even at expert speeds.

Figure 2-11 shows these encoding times for different encoding speeds.

Informal experimentation suggest that 15 - 20wpm vibration encoding speeds are dis-

cernable and appear to be a reasonable training goal, but that such training takes regular
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Figure 2-10: Frequency-weighted character encoding time with expert and record human

Morse-decoding performances.

practice for a period of several days to weeks. It appears to be facilitated by the use of

spaced repetition learning [37] techniques, in which encoded letters (and later n-grams) are

cued for the wearer to discern based on past wearer-graded performance on those same

letters.

For perspective on these vibration encoding speeds, Audiobooks are recommended to

be recorded at 160wpm [36] for simple content and English speaking rates have been found

to range between 120 to over 220wpm [31]. Experienced, blind users of synthesized speech

have been found to be capable of comprehending synthesized speech at as much as double

the rate to those of less-experienced, normally-sighted users [25].

Thus, while a wearer might reasonably train to 15-20wpm vibration encoding speeds,

they are still stuck waiting three seconds for the complete notification of a proximate ac-
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Figure 2-11: Word encoding time (for PARIS) with expert and record human Morse-
decoding performances.

quaintance, as opposed to synthesized speech encoding times that, without training, will be

easily understood at a 375ms encoding speed. With training (that they may already have)

this could conceivably be brought to as little as 150ms.

The advantage that vibration encoding has over audio notifications, then, is that it can

be delivered privately and ignored with minimal disruption to the wearer if desired. A

middle ground that would bridge the differences between encoding speeds could be to

establish correspondences of peoples names to small letter groupings, so that Chris might

be encoded as c or ch, which would bring encoding speeds down to well under a second

(see Figure 2-10), even in the case of 15-20wpm, and would be competitive with audio

notifications at expert encoding speeds of 35wpm.

Bone conduction (discussed and studied in e.g. [35]) is a promising option that could

provide the fast, audio-based notifications of headsets along with the relative privacy of
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vibration-encoded messages. Here, sound vibrations cast directly upon bones near, but not

in, the ear can be heard by a person, without obstructing their own aural perception of their

environment. If the audio could be conducted well enough that it wasn't heard by others at

a conversational distance, and the headset could be made small enough and appropriately

placed (perhaps behind the ear), then the wearer could have fast, private notifications that

would require no learning curve on their part. Unfortunately, while recent products on the

market have claimed to be using bone conduction, many seem to functionally be more aptly

described as a small speaker located near the ear, in plain auditory and visual view. Perhaps

this will change in time.

2.7 Detection and Recognition

Our wearable system uses different algorithms for person detection depending on whether

it's done online, for acquaintance recognition, or offline, for social interaction detection.

In the online case, the system can either be configured to do detection locally, on the

wearable platform, or remotely, by the server. If done locally then Viola-Jones [34] is used

for its efficient implementation (15fps on our platform at VGA resolution) and acceptable,

if modest, performance. If done remotely, then either the AUC-boosted cascade detector

discussed in Chapter 3 can be used, or an even more reliable cloud-based detector [1]

can be used. Benefits of detecting locally include the ability to save bandwidth by only

transmitting detections, rather than streaming images, and would ideally reduce the time it

takes to recognize and communicate the identity of an acquaintance to the wearer. But on

this latter point, we unfortunately find that the local detector requires such precise frontal

poses that it's often faster to stream images to the server and detect it there.

For offline detection, the system can use any of the online options, or the slow (10s) but

high-quality detector from [41], which also provides pose estimation and landmark (eyes,

nose, mouth) estimation.

Recognition is handled by the same cloud service that is capable of performing online

or offline detections. Empirically, its results are better than that of standard, available

methods such as Eigenfaces or Fisherfaces [4]. Part of this is due to the need to feed face
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recognition engines with not just detected faces, but to also have those faces accurately

aligned to a frontal view with a pose estimator, which is difficult to do online.

2.8 Logging

Our wearable system maintains text logs of Mode changes and diagnostic information.

When recording sensor data, it stores images as separate images in a directory, audio as

.3gp encoded files, and accelerometer data (corrected for gravity) in CSV files. Image and

audio files are named with the timestamp of the time the sensor data began to be collected

(not when the file was made), making it feasible to manually synchronize them post-hoc,

as is necessary for social interaction detection.

In an ideal implementation, social interaction detection would be conducted online so

that the sensor data could be discarded upon analysis for interactions or acquaintances,

thereby protecting the privacy of the wearer and nearby persons.

2.9 User Labeling of New Acquaintances

Offline, such as at the end of each day, the wearable system syncs its logs and sensor

data to the server and social interaction detection (discussed in Chapter 3) is performed.

The wearer is provided with audio snippets from each interaction and asked to identify

the person(s) with whom they interacted, or to label them as not presently needing to be

identified in the future (though it would raise the question again if the wearer interacted

with them on another day).
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Chapter 3

Detecting Social Interactions

3.1 AUC-Boosted Person Detection

3.1.1 Introduction

We seek to build a high-performance, video frame-rate face detector for embedded plat-

forms. Unfortunately, while the well-known Viola-Jones detector [34] is widely available,

it is non-optimal because:

1. Viola-Jones cannot run at video frame rates on high-resolution images, which limits

the effective size, distance and latency with which objects can be detected. This is

partly due to the many boosting stages (24 in OpenCV's reference implementation)

that it employs.

2. Adaboost can take weeks to train when using several hundred thousand Haar-like fea-

tures and simultaneously meeting specified maximum false-positive and minimum

true-positive thresholds, even when done on server hardware, making it painful to

continuously integrate new data.

Since Viola-Jones' popularization ten years ago there have been substantial improvements

in discriminative, fast-to-collect features that enjoy some combination of scale, rotation and

lighting invariance, among them SIFT [22], SURF [3] ORB [28] and Histograms of Ori-

ented Gradients (HOG) [8]. In this work, we seek to exploit their improved discriminative
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ability to build a smaller (in number of boosting rounds), faster face detector that's quick

to train and which outperforms stock Viola-Jones.

In particular, we implement from scratch an adaptation of the approach advocated in

[21], which itself is inspired by the Viola-Jones framework, but significantly modifies it in

the following ways:

1. Rather than jointly satisfying a maximum false-positive and minimum true-positive

rate for convergence at each boosting stage, the AUC criterion is used which, for the

tth boosting round is defined as:

H'(X) = arg max J(Ht-(X) + akhk(X), X)
k=l:K

where H'(x) = ET atht(x) is a weighted combination of weak classifiers and

J(H, X) is the area under the ROC curve produced by classifier H on data X.

2. Rather than use decision trees for the weak classifiers, binary logistic regression is

used so that P(y IlIx, w) = in which parameter w is found by1±exp(-yw7_x)

minimizing the regularized log of the above.

3. SURF features are used as opposed to Haar-like features, which dramatically reduces

the number of tested feature combinations required from several hundred thousand

to several hundred per template.

With these changes, the authors claim improved performance 0.3 greater true-positive rate

(TPR) for a given false-positive rate (FPR) on a modern dataset [17] over Viola-Jones while

enjoying an approximately 2x runtime speedup and a massive training time speed-up from

multiple weeks to under an hour for over one billion training samples.

In Section 3.1.2, we discuss our adapted use of extended SURF features. In Section

3.1.3, we discuss the dataset we collect. In Sections 3.1.4 and 3.1.5, we discuss our use

of logistic regression as a weak learner, and detail the AUC boosting algorithm that brings

everything together. In Section 3.1.6, we show encouraging results and in Section 3.1.7 we

discuss limitations and future work.
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3.1.2 Features

We implement the dense, upright, extended SURF descriptor [3] from scratch. This dif-

fers from the standard SURF setup in that there is no interest point detection (features are

densely sampled) and the detection template is kept axis-aligned (descriptors lose rotational

invariance, chosen for efficiency). The implementation is as follows:

I. Compute image gradients dx, dy by convolving the image with kernels [-1, 0, 1] and

[-1, 0, I]T, respectively.

2. Compute and stack eight integral images: Z dx, Zd I for dy <= 0, dy > 0 and

E dy, E Idyl for dx <= 0, dx > 0.

3. For a given template (max size (w, h) = (40, 40) in our case), split into four cells and

within each collect, then append, the 8 above sums for a total of 32 array accesses

and a 32-dimensional descriptor.

Boosting requires that we have many candidate weak learners, which themselves re-

quire different features. We accomplish this by varying the scale (12 to 40), aspect ra-

tio ((w, h) - {1 : 1, 1 : 2, 2 : 1}) and offset (4 pixel steps) of the template. For each

(w, h) = (64, 64) pixel image patch, then, we have 361 possible sets of 32-dimensional

features. It should be noted that there are many more possible features but, unlike Viola-

Jones, we don't expect to need to check every possibility due to the increased discriminative

capacity of the features.

3.1.3 Data

For positive samples, we use the Labeled Faces in the Wild dataset [14] preprocessed by

[29] so that faces are size-normalized to (w, h) = (64, 64) pixels and tightly cropped (but

not aligned). In total, there are 13,233 positive samples. This dataset is typically used

for recognition rather than detection benchmarking and, indeed, was initially built with

a well-tuned Viola-Jones detector. If we split this data into training and testing then we

automatically have a goal (with respect to true-positive rate) and means of comparing any

classifier we test to an 'optimal' VJ detector.
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For negative samples, we use Caltech 101 [11] with two of its (human face) categories

removed for a total of 99 categories of negative samples. In a preprocessing step, these

were chopped into (w, h) = (64, 64)-sized chunks, such that each chunk had no overlap

with any other. This produced a total negative sample size of 62, 346.

It is worth nothing that negative samples wouldn't typically be separated into disjoint

chunks, as we did, but would instead be densely scanned. In that way, it is relatively

easy to accumulate billions of negative samples. We forewent this strategy for ease of

implementation (specifically, to extract features offline and keep them in memory) and to

keep computational cost reasonable but as we'll later see, we would need to adopt the more

common approach in future work.

3.1.4 Weak Classification

Being (relatively) high-dimensional, our choices for features are not well-suited to decision

stumps as are commonly used with boosting. Instead, we use binary logistic regression, in

which
1

P(y = +lIx, w) =
I + exp(-yWTX

where x is a feature patch (32-dimensional in the case of the SURF descriptor) and w is

learned by minimizing
N

S log(1 + exp(-ywtx))
n=1

We implicitly regularize by implementing the 'dynamic working set' as detailed in [38] (to

be described below).

3.1.5 AUC Boosting and Cascade

One of the nice features of the Viola-Jones framework is that it can be tuned to specific

performance requirements. To achieve a given true-positive rate (TPR) D with less than F

false-positive rate (FPR) in c cascades, then because F = J7J= fi and D = H= 1 di for

fi, di the FPR and TPR of the ith cascade, respectively, we can stipulate a priori that it is

necessary for each cascade to achieve di = exp( 1og(D)) and fi = exp( log(F)) for i = 1 ... c.
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For example, to achieve D = 0.9 TPR with F < le - 6 (this latter being a consensus

ceiling on a practical detector), one could train a c = 10 stage cascade in which each stage

must achieve di = .99 TPR with no more than fi = .25 FPR. But, achieving that may be

computationally expensive (because more weak learners will be necessary), particularly in

the earlier stages of the cascade, and so one might opt to increase the number of cascades

to, for example, c = 20, hoping that the overall performance improves. In this case, each

cascade would need to achieve a slightly higher true-positive (di = .995) but is permitted

significantly more false-positives (fi = 0.5).

Thus, by enforcing specific TPR and FPR at each level of the cascade, one can model

the runtime of the detector. The drawback is that training with these fixed-rate assumptions

can create cascades that are unnecessarily complex. One could in principal account for this

by training under many sets of candidate parameters, but each test will take several weeks,

partly due to the large number of features and possible stumps, and partly because the

Viola-Jones formulation requires the joint optimization of TPR and FPR in each cascade.

Given training set (X, Y) {xa, y,}I_1, y, - {-1, 1}, k possible sets of features

for each, we seek to learn H(X) with maximum false-positive rate F and given minimum

true-positive rate, d, per cascade. The complete algorithm is specified in Figure 3-1.

The basic idea is that we build a cascade of classifiers where, within each cascade, we

train candidate weak classifiers on a small, dynamic and balanced subset of the training

data called the dynamic working set. We select the learner that maximizes the area under

the ROC curve (AUC) as evaluated with previously selected weak learners on the entire

training set. We then weight the newest learner as in Adaboost but with error 1 - AUC and

after performing standard Adaboost data reweighting, we update our dynamic working set

by replacing those positive and negative samples which have the smallest 10% weights with

random samples from the entire training set. Learning a single cascade is finished when

the AUC has converged (is no longer measurably improving) or when an artificial boosting

limit has been hit (so as to limit complexity). Between training cascades, we refresh our

dynamic working by evaluating the whole classifier on all training data and choosing those

it fails to classify correctly).

Training is complete once we have fallen under a prespecified false-positive rate (for
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1. F =Di=i=O

2. Initialize positive and negative data weights: wl -, w--i = - for N N- the
number of positive and negative samples.

3. Randomly select a set Z C X of balanced positive and negative training samples.

4. while F < F:

(a) i = i + 1

(b) Learn boosted model Hi(x)
fort = I : T:

i. For each of the K possible feature sets, train a logistic regression model
hk(x, w) on Z

ii. Add to Hi- 1 (x) the weak classifier:

arg max J(Ht + hk, X)
hk

for Jt = J(h, x), the area under the ROC curve produced by classifier h on
dataset x.

iii. Set error et =1 - Jt, at = .51og('et), and update then normalize data
weights such that wt,j = wt,ji_ exp(-yjat H()).

iv. Replace with random samples from X those zi E Z for which wtj is lower
than 90% of the other wt,1 .

v. break if J has converged or prespecified maximum boosting rounds
achieved.

(c) Evaluate Hi(x) on X, choosing from its ROC curve threshold E8 at point (di, f )
s.t. di = d.

(d) F+1 = Fj * fi, Dj+1 = Di * di

(e) If Fj > F then evaluate Ht(x) on X and replace correctly classified zi E Z with
misclassified samples.

Figure 3-1: The AUC-Boosted Cascade Algorithm. Note that we use Hi(x) to denote the
classifier resulting from training cascades 1 ... i, while Ht(x) represents a classifier in the
tth round of boosting construction within a cascade i.

practical applications, this starts at le - 6), at which point our true-positive rate is deter-

mined from the ROC curve of the boosted cascade.

A key difference between this formulation and Viola-Jones as specified above is that,

in our algorithm, training of an individual stage of the cascade is complete when that set of

boosted weak learners is no longer meaningfully improving upon the AUC, at which point
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a threshold is determined by selecting the point on the ROC curve that corresponds to a pre-

specified minimum true-positive rate. Thus, the false-positive rate will likely be different

for different stages. Relative to Viola-Jones, the gamble here is that, for a particular mini-

mum true-positive rate, we often (but not always) do better than a particular false-positive

rate. If this gamble is successful, our classifier will result in fewer, less complex cascades.

Otherwise, it will be longer. We expect the former behavior, however, because we are using

more sophisticated features.

3.1.6 Results

We randomly cut our 13, 233 positive and 62, 346 negative samples into 90%/10% training

/ test split and train two models: one using AUCBoost with SURF features and logistic

regression weak learners as described above, and another using untuned, unboosted HOG

features (via code from [23]) and a simple LDA classifier. The ROC curve for the test sets

of each are shown in Figures 3-2 and 3-4, respectively.

The ROC curve for our AUCBoost method ultimately achieves an AUC of 0.998, cor-

responding to 0.7 TPR for le - 3 FPR. To see how training error (defined as 1 - Jt for Jt

the AUC at round t, defined in step iii. of Figure 3-1) varies with boosting round, we look

at Figure 3-3. Strikingly, we see that the error falls below 0.01 within 3 rounds of boosting

suggesting that our weak learners aren't actually all that weak.

An AUC of 0.998 seems impressive, but when we recall that a practical detector requires

no more than le - 6 FPR, corresponding to one false positive per ten VGA-resolution im-

ages (assuming 64x64 window size, 5 pixel step, single scale, then we see that le - 3 FPR

would yield around ten false-positives per image and would thus not be that effective. In-

spection into the training data yielded that this classifier reached 0 false-positives in training

and so, clearly, further improvements to FPR would require more negative training samples

(which, after the fact, isn't surprising given that we have several orders of magnitude fewer

negative samples than are usually reported in competing detectors).

As an (admittedly weak) baseline, we trained a simple, non-boosted, non-tuned classi-

fier based on HOG features. It comes out with a weak AUC of 0.59 suggesting that boosting
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Figure 3-2: ROC Curve of our final face detector; AUC = 0.998; in particular, we get 0.7
TPR on the test set with only le - 3 FPR. Accepting slightly more false-positives quickly
drives the TPR towards 1.

could certainly help. Some additional explanation of this poor performance is warranted,

however, as the HOG descriptor has become rather widely accepted in the computer vision

community. First, we extracted only a single feature set for each patch, rather than the 361

SURF feature sets per patch that we were able to choose from in our AUC Boost algorithm.

Because there was no boosting and no multiple feature sets to choose from, and the param-

eters were not finely tuned, it ends up not being so surprising that overall performance is

weak.
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Figure 3-3: Training Error by boosting iteration. We note that the error is already extremely

low after the first iteration suggesting that, indeed, our features are indeed discriminative

3.1.7 Limitations

Most obviously, our classifier would benefit from more training data. Since our boosted

classifier reached 0 false-positives in training within 10 rounds of boosting, it was unable

to continue to improve. The SURF features themselves, therefore, proved to be surprisingly

discriminative for our training data, though one wonders if this is not in part because that

data was so well-curated (i.e. faces were well-cropped).

Unfortunately, adding more data wasn't so easy due to the way the algorithm was imple-

mented. Specifically, we set out thinking that to speed up development time, we'd extract

all features offline and because there are 'only' 80, 000 samples (w, h) = (64, 64) patches,

that all possible SURF descriptors could be stored in 7GB of RAM (though, it turns out

this work on a laptop with 8GB). All this to say that the Matlab code was written with the
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Figure 3-4: ROC Curve of a non-boosted, non-tuned HOG-based classifier; AUC is a weak
0.59 suggesting that further tuning and boosting would likely improve performance.

assumption of all features already being extracted and available, rather than, say, extracting

features as needed (which would be necessary for incorporating the necessary billions of

examples).

A departure from the cited work was that, although AUC boosting was itself imple-

mented, the cascading framework, in which boosted classifiers are combined, was not

implemented because boosting was itself sufficient. The difference, then, between our

implementation and that detailed in Figure 3-1, is that in order to benefit from all neces-

sary training data, we augmented the 'active working set' maintenance step (iv.) to instead

choose as many incorrectly classified examples as it can (as in (e)).

Finally, we note that all elements of this work (except logistic regression, which is built

into Matlab) were implemented from scratch. This probably wasn't ideal from the perspec-
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tive of 'work accomplished' but our results were surprisingly good, and the process was

very instructive. But, in retrospect, a number of implementation details make it so that the

code would not immediately scale to the future work needed (more data, principally), and

so it would be perhaps at this point be useful to take a closer look at specific implementation

choices from others' implementations.

3.1.8 Summary

We implemented from scratch a boosting framework that permits adaptive FPR by opti-

mizing a classifier's AUC score. We demonstrated that it performed well on a training set

of approx. 70, 000 samples, but that its FPR could not be driven lower than le - 3 with-

out substantial erosion of the TPR because there ended up being an insufficient quantity of

training samples.

3.2 Social Interaction Detection

Our wearable system detects social interactions so that it may 1) query the wearer about the

identities of the people with whom they engaged through non-visual means and 2) so that it

ideally could provide distracting notifications (such as by audio) if the wearer is presently

engaged.

In this work, we consider a social interaction as the minimum window of time in which

the wearer and another person acknowledge each other through both visual and verbal

means at least once. Detecting such interactions might be considered to be nearly the same

as detecting faces or, alternatively, detecting voice activity. Our experiments (Figure 3-5)

show, however, that neither signal is by itself sufficient in practice. People do not always

look at each other while interacting (as when they are walking together), nor do they always

speak (as when they are simultaneously observing some other event). Furthermore, the

wearable assistant is likely to pick up faces and voice activity from people that are nearby,

but with whom the wearer is not interacting (as in the cases of a crowded sidewalk where

people are transiently passing by, or in the case of a crowded elevator, where people are in

proximity but not engaged).

53



1-

0.9-

0.8-

0.7-

0.6-

0.5 -

0.4

0.3 -

0.2- 
Face, AUC: 0.583
Motion, AUC: 0.577

0.1 Audio, AUC: 0.815
All, AUC: 0.861

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3-5: ROC Curves of SVM-based detection of social interactions using different
groups of features. No single feature grouping (face, motion, audio) performs as well as
their combination, which yields an AUC of 0.861.

We thus seek to detect social interactions with a combination of egocentric vision, mo-

tion and audio data. To this end, we have built a wearable dataset consisting of images

recorded at 1/3 Hz, motion data recorded at 50 Hz, and audio data recorded at 16000 Hz.

Images are taken relatively sparsely because the system is designed to last throughout a

day; video (and its attendant processing) makes this less feasible.

A dataset was built consisting of 2.5 hours of manually-labeled recordings spread across

four separate intervals throughout a single workday. We opted not to record continuously

because a typical day includes long stretches of time where rather little is happening (i.e.

the wearer is working at a computer). Features are quantized into one-second intervals, of

which 76% contain social interactions. Data are randomly split into 70% training and 30%
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testing.

Social interaction detection is accomplished by SVM classification of facial features

(presence, size, pose) [41] and a subset of the basic energy statistics used in [20], taken on

both accelerometer data and the envelope of audio data). Training is iterative and includes

multiple rounds of hard-negative mining, in which falsely-classified training data are folded

into the training set for a new round of SVM training.

Our results can be seen in Figure 3-5, in which we show ROC curves of classifiers

built from facial, audio and motion features. Notably, no single signal performs so well as

their combination. We see that a Linear SVM on all features yields AUC of 0.861 and that

audio is actually more informative than facial information for detecting social interactions,

owing in part due to a low face detection sampling rate and non-ideal camera angle of view

(measured from the wearer's chest and equal to 460).

Because SVM classification can be done relatively cheaply (requiring dot products of

the input signal with each support vector), it is reasonable to expect that social interaction

detection using our method could be performed online. Additional work would by neces-

sary for this to be reliable, however, as we aren't nearly close enough to reliable detection

without significant false positives.

Improving performance of social interaction detection would begin with including a

time-aware state-transition model, such as by feeding the above SVM classifications (tech-

nically, their distance from the hyperplane) through an HMM [5]. Further improvements

could come from the use of more sophisticated audio [6] and accelerometer [26] features.
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Chapter 4

Sightless Image Labeling

We seek to provide a (possibly blind) wearer with the ability to teach their wearable system

about the acquaintances they'd like it to subsequently identify and inform them about. But

this is not so simple as showing them images of the people they interacted throughout the

day. Instead, we show work towards providing what is functionally a sightless image label-

ing interface. By detecting the social interactions that the wearer engages in (as discussed

in chapter 3), we can then ask the wearer about the number and identities of the people in

each interaction through playback of audio from each interaction.

If each social interaction were considered to only contain a single person and was dis-

joint in time from other social interactions, then our task would be straightforward: detect

each interaction and play audio from each until the wearer can confidently identify the other

party.

In reality, however, there will be occasions in which the wearer interacts with mul-

tiple people in a single social interaction. This presents challenges in ensuring that the

audio-based identification performed by the wearer gets localized to the correct visual rep-

resentation of the acquaintance - after all, the wearer could have been looking at one person

while another was speaking. Or there could be multiple people in-frame, and it not be clear

to the system which one is speaking.

We cannot reasonably play the audio of the entire interaction, however, as that could

make for a highly cumbersome interface and have significant privacy concerns in that all

conversations the wearer engaged in would be recorded. To solve both problems, we instead
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1 2
1 14 0
2 1 13

Table 4.1: Confusion matrix resulting from the use of appearance-based clustering to dis-
tinguish between two participants in a social interaction. Columns are predictions, rows
are ground truth.

seek to select a small number of short audio snippets from each interaction-enough for

identification of each person involved, but not so much as to record the content of the

interaction.

In this chapter, we present preliminary results towards this end. Section 4.1.1 discusses

Adjusted Mutual Information (AMI), a clustering metric used in a small, appearance-based

clustering experiment carried out in Section 4.1. And Section 4.2 discusses strategies for

sampling audio for each participant so that user-supplied labels correctly correspond with

each person in that interaction.

4.1 Appearance-Based Clustering

We conduct a simple experiment to distinguish the persons involved in a social interaction.

From the wearable dataset discussed in Section 3.2 we extract 35 frames containing three

separate persons. We then collect HoG features using [9] on extracted faces and cluster

them with standard k-means.

We do two experiments. In the first, we attempt to distinguish among two people, and in

the second we attempt to distinguish between three. We show results both by comparing the

resulting clustering with the ground truth clustering using Adjusted Mutual Information and

also by a standard confusion matrix in which class membership of a cluster is determined

by majority correct vote.

In experiment 1, we get AMI = 0.81, suggesting very good correspondence and,.

indeed, Table 4.1 shows that only one image is misclassified. In experiment 2, we get

AMI = 0.64, suggesting still good correspondence, but with greater discrepancies. And

we see from Table 4.2 that 5 images are misclassified.

Both experiments are promising, especially given that it seems likely that many social
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1 2 3
1 7 0 0
2 3 10 2
3 0 0 13

Table 4.2: Confusion matrix resulting from the use of appearance-based clustering to dis-

tinguish between three participants in a social interaction. Columns are predictions, rows
are ground truth.

interactions will be with 1-3 additional people and only more rarely with more. We note

that these results assume the number of clusters, i.e. people, is known a priori. In practice,

this could be determined by querying the wearer, though ideally it could be determined

automatically, perhaps by using varying k in clustering, and evaluating each model with

Bayesian Information Criterion [30].

4.1.1 Adjusted Mutual Information

Adjusted Mutual Information [33] is an information-theoretic measure for comparing cor-

respondence between clusterings. We briefly derive it here and discuss and motivate its use

compared to other metrics.

Given dataset S = {si, ... SN and two clusterings

U = {U1,..., URI and V = {V, ... , VC}

Where n, Ui = 0 and UL_ 1U = S, and similarly for V. This just says that the Ui, Vi

are a partitioning, or clustering, of S, respectively. Then, the probability that a random data

s c S is contained in some cluster U, or in cluster V is given by the respective equations

PU(i) = and P(j) N
N N

The probability that s is found in both clusters is given by

SUi n V|P(i)- N
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And the mutual information between the two labelings is defined as

M U V CP(i, j) log P(i, j)
P.(i)P, (j)

Mutual information quantifies how much knowing about one clustering tells us about

the other. It is symmetric and nonnegative, but is not upper-bounded by a constant and so

of limited utility as a general metric for comparing clusterings. Furthermore, [33] demon-

strates that mutual information does not take a constant value when comparing random

clusterings and tends to grow with the number of clusters. They use a hypergeometric

model of randomness to derive an expected value for two random clusterings. This per-

mits a correction similar to the Adjusted Rand Index [15] that ensures random clusterings

produce a constant value. This correction yields the adjusted mutual information (AMI):

AMI(U, V) = MI(U, V) - E(MI(U, V))
max(H(U), H(V)) - E(MI(U, V))

The entropies of clusterings U, V denote the uncertainty in a data point's cluster mem-

bership:

R C

H(U) -FP(i) log P(i) and H(V) = - E P(j) log P(j)
i=1 j=1

The denominator in AMI corrects for randomness and serves as a normalization, as oth-

erwise MI(U, V) < min(H(U), H(V)). Furthermore, AMI(U, V) = 0 only when

equal to its expected value (e.g. that expected by comparing two random clusterings) and

AMI(U, V) = 1 when clusterings U, V are identical. These bounds make AMI a useful

metric for comparing clusterings.

4.2 Label Correspondence and Sub-Sample Selection

Once individuals within a social interaction have been distinguished from one another, it

remains to find audio snippets corresponding to each. Presently, our work selects randomly
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from within the interaction, irrespective of the presence of speech, but this will only work

reliably for interactions in which there is a single participant and when speech is occur-

ring. Ideally, samples would be taken only when speech is detected, perhaps even only

the wearer's (for the sake of the privacy of others), but the present implementation is made

practical by simply taking extra samples, if needed.

One strategy for handling multiple participants could be to select sequences of images

for which the same participant most often remains in frame, the idea being that although

we cannot be sure that a person in frame is the same that's currently speaking, we can

become increasingly confident with their occurrence in sequence. This would effectively

be like considering all social interactions to be with only person, which would inflate the

total number of 'social interactions' that the wearer has, particularly when they're actually

interacting with more than one person, but regularly shifting attention among the two. And

if one person were talking while another was in view then the system would be at risk of

misleading the wearer.

Better would be to distinguish participants in a social interaction not just visually

through appearance, but also audibly through speaker change detection or speaker seg-

mentation methods such as those surveyed in [19]. We leave this to future work.

4.3 Labeling Interface

An image of our offline labeling interface is shown in Figure 4-1. The day, time and

duration of the interact are presented to the wearer through an accessible web interface.

Though an image of the person is shown in the interface, it is not needed. Typically, the

wearer would listen to the audio clip and then either identify them by typing their name or

labeling the interaction as not important. If the audio is not intelligible or does not jog their

memory then they can tell the system that they don't know, in which case another audio

snippet is retrieved. The number of retries is limited in an attempt to observe the privacy

considerations of those that the wearer interacts with.

If social interaction detection were to be continued to be performed offline then addi-

tional work could be done to determine the appropriate length of the audio snippets-shorter
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is better if privacy is being considered, but they cannot be so short that the wearer cannot

properly identify each acquaintance. Our system currently uses five seconds. The sys-

tem could also bring individuals that the wearer has repeatedly chosen for it not to learn,

suggesting that perhaps they really should, in fact, permit the system to identify them.

If social interaction detection were instead to be performed online then audio snippets

might need to be played back to the wearer only when they interacted with more than

one party. Perhaps the best course in this case would be to adopt a hybrid interface - use

the offline interface for interactions with more than two people, and the online interface

otherwise.
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Figure 4-1: Images of the blind-accessible labeling interface, in which each social interac-

tion is summarized, and the wearer is able to provide labels for the people they interacted

with by listening to audio clips.
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Chapter 5

Conclusions

We have shown an end-to-end implementation of a wearable system that identifies, learns

and discreetly communicates the presence of proximate acquaintances to its (possibly blind)

wearer. In conducting this work, several research directions of interest emerged, notably

the utility of detecting social interactions in egocentric video, audio and motion data and

methods for communicating information to a person engaged in other activities, particu-

larly social interaction. While much of the work is imperfect, it nevertheless demonstrates

the viability of such a system. We conclude with discussion of softer considerations that

were at least considered in the construction of our wearable system, and that would need to

be revisited in making it broadly available and touch upon future work.

5.1 Utility, Privacy and Physical Comfort

One challenge facing wearable computers is that the value they provide must be high, or

else the inconvenience of wearing them must be very low. It will be particularly difficult

to find people willing to adopt wearables if they are physically cumbersome, aesthetically

distasteful or if they encroach upon social norms. And just as there are only certain times

and places in which it is currently acceptable to wear headphones or Bluetooth headsets, so

too is it likely that there may only be specific contexts under which wearables such as this

work are acceptable to be used in.

Particularly challenging with wearables that involve a camera is the fear from others
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that they might be getting recorded. As evidenced by some of the backlash over Google

Glass, the presence of a camera appears to be enough to set this concern off, even if the

wearer assures that it is not, in fact, recording. Opinions appear to range from the notion

that people will become increasingly comfortable with the potential that they are being

recorded constantly to suggesting that either markets or governments will force wearables

to not have the ability to discreetly record image or audio data.

An interesting angle that may work towards easing adoption of this work, if not wear-

ables more generally, is the highlighting of their immediate applications for individuals

with disabilities. A jacket or pendant that identifies proximate acquaintances is just one of

many potential applications here.

5.2 Future Work

Our wearable system currently identifies proximate acquaintances from facial recognition

alone, and social interaction detection and acquaintance learning are both performed of-

fline. A future implementation would change being that the Acquaintance Model of Fig-

ure 2-1 to includes recognition not just on faces, but also on visual attributes of the body

(including clothing, skin color and hairstyle), as well as audio attributes of voice and con-

textual attributes (including location, wearer calendar). Furthermore, Interaction Detection

would be performed online so that the system can both modify how it informs the user

of nearby acquaintances (based on whether they're already engaged with others or not),

and also so that it can query the user about the identities of people they interact with at an

opportune time shortly after the interaction itself took place.

Analysis of social interactions would also be improved so that the number of partici-

pants could be determined automatically and so that determining correspondences between

their voice and appearance incorporated speaker segmentation techniques.

The hardware would be further miniaturized, perhaps into a small pendant, so that

the wearer would not be tied to a specific jacket or a large lanyard. The camera would

incorporate a much wider angle of view, or be a combination of cameras that together

total at least 900, in which case other techniques for analyzing social interactions would
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become more feasible. Greater CPU power can provide greater flexibility to do additional

and more complex processing locally, reducing or eliminating the need of a server. And the

software platform would be exchanged for one that was more specifically built for wearable

applications.

Finally, an interesting direction for this work would be to use the wearable system to

measure the number of serendipitous social interactions that the wearer could have engaged

in, but for whatever reason, chose not to, or otherwise couldn't. This could, for instance,

provide a platform for studying the social interaction patterns of people on a large scale,

and would be of particular interest for more quantitatively understanding populations that

we believe have fewer or more limited social interactions.
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Appendix A

Figures
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Figure A-1: Materials and patern specifications for the Jacket component of our wearable

system, in which a wearable camera is discreetly placed within a pocket sewn into its inner-

lining, with its lens peering out through a small hole.
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Figure A-2: Steps for creating the Jacket component of our wearable system in which a

wearable camera is discreetly placed within a pocket sewn into its inner-lining, with its

lens peering out through a small hole.
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Figure A-3: Images of people using different configurations of wearable cameras, shown to
the public, and asked whether they felt the person in each image would look 'normal,' 'pe-
culiar,' or 'weird' if they encountered them in a super market while shopping for groceries.
In order are the control (no camera), ear camera, chest camera, pinwheel (for comparison),
head camera and face camera.
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