
The Structure of Promises in Quantum Speedups

by

Shalev Ben David

B.Math., University of Waterloo (2011)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

MASSACHU TS INSTITE

OF TECHN'LOGY

JUN 30 2014

LIBRARIES

@ Massachusetts Institute of Technology 2014. All rights reserved.

Signature redacted
A uthor

Department of Electrical Engineering and

Signature redacted
Certified by

Scott Aaronson
Associate Professor

Thesis Supervisor

Signature redacted
Accepted by

I / 6') () Leslie A. Kolodziejski
Professor and Chair of the Committee on Graduate Students

Computer Science
May 15, 2014

2

The Structure of Promises in Quantum Speedups

by

Shalev Ben David

Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 2014, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

It has long been known that in the usual black-box model, one cannot get super-
polynomial quantum speedups without some promise on the inputs. In this thesis,
we examine certain types of symmetric promises, and show that they also cannot give
rise to super-polynomial quantum speedups. We conclude that exponential quantum
speedups only occur given "structured" promises on the input.
Specifically, we show that there is a polynomial relationship of degree 12 between D(f)
and Q(f) for any function f defined on permutations (elements of {0, 1, ... , M - 1}1
in which each alphabet element occurs exactly once). We generalize this result to all
functions f defined on orbits of the symmetric group action S., (which acts on an
element of {0, 1, . . . , M - I}f by permuting its entries). We also show that when M
is constant, any function f defined on a "symmetric set" - one invariant under S" -
satisfies R(f) = O(Q(f)12(M-1)).

Thesis Supervisor: Scott Aaronson
Title: Associate Professor

3

4

Acknowledgments

I would like to thank my supervisor, Scott Aaronson, for his help and support.

5

6

Contents

1 Introduction

1.1 Query Complexity Background

1.2 Previous Work

1.3 Our Results

2 Type Promises

2.1 Sensitivity, Block Sensitivity, and Certificate

Complexity

2.2 The Structure of Small Certificates

2.3 Lower bounds on R(f) and Q(f)

3 Symmetric Promises with Small Range

3.1 The case of Symmetric Functions

3.2 The General Case

4 Conclusion

7

9

9

11

12

15

15

18

22

25

25

28

33

.

.

.

.

.

8

Chapter 1

Introduction

Quantum algorithms are generally believed to be able to solve certain problems super-

polynomially faster than any classical algorithm. One of the most famous examples

of a problem for which a super-polynomial speedup is expected is factoring: Shor's

algorithm can be used to factor an n-bit integer in 0(n') time [8] while the best

known classical algorithm is only conjectured to achieve e / 1og
2 / 3 n) [5]. On the

other hand, quantum computers are not believed to be able to solve NP-complete

problems in polynomial time. It seems that quantum computers can only provide

super-polynomial speedups for certain structured problems, but not for unstructured

ones. What type of structure is required? In this thesis, we hope to help shed light

on this problem.

1.1 Query Complexity Background

One common model for the study of quantum computation is the black-box model

or query complexity model. In this model, the input is provided by adaptive queries

to a black box, each of which reveals part of the input. The goal is to determine

the value of some function f on this input (where f is specified in advance), while

minimizing the number of queries. More formally, for a function f : [M]- {0, 1}

(where [M] := {O, 1, ... , M - 1}), we consider an algorithm A that makes adaptive

queries to the entries of x E [M]' in order to determine f(x). The query complexity

9

achieved by A is defined to be the number of queries required by A over the worst-

case choice of x. The query complexity of the function f is then defined to be the

minimum query complexity achieved by any algorithm A.

When the algorithm is deterministic, we denote the query complexity of f by

D(f). When the algorithm is randomized (but still determines f(x) with certainty),

we denote it by Ro(f). If a randomized algorithm is allowed to make errors with

bounded probability (say, less than 1/3), we denote the query complexity by R(f).

Finally, if the algorithm is allowed to make quantum queries to the input (and is

also allowed to err with bounded probability), we denote this measure by Q(f). As

expected, we have the relationship

D(f) Ro(f) > R(f) > Q(f)

for every function f. For a nice survey of query complexity (also sometimes called

decision-tree complexity), see [6].

In the query complexity model, we can analyze the power of quantum computing

by comparing Q(f) to D(f) or R(f). An example of an unstructured search in this

model is given by M = 2 and f = ORE, the n-bit OR function. It's not hard to see

that R(f) = Q(n). On the other hand, it has been shown that Q(f) = E(V) (the

upper bound follows from Grover search [7], and the lower bound was shown in [4]).

While the quantum query complexity is asymptotically faster than the classical query

complexity, the gap is polynomial for this unstructured problem.

An example of exponential quantum speedup can be derived from Shor's algo-

rithm. However, to do so, we must change the setting to allow for partial functions.

In other words, we now let f : X - {0, 1} be defined on a set X C [M]n. We can

then construct a function corresponding to a problem called period-finding. We say

x E [M] is periodic with period s if xi = xj <- sI(i - j). Let M =L[iJ, and let

X be the set of periodic inputs with period between -,iF and y . Let f(x) be 0 if

the period of x is less than jn, and 1 otherwise. Then any classical algorithm will

require roughly V/i- queries, while Shor's algorithm requires 0(1).

10

Notice that in the period-finding problem f was defined as a partial function. We

will call the set X on which f is defined the promise of the problem. In this thesis, we

will examine the structure of promises that can or cannot result in super-polynomial

quantum speedups.

1.2 Previous Work

In 1998, Beals, Buhrman, Cleve, Mosca, and de Wolf [3] showed the following theorem.

Theorem 1 If f : {0,1}' -+ {0, 1}, then Q(f) = Q(D(f)1/6).

Their result easily extends to larger alphabets:

Theorem 2 If f : [I]n -+ {0, 1}, then Q(f) = Q(D(f)1/6).

This tells us that there is never a super-polynomial quantum speedup for total

functions. In fact, it is conjectured that the relationship between D(f) and Q(f) is

at most quadratic, so that the OR function gives the largest gap:

Conjecture 3 ff: [M]" - {0, 1}, then Q(f) = Q(D(f)1/2)

Note that these results compare quantum query complexity to deterministic query

complexity (instead of randomized). For more information, see [6].

Another important result was proved by Aaronson and Ambainis in 2009 [1]. They

defined a function f to be permutation-invariant if

f (Xi, X2, . . - , Xn) = f (7(X,(1)), T(X,(2)), . . . , T(X,(n)))

for all inputs x and all permutations - E S. and T E Sm. Here f may be a partial

function, but the promise set X on which f is defined must itself be invariant under

these permutations. As an example, if M = 2, then X might contain all binary

strings of Hamming weight in {1, 2, n - 2, n - 1}, and f(x) will depend only on the

Hamming weight of x (with the value of f being equal on Hamming weights k and

n - k).

Aaronson and Ambainis showed the following.

11

Theorem 4 If X C [M]' is permutation invariant and f : X -+ {O,1} is permuta-

tion invariant, then Q(f) = U(R(f)1/7).

1.3 Our Results

To state our results, we first require the following definition.

Definition 5 Given x E [M], the type r(x) of x is the multiset {x1i,x2,... ,Xn.

Given a type T of some x E [M]", we define t to be subset of [M]n consisting of

all inputs of type T. Abusing notation, we will often write T instead of T to denote

the set of inputs of a fixed type.

One way of thinking about this definition is as follows. Consider the group action

Sn that acts on [M]n by permuting the indices of each element x E [M]n. Then a

type is simply an orbit of this group action.

Our first result is the following theorem.

Theorem 6 If f : T -+ {0, 1} is a partial function whose promise is a type, then

Q(f) = Q (D(f) / 12).

Note that this is a relationship between quantum query complexity and deter-

ministic (not randomized) query complexity. In this sense, the result is similar to

Theorem 2, and indeed we use some similar tools in its proof.

Our second result extends the previous theorem from promises that are orbits of

the group action to promises that are any invariant subset for the group action; that

is, the promise may be any "symmetric" set. Unfortunately, here we are only able to

prove a polynomial relationship when M is constant.

Theorem 7 Let M be constant. If f : X -+ {0, 1} is a partial function on any

symmetric promise X E [M] (that is, a set X satisfying x G X, o E Sn -> x, G X

where x, := (x,(1), X,(2), .- ,x0 (n))) then

Q(f) = Q (R(f) /(12(M- 1))

12

In particular, when M = 2, we have

Q(f) = Q (R(f) /12)

Unlike the previous theorem, this one only relates quantum query complexity to

randomized (rather than deterministic) query complexity. This is necessary; indeed,

if X is the set of binary strings of Hamming weight 0 or [n/2J and f is defined to be

0 on on and 1 elsewhere, then D(f) = Ln/2] + 1 but R(f) is constant.

Notice that this last theorem applies even to the promise X = [A] (for constant

M), so it can be viewed as a generalization of Theorem 1 (although our polynomial

relationship has higher degree, and our generalization replaces D(f) with R(f)).

As a final note, we remark that our results are mostly incomparable with the

Aaronson-Ambainis result (Theorem 4). When M is constant, our Theorem 7 is

much more general (since it doesn't place restrictions on the function). However,

when M is constant, Theorem 4 is not very difficult in the first place; most of the

work in [1] went towards dealing with the fact that M may be large.

In the following chapter, we will prove Theorem 6. Theorem 7 will be proven in

chapter 3, and chapter 4 will discuss open problems and directions for future research.

13

14

Chapter 2

Type Promises

In this chapter, we show that the deterministic and quantum query complexity mea-

sures are polynomially related when the promise is exactly a type, proving Theorem

6.

One particular case of interest, which will motivate a lot of our analysis, is the

case where M = n and T is the type corresponding to the multiset {o, 1, ... , n - 1}

(i.e. the case where the inputs are all permutations), together with the function f

satisfying f(x) = 0 iff 0 occurs in the first [fJ entries of x. This function is sometimes

called the permutation inversion problem.

2.1 Sensitivity, Block Sensitivity, and Certificate

Complexity

We start by defining and examining sensitivity, block sensitivity, and certificate com-

plexity in the promise setting. The behavior of these complexity measures is similar

on type promises to the behavior for total boolean functions (a survey of which can

be found in [6]), with the exception that all three of these measures might be much

smaller than the deterministic query complexity (an example of this is given by the

permutation inversion problem).

We start by defining certificates.

15

Definition 8 Let x E [M]'. A partial assignment c is an element of ([M] U *)n. c is

said to be consistent with x if for all i = 1, 2,... n, either ci = xi or ci

Let f : X -+ {0, 1} with X C [MIn. c is a 0-certificate for f if f(x) = 0 for all

x E X consistent with c. Analogously, c is a 1-certificate for f if f(x) = 1 for all

x E X consistent with c. c is a certificate if it is a 0- or 1-certificate.

We can now define the complexity measures C(f), bs(f), and s(f).

Definition 9 Let f : X -+ {0, 1} with X C [M], and let x E X. The certificate

complexity C,(f) of x is the minimum size of a certificate c for f consistent with x.

The certificate complexity C(f) of f is the maximum value of Cx(f) out of all

x C X.

Definition 10 Let f X - {0, 1} with X C [M], and let x E X. The block

sensitivity bsx(f) of x is the maximum size of a collection of disjoint set of indices

b1 ,b 2 ,--- {1,2,... , n} (called blocks) such that for each block bi, there is some

y E X that disagrees with x only on indices in bi and for which f(y) # f(x).

The block sensitivity bs(f) of f is the maximum value of bsx(f) out of all x E X.

Sensitivity translates somewhat less well into the promise setting. We give the

following definition for it, which makes sense primarily when the promise is a type

promise.

Definition 11 Let f : X - {0, 1} with X C [M], and let x E X. The sensitivity

sx(f) of x the maximum block sensitivity of x where the blocks all have size 2.

The sensitivity s(f) of f is the maximum value of sx(f) out of all x E X.

Note that if we instead required the blocks to have size 1, then under a type

promise the sensitivity of a function will always be zero, since changing a single entry

only will always break the promise. Letting blocks have size 2 allows two entries to

be swapped, maintaining the type promise.

We now show some relationships between Q(f), R(f), C(f), bs(f), and s(f)

analogous to the ones found in [6].

16

Theorem 12 For all f : X -+ {O,1} with X C [M], R(f) Q (bs(f)) and Q(f) =

Q(/bs(f)).

Proof. The proof follows by a reduction from Grover search. Let x be such that

bs(f) = bsx(f), and let b1, b2 ,..., bb,(f) be disjoint sensitive blocks of x. Consider

the input x and the bs(f) inputs given by changing a sensitive block of x. To decide

the value of f on such inputs, an algorithm must decide whether the input is x or

whether one of the blocks has been flipped; this is the setting for Grover search. If a

block was flipped, a randomized algorithm must query at least one input from it; but

this takes Q(bs(f)) queries to find. The lower bound for Q(f) follows from a simple

application of Ambainis's adversary method, as for the Grover search problem. E

Theorem 13 For all f : X -+ {0, 1} with X C [M], s(f) bs(f) C(f).

Proof. s(f) < bs(f) follows immediately from the definition. Since a certificate

must include at least one entry from every sensitive block, we get bs (f) < C2(f) for

all x E X, so bs(f) C(f).

Theorem 14 For all f : T -+ {O,1} with T C [M] a type, we have C(f) <

3bs(f)s(f).

Proof. Let x be of type T. Let bi, b2 , ... , b(f) be disjoint sensitive blocks of x,

and assume each bi is minimal (under subsets). Then U bi is a sub-certificate of x.

Now, we claim that the size of a sensitive block bi is at most 3s(f). This gives

us the desired result, because we then have a certificate of size at most 3bsx(f)s(f),

which means C(f) 3bs(f)s(f).

Let y E T disagree with x on bi with f(y) # f(x). Since x and y have the same

type, the difference between them must be a permutation on the entries of bi. In other

words, there is some permutation o- on bi such that for j E bi, we have yj = x,(j).

Consider the cycle decomposition cic2 ... ck of a. Let cj = (ai, a2 ,...,am) be any

such cycle. We claim that switching a, and a,+, for s E {1, 2, ... , m - 1} gives a

sensitive block for y of size 2. Indeed, if this was not a sensitive block, then block bi

17

would not be minimal, since (a., a,+i)c- would be a permutation corresponding to a

smaller sensitive block (with a, removed). Note that the number of disjoint sensitive

blocks of size 2 we can form this way is at least jb9, since for each cycle c3 we can
3,

form [>+1 i of them. Thus s(f) -Ibdi, as desired.

Corollary 15 Let f : T -+ {0, 1} with T C [M] a type. Then R(f) = Q(C(f) 1 / 2)

and Q(f) = Q(C(f)'/4).

Proof. We have C(f) 3bs(f)s(f) 3bs(f)2 , so bs(f) = 0(f)). Combined

with Theorem 12, this gives the desired result. L

2.2 The Structure of Small Certificates

The previous section showed a lower bound on quantum query complexity in terms

of certificate complexity on type promises. However, this result by itself cannot

be used to relate quantum query complexity to deterministic or randomized query

complexities, because the certificate complexity of a function on a type promise may

be much smaller than the query complexities (an example of this is given by the

problem of inverting a permutation, in which the certificate complexity is constant).

In this section, we prove the following technical lemma, which will be the main

tool for handling functions for which the certificate complexity is much smaller than

the deterministic query complexity.

Lemma 16 Let f : T -+ {0,1} with T C [M] a type. Fix any k < - D(f). If

k > C(f), then there is

9 a partial assignment p, consistent with some input of type T, of size at most

4k 2 , and

e a set of alphabet elements S C [Al], of size at most 4k 2 , whose elements each

occur less than 2k times in T outside of p

such that for any x E T which is consistent with p and any sub-certificate c of x of

size at most k, at least one of the alphabet elements of c - p is in S.

18

(Note: by c - p, we mean the vector d with di = ci when pi * and di *

otherwise.)

Intuitively, this lemma is saying that if we restrict to inputs consistent with p,

then there is a small subset S of the alphabet such that an element of S must exist

in any small certificate. For example, for the problem of inverting a permutation, we

can choose p = 0, S = {0}, and k = Ln/2] - 1; then any certificate of size less than

k must include the alphabet element 0.

Our proof of this lemma is motivated by the proof that D(f) C(f) 2 for total

boolean functions (that proof works by repeatedly examining consistent 0-certificates,

each of which must reveal an entry of each 1-certificate).

Proof of lemma. Fix such T, f, and k. The proof is based on the following

algorithm, which either generates the desired p and S or else computes f(x) for a

given input x. We will proceed by arguing that the algorithm always generates p

and S after at most 4k 2 queries, which must happen before it computes f(x) when x

is the worst-case input (as guaranteed by the requirement that k < - D(f)). The-2

algorithm is as follows.

1: Get input x
2: Set p = 0, S =0, R =0
3: loop
4: Find any certificate c (in any legal input) that

" has size at most k

" is consistent with p

" has the property that c - p has no alphabet elements in S.

5: If there are no such certificates, output p and S and halt.
6: Add all the alphabet elements of c to R.
7: Set S to be the set of elements i of R whose multiplicity in T is less than 2k

more than the number of times i occurs in p.
8: Query all domain elements of c and add the results to p.
9: If p is a 0-certificate, output "f(x) = 0" and halt; if it's a 1-certificate, output

"f (x) = 1" and halt.

We claim that this algorithm will go through the loop at most 4k times. Indeed,

each iteration through the loop selects a certificate. A 0-certificate must conflict with

19

all 1-certificates, and vice versa. There are two ways for certificates to conflict: either

they disagree on the value of an entry, or else there is some alphabet element i that

they claim to find in different places (and in addition, there must be few unrevealed

instances of i in x).

This motivates the following definition: for a certificate c, let hp,s(c) be Ic - pl +

I alphabet(c) - SI if c is consistent with p, and zero otherwise (here Ic - pI denotes the

number of non-* entries in the partial assignment c - p, and alphabet(c) denotes the

set of alphabet elements occurring in c). Note that at the beginning of the algorithm,

hp,s(c) < 2jcl 2k for all certificates c of size at most k. Now, whenever the algorithm

considers a 0-certificate co, the value of hAs(ci) decreases for all 1-certificates c1 . This

is because either co and ci conflict on an input, in which case an input is revealed,

decreasing 1ci -p (or contradicting c1), or else co and c1 both include a range element

i which has less than 2k occurrences left to be revealed according to T (if it had at

least 2k unrevealed occurrences, it wouldn't be the source of a conflict between co

and ci, since they each have size at most k). In the latter case, i is added to S, which

decreases I range(c1) - SI.

We have shown that each iteration of the algorithm decreases hp,s(c) either for all

0-certificates or for all 1-certificates (of size at most k). This means that unless the

loop is terminated, one of the two values will reach 0 in less than 4k iterations. We

claim this cannot happen, implying the loop terminates in less than 4k iterations.

Without loss of generality, suppose by contradiction that hp,s(c) reaches 0 for all

0-certificates. This means p is either a certificate - in which case the value of f(x) was

determined, which is a contradiction - or else p is not a certificate, and conflicts with

all 0-certificates of size at most k. In the latter case, there is some input y consistent

with p such that f(y) = 0, and this input cannot have 0-sub-certificates of size at

most k. Thus C(f) > k, contradicting the assumption in the lemma.

This shows the loop always terminates in less than 4k iterations, which means it

cannot calculate f(x), and must instead output p and S. This gives the desired result,

since all certificates of size at most k that are consistent with p have the property

that c - p has a range element in S. L

20

Note that if we restrict to inputs consistent with p, then the lemma asserts that

finding a small certificate requires finding an element of S. This gives us the following

corollary:

Corollary 17 If f : T -+ {0, 1} with T C [M] a type, then we have

Ro(f) Q(min(D(f)1 / 2, n 1/ 4)) = Q(D(f) 1/ 4).

When M = n and T is the type of permutations, we have

Ro(f) = Q(min(D(f)1/ 2 ,n 1/ 3)) = Q(D(f)1/3)

Proof. Fix T and f, and let k = [min(1 /D(f), in'/4)J - 1 (in the case of permuta-

tions, let k = [min(}VD(f), lnl/3)J - 1). Since a zero-error randomized algorithm

must find a certificate, if k < C(f), the desired result follows. It remains to treat the

case where k > C(f).

In this case, let p and S be as in the lemma. We restrict to inputs consistent

with p. Any zero-error randomized algorithm must find a certificate on such inputs.

Suppose by contradiction that algorithm A has the property that on any such input,

it requires at most k queries with probability at least .

In order to query at most k times, A would need to find a certificate of size at

most k. But this means that on all inputs x, A finds an element of S in x outside

p with probability at least -. However, there are at most 2kjSj = 8k3 such elements

in the entries of x outside p (in the case of permutations, at most IS = 4k 2 such

elements), and the size of the domain is n - IpI > n - 4k 2 > 1. If x is generated by

fixing p and permuting the remaining entries randomly, the chance of a query finding

an element of S is thus at most 16, so by the union bound, the chance of finding

such an element after k queries is at most i k (in the case of permutations, this

becomes %.). Choosing k < jn/ 4 (or k < in'/3 in the case of permutations) gives

the desired contradiction.

We conclude any zero-error randomized algorithm must make at least Q(k) queries,

21

which gives the desired result.

2.3 Lower bounds on R(f) and Q(f)

We now put everything together to prove lower bounds on R(f) and Q(f) in terms

of D(f), proving Theorem 6.

Theorem 18 For any f : T -+ {0, 1} with T C [M]' a type, we have

R(f) = Q(D(f) 1/6)

and

Q(f) = (D(f) /12)

(Note that unlike Corollary 17, we do not get an improvement here for the special

case of permutations.)

The proof of this theorem will require a version of Ambainis's adversary method

[2], which we quote here for convenience.

Theorem 19 Let f : X - {0,1} with X C [M]n. Let A, B C X be such that

f(a) =0 for all a E A and f(b) = 1 for all b c B. Let R C A x B be such that

1. For each a G A, there exist at least m different b E B such that (a, b) E R.

2. For each b E B, there exist at least m' different a E A such that (a, b) E R.

Let la,i be the number of b E B such that (a, b) E R and ai / bi. Let lb,i be the number

of a E A such that (a, b) E R and ai f bi. Let 1..ax be the maximum of la,ilb,i over all

(a,b) E R and i E {1, 2,..., n} such that a 7/ bi. Then Q(f) =Q 7t.

Proof of Theorem 18. Apply Lemma 16 with k = /D(f). If C(f) > k, then

we're done by Corollary 15. Otherwise, we get p and S from the lemma, with all

certificates of size at most k that are consistent with p having range elements in S.

22

1: Set r = 0.
2: while Irl < k do
3: Pick any 0-certificate c consistent with p and r of size at most C(f).
4: Add the entries of c to r, but replace any alphabet element in S with an

arbitrary alphabet element in [M] - S.
5: If Irl > k, stop. Otherwise, repeat steps 3 and 4 for a 1-certificate.

We use Ambainis's adversary method to get a lower bound for Q(f), which will

look very similar to the lower bound for permutation inversion found in [2]. In order

to construct the sets for the adversary method, we use the following procedure.

Note that r never contains alphabet elements in S. Thus as long as Irl k,

the partial assignment p U r cannot be a certificate, by the lemma. This means the

selection of certificates in steps 3 and 5 cannot fail. Each iteration of the loop increases

Irl by at most 2C(f), so this loop repeats at least f - 1 times.

Consider the subsets of r that were added by the selection of 0-certificates. Let

them be c , . . . , ck, with a ; - 1. Similarly, let the subsets of r thatthembe c , C Ca wit 2a(f)

were added by 1-certificates be c(1, c(1 Ca. Note that if some of the alphabet

(U)elements in c were replaced by some elements from S, we would get a j-certificate.

We use this fact to construct the sets for the adversary method.

Let A be the multiset of alphabet elements of the selected certificates that are in

S. Since the total size of the certificates selected is Ir| < 2k, we have JA| < 2k.

To each cU, we add an arbitrary block of IAl entries outside p and r with alphabet

elements outside A. To be able to do this, we require that 2IA a < n - rl - pI -2kAI

(the 2kJAJ term appears because each alphabet element in A may occur up to 2k

times). Since Irl, Al 5 2k and IpI < 4k 2 , it suffices to have a < n-- 202. Since k

satisfies k < -vn the right hand side is within a constant factor of n. We restrict a

to this value if it was larger than it.

Now we can place all the alphabet elements of S inside any c in a way that

restores the j-certificate. We can thus generate 2a inputs, a of which have value 0

and a of which have value 1, such that the only difference between the inputs is which

of the 2a disjoint bins have the alphabet elements of S. This is essentially a version

of permutation inversion.

23

It's clear that a classical randomized algorithm must make Q(a) queries, since

it must find the bin containing the alphabet elements of S. For the quantum lower

bound, we use Theorem 19. Let A be the set of indices in which the elements of

S were placed for a 0-certificate bin, and let B be the set of indices in which the

elements of S were placed for a 1-certificate bin. Our relation R will simply be A x B.

Then each element of A has a neighbors in B, and vice versa. However, for each

domain entry q and (a, b) E R, we have 1a,q = 1 or 1b,q = 1, SO la,qlq < a. Thus we

get a quantum lower bound of Q(V/&).

Finally, to complete the proof, we note that a = Q(min(1, Q()) = c7) (since

n > k 2), so that, combining with corollary, R(f) = Q(3) and Q(f) = Q(V,/3) with

0= max(/C(f), k). Note that this satisfies 3 = Q(ki/ 3). Picking k = 4/D(f)
gives 3 = Q(D(f) 1/ 6), as desired. L

24

Chapter 3

Symmetric Promises with Small

Range

In this chapter, we show a polynomial relationship between Q(f) and R(f) for any

function on a symmetric promise whose range is constant, proving Theorem 7. We

will use the term symmetric to refer to invariance under permutation of the indices

of the inputs.

3.1 The case of Symmetric Functions

In this section we deal with the case where the function f is itself symmetric. We

prove the following theorem.

Theorem 20 Let M be a constant, let X C [M]' be symmetric, and let f :X -

{0, 1} be a symmetric function (so that f(x) depends only on the type of x.) Then

R(f)1/8
QW ~M log'/8 M)

In order to prove this theorem, we relate Q(f) and R(f) to a new complexity

measure g(f), which we now define.

Definition 21 If M is a constant and T 1, T2 are types with range M, then the dis-

tance d(T1 , T2) between T and T 2 is the maximum over all i E [M] of the difference

25

between the multiplicity of i in T and the multiplicity of i in T 2 .

If f : X -4 {0, 1} is a symmetric function with a symmetric promise X C [M] ,

define d(f) to be the minimum value of d(T1, T 2) for types T 1 , T2 C X that have

different value under f. Define g(f) := .

We proceed to prove lemmas relating g(f) to R(f) and Q(f) to g(f).

Lemma 22 For any x E [m], (fl 'gf") queries suffice to find a type T such that

d(T, T(x)) < d with probability at least 2 (where r(x) denotes the type of x). Hence,

if f : X -+ {0, 1} is symmetric, then R(f) = O(g(f) 2 log M).

Proof. We describe a classical randomized algorithm for estimating the type of

input x. The algorithm is simply the basic sampling procedure that queries random

entries of x and keeps track of the number ri of times each range element i was

observed. The type T is then formed by T(i) = n.

Let the type of x be T(x) = (t1 , t 2 ,... ,t), so that the multiplicity of range

element i in T(X) is ti.

A version of the Chernoff bound states that if we have k '> -ln j samples esti-

mating the proportion p of the population with some property, the proportion of the

sample with that property is in (p - e, p + E) with probability at least 1 - 6. Setting

c = d and 6 = 1 - , we see that O("2, ,(M)) samples suffice for to be within d
n 3Md-n

of ' with probability at least 1 - . In other words, we have IT(i) - til < d with
n 3M

probability 1 - - for each i.

The union bound then gives us IT(i) - tij < d for all i with probability at least .

This shows that d(T, r(x)) < d, as desired.

To compute f(x) for symmetric f, a randomized algorithm can estimate the type

of x to within di, and then just output the value of f on any input of type within

d of the estimated type T. Since g(f) , we get R(f) = O(g(f) 2 log M). Z
2 df

Lemma 23 If f : X -+ {0, 1} is symmetric with a symmetric promise X C [M]",

then

((f)/

26

Proof. Let S and T be types with distance d(f) such that if x has type S and y

has type T then f(x) $ f(y). We claim that a quantum algorithm cannot distinguish

between these types in less than the desired number of queries.

We proceed by a hybrid argument. We form a sequence of types {Sj}o with

k < M such that So = S, Sk = T, and for all i = 0,1,..., k - 1, the types Si and

Si+1 differ in the multiplicity of at most 2 range elements and have distance at most

d(f).

We do this as follows. Set So = S. Let A be the set of range elements on whose

multiplicities the current Si agrees with T; at the beginning, A is the set of range

elements on which S and T have the same multiplicity, which may be empty. To

construct Si+1 given Si, we simply pick a range element r for which Si has a larger

multiplicity than T and a range element r' for which Si has a smaller multiplicity than

T. We then set Si+1 to have the same multiplicities as Si, except that the multiplicity

of r is reduced to that in T and the multiplicity of r' is increased to make up the

difference. Note that the multiplicity of r is then equal in Si and T, so r gets added to

A. Moreover, note that d(Si, Si+1) < d(Si, T), and also d(Si+1, T) < d(Si, T). Since

this is true for all i, it follows that d(Si, Si+1) d(S, T) = d(f).

Since a range element gets added to A each time and these elements are never

removed, this procedure is terminated with Sk = T after at most M steps. Thus

k < M. In addition, consecutive types differ in the multiplicities of 2 elements and

have distance at most d(f).

We now give a lower bound on the quantum query complexity of distinguishing

Si from Si+1. Without loss of generality, let the range elements for which Si and Si+1

differ be 0 and 1, with 0 having a smaller multiplicity in Si. Let a be the multiplicity

of 0 in Si, and let b be the multiplicity of 1 in Si, with 0 < b - a < d(f). Let c

and d be the multiplicities of 0 and 1 in Si+1, respectively. Then c + d = a + b. Let

e = a + b = c + d.

We prove two lower bounds using Ambainis's adversary method, corresponding to

e being either large or small. For the small case, consider an input x of type Si split

into 2c = [1] blocks B 1 , B 2, . . . , B2, of size e each, such that all the 0 and 1 elements

27

lie in block B 1 . To change the input from type Si to Si+1, we must simply change the

first block. Also, note that rearranging the blocks does not change the type. Let X

be the set of inputs given by rearranging the blocks of x so that the block B1 ends up

in the first a blocks, and let Y be the set of inputs given by replacing B1 to get type

Si+1 and then rearranging the blocks so that B1 ends up in the last a blocks. We now

have a reduction from the problem of inverting a permutation, so using Ambainis's

adversary method, we get a lower bound of Q(/a) = Q(V/}~).

For the case when e is large, we restrict to inputs in which all elements are fixed

except for those that have value 0 or 1. The lower bound of (() then follows

from Lemma 22 in [1].

If e < /nd(f), the former bound gives a lower bound of Q((d)1/4) for distin-

guishing Si from Si+1 by quantum queries. If e > /nd(f), the latter bound gives the

same. Thus we have a lower bound of Q(g(f) 1/ 4) in all cases.

Finally, note that if a quantum algorithm could compute f(x) in Q(f) queries,

then for some i it could distinguish Si from Sji+ with probability Q(). This means

we could use MQ(f) queries to distinguish Si from Si+1 with constant probability, so

Q(f) = Q(yg(f)1/ 4). L-

These two lemmas combine to prove Theorem 20, which can be restated as the

following corollary.

Corollary 24 For symmetric f on alphabet of size M, we have

R(f) = O(Q(f)8AM8 log M).

3.2 The General Case

In this section, we prove Theorem 7. The proof proceeds by describing a classical

algorithm that doesn't use too many more queries than the best quantum algorithm.

An interesting observation is that this classical algorithm is mostly deterministic,

and uses only O(Q(f)8 M 8 log M) randomized queries at the beginning (in order to

estimate the type of the input).

28

Proof. Let f be a function. We describe a classical algorithm for computing f
on an input x, and argue that a quantum algorithm cannot do much better.

As a first step, the algorithm will estimate the type of x using O(Q(f)'M' log M)

queries. By lemma 22, this will provide a type T such that d(T, T(X)) <

with high probability, where we choose the constant c to be larger than twice the

asymptotic constant in Lemma 23. We restrict our attention to types that are within

nu0I of T.CM 4 Q(f)4 ofT

For this proof, we will often deal with certificates c for f that only work on inputs

of some specific type S; that is, all inputs x E X of type S that are consistent with c

have the same value under f. We will say c is a certificate for the type S.

Now, notice that if we fix a type S and assume that x has this type, then there is

a deterministic algorithm that determines the value of f(x) in at most a steps, where

a = O(Q(f)"). Since this is a deterministic algorithm, it must find a certificate of size

at most a for the type S. The only other possibility is that the deterministic algorithm

finds a partial assignment that contradicts the type S, in which case it cannot proceed.

Running this deterministic algorithm on type S will be called examining S.

Note further that we can never find a 0-certificate co for some type So and a 1-

certificate ci for some other type S1 without the certificates contradicting either type.

This is because if we found such certificates, then fixing those entries and shuffling the

rest according to either So or Si will give two types So - (co U ci) and S, - (cO U ci) on

inputs of size n - Ico U clI with distance at most c (4 that the quantum algorithm

must distinguish between. Since n > 4a (or else R(f) = O(n) = O(Q(f)")), we

have n - 1co U cii > n, and (I)/('n) = CM4 (f)4; then Lemma 23 together with

the choice of c imply that a quantum algorithm takes more than Q(f) queries to

distinguish these types, giving a contradiction.

For a type S, we now define v(S) E [2a + I]' to be the vector with v(S)i =

min(S(i), 2a) for all i, where S(i) is the multiplicity of i in the type S. If an input

has type S, we call v(S) the simplified type of the input. We consider the partial

order on simplified types given by v(S) > v(R) if and only if v(S)i > v(R) for all

i = 1, 2, ... M. We say a simplified type v(S) is maximal if it is maximal in this

29

partial order.

The algorithm proceeds by finding the set of maximal simplified types, and se-

lecting a representative type S for each maximal simplified type v so that v(S) = v.

Let the types selected this way be Si, S2, ... , S8. For each Si, we then run the deter-

ministic algorithm that uses a queries assuming type Si. Let cj be the set of queries

made by this algorithm for type Si. Note that the total number of queries made this

way is at most a3.

For each Si, the partial assignment ci is either a certificate for Si or a disproof of

the type Si. Consider the pairwise unions ci U c3 . We restrict our attention to the

types Si that are consistent with ci U cj for all j. We claim that there is at least one

such type. Indeed, if T is the true type of the input, then v > v(T) for some maximal

simplified type v, and v(Sk) = v for some k. Then Sk cannot be disproven in 2a

queries, as that would disprove v and therefore v(T) as well.

Now, let Si and Sj be any two types remaining. Then they are both consistent

with ci U cj. As we saw earlier, we cannot have c, be a 0-certificate for Si and cj be a

1-certificate for S (or vice versa); the certificates c. and cj must agree. We conclude

that the certificates ci for the remaining types are either all 0-certificates (for their

respective types) or all 1-certificates. Our algorithm will then output 0 in the former

case and 1 in the latter.

To see that the algorithm is correct, recall that S1 is one of the remaining types,

with v(Sk) = v > v(T). Without loss of generality, suppose the algorithm output 0,

so that ck is a 0-certificate. Suppose by contradiction that f(x) = 1 for the our input.

Let c be a 1-certificate consistent with x of size at most a. Then c is a 1-certificate

for the type T. Now, c U Ck cannot disprove v(T) (since it has size at most 2a), so

C U Ck cannot disprove T. Since c U Ck cannot disprove v(T), it also cannot disprove

v, so it cannot disprove Sk. This means T and Sk are not disproven by their 0- and

1-certificates, which we've shown is a contradiction. Thus if the algorithm outputs 0,

we must have f(0) as well.

The total number of queries required is O(Q(f)5 M log M) + a#, where a =

O(Q(f)12). We must estimate ,3, the number of maximal simplified types. This is at

30

most the number of maximal elements in [2a + 1]M in our partial order. We can show

by induction that this is at most (2a + l)M-1: in the base case of M = 1, the value

is 1, and when M increases by 1 the number of maximal elements can increase by at

most a factor of (2a + 1). This gives a final bound of O(Q(f)12M) on the number of

queries when M is constant.

To reduce this to O(Q(f)12(M-1)), we note that some alphabet element a must

occur at least n/Al times in T, by the pigeonhole principle. We could then use O(Ma)

queries to find 2a instances of a with high probability. Then each simplified type v

will have Va = 2a, so the simplified types are effectively elements of [2a + 1]M-1

instead of [2a + 1]M. This decreases # to (2a +I)M-2, so the total number of queries

decreases to O(Q(f)12(M-1).

31

32

Chapter 4

Conclusion

In this thesis, we have shown that certain types of promises do not suffice for quantum

speedups. These promises are highly symmetric; we could say that they lack structure

that a quantum algorithm could exploit.

One natural question is whether we could expand these results to symmetric

promises with large alphabets. Such a result would generalize the result of Aaron-

son and Ambainis (Theorem 4). Proving such a theorem seems tricky; in fact, even

the case of symmetric functions with symmetric promises was left as a conjecture in

Aaronson and Ambainis [1].

One observation is that Aaronson and Ambainis managed to overcome the difficul-

ties posed by a large alphabet by requiring a symmetry on the alphabet elements as

well. Perhaps expanding that result to promises that satisfy both symmetries would

be more tractable.

One of the strongest possible versions of these results could be as follows.

Conjecture 25 Let f : X -+ {0, 1} with X C [A/1]' symmetric. Then Q(f)

Q(R(f) 1/2).

This conjecture was pointed out to me by Aaronson (personal communication).

It says that a Grover speedup is the best a quantum algorithm can achieve on a

symmetric promise. There does not seem to be a known counterexample to this

conjecture.

33

Even more generally, we can ask the question of what kinds of symmetries suffice

for exponential quantum speedups. In other words, let G be a group action which acts

on [M]" by permuting the indices of each element x E [M]". For which groups G can

a G-invariant promise yield a super-polynomial quantum speedup? Shor's algorithm

demonstrates such a speedup when G is a cyclic group. The results in this thesis

suggest that there may not be a speedup when G is the symmetric group. It would

be interesting to analyze this question for other groups G.

34

Bibliography

[1] S. Aaronson and A. Ambainis. The need for structure in quantum speedups. ICS,
2011. arXiv:0911.0996 [quant-ph].

[2] A. Ambainis. Quantum lower bounds by quantum arguments. Proceedings of the

thirty-second annual symposium on theory of computing, pages 636-643, 2000.

[31 R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower
bounds by polynomials. ACM, pages 778-797, 2001. arXiv:quant-ph/9802049.

[41 C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weak-
nesses of quantum computing. SIAM journal on Computing, 1997.

[51 J. P. Buhler, H. W. Lenstra Jr, and C. Pomerance. Factoring integers with the
number field sieve. The development of the number field sieve, pages 50-94, 1993.

[6] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity:
A survey. Theoretical Computer Science, 228:21-43, 2002.

[7] L. K. Grover. A fast quantum mechanical algorithm for database search. Pro-
ceedings of the 28th Annual ACM Symposium on the Theory of Computing, 1996.

[81 P. W. Shor. Algorithms for quantum computation: discrete logarithms and fac-
toring. Foundations of Computer Science, pages 124-134, 1994.

35

