
The Value of Field Experiments in Estimating

Demand Elasticities and Maximizing Profit

by

Jimmy Qiuyuan Li

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

@ Massachusetts Institute of Technology 2014. All rights reserved.

Signature redacted
A uthor...................

Department of

Certified by ..............

Claren

Signal
Certified by ....

Accepted by................

Electrical Engin ing and Computer Science

r r e May 16, 2014
Signature redacted

Vf Professor John N. Tsitsiklis

e Lebel Professor of Electrical Engineering

ture redacted Thesis Supervisor

n

Professor Duncan Simester
NTU Professor of Marketing

Thesis Supervisor

Signature redacted
Professor 16esjk A. Kolodziejski

Chair, Department Committee on Graduate Students

MASSACHUSEnIT rTE
OF TECHNOLOGY

JUN 3 0 2014





The Value of Field Experiments in Estimating Demand

Elasticities and Maximizing Profit

by

Jimmy Qiuyuan Li

Submitted to the Department of Electrical Engineering and Computer Science

on May 16, 2014, in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

In many situations, the capabilities of firms are better suited to conducting and an-

alyzing field experiments than to analyzing sophisticated demand models. However,

the practical value of using field experiments to optimize marketing decisions remains

relatively unstudied. We investigate category pricing decisions that require estimating

a large matrix of cross-product demand elasticities and ask: how many experiments are

required as the number of products in the category grows?

Our main result demonstrates that if the categories have a favorable structure,

then we can learn faster and reduce the number of experiments that are required: the

number of experiments required may grow just logarithmically with the number of

products. These findings potentially have important implications for the application of

field experiments. Firms may be able to obtain meaningful estimates using a practically

feasible number of experiments, even in categories with a large number of products.

We also provide a relatively simple mechanism that firms can use to evaluate whether

a category has a structure that makes it feasible to use field experiments to set prices.

We illustrate how to accomplish this using either a sample of historical data or a pilot

set of experiments. Historical data often suffer from the problem of endogeneity bias,

but we show that our estimation method is robust to the presence of endogeneity.

Besides estimating demand elasticities, firms are also interested in using these elas-

ticities to choose an optimal set of prices in order to maximize profits. We formulate

the profit maximization problem and demonstrate that substantial profit gains can also

be achieved using a relatively small number of experiments.

In addition, we discuss how to evaluate whether field experiments can help optimize

other marketing decisions, such as selecting which products to advertise or promote.

We adapt our models and methodologies to this setting and show that the main result

that relatively few experiments are needed to estimate elasticities and to increase profits

continues to hold.
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Chapter 1

Introduction

The increased availability of demand data has been widely reported and many firms have

been investigating how best to use "Big Data" to improve their marketing decisions.

One option is to conduct analyses on historical data. However, historical data are not

always available, and it can be difficult to determine causation from historical data. An

alternative approach is to use field experiments, which can provide an exogenous source

of variation that establishes causation. Yet conducting field experiments is often costly,

and optimizing marketing decisions may require a lot of experiments if there are many

parameters to optimize and/or if the parameters can take a wide range of values. The

feasibility of using field experiments to improve marketing decisions in practice remains

relatively unstudied. We investigate this issue by considering settings in which firms

must estimate the elasticity of demand in response to price changes. We ask how many

experiments are required to estimate these elasticities as the number of products grows.

Using experiments to optimize marketing decisions may be relatively straightforward

when there are few products. Experimentally manipulating variables can allow retailers

to optimize their decisions using just a handful of experiments. However, in large

categories containing many products with interdependent demands, the problem is more

challenging.' The number of parameters to estimate grows quickly with the number of

'Interdependencies between products are now well-documented. For example, Anderson and
Simester (2001) report that placing "sale" signs on products can increase demand for those prod-
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products, and so the number of field experiments required may be impractically large.

We consider a large set of n products and assume that there may be complementary

or substitute relationships between them. As a result, varying the price of one product

may affect the demand not just of that item but also of other products sold by the firm.

As the number of products, n, increases, the number of parameters to estimate grows

at the rate of n2 (and may grow even faster for nonlinear models). On the other hand,

if an experiment reveals the demand for each item, we learn n pieces of information

from each experiment. This suggests that the number of experiments required to learn

all of the parameters will grow at least linearly with the number of products.

Our main result shows that if the problem has a favorable structure, we can learn

faster and reduce the number of experiments that are required. In particular, we

will show that if the number of complementary or substitute relationships affecting

any one product is bounded, then the number of required experiments instead grows

logarithmically with the number of products. This result holds even if the firm is not

sure which particular pairs of products have complementary or substitute relationships,

as long as there is a bound on the number of cross-product relationships that each

product has. We also obtain a similar result if the joint impact of own- and cross-

product effects on any single product is bounded.

Assuming that such a favorable structure exists, we show that we can learn the set of

elasticities quickly. But how do we know if a favorable structure exists? To answer this

question, we provide a practical method for evaluating whether a product category has a

favorable structure that makes it feasible to use field experiments to set category prices.

Although the method is probably too technical to be used directly by most managers,

the techniques should be accessible to analysts tasked to provide advice to managers

on this issue. The method does not provide an estimate of how many experiments

ucts by up to 60%, but can decrease sales of other products by similar amounts. Manchanda et al.
(1999) report own-price elasticities for laundry detergent and fabric softener of -0.40 and -0.70, re-
spectively. The cross-price elasticities are -0.06 (the price of softener on demand for detergent) and
-0.12. For cake mix and frosting, the own-price elasticities are -0.17 and -0.21, respectively, while
the cross-price elasticities are -0.11 (frosting price on cake mix demand) and -0.15.
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are required. Instead, it provides a means of estimating whether the product category

exhibits structural characteristics that make it possible to obtain accurate results within

a realistic number of experiments. In particular, we propose a method for estimating

bounds on the number and size of interdependencies between products. The method

can be implemented using a pilot set of experiments or using historical data. Using

synthetic data, we verify that this method can recover the correct structural bounds via

simulations. We also apply this method to a sample of real sales data from the "Cold

remedies" category. Our empirical results suggest that the "Cold remedies" category

does exhibit a favorable structure, and therefore the elasticity parameters can indeed

be feasibly estimated using relatively few experiments.

Historical data are often readily available and a more convenient alternative to run-

ning costly field experiments. However, care must be taken when using historical price

and demand data to estimate elasticities because, unlike with randomized field exper-

iments, historical prices may not have been set exogenously. For example, some event

could have led to both store managers' adjusting prices and a simultaneous demand

shock, not necessarily completely due to the price change. The resulting endogeneity

can lead to biased elasticity estimates by misattributing some of the change in demand

to the change in price. We account for potential endogeneity in our historical data by

taking an instrumental variables approach and show that our estimation methodology

is in fact robust to endogeneity.

Finally, we move from estimating demand elasticities to making optimal pricing

decisions and maximizing profit. Taking the resulting estimates of elasticities from our

estimation procedure, we show that a relatively straightforward profit maximization

algorithm can lead to substantial gains in profit, even with a relatively small number

of experiments.

These findings potentially have important implications for the application of field

experiments in settings where there is a large number of parameters to estimate. Be-

cause the number of required experiments may grow logarithmically rather than linearly

with the number of products, firms may be able to obtain meaningful estimates and

19



make profitable decisions using a realistically small number of experiments, even in

categories with a large number of products.

Although we focus on pricing decisions, the range of marketing decisions on which

firms can experiment is broad. Experiments may be used to choose which products to

promote, as well as to optimize the length of product lines and to choose creative copy

and media plans. We discuss how to extend our results to making promotional decisions,

and in the Conclusions we discuss possible extensions to other types of marketing

decisions.

1.1 Related work

The feasibility of learning a large number of parameters through experimentation is

relatively unstudied, particularly in social science settings. However, the topic does

relate to at least two literatures.

1.1.1 Optimal experimental design

First, there is the line of research on optimal experimental design. In the marketing

literature, there is work focusing on efficient experimental design for conjoint studies (see

Louviere et al. 2000, Chapter 5; and Louviere et al. 2004 for reviews of this literature).

Recent contributions to this literature have focused on adaptively designing experiments

(Toubia et al. 2003) or on optimal designs when customers' utility functions depart from

a standard compensatory specification (see, for example, Hauser et al. 2010, Liu and

Arora 2011). An often used measure of the efficiency of an experimental design is the

D-error: det[I(O I X)]-'/m, where I is the information matrix, 0 are the unobserved

parameters, X is the experimental design matrix, and m is the dimension of I. The

information matrix is calculated from the variance of the first-order derivatives of the

log-likelihood with respect to 0 (Huber and Zwerina 1996). Optimizing this criterion

with respect to X yields locally optimized designs for any 0. Because 0 is not known
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when designing the experiments, Bayesian approaches can be used to minimize the

D-error over the prior distribution of the parameter values (Sandor and Wedel 2001).

When each experiment generates an explicit reward or cost, an alternative formu-

lation of the experimental design problem is as a multi-armed bandit problem, where

the objective is to choose a sequence of experiments to maximize the total reward over

some time horizon. In this context, each experiment can be thought of as choosing and

pulling an arm of the multi-armed bandit, and the reward could be sales, advertising

click-through rates, or some other measure. Because we learn the reward distribution of

each arm of the bandit only after pulling it, there exists a trade-off between exploiting

the best arm currently known by pulling it every time and exploring new arms in search

of something even better. In the classic bandit model, the reward distributions of each

arm are assumed to be independent, and so anything learned from pulling one arm does

not reveal anything about a different arm. As a result, when there is a large number

of parameters (and therefore a large number of arms), many pulls, or experiments, are

required to learn the reward distributions of all the arms. Recent work has proposed an

alternative model in which the arms have statistically dependent reward distributions,

and therefore pulling one arm also gives information about other arms. In this setting,

the correlation between payoffs of different arms allows for faster learning, even when

the number of arms is very large (Dani et al. 2008, Mersereau et al. 2009).

The focus on the information learned from experiments is a common feature of both

this literature and the research in this thesis. However, we do not focus on identifying

optimal experimental designs. Instead we use random experimental designs, which

ensure independence across experiments and allow us to apply a series of results that

rely on this independence. Because it will generally be possible to improve upon these

designs, our guarantees on the information learned will continue to hold when optimal

designs are used.

We investigate the practical value of field experiments by studying the number

of experiments required. Other studies have also investigated the required size of field

experiments. For example, Lewis and Rao (2012) conducted a set of 25 field experiments
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involving large display advertising campaigns, each one including over 500,000 unique

users and totaling over $2.8M worth of impressions. Even with such large experiments,

the data generated little meaningful information about the ROI of the campaigns,

demonstrating that in settings where the effect sizes are small and the response measures

are highly stochastic, very large field experiments may be required to generate useful

information.

1.1.2 Estimation under sparsity

The second related literature is that on estimation and learning under assumptions

of sparsity. Beginning with variable selection in regressions, research has focused on

determining which subset of potential predictors should be included in the "best" model.

This can equivalently be thought of as setting the coefficients associated with a subset

of predictors to zero, thereby giving rise to a sparse model. Various approaches have

been proposed, including the use of regularization, such as the "Lasso" of Tibshirani

(1996) and the Stochastic Search Variable Selection procedure developed in George and

McCulloch (1993).

More recently, the assumption of sparse structures has been used to show that if

an unknown vector x E R N is sparse, then it can be recovered using measurements

of the form y = 4)x, even with much fewer than N measurements. Results in the

field, which is often referred to as "compressive sensing", generally provide conditions

on (i) the sparsity index (i.e., the number of nonzero entries of x), (ii) the number of

measurements, and (iii) the ambient dimension N, in order to guarantee recovery of x.

We refer the reader to Candes (2006) for a short survey and to Candes et al. (2006),

Candes and Tao (2005) for a deeper treatment.

More directly relevant to our work are the results on information-theoretic limits of

sparsity recovery in Wainwright (2009). For a noisy linear observation model based on

sensing matrices drawn from the standard Gaussian ensemble, a set of both sufficient

and necessary conditions for asymptotically perfect recovery is derived. Our theoretical
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findings are best thought of as an application of the results in Wainwright (2009). An

exception is the estimation of the sparsity parameters in Chapter 4 and the investigation

of how these parameters vary with the size of the problem (i.e., the number of products).

This is the first work of which we know that addresses these issues.

Originating from and motivated by applications in signal processing, coding theory,

and statistics, compressive sensing results have a variety of other relevant applications.

Previous applications related to marketing include Farias et al. (2013), which intro-

duces a paradigm for choice modeling where the problem of selecting an appropriate

choice model (either explicitly, or implicitly within a decision-making context) is itself

automated and data-driven. For this purpose, the sparsest choice model consistent with

observed data is identified.

In this work, we leverage sparsity to obtain a dramatic improvement in the rate of

learning. If each product is substitutable by or complementary with a limited number of

other products, we show that the number of required experiments grows logarithmically

with the number of products.

1.2 Overview

We consider pricing decisions for a firm with a large assortment of products. The firm

would like to know how price changes will affect demand. We propose a model for the

demand function, which tells us the quantities demanded under any pricing decision.

In order to learn the parameters of this function, we perform experiments by varying

the prices of certain products and observing the quantities demanded. Because each

experiment is costly to run, the firm would like to learn the parameters using as few

experiments as possible.

The experiments that we contemplate include both a treatment group and a control

group. The construction of these groups will vary depending on the nature of the firm.

For a direct marketing firm, the groups may be constructed by randomly assigning

individual customers to the two groups. For a brick-and-mortar retailer, the groups
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might be constructed by randomly assigning stores. In a business-to-business setting,

the firm might randomly assign regions, distributors, or resellers. We assume that the

results of the experiment are analyzed by aggregating the customers in each group and

comparing the mean response between the two groups. Essentially all firms are capable

of performing this aggregate analysis (as long as they can vary prices and measure

the response).2 This aggregation also ensures that the error terms can be modeled as

Gaussian.

Our findings can also apply to settings where the firms vary prices across different

time periods. Demand in the different time periods could in principle be adjusted to

account for seasonality or day-of-week differences (before submitting the data to our

model), perhaps using demand for a sample of unrelated products or demand in different

stores. We caution that we will assume that errors are independent across experiments

(though not across products within the same experiment), and this independence as-

sumption may be threatened when a common set of measures is used to adjust for

seasonality. The independence assumption is more likely to hold when randomization

occurs separately for each experiment, and when the control group provides an accurate

control for any intervening events (such as seasonality).

We also caution that our results are not well-suited to experiments where firms

randomly assign products to treatment and control groups if the demands for those

products are possibly related. For example, a firm may vary prices on half of the items

in a product category and leave the other half of the prices unchanged. Recall that the

goal of this thesis is to investigate how a firm can estimate the entire matrix of cross-

price elasticities, and so the second half of the products cannot function as controls.

There is another reason to be concerned about this experimental design: unless the

cross-price elasticities are zero between products in the two groups, the experimental

manipulation of prices in the treatment group of products will confound the demands

for products in the control group.

2Even though direct marketing firms can often analyze experimental results at the individual cus-
tomer level, in our experience most firms simply aggregate the results and compare the mean response
between treatment and control groups.
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We recognize that it is possible to augment experimental data with more complex

econometric analysis (e.g., as in Manchanda et al. 1999). This raises an interesting but

distinct question: what is the value of sophisticated analyses in evaluating experimental

data? This question is beyond the scope of the present work. Instead, our results can

be interpreted as describing the "information" that is revealed by experimental data.

Conditions under which experimental data are more informative are likely to yield

better estimates both when using simple comparisons and when augmenting the data

with sophisticated econometric analysis.

The rest of this thesis is structured as follows.

In Chapter 2, we propose a model for demand that captures the effects of cross-

product demand elasticities.

In Chapter 3, we develop a method for estimating these elasticities and provide

bounds on the number of experiments required to achieve accurate estimates under

various structural assumptions on the demand model.

In Chapter 4, we investigate whether the structural assumptions we make are valid

using real-world sales data. Our methodology also provides a practical way for managers

to evaluate whether it is feasible to set prices using field experiments.

In Chapter 5, we present simulation results that support our theoretical bounds on

the speed of learning.

In Chapter 6, we examine the presence of endogeneity in historical data and modify

our estimation methodology to use an approach based on instrumental variables in

order to account for endogeneity. Our results suggest that our estimation method is

robust to endogenous data.

In Chapter 7, we extend the problem from estimating elasticities to maximizing

profit and propose an algorithm that achieves substantial profit gains with relatively

few experiments.

In Chapter 8, we consider the alternative setting of choosing which products to

promote or advertise. We adapt our model to this promotional setting and show that

our results hold in this setting as well.
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Finally, in Chapter 9, we conclude and describe directions for extensions and future

research.
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Chapter 2

Demand model

In this chapter, we introduce our model of demand. Throughout this thesis, we consider

each experiment as a comparison between two conditions. The first condition is a control

under which the firm takes "standard" actions; in the second, treatment condition, the

firm varies prices. For ease of exposition (and without loss of generality), we assume

that prices are set at a "baseline" level in the control condition.

2.1 Modeling own- and cross-price elasticities

The response in demand to a firm's action is difficult to predict because there are mul-

tiple effects at play due to cross-product substitute and complementary relationships.

In the following sections, we present a model that captures these effects.

2.1.1 Individual and pairwise effects

Changing the price of product i may have two effects:

(i) It may affect the demand for the product itself.

(ii) It may also affect the demand for other products through substitution away from

the focal product or complementarity with the focal product.
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Price

P

1%

Quantity

Figure 2-1: An illustration of a demand curve and price elasticity. Increasing price by

2% from P to P' results in quantity (or demand) decreasing by 1% from Q to Q'. The

associated price elasticity is -1%/2% = -1/2.

For the first effect, we introduce a quantity aii to represent the percentage change

in demand for product i per marginal percentage change in the price of product i itself.

Figure 2-1 illustrates a demand curve and this definition of price elasticity. These

percentage changes in demand and in price are measured with respect to the baseline

levels under the control condition.

For the second effect, we first consider a pair of products in isolation. Intuitively,

there are three possible scenarios:

1. If products i and j are substitutes, decreasing the price of j may decrease the

demand for i if customers substitute purchases of j for purchases of i.

2. If i and j are complements, decreasing the price of j may increase the demand

for i as more demand for j leads to more demand for i.

3. Varying the price of j may also have no effect on the demand for i.

For each pair of products i and j, we introduce a quantity ai3 to represent the percentage

change in demand for product i per marginal percentage change in the price of product
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j. The quantity aij would be positive, negative, and zero, in cases 1, 2, and 3 above,

respectively. This definition of the aij's matches the usual definition of price elasticity

of demand (e.g., Mas-Colell et al. 1995).

2.1.2 Cumulative effects

We are interested in settings in which there are scores of products with hundreds of

interactions at play. If multiple prices are varied simultaneously, how do these changes

combine and interact to produce an overall effect on demand?

To capture the cumulative effects, we propose a linear additive model of overall sub-

stitution and complementarity effects. Specifically, to calculate the overall percentage

change in demand for product i, we take all of the products j whose prices are varied

and sum together each one's individual effect on the demand for i.

Let Aq be the overall percentage change in the demand for i, and let us express

the percentage change in the price of product j from the baseline as

where x' and 4 are the treatment and baseline (i.e., control) prices, respectively, of

product j. We denote the number of products by n. Then, by our model, we can write

the overall percentage change in demand for i as

n

Aqj = Xaijxj.
j=1

We can further simplify notation by collecting all of the pairwise effects as elements

of a matrix A, where (as suggested by the notation) the entry in the ith row and

Jth column, aij, gives the percentage change in demand for product i per marginal

percentage change in the price of product j. Similarly, we can collect price variation

decisions into a vector x whose jth element x1 is equal to the percentage change from

the baseline in the price of product j, and we can also collect the overall percentage
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change in demand for each product into a vector Aq. The overall percentage change

in each product's demand due to price changes x is therefore given by the product

Aq = Ax.

We do not impose symmetry (i.e., aij = aji) or transitivity (i.e., aij > 0, ajk > 0 =

aik > 0) on the A matrix for two reasons. First, there are examples where these con-

straints are intuitively unlikely to hold: e.g., price decreases on cameras may increase

battery sales but not vice versa, violating symmetry; price decreases on milk may in-

crease sales of cereal, and price decreases on cereal may increase sales of soymilk, but

price decreases on milk may not increase sales of soymilk, violating transitivity. Second,

neither symmetry nor transitivity is a necessary assumption for our analysis, and impos-

ing these constraints would only make our results weaker and less applicable. Instead,

we want the space of "allowable" A matrices to be as large as possible. Furthermore,

if the true A matrix is indeed symmetric or transitive, then because our method gives

accurate estimates, the estimated matrix would also be close to symmetric or transitive

with high probability.

We also assume that the matrix A is constant. It is possible that there may be time

dependencies or seasonal effects that could lead to changes in the A matrix. The model

could accommodate these possibilities as long as these dynamics are known so that

we can continue to estimate a static set of parameters. If the parameters themselves

change in a manner that is not known, then the results of an experiment performed at

some time t may not provide much information about the value of the parameters in

future periods. Note that this limitation is obviously not specific to our model.

We emphasize that the matrix A captures percentage changes in demand. To calcu-

late actual demand quantities, we also need a baseline level of demand for each product.

Recall that we assume there is a fixed set of firm actions, corresponding to the control

condition, which achieves a certain level of demand. We let this be the baseline level

of demand and denote it by the vector qb. The overall change in demand for a product
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in response to the price changes is then given by the product of the baseline demand

and the percentage change in demand.

2.2 Noiseless model

Let q' be the vector of actual demand levels in response to a decision x, which we refer

to as the treatment demand level. We then have the following equation for our model:

qt = qb - qb o (Aq) = qb o (e + Ax), (2.1)

where o denotes component-wise multiplication, and e is the vector of all l's. We can

also rewrite Equation (2.1) as

qt -qb
Aq qb Ax, (2.2)

where the division is performed component-wise. The left-hand-side gives the percent-

age change in demand for each product, and the right-hand-side gives the model of how

that change is caused by the decision vector. This form suggests a way of learning A:

For each experiment, choose a decision vector x, observe the resulting qb and q', and

calculate Aq. This gives a system of linear equations from which we can recover A,

ideally using as few experiments as possible.

2.3 Noisy model

In reality, the demand function is not captured perfectly by Equation (2.1), and the

demand that we observe will also be subject to measurement noise. We model this

error with an additive term w, which is a vector of random variables (w1 , W2 , .. -, wn).

Our complete model is then given by

q = qb o (e + Ax + w), (2.3)
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Term Description

A A matrix capturing the substitution and complementarity effects: the element
ai represents the percentage change in demand for product i per marginal
percentage change in the price of product j

xt A vector of treatment prices
xb A vector of baseline prices
x A decision vector, whose entries are percentage changes in price from the

baseline
w The random error or noise vector
qt  The treatment demand
qb The baseline demand, which is assumed to be known from the control condition

An estimate of the true matrix A
n The number of products
s The number of experiments

Table 2.1: Summary of notation

which can also be written as

Aq qAx + w. (2.4)
qb

The functional form Aq = Ax+w is convenient for analytical tractability. However,

our analysis does not place any limitations on how Aq is defined. Indeed, we could

use different variations, including alternatives that ensure symmetry in the measures of

demand increases and decreases. Table 2.1 summarizes the relevant notation used in

our model.

2.3.1 Statistics of the noise terms

For our analysis, we make the following assumptions on the noise terms.

Assumption 1 (Zero-mean, sub-Gaussian noise, i.i.d. across experiments). For any

experiment, each wi has zero mean and is sub-Gaussian with parameter c for some

constant c > 0. Furthermore, the random vector w is independent and identically

distributed across different experiments.

We assume that the noise terms have zero mean, and therefore that our model has
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no systematic bias. We also assume that the noise terms across different experiments

are independent and identically distributed. However, we do not assume that the noise

terms are independent across different products within the same experiment. In other

words, each experiment gets an independent draw of w = (w 1,... , wn) from a single

joint distribution in which the wi's can be dependent. Indeed, the noise terms within

the same experiment may be correlated across products (e.g., between products within

the same category). Fortunately, our analysis does not require independence at this

level.

Sub-Gaussian random variables are a generalization of Gaussian random variables,

in the sense that their distributions are at least as concentrated around their means as

Gaussian distributions.

Definition 1. A random variable X is sub-Gaussian with parameter - > 0 if

E[exp(A(X - E[X]))] < exp(aoA 2/2), VA E R.

A sub-Gaussian random variable X with parameter - satisfies the following concen-

tration bound:

P(OX - E[X] I >) 0 2 exp , VC > 0.

As suggested by the notation, the parameter - plays a role similar to that of the

standard deviation for Gaussian random variables. Examples of sub-Gaussian random

variables with parameter - include Gaussian random variables with standard deviation

- and bounded random variables supported on an interval of width 20r. Hence, by using

sub-Gaussian noise terms, we encompass many possible distributions. In all cases, sub-

Gaussianity allows us to bound the concentration of the noise around its mean.

2.4 Limitations and extensions of the model

Before continuing, let us briefly discuss some of the limitations and possible extensions

of our model.

33



By assuming a linear model, we are implicitly assuming that the elasticities are

the same at all points along the demand curve. Although this may be appropriate for

small price changes, it is unlikely to be true when price changes are relatively large.

However, we can ensure that price changes are small by bounding the magnitude of

permissible price changes in the treatment conditions. However, we caution that this

is not without cost: greater variation in the size of price changes can increase the rate

of learning. More generally, we can interpret our linear model as an approximation to

the true model in the neighborhood around the baseline levels of price and demand, in

the spirit of a first-order Taylor approximation.

The model also assumes additive separability in the impact of multiple price changes

on the demand for any single product i. This is convenient for analytical tractability.

In Appendix A, we show that it is relatively straightforward to extend our findings to a

log-linear (multiplicative) demand model. Log-linear demand models have been widely

used in practice, in both academia and the marketing analytics industry.

In some cases, a firm may want to focus on improving the prices of only a subset of

products within a category. This could occur if some items sell relatively low volumes

and optimizing these prices is not a priority (or if their retail prices are set by manu-

facturers). This may also arise if too many experiments are required to optimize the

prices of all products in the category, and so the firm would like to focus on only those

products that it considers most important. We can easily accommodate this possibility

by identifying the products that the firm does not want to experiment with and col-

lapsing these products into a single "other" product. Sales of this "other" product is

simply the total sales of the products within it. We can also construct a price index for

the "other" product by averaging the prices of the corresponding items. (Because the

firm does not want to experiment with these prices, the value of the corresponding xj's

will always equal zero.) This allows the firm to focus on a subset of products in the

category, while continuing to take into account the impact on sales across the entire

category.
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2.5 High-dimensional problem

Having presented our model, we emphasize the high-dimensional nature of the problem

in more specific terms. In our model, with n products, A would be an n x n square

matrix, and hence there would be n2 unknown parameters to be estimated. Even with

50 products, a reasonable number for many product categories, there would be 2,500

parameters. In order to estimate all of these parameters accurately, we expect to need

to perform many experiments.

Unfortunately, each experiment is costly to the firm in terms of not only time and

resources needed to run it, but also opportunity costs. Therefore, our goal is to estimate

the parameters accurately and to make good decisions using as few experiments as

possible.

Although we are faced with a difficult problem, our main insight is that even though

there are many products, each one is likely to interact with only a small subset of the

remaining products. In terms of our model, this means that the A matrix is likely to

have many entries equal to zero. Our main result shows that if A exhibits this sparse

structure, we can greatly reduce the number of experiments needed to learn A and to

find a good decision vector x, even if the locations of the nonzero terms are not a priori

known.
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Chapter 3

Estimating the A matrix

In order to find an optimal set of firm actions, we will first estimate the substitute

and complementary relationships between products, which are modeled by the matrix

A. In this chapter, we describe a general methodology for estimating A, introduce our

structural assumptions, present bounds on the number of experiments needed to learn

A accurately, and discuss our results.

3.1 Random experimental design

Our goal is to learn A as quickly as possible, and so we would like to design experiments

(i.e., x vectors) that give as much information as possible. One approach is to design

decision vectors deterministically in order to maximize some orthogonality measure

between decision vectors. However, because we do not make any assumptions about

how the locations or values of the entries of A are distributed, for any deterministic

design, there will be classes of A matrices for which the design is poor.

As an alternative, we use random experiments: the decision of how much to change

the price of a particular product for a given experiment will be a random variable.

Moreover, if we make these decisions independently across products and across experi-

ments, we achieve approximate orthogonality between all of our experiments. By using

randomization, we are also able to take advantage of the extensive body of probability
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theory and prove that we can learn every element of A to high accuracy with high

probability, for any A matrix. Next, we describe our estimation procedure in more

detail.

3.2 Unbiased estimators, convergence, and concen-

tration bounds

For each parameter aij, we define a statistic yij that is a function of the random decision

vector and the resulting (random) observed demands. This statistic is therefore also a

random variable, and we design it so that its mean is equal to aij. In other words, we

find an unbiased estimator for each parameter.

If we perform many independent experiments and record the statistic yzj for each

one, the laws of large numbers tell us that the sample mean of these statistics converges

to the true mean, which is exactly the parameter aii that we are trying to estimate.

This sample mean is a random variable, and its probability distribution will become

more and more concentrated around aij as we collect more samples (i.e., perform more

experiments). To get a sense of the speed of convergence, we calculate a bound on the

concentration of the distribution around ai3 after each additional sample. This bound

will in turn allow us to prove results on the number of experiments needed to achieve

accurate estimates with high confidence.

3.3 Uniformly c-accurate estimates

Our goal is to learn the A matrix accurately to within a certain bound with high

probability. To be precise, let tig be our estimator of aij, an arbitrary element in the

matrix A. We adopt a conservative criterion, which requires

P max Idij - ajjj '> c < 6,
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where c > 0 is the tolerance in our estimates and 1 - 6 E (0, 1) is our confidence.

In other words, we would like the probability that our estimates deviate substantially

from their true values to be low, no matter what the true A matrix is. Because of the

maximization over all entries in the matrix, we require that every single entry meets

this criterion. Hence, we refer to this as the uniform 6-accuracy criterion. This notion

of error is known as "probably approximately correct" in the machine learning field,

which also aims to learn accurately with high probability (see Valiant 1984).

Ideally we would like both c and 6 to be small so that we have accurate estimates

with high probability. But in order to achieve smaller c and 6, intuitively we would need

to run more experiments to gather more data. Our first objective is to determine, for a

given number of products n and fixed accuracy and confidence parameters C and 6, how

many experiments are needed to achieve those levels uniformly. This answer in turn

tells us how the number of experiments needed scales with the number of products.

3.3.1 Interpretation and discussion

As has been described, uniform -accuracy is an intuitive measure of accuracy. It is also

a conservative measure because it requires every entry of A to be estimated accurately.

Alternatively, we can consider other criteria, such as bounding the root-mean-square

error:

P -2E(hij - aij)2 > c <o

This is a relaxation of the uniform -accuracy criterion: if an estimator hij satisfies

uniform -accuracy, then it also satisfies the RMSE criterion. Therefore, any positive

results on the speed of learning under uniform -accuracy also hold under weaker cri-

teria, such as the RMSE criterion. Our results then give a worst-case upper bound, in

the sense that the number of experiments required to achieve a weaker criterion would

be no more than the number of experiments required to achieve the stricter uniform

6-accuracy criterion.
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A similar point can be made about the method used to design the experiments and

estimate the parameters. Improvements on our random experimental design and our

relatively simple comparisons of the treatment and control outcomes should lead to

further improvements in the amount of information learned and therefore decrease the

number of experiments required to achieve uniform E-accuracy.

3.4 Asymptotic notation

In order to judge different learning models, we compare how many experiments are

needed to achieve uniform c-accuracy. Because our goal is to investigate the infor-

mational value of experiments and because we are interested in the regime where the

number of products is large, we focus on how quickly the number of experiments needed

increases as the number of products increases. To capture the scale of this relationship,

we use standard asymptotic notation (see Appendix B for a detailed description).

3.5 Estimation of general A matrices

We first consider the problem of estimating general A matrices, without any assump-

tions of additional structure. Based on the technique outlined in Section 3.2, our precise

estimation procedure is the following:

1. Perform independent experiments. For each experiment, use a random, indepen-

dent decision vector x, where for each product, x3 is distributed uniformly on

[-p, p], where 0 < p < 1. Observe the resulting vector of changes in demand Aq.

2. For the tth experiment and for each aij, compute the statistic

yij(t) A . Aqi(t) - xj (t),

where / A 3/p 2 .
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3. After s experiments, for each ai- compute the sample mean

i = y ij(t),
t=1

which is an unbiased estimator of aij.

The following theorem gives a bound on the accuracy of this estimation procedure

after s experiments.

Theorem 1 (Estimation accuracy with sub-Gaussian noise for general A matrices).

Under Assumption 1, for any n x n matrix A and any c > 0,

P (ax Idi - ai > c < 2n2 exp { .+(3.1)) se) J2ij max 36 2l +

See Appendix C for the proof.

To ensure uniformly -accurate estimates with probability 1 - 6, it suffices for the

right-hand-side of (3.1) to be less than or equal to 6. Therefore, with a simple rear-

rangement of terms, we find that s experiments are sufficient if s satisfies

maxi 36 ( a2 + c 2 p 2 ) 2n 2 )
S > - elog

The above bound tells us that if there is more noise (larger c) or if we desire more

accurate estimates (smaller e and 6), then more experiments may be required, which

agrees with intuition. However, the term E _I ai may be quite large and, as it is a

sum of n quantities, may also scale proportionately with n. In that case, our estimation

procedure may in fact require O(nlogn) experiments in order to achieve uniform 6-

accuracy, which can be prohibitively large.
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3.6 Introducing structure

The previous result allows for the possibility that with general A matrices, many ex-

periments may be required to estimate the underlying parameters. Fortunately, we

recognize that our problem may have an important inherent structure that allows us to

learn the A matrix much faster than we would otherwise expect.

We consider three different types of structure on the matrix A. In the following

sections, we motivate these assumptions, state the number of experiments needed to

learn A in each case, and interpret our results.

3.6.1 Bounded pairwise effects

Motivation: Our first assumption is based on the idea that a product can affect the

demand for itself or for any other product only by some bounded amount. In other

words, varying the price of a product cannot cause the demand for itself or any other

product to grow or diminish without limit. In terms of our model, we can state the

assumption precisely as follows.

Assumption 2 (Bounded pairwise effects). There exists a constant b such that for any

n, any n x n matrix A, and any pair (i, j), Iaij < b.

This is our weakest assumption as we do not place any other restrictions on A.

In particular, we allow every product to have an effect on every other product. By

not imposing any additional assumptions, we can use this variation of the model as a

benchmark to which we can compare our two subsequent variations. Since all elements

of A may be nonzero, we refer to this as the case of "dense" A matrices.

Result: With this additional assumption, we show that our estimation procedure

as described in Section 3.5 can learn all elements of A to uniform C-accuracy with

O(n log n) experiments.
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Corollary 1.1 (Sufficient condition for uniformly c-accurate estimation of dense A).

Under Assumptions 1 and 2, for any n x n matrix A and any c > 0,

P (max ij - aijj > c < 2n 2  36 (nb2  c2 /p 2 ) -

Therefore, to ensure uniformly E-accurate estimates with probability 1 -6, it suffices for

the number of experiments to be O(n log n).

Discussion: This result gives an upper bound on the number of experiments needed

to learn the entries of A, in the sense that with the best estimation method, the

asymptotic scaling of the number of experiments needed to achieve uniform E-accuracy

will be no worse than O(n log n). However, this upper bound is again not practical

as it suggests that in the worst case, the number of experiments needed may scale

linearly with the number of products. Because we would like to keep the number of

experiments small, we hope to achieve a sublinear rate of growth with respect to the

number of products. Fortunately, this is possible if the A matrix is "sparse", as we

discuss in the next section.

3.6.2 Sparsity

Motivation: Although a category may include many items, not all items will have

relationships with one another. For example, varying the price of a nighttime cold

remedy may not affect the demand for a daytime cold remedy.

Under our model of demand and cross-product elasticities, a pair of items having no

interaction means that the corresponding element in the A matrix is zero. If many pairs

of items have no relationship, then our A matrix will have many zero elements, which

is referred to as a "sparse" matrix. In terms of our model, we express the assumption

of sparsity as follows.

Assumption 3 (Sparsity). For any n, there exists an integer k such that for any n x n

matrix A and any i, {j : ai 0} k.
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For each row of A, we bound the number of entries that are nonzero to be no more

than k. Interpreting this in terms of products, for each product, we assume that there

are at most k products (including itself) that can affect its demand. Note that we

do not assume any knowledge of how these nonzero entries are distributed within the

matrix. This is important as it means we do not need to know a priori which products

have a demand relationship with one another and which do not.

Result: As long as the underlying matrix A exhibits this sparse structure, we have

the following result on the number of experiments needed to estimate A with uniform

c-accuracy using our estimation method.

Corollary 1.2 (Sufficient condition for uniformly c-accurate estimation of sparse A).

Under Assumptions 1, 2, and 3, for any n x n matrix A and any c > 0,

P MaxIeij - aIj > E < 2n2 exp _ , E 2  -
idj 36 (kb2 + C21p2) I

Therefore, to ensure uniformly 6-accurate estimates with probability 1 -6, it suffices for

the number of experiments to be O(k log n).

Discussion: This result shows that if the A matrix is sparse, the number of exper-

iments needed scales on the order of O(k log n), instead of O(n log n) as for the case

of dense A matrices. Thus, the number of experiments needed grows logarithmically

(hence, sublinearly) in the number of products, n, and linearly in the sparsity index,

k. As long as k does not increase too quickly with n, this may be a significant im-

provement over O(n log n). As anticipated in the introduction, sparsity can yield much

faster learning. The gap between a theoretical requirement of O(k log n) and a theoret-

ical requirement of 0 (n log n) experiments could be dramatic for practical purposes in

settings with a large number of products, and therefore in estimation problems with a

large number of parameters. Of course this requires that k does not grow too quickly

with n. We will investigate this possibility in Chapter 4.
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By thinking about the amount of abstract "information" contained in a sparse

matrix as opposed to in a dense matrix, we can gain some intuition as to why a sparse

matrix is easier to estimate. When trying to learn a model, if we know that the true

model lies in a restricted class of possible models, then we expect to be able to learn

the true model faster than if no such restrictions were known. Our assumptions of

sparsity effectively reduce the universe of possible A matrices in this manner. If A

could be any n x n matrix, then for each row of A, there would be on the order of n

bits of unknown information (i.e., a constant number of bits for the value of each entry

in the row). On the other hand, if we knew that the row has only k nonzero entries,

there would instead be on the order of k bits of unknown information (i.e., a constant

number of bits for the value of each nonzero entry in the row). There would also be

uncertainty in the location of the nonzero entries. There are (') ways of choosing k

entries out of n to be the nonzero ones, and therefore there are (n) possible locations

of the nonzero entries within the row, which can be encoded as an additional log 2 (n)

bits of unknown information, which is approximately of order O(k log n) bits. Based on

these rough calculations, we can see that knowing that a matrix is sparse with only k

nonzero entries reduces the degrees of freedom and amount of uncertainty and therefore

allows for faster estimation.

3.6.3 Bounded influence (weak sparsity)

Motivation: Assumptions 2 and 3 are both based on the intuition that the sub-

stitution and complementarity effects between products are bounded. This was done

through placing hard bounds on the magnitude of each pairwise effect (i.e., the mag-

nitude of each element of A) and by limiting the number of possible relationships a

product can have (i.e., the number of nonzero elements in each row of A).

An alternative approach, in the same spirit, is instead to bound the aggregate effect

on a product's demand due to all price variations. The intuition here is that although

there may be many products, the demand for any individual product cannot be swayed
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too much, no matter how other products' prices are varied. This can be thought of as

a "weak" sparsity assumption: we do not assume that many elements of A are zero;

instead we assume that the overall sum across any row of A stays bounded. We express

this assumption in terms of our model as follows.

Assumption 4 (Bounded influence). For any n, there exists a constant d such that

for any n x n A matrix, the following inequality is satisfied for every i:

n

Z |aij I d.
j=1

As another interpretation, Assumption 3 can be thought of as bounding the fo

"norm" of the rows of A: ||ailo < k. Assumption 4 above can be thought of as a

relaxation that instead bounds the f, norm of the rows of A: IaiIli < d.

Result: Using similar analysis, we show that the number of experiments needed to

achieve uniform E-accurate estimation under the assumption of bounded influence is on

the order of O(d 2 log n).

Corollary 1.3 (Sufficient condition for uniformly c-accurate estimation under bounded

influence). Under Assumptions 1 and 4, for any n x n matrix A and any c > 0,

P max I hi- - aij | > E < 2n 2 exp _
i j - 36 (d2 + c2 /p 2 )

Therefore, to ensure uniformly c-accurate estimates with probability 1 -6, it suffices for

the number of experiments to be O(d 2 log n).

Discussion: The above result shows that even with a weaker sparsity condition, where

we allow all parameters to be nonzero, we are still able to achieve an order of growth

that is logarithmic in the number of products. Note that if Assumptions 2 and 3 are

satisfied with constants k and b, respectively, then Assumption 4 will also be satisfied

with d A kb, and so the bounded influence assumption can subsume the combination
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of bounded pairwise effects and sparsity assumptions. However, using the more general

bounded influence assumption to capture sparsity leads to a weaker result because it

does not leverage all of the structural details of the sparsity assumption. Specifically,

with d = kb, Corollary 1.3 would give a scaling of O(k2 log n) for learning a k-sparse

A matrix (where the dependence on b has been suppressed), which is slower than the

scaling of O(k log n) given by invoking Corollary 1.2.

As was the case under the sparsity assumption, the nature of the logarithmic scaling

O(d 2 log n) under bounded influence depends on how quickly d changes with n. We will

investigate this relationship in Chapter 4.

3.7 Standard errors and confidence intervals

Besides providing a result on the speed of learning, Theorem 1 also allows us to construct

confidence intervals for the elasticity estimates by rearranging (3.1). Specifically, for

maxi 36(En_1 a2 + c2 /p 2) 2n 2

ei= log,

we have that P (Idij - a j c) > 1 - 6. Under each structural assumption, we can also

replace the (unknown) sum En 1 aj with the appropriate bound.

Although this confidence interval has an analytical form given by our theory, it

will be loose because we have used upper bounds of quantities in the derivation of

(3.1). It also depends on parameters that we do not know, namely the aij's and c. An

alternative is to use the jackknife or bootstrap to estimate standard errors and use these

to construct confidence intervals. For each experiment t we obtain a measurement yij (t)

for a particular unknown elasticity parameter aij, and our estimator &ij is the sample

mean of these yij's. Therefore, to estimate the standard error of our estimator after

s experiments, we can resample from our s measurements of yij's and calculate the

sample mean of this resample. By resampling many times, we obtain a distribution of

sample means, from which we can estimate the standard deviation of our sample mean
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estimator.

3.8 Lower bound

The previous results provide upper bounds on the number of experiments needed for

accurate estimates. For example, in the case of sparsity, using our estimation method,

no more than O(k log n) experiments are needed to achieve uniform 6-accuracy. How-

ever, these results do not tell us whether or not there exists another estimation method

that requires even fewer experiments.

Given our demand model, the bounds on the allowable price variations, and the

noise in the data, information theory tells us the maximum amount of information

about the aij's that can be learned from a single experiment. This fundamental limit in

the "value" of each experiment in estimating the A matrix then allows us to calculate a

lower bound on the number of experiments required. We do not actually need to develop

a specific estimator that achieves this lower bound, but we know that no estimator can

do better than this lower bound.

For the special case of i.i.d. Gaussian noise, we now present such a lower bound

on the number of experiments needed, which shows that no matter what estimation

procedure we use, there is a minimum number of experiments needed to achieve uniform

6-accuracy. The only requirement we impose on the estimation procedure is that it relies

on experiments with bounded percentage price changes. The bounds we impose on the

percentage price changes can be justified by practical considerations: the natural lower

bound on price changes comes from the fact that prices cannot be negative, while the

upper bound on the percentage changes captures the fact that the manager of a store

is likely to be opposed to dramatic price increases for the purposes of experimentation.

Theorem 2 (Necessary condition for uniform -accurate estimation under sparsity with

Gaussian noise). For A > 0, let

Anlk(A) AJA CR f{j : aj 1 1 = k,Vi= 1,. .n;rnmin aj>A

48



be the class of n x n A matrices whose rows are k-sparse and whose nonzero entries are

at least A in magnitude. Let the noise terms be i.i.d. A((0, c2 ) for some c > 0. Suppose

that for some c E (0, A/2) and 6 E (0, 1/2), we have an estimator that

(a) experiments with percentage price changes x E [-1,1] (i.e., the price of each

product cannot fall below 0 and cannot increase by more than 100%), and

(b) for any A matrix in An,k(A) achieves uniformly 6-accurate estimates with proba-

bility 1 - 6.

Then, the number of experiments used by the estimator must be at least

>k log(n/k) - 2

log(1 + k2A2 /c 2)

The proof is given in Appendix D.

As the number of products grows, the asymptotically dominant scaling terms are

> k log (n/ k)
log k

Since log k is small compared to k and log n, we have an essentially matching lower

bound to the O(k logn) upper bound given in Corollary 1.2, which shows that our

estimation procedure achieves close to the best possible asymptotic performance.

3.9 Discussion

The previous results demonstrate the power of sparsity in multiple flavors. Without any

assumptions on the structure of the problem, the number of experiments needed may

grow linearly with the number of products. For our target regime of large numbers of

products, this leads to a solution that appears to be practically infeasible. However, by

recognizing the inherent properties of the problem, we show that even with randomly

designed experiments we are able to learn A using a number of experiments that scales
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only logarithmically with the number of products. With a large number of products,

the difference between linear and logarithmic growth is tremendous: e.g., for n = 100,

log(100) ~ 4.6. This gives hope that we can indeed learn the A matrix in a practically

feasible number of experiments. In Chapter 5, we present simulations that support

these results.

While our findings help reveal how many experiments are required, it is also helpful

to ask how many experiments are feasible. When firms are using field experiments to

set policy (rather than academics using them to test theories), we have found that they

are often willing to run a rather large number of experiments.

The answer will clearly depend upon the nature of the firm's actions and the par-

ticular setting. Varying advertising or pricing decisions in online or direct marketing

settings can often be implemented at low cost, making it feasible to implement hundreds

or even thousands of experiments. For example, Capital One reportedly implements

tens of thousands of randomized field experiments each year.

In traditional retail settings, the cost of making in-store changes is generally higher,

and randomization must often occur at the store level rather than at the individual cus-

tomer level (introducing an additional source of measurement error). However, even in

this setting, firms with multiple locations can implement a large number of experiments

in different samples of stores to test pricing, product placement, and other merchandis-

ing decisions. For example, a large brick-and-mortar retailer was quickly able to run

200 between-store pricing experiments to decide how to price private label items when

national brands are promoted. Documented examples of high-volume experimentation

in traditional retail settings include Bank of America varying actions between bank

branches and Harrah's varying a wide range of practices across its casinos.

In other settings, implementing field experiments is more challenging. For example,

when deciding how to manage a distribution network, a firm may be limited to only

a handful of experiments every few years, as these experiments will tend to disrupt

existing relationships and require extended periods to observe the outcome.
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Chapter 4

Estimating the sparsity parameters

In Chapter 3, we showed that under sparsity assumptions, the number of experiments

needed to estimate the A matrix scales as O(k logn) or O(d2 log n). However, the

sparsity parameters k and d are not known to the researchers or the store managers

and must also be estimated from data. In addition, the rate at which these parameters

grow with n will also impact the nature of the scalings O(k log n) and O(d 2 log n). If k

and d grow quickly with n, then the O(k log n) and O(d 2 log n) growth rates will again

mean that it may be infeasible to use experiments to set prices in large categories.

In this chapter, we present a methodology for estimating these sparsity parameters

from data and subsequently apply the methodology to historical sales data to provide

evidence that k and d grow sublinearly with n.

4.1 A model selection approach

There are two potential ways of obtaining data to estimate these sparsity parameters:

(1) from a "pilot" set of experiments and (2) from historical data. Using either source,

we use what is essentially a model selection approach. We divide the data into calibra-

tion and validation sub-samples. We then repeatedly estimate the A matrix using the

calibration sub-sample for different values of the sparsity parameter, and we choose the

value of the sparsity parameter for which the estimated A matrix has the best fit with
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the validation sub-sample.

Different variants of this general approach are available, including different measures

of "goodness-of-fit" of the validation sub-sample. We can also use different approaches

to cross-validate, including m-fold cross validation where we randomly split the data

into m buckets and rotate which of the buckets we treat as the validation sample. In

the discussion below, we describe our methodology more formally and present results

of both simulations and empirical analyses to illustrate its performance.

4.2 Methodology

Let a, be the (unknown) 1 x n row vector of elasticities for the ith product. Suppose

we have s data points from either s experiments or s periods of historical data: Aqj is

a 1 x s vector of changes in demand for the Zth product, and X is an n x s matrix of

pricing decisions. For some value T, we solve the following optimization problem (the

"Lasso"; see Tibshirani 1996), which looks for the ai that best fits the data but is still

constrained to be "sparse":

min ||Aqj - aTX|11
ai

s.t. I|ailli < r.

Alternatively, we can express the problem in the following form:

min I|Aqi -aTX112±+ Alail|1 . (4.1)
a1

Here, r and A are tuning parameters that control the level of sparsity of the resulting

solution. For each choice of the tuning parameters, we obtain one solution, i, to the

optimization problem. To assess the quality of each solution, we cross-validate it using

the given data and select the one that gives the lowest cross-validation error as the best

solution. From this best solution, we recover its sparsity parameters and propose these

measures as estimates of the true sparsity parameters. As we obtain additional data,

we can repeat this procedure to update our estimates of the sparsity parameters.
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Although this methodology focuses on a single product/row i, the same procedure

can be performed on each row independently, using the same set of data, to obtain

estimates of k and d for each row. Our model calls for parameters that uniformly

bound the sparsity of the entire matrix. Therefore, to arrive at estimates of the overall

sparsity parameters for the entire matrix, we take the maximum over the estimates of

each individual row's sparsity parameters. Note that this approach is valid for either

hard sparsity (k) or bounded influence (d). We will test the methodology on both cases.

4.3 Pilot experiments

In order to perform the procedure described in the previous section, we first require

some data. One possible source of data is a set of "pilot" experiments: a relatively

small sequence of pricing experiments and corresponding observed demand quantities.

4.3.1 Simulation

In practice, managers can conduct actual pilot experiments and collect the necessary

data. In this subsection, we simulate pilot experiments by generating synthetic ex-

perimental data. To ensure that our simulations use realistic parameters, we initialize

them using data from a large-scale pricing experiment that was conducted for another

purpose (Anderson et al. 2010). The experiment was implemented at a large chain of

stores that sells products in the grocery, health and beauty, and general merchandise

categories. Eighteen of the chain's stores participated in the study, in which prices were

experimentally manipulated on 192 products for seventeen weeks, with the treatments

randomly rotated across the eighteen stores (see Anderson et al. 2010 for additional

details). From this study, we obtained distributions for the diagonal and off-diagonal

entries of the A matrix.

Our simulation proceeds as follows:

1. Choose fixed values of n and d (or k) and generate the true A matrix randomly
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from the seed distributions. Choose a fixed value of c, the standard deviation

of the normal error term w. These parameters are not used by the estimation

algorithm.

2. For any given s:

(a) Randomly generate x and w for s experiments, and calculate Aq.

(b) For a range of A's, find the optimal solutions to (4.1).

(c) Perform five-fold cross-validation' on the solutions to identify the one with

the lowest cross-validation error; call this a*. (Figure 4-1 illustrates the

cross-validation process.)

(d) Calculate |Iiii*1 and ||ifI|o. For the latter, we count only those entries that

are above a certain threshold (set at 0.01) in magnitude.

(e) For each s, replicate this 10 times and average the results. Propose the

averaged values of ||illi and |IIi*|o as estimates of d and k, respectively.

3. Plot the estimates of d and k versus a range of values of s, giving a sense of

how many experiments are needed to obtain an accurate estimate of the level of

sparsity.

As Figure 4-2 illustrates, our methodology provides reasonable estimates of k and

d with relatively few experiments, and these results hold for different values of the true

underlying sparsity parameters. These results suggest that using pilot experiments can

indeed provide initial estimates of k and d. Knowing these sparsity parameters, we

then have a sense of the feasibility of using our main methodology to estimate A. In

addition to providing estimates of the sparsity parameters, the data generated in these

pilot experiments can also serve as additional data that can be used to estimate A

using our main methodology. Furthermore, if the pilot experiments involve variation in

'Split the data set into five buckets. Estimate ai on data from four buckets and cross-validate on
the fifth. Rotate and do this for all five buckets and calculate the average error.
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Cross-validated MSE of Lasso fit
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Figure 4-1: An example of the result of five-fold cross-validation. The value of A

highlighted in red gives the lowest cross-validation error. Large values of A (to the

right) heavily penalize nonzero entries, resulting in the zero vector as the solution,

which does not fit the data well. As A is lowered, we begin to get some nonzero entries

in the solution, which provides a better fit of the data. However, as A becomes even

smaller, past the value marked in red, we obtain dense solutions that tend to overfit,

resulting in a higher cross-validation error.

n (e.g., by experimenting on multiple stores with different category sizes), we can also

investigate how the sparsity parameters grow with n.

4.4 Empirical analysis

Running 80 to 100 pilot experiments is not without cost, and so ideally a firm would like

to be able to estimate k and d using its existing data. One possibility is to use historical

variations in prices to estimate these parameters. Our proposed cross-validation method

can be easily adapted to do so.

One limitation of using historical data is that variations in prices are often not as

frequent or as large as they would be for field experiments. However, historical data

often covers a long time period, and the large quantity of data may still give us accurate

estimates.

Another limitation of using historical variation in control variables is that this past
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Figure 4-2: Plot of the estimates of k and d versus the number of experiments, s. The

estimates are near the true values of k and d, even with relatively few experiments.
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variation is often not random. This has raised concerns that the resulting elasticity

estimates may be biased (Villas-Boas and Winer 1999). Although these limitations are

less relevant in this setting, where we seek only a preliminary estimate of k and d, we

will investigate in detail the possibility of endogeneity in Chapter 6.

We use 195 weeks of historical data from a chain of 102 convenience stores. The

number of products sold in each store varies, due primarily to differences in the square

footage size of each store (larger stores offer wider product ranges). We will exploit this

variation to illustrate how our estimates of k and d vary with the number of items in

the category, n.

4.4.1 Setup

We begin with the 195 weeks of sales data from 102 stores, which we then group into

48 four-week periods in order to reduce the amount of noise in the data. We focus on a

specific category ("Cold remedies") and perform the following procedure independently

for each store:

1. We first fill in any missing data:

(a) If a product is not sold in a given period, no data is available for that product

during that period, which means that we do not know the retail price for that

product during that period. We fill in this price data by linearly interpolating

between the prices for that product during the two most adjacent periods

for which we do have data.

(b) However, we do know that if no data is available, the quantity sold during

that period is zero, which we also fill in.

(c) After this processing, we have a complete set of sales and price data for each

product, for each of the 48 four-week periods.

2. For each product i, we compute the average quantity sold per period and the

average price over the 48 periods. These will serve as the baseline demand (q )
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and price levels (4), respectively.

3. To further reduce noise, we consider only those products that (i) sold over a

certain threshold of units per period on average, (ii) sold at least one unit during

the first four periods and last four periods (to ensure they were not introduced

or discontinued during the middle of the 195 weeks), and (iii) had variations in

prices above a certain threshold over the course of the 48 periods.

4. We collect all products that do not pass through the above filter and combine

them into a single aggregate "product", which is included together with all other

products in the analysis that follows.

5. We calculate category-level seasonality factors for each period, which are used to

deseasonalize the raw demand quantities.

6. Using the price data and the (deseasonalized) sales data for each period, we then

calculate their percentage change from the previously established baseline levels,

which gives us Aq and x.

7. Equipped with Aq and x, we then use these as input to the Lasso optimization

program (4.1):

(a) Lasso estimates vectors, so we estimate A row-by-row.

(b) For each row i, we try a sequence of A parameters and perform five-fold

cross-validation in order to identify the value of A that gives the lowest

cross-validation error; call this estimate i*. Calculate jjA*1 and II-flio as

estimates of ki and di, respectively, for row i.

(c) Because k and d are sparsity parameters for the entire A matrix, we take the

maximum over all of the rows' ki's and di's to obtain the overall estimate of

k and d.

(d) For robustness, we repeat this entire procedure ten times and average the

results.
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Figure 4-3: Plots of n versus estimated k and d, including the quadratic fit. Sales thresh-
old: one unit per period on average; standard deviation of price variations threshold:

0.08.

8. By performing this analysis for each store, we obtain a collection of pairs of

(n, k) and (n, d) data points, which give us a relationship between the number of

products and the sparsity parameters.

9. For both sets of data points, we fit a quadratic model and verify that the second-

order coefficient is negative and significant, indicating that the sparsity parameters

do not increase linearly with the number of products.

4.4.2 Results

Figure 4-3 presents the estimates of k and d across all of the stores (each point represents

the estimates for a single store). Recall that the number of items in each category varies

across the stores, which allows us to investigate the relationship between the sparsity

parameters and n. The plots also show the fitted quadratic relationships between the

data points, which allow us to evaluate whether the growth in the sparsity parameters

is slower than linear. In Table 4.1, we report the results of these quadratic fit models.

The estimates of k reveal a relatively distinct pattern: the estimates grow with n
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|_ Coefficient Estimate Std. Error t value

(Intercept) 1.118 0.607 1.843
Estimating k 1st-order term 0.661 0.059 11.169

2nd-order term -0.007 0.001 -7.461
(Intercept) 15.280 11.696 1.306

Estimating d 1st-order term 5.068 1.142 4.438
2nd-order term -0.070 0.018 -3.959

Table 4.1: Summary of quadratic fit models for four-week periods with a sales threshold
of one unit sold per period on average and a minimum standard deviation of price
variations of 0.08. The second-order coefficients are negative and significant for both k
and d.

but the growth rate is slower than linear. In the fitted quadratic equation, the quadratic

term is negative and highly significant. We can speculate on the reasons for this. It

is possible that customers eliminate products from their consideration sets that do not

exhibit certain attributes. For example, on a specific trip, customers may focus on only

nighttime cold remedies or daytime cold remedies. If this is the case, then introducing

a new daytime product may not increase k (which is an upper bound on the number of

interdependent products) because it affects demand for only the subset of items that

share that attribute (i.e., daytime remedies). It was this type of behavior that Tversky

(1972) anticipated when proposing that customers eliminate alternatives by aspects.

The estimates of k are relatively small (around 15) even in large categories. This

suggests that in the "Cold remedies" category, the matrix of cross-price elasticities is

sufficiently sparse to make estimation using field experiments feasible. This analysis

also demonstrates the feasibility of using historical data to obtain initial estimates of k

to evaluate when a firm can use experiments to set prices. The data that we have used is

readily available to most retailers. Notably, because we obtain estimates of the sparsity

parameters for each category in each store, it does not require that retailers have a

large number of stores (although having many stores obviously makes experimentation

easier).

Notice that for many of the stores we observe only approximately 10 items in the

"Cold remedies" category. This reflects both the relatively small size of these stores
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as well as the screening of products based on their sales volumes and the level of price

variation. To evaluate the robustness of our findings, we repeated the analysis for

different minimum sales and price variation thresholds. We also replicated the findings

when grouping the data into ten-week periods. In all of these variations, the results

follow the pattern reported in Figure 4-3 and Table 4.1, with the quadratic coefficient

from regressing k on n being negative and highly significant.

We also report estimates of d. The fitted quadratic function indicates that the

growth of d with n is also sublinear.2 However, the findings reveal a much less distinct

pattern compared to the results for k. Notably, some of the estimates of d are very large

(exceeding 100). Moreover, while our estimates of k are relatively robust, the estimates

of d are much less robust and are sensitive to variation in the filtering parameters. One

interpretation is that within the "Cold remedies" category, the weak sparsity structure is

not sufficient to make it feasible to use experiments to set prices. A second interpretation

is that our estimation procedure is not accurate enough to provide reliable estimates of

d.

As these results show, historical data can provide useful information about the

demand system - we obtain estimates of not only the sparsity parameters but also the

underlying A matrix as well. Given that historical data are often readily available, one

might forego running experiments entirely and rely solely on historical data. However,

field experiments offer at least two advantages over historical data. First, historical

data often suffer from endogeneity, which could lead to biased estimates. We consider

this issue and propose a way to account for endogeneity in Chapter 6, but by using

randomized field experiments, we ensure that our decisions are exogenous and, more

generally, that we have a causal relationship between changes in prices and changes in

demand. Second, many relevant conditions can change over the time horizon of the

2In the case of d, sublinear growth could simply reflect customer loyalty or state dependence (see,

for example, Dub6 et al. 2008, Erdem 1996, Keane 1997, Seetharaman et al. 1999, Anderson and

Simester 2013). If even just a subset of customers is loyal to an existing product (or brand), then the

introduction of additional products will have a bounded impact on sales of the existing products. The

more customers who are loyal, the less growth we expect in d as n grows.
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historical data. For example, some products may be discontinued and other products

may be newly introduced in the middle of the time frame of the data, or macro-level

shifts in consumer preferences may occur. These dynamics make it difficult not only

to produce estimates using the historical data, but also to apply these estimates to the

present since current conditions can be quite different from the conditions on which the

estimates are based. By using field experiments, and especially when we require only

a small number of them, we can quickly obtain estimates based on a static setting and

immediately use the results when they are still highly applicable.

4.5 Summary

In this chapter, we described how to estimate the sparsity parameters k and d either

from a pilot set of experiments or from historical data. Through simulations, we demon-

strated that our estimation procedure can in fact accurately recover the true values of k

and d using relatively few experiments. Using a sample of historical sales data, we also

obtained actual estimates of k and d for the "Cold remedies" category. These estimates

revealed that the sparsity parameters increase with n but that the growth is sublinear.

Changing the price of an item within the "Cold remedies" category appears to affect

the demand for no more than fifteen other items, suggesting that the A matrix of elas-

ticities is in fact sparse. These findings illustrate a practical method that managers can

use to evaluate whether a product category has a favorable structure to make it feasible

to estimate elasticities using field experiments.
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Chapter 5

Estimation performance

The theoretical results presented in Chapter 3 focused on the speed of learning, namely

how many experiments are required to learn the A matrix accurately as the number of

products grows. We provided theoretical bounds on the asymptotic growth rate. How-

ever, these bounds also depended on sparsity assumptions and the sparsity parameters,

k and d. In Chapter 4, we presented a method for estimating these sparsity parameters

and used historical sales data to produce actual estimates of k and d as a function of the

number of products, n. With these estimates, we have a complete picture of the scaling

between the number of experiments and the number of products. In this chapter, we

investigate the performance of our estimation method and verify that it achieves the

theoretical scaling that we derived.

5.1 Simulation setup

Because we are not able to perform actual field experiments, we will validate our

methodology using simulations. To ensure that our simulations use realistic param-

eters, we initialize them using data from a large-scale pricing experiment that was

conducted for another purpose (Anderson et al. 2010). This is the same setup that we

used for the simulations in Section 4.3.1.

We also specify a collection of parameters that define the simulation: the number of
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products (n), structural parameters for the A matrix (b, k, and d), the noise distribution

parameter (c), and the error criteria (c and 6). We refer to these parameters together

as the simulation definition. In order to compare the dense and sparse cases, we first

generate a full matrix for the dense case using the two distributions for the diagonal

and off-diagonal entries. We then randomly set all but k entries in each row to zero

for the associated sparse case. Instead of selecting an arbitrary value for k, we use the

empirical results from Section 4.4.2: for any given n, we use the quadratic fit (plus

some additive noise) to calculate the associated value of k.

5.2 Simulation procedure

Given an n x n matrix A generated using the distributions described above, along with

a definition of parameters, we can then use the procedure described in Section 3.5 to

estimate A.

To simulate one experiment, we generate a random vector x and random noise

variables wi. Using the true underlying A matrix, we then calculate the vector of

percentage changes in demand Aq = Ax + w and the statistics yij, which are unbiased

estimators of the aij's. As we perform more experiments, we keep a running sum of

the yij's and compute the sample mean to obtain our estimate ei&. By comparing these

estimates to the true A matrix, we can calculate the maximum absolute error across

all entries: maxij &ai - aij|.

Since our criterion of uniform c-accuracy requires the probability that the maxi-

mum absolute error is less than c to be at least 1 - 6, we run 100 parallel sequences

of experiments. Each sequence is essentially an independent instance of the estimation

procedure. We incrementally generate more experiments for each sequence, compute

updated estimates, and calculate maximum absolute errors. After any number of ex-

periments, each sequence therefore has its own set of estimates and corresponding

maximum absolute error. We say that we have achieved uniform 6-accuracy when at

least a 1 - 6 fraction of the sequences have maximum absolute errors that are less than
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or equal to c.

5.3 Simulation results

Using the preceding procedure, we can simulate the number of experiments needed

to achieve uniform E-accuracy for any given simulation definition. Because we are

interested in how the number of experiments needed scales with the number of products,

we fix a particular definition of parameters (except for n) and generate a sequence of

matrices {An} that increase in size. For each matrix An, we determine the number

of experiments needed to achieve uniform c-accuracy. For robustness, we replicate the

entire simulation 20 times and, for each n, calculate 95% confidence intervals for the

number of experiments needed.

In the case of sparse matrices, the resulting plot (Figure 5-1a) exhibits the logarith-

mic scaling predicted by our theoretical results. As the number of products grows, the

number of experiments required grows much more slowly than the linear benchmark.

Additional products require fewer and fewer additional experiments to achieve accurate

estimates. On the other hand, Figure 5-1b shows that the dense case requires many

more experiments than the sparse case in order to achieve the same level of estimation

accuracy.1

'The results for the sparse case in Figure 5-1b are identical to the results in Figure 5-1a (the only

difference is the change in the scale of the y-axis).
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Figure 5-1: When the A matrix is sparse, the number of experiments needed to achieve

uniform -accuracy grows only logarithmically with the number of products. When the

A matrix is dense, the number of experiments needed to achieve uniform E-accuracy

grows at least linearly with the number of products. Comparing the cases of sparse and

dense A shows that learning is much faster in the sparse case. The bars represent 95%

confidence intervals. Parameters used for this plot: p = 0.5, c = 0.5, b = 5, E = 1.5,

6 = 0.1.
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Chapter 6

Addressing endogeneity in data

In Chapter 4, we described a methodology for estimating the sparsity parameters k and

d using either a "pilot" set of experiments or historical data. Using pilot experiments

has the advantage that prices are chosen exogenously. However, running experiments

is not without cost, and so ideally a firm would like to be able to estimate k using its

existing data.

A limitation of using historical variations in control variables is that this past vari-

ation is often not random. As opposed to the case of pilot experiments, with historical

data, prices may be endogenous variables, which may lead to biased estimates of elas-

ticities. For example, Villas-Boas and Winer (1999) examined the effect of endogeneity

in the context of brand choice models and found significant differences in parameter

estimates with and without accounting for endogeneity. In our setting, where we use

historical data to estimate the sparsity parameters, biases in the elasticity estimates

may carry over and bias our estimates of d. These biases may also affect whether elas-

ticity estimates are 0 or not, which can therefore bias our estimates of k as well. Hence,

we will study the robustness of our proposed methodology to endogeneity, using both

simulations and actual historical data.
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6.1 Modeling endogeneity

While endogeneity can manifest itself in several forms (e.g., omitted variables, mea-

surement error, or simultaneity), the core issue is a correlation between an independent

variable and the error term. In the context of our model,

Aq = Ax + w,

this amounts to the prices changes, x, being correlated with the noise term, w.

To see the potential for bias in the estimates, suppose that x and w are positively

correlated. This would mean that increases in price for some product i (i.e., positive xi)

tend to be accompanied by simultaneous positive demand shocks for that product (i.e.,

positive wi). Consider for example an unexpected rise in popularity of a certain toy

accompanied by retailers' increasing the toy's price to capitalize on the fad. Assuming

that the product's own-price elasticity is negative (i.e., agi < 0), this would lead to a

positive price change xi being associated with a demand change that is less negative than

what the true elasticity would dictate. Hence, the resulting estimate of the elasticity

would be positively biased (i.e., biased towards 0): one would be led to believe that

the product is less price elastic than it actually is. On the other hand, if x and w are

negatively correlated, the resulting elasticity estimate would be negatively biased.

One way of incorporating endogeneity into a model is to specifiy a random shock

for prices and a random shock for demand and make these two shocks correlated. This

is the approach taken by Villas-Boas and Winer (1999) and is also the approach we

will follow. Recall that in Chapter 3, our estimation methodology chooses the price

changes, x, independently at random, and hence x and w are uncorrelated. In this

chapter, we will instead specify a nonzero correlation between the price changes, x, and

noise term, w.

Specifically, we assume that each pricing decision is composed of one part that is

exogenous and i.i.d. and another part that is endogenous and correlated with the noise
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term. Let the pricing decision for product i be xi = + vi, where vi ~ N(O, o,') and

is i.i.d. across products and experiments. Let 17 and wi, the noise term for product i's

demand, follow a multivariate normal distribution with mean 0 and covariance matrix

where p E [-1, 1] captures the level of endogeneity. Under this model, the price varia-

tions of all products are correlated with the noise term and hence endogenous.

As in Chapter 4, we will use both simulations and historical data to investigate the

effect of endogeneity on our estimation methodology.

6.2 Simulation

We first generate synthetic experimental data and test our methodology using simula-

tions. Since our estimation methodology operates row-by-row, we will focus on the first

row of A in this analysis. The simulation proceeds as follows:

1. Choose fixed values of n and k (or d) and generate the true row af randomly

from the seed distributions.

2. Choose fixed values of a77, rV, o-1 , and p.

3. For each simulated experiment, draw q and w, jointly from a multivariate normal

distribution with mean 0 and covariance matrix E,. Generate the exogenous

price variations, vi's, independently from a normal distribution with mean 0 and

variance or . Combine TI and the vector of vi's to obtain the vector of price changes,

x, for that experiment. Generate s independent samples of x's and w, 's in this

manner to simulate s experiments. Collect these into matrix X and vector wi.

Calculate Aq = a fX + w,.

Simultaneously, also generate an alternate sequence of s demand shocks from an
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independent N(0, a,) distribution and collect into a vector j1. Calculate Ai 1 =

a1 X + W 1 using the same matrix of price variations as above, but substituting

this uncorrelated vector of demand shocks. We use these two models, one with

endogenous prices and the other with exogenous prices, to compare the effect of

endogeneity on our estimates.

4. For both models, using X with both Aq and A41 , estimate the sparsity param-

eters:

(a) Calculate the "Lasso" estimate of k (or d) using the same procedure as

described in Section 4.3.1, including cross-validation.

(b) Calculate also the OLS estimates as

- XT)~1X(Aqi).

Compute the OLS estimate of k as IIAOLS l (where we again count only those

entries that are above 0.01 in magnitude) and of d as ||AtLS |1.

5. Replicate with 100 independent draws of X and w, and average the results.

6. Repeat for a range of p from -1 to 1.

6.2.1 Results

We perform the procedure described in the previous section with n = 100, k = 10,

77 = (-, = 0.039, and o, = 0.61.1 We capture three dimensions of variation within our

simulation setup:

1. The presence vs. absence of endogeneity (i.e., using w, vs. *1),

2. Lasso vs. OLS as the estimation method, and

3. the level of endogeneity as captured through p.

'These standard deviations are taken from estimates reported in Villas-Boas and Winer (1999).
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n = 100, k =10, a = 0.039, av = 0.039, aw = 0.61, s = 100

LASSO no endogeneity
LASSO w/ endogeneity

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
p: level of endogeneity

n = 100, k = 10, a = 0.039, (V = 0.039, aw = 0.61, s = 100

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
p: level of endogeneity

n = 100, k = 10, a, = 0.039, 7V = 0.039, GW = 0.61, s = 100
'1-

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

p: level of endogeneity

Figure 6-1: Estimates of elasticities are biased due to endogenous prices, but estimates

of k are relatively robust even in the presence of endogeneity.
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Comparing results across these dimensions allows us to make several observations:

1. Without the presence of endogeneity, the Lasso estimates of a1 are unbiased and

the Lasso estimates of k are quite close to the true value of 10. In contrast, even

in the absence of endogeneity, OLS estimates k to be 100, which is the same as

the number of products, n. (See the blue curve in the top plot of Figure 6-1. OLS

estimates of k are not plotted as they are simply equal to 100.)

2. With the presence of endogeneity, estimates of a1 are biased as expected. In

particular, the mean bias of the estimate of a1 is negative for negative values of

p and positive for positive values of p, which agrees with our intuition. (See the

red curve in the middle plot of Figure 6-1.)

3. For Lasso, although the parameter estimates of a1 may be biased by endogeneity,

its estimates of k are still reasonably accurate for moderate levels of endogeneity.

(See the red curve in the top plot of Figure 6-1.) This performance is due to

Lasso's penalty function, which rewards sparse estimates. In contrast, because it

does not have a penalty function, OLS estimates of k (not shown) are 100 for all

values of p.

4. Lasso generally overestimates k, with the bias increasing with the magnitude of

p. This positive bias gives a conservative estimate of k, which in turns leads to

a conservative estimate of the number of experiments needed to achieve accurate

estimates of A. This is arguably better than underestimating the number of

experiments needed and failing to achieve the desired level of estimation accuracy.

5. Lasso can however underestimate k in some cases. Because a1 is negative on aver-

age and positive p leads to positively biased estimates, the estimate of a, naturally

drifts towards 0 when p is positive. Furthermore, because a1 has relatively few

nonzero elements and the parameters produce a low signal-to-noise ratio (i.e.,

var(xj)/var(wj)), the noise term w, would dominate Aqi, making it difficult to

explain the data through a1 . These two factors, combined with Lasso's penalty
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function, tend to produce the zero vector as its estimate of a1 , which would lead

to underestimating k in this case. (See the red curve in the bottom plot of Figure

6-1.)

6.2.2 Discussion

The results shown in the previous section indicate that the Lasso-based method of es-

timating sparsity parameters is robust to endogeneity. Only under extreme levels of

endogeneity do the estimates deviate substantially from the true values. In compar-

ison, OLS performs poorly even in the absence of endogeneity: in both settings, it

returns dense estimates, which are not helpful for deriving an estimate of the sparsity

parameters.

Since the problem of endogeneity is present only in the context of historical data,

we are likely to have access to large amounts of this data. Our estimates of the sparsity

parameters will continue to improve as we have access to more data. Therefore, for the

setting in which we are interested, our methodology appears to provide robust estimates

of the level of sparsity, even in the face of moderate endogeneity.

6.3 Empirical analysis

In Section 4.4, we described the results of using historical data to estimate the sparsity

parameters k and d, as well as to show that they increase sublinearly with n. Given

the use of historical data, endogeneity is a valid concern. In this section, we modify

our estimation methodology to account for endogeneity and investigate whether the

sublinearity finding is robust.

6.3.1 Instrumental variables

A standard approach to dealing with endogeneity is to use instrumental variables, which

are explanatory variables that are (i) correlated with the (possibly) endogenous variable
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but (ii) uncorrelated with the error term. If a variable satisfies these two conditions,

then it can be shown that the variable can be used as a sort of surrogate for the

endogenous variable to eliminate the bias in the estimates.

While econometric theory guarantees that, with a valid instrument, estimates will

be unbiased, in practice the choice of instrument is critical. Can we actually identify a

variable that satisfies the two requirements stated above? Namely, is there a variable

that is correlated with retail prices yet uncorrelated with the error term, and is readily

available? Wholesale prices have often been used as an instrument for retail prices

(see, for example, Chintagunta 2002, Chintagunta et al. 2005, and Sriram et al. 2007).

Intuitively, they should be correlated with retail prices because retailers often pass

wholesale price changes through to their customers by changing their retail prices.

6.3.2 Two-stage instrumental variable approach

There are various methods of incorporating instrumental variables into an estimation

procedure. For an OLS-based procedure, one standard method is to take a two-stage

approach, which is referred to as "two-stage least squares" (2SLS):

1. In the first stage, regress the endogenous variable on the instrumental variable

and obtain the predicted values of the endogenous variable.

2. In the second stage, perform the original regression, substituting in the predicted

values of the endogenous variable from the first stage regression for the actual

values of the endogenous variable.

As described in Chapter 4, to estimate the sparsity parameters, we use a Lasso

regression instead of OLS. Hence, we modify the standard 2SLS approach by performing

a Lasso regression in the second stage. More specifically, we follow the same procedure

as described in Section 4.4.1, except that we first regress retail prices on wholesale prices

for each SKU-store combination using OLS and save the predicted values of retail prices.

We then use these predicted retail prices as the X in the Lasso program.
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n n

(a) Estimates of k with original methodology (b) Estimates of k with two-stage methodology

Figure 6-2: Plot of the estimates of k (a) without controlling for endogeneity and (b)

using wholesale prices as an instrument for retail prices. The relationship between k

and n is similar in both cases.

In order to compare the resulting estimates with and without using wholesale price

as an instrument, we perform the remaining steps of the estimation procedure in parallel

using both the original retail prices and the predicted retail prices. We use the same

filters to ensure that both estimates are based on identical data.

6.3.3 Results

We first report on the first stage of the estimation procedure. Regressing retail prices on

wholesale prices results in an R 2 of 0.69 on average for the first stage. Hence, variations

in wholesale prices explains a substantial portion of the variation in retail prices.

Next, we compare the estimates of the sparsity parameters using our original method-

ology as described in Chapter 4 and using the two-stage approach described in this

chapter. Figure 6-2 shows the estimates of k using each methodology, plotted against

the number of products, n. As the plots suggest, after controlling for endogeneity using

wholesale price as an instrument, we obtain estimates of k that are approximately the
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Degrees Mean of
t value of freedom differences

Ho : k = v;Hi : Iv 0 -1.712 101 -0.412
HO : d= Iv;Hi : $ # dIV -3.033 101 -22.714

Table 6.1: Paired t-tests comparing the estimates of k and d with and without using
instruments to account for heterogeneity. For both k and d, not using instruments
results in estimates that are negatively biased. The bias is significant for estimates of
d and moderately significant for estimates of k.

Coefficient Estimate Std. Error t value

(Intercept) 0.053 0.580 0.091
Without instruments 1st-order term 0.832 0.071 11.799

2nd-order term -0.011 0.002 -6.669
(Intercept) 0.632 0.761 0.830

With instruments 1st-order term 0.757 0.093 8.174
2nd-order term -0.007 0.002 -3.514

Table 6.2: Summary of quadratic fit models for estimates of k with and without con-
trolling for endogeneity. The second-order coefficients are negative and significant in
both cases.

same as the estimates of k obtained using our original methodology, without controlling

for endogeneity. For each store, we obtain a pair of estimates of k, with and without

controlling for endogeneity. For a more precise comparison between the two sets of

estimates, we perform a paired t-test using this data with the null hypothesis that the

estimates are equal and the alternative hypothesis that the estimates are not equal. As

the first row of Table 6.1 shows, estimates of k without using instruments to account for

endogeneity are moderately negatively biased, though the bias is not highly significant.

In Chapter 4, we also showed that the relationship between k and n is sublinear. We

perform the same analysis here using the two-stage estimates of k. Table 6.2 summarizes

the results of fitting a quadratic model between n and estimates of k using both sets of

estimates (this quadratic fit is also plotted in Figure 6-2). The second-order coefficients

are negative and significant in both cases, suggesting that k increases sublinearly with

n, even after accounting for endogeneity.

We also examine our estimates of d using each methodology, which are plotted in
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(a) Estimates of d with original methodology (b) Estimates of d with two-stage methodology

Figure 6-3: Plot of the estimates of d (a) without controlling for endogeneity and (b)

using wholesale prices as an instrument for retail prices. The relationship between d

and n is similar in both cases.

Figure 6-3. The results of fitting a quadratic model between n and estimates of d using

both sets of estimates, summarized in Table 6.3, show that the second-order coefficients

are negative and significant in both cases, suggesting that d increases sublinearly with

n, even after accounting for endogeneity. Comparing the two sets of estimates, the

estimates of d follow the same qualitative pattern with and without using instruments,

as was the case for estimates of k. We again perform a paired t-test to compare the two

sets of estimates of d, the results of which are presented in the second row of Table 6.1.

As was the case for estimates of k, the estimates of d without using instruments are

negatively biased, though the bias is more significant than it is in the case of k.

This difference is likely due to the fact that the parameter d is more difficult to

estimate than the parameter k because by definition it involves the magnitude of each

underlying elasticity parameter, whereas k cares only whether each parameter is zero

or not. Therefore, any bias in the elasticity parameter estimates due to endogeneity

would be more likely to carry over and bias estimates of d. On the other hand, because

Lasso's penalty function promotes sparse estimates, the number of nonzero entries may
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(Intercept) 20.357 16.099 1.265
Without instruments 1st-order term 4.409 1.959 2.251

2nd-order term -0.088 0.044 -2.008
(Intercept) -45.350 22.798 -1.989

With instruments 1st-order term 14.413 2.774 5.195
2nd-order term -0.265 0.062 -4.279

Table 6.3: Summary of quadratic fit models for estimates of d with and without con-
trolling for endogeneity. The second-order coefficients are negative and significant in
both cases.

Degrees Mean of
t value of freedom differences

HO : dij = c y; H, :j $4 &fjv 1.399 267,869 0.016
HO : &ii = dYV;H : dii $ V4 -7.351 1462 -1.306

Table 6.4: Paired t-tests comparing the estimates of the elasticity parameters with and
without using instruments to account for heterogeneity: (i) across all estimates, there
is no significant difference; (ii) focusing on the diagonal entries, estimates without using
instruments are significantly negatively biased.

not change significantly. In other words, not accounting for endogeneity may still

produce many elasticity estimates that are zero (hence, the two sets of estimates of k

are similar), but the elasticity estimates that are nonzero may be biased (hence, the

two sets of estimates of d are more substantially different).

The fact that the results are not substantially different with and without accounting

for endogeneity could be because our estimation method is robust to endogeneity or

because the data simply do not exhibit endogeneity. Since our methodology for esti-

mating the sparsity parameters also generates estimates of the A matrix itself, we now

turn our attention to the estimates of the underlying elasticities to see if they are biased

when not using instruments. The presence of bias would suggest that there is in fact

endogeneity in the data.

We perform a paired t-test between the two sets of elasticity estimates: we match

each estimate of aij without using instruments with the corresponding estimate of the

same elasticity parameter using instruments. As the first row of Table 6.4 shows, the
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two sets of estimates are not significantly different. This is likely due to the fact that

many estimates are 0. Hence we focus the comparison on only the nonzero estimates

of the diagonal entries of A. As the second row of Table 6.4 shows, these elasticity

estimates are now significantly negatively biased when instruments are not used. This

suggests that endogeneity bias does exist in the data. However, the effect of this bias

is relatively diminished when we move up a level and consider estimating the sparsity

parameters, particularly k, instead of the raw elasticity parameters. The estimates of k

do not exhibit much bias when not using instruments, and hence our estimation method

appears to be robust to endogeneity.

6.4 Summary

In this chapter, we investigated the potential of endogeneity in our data, which could

lead to biased estimates of elasticities in A and of the sparsity parameters k and d.

Using a standard approach to incorporate endogeneity into our model, we first gener-

ated synthetic price and demand data that contained varying degrees of endogeneity

and performed simulations that showed our estimation method still produces accurate

estimates even with endogenous data. Next, we analyzed the same historical sales data

as in Chapter 4, this time accounting for endogeneity by using wholesale prices as an

instrument for retail prices. Using this two-stage instrumental variable approach, we

show that although the underlying estimates of elasticities are biased when not ac-

counting for endogeneity, the estimates of the sparsity parameters show less significant

bias, particularly in the case of k. These results not only suggest that our method

for estimating sparsity parameters is relatively robust to endogeneity, but also give us

more confidence that our empirical estimates of the sparsity parameters based on real

historical data, as well as our finding that they grow sublinearly with n, are indeed

accurate.
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Chapter 7

Profit maximization

Thus far, we have presented a complete model of demand and provided a method for

estimating price elasticities quickly and accurately. A firm's goal may be simply to

estimate this demand function, but firms are likely more interested in the end result,

which is, for example, to use this demand function to choose an optimal set of prices in

order to maximize profit. In this chapter, we study the problem of profit maximization.

7.1 Modeling the profit function

Recall our standard model of demand:

Aq= b Ax+ w,
q

where Aq is the percentage change in quantities demanded and x is the percentage

change in prices. To extend the model to profit maximization, let xb be the vector of

baseline prices for each product and p be the vector of profit margins for each product

when prices are set at xb. We assume that xb and p are known. We can then express

the profit due to a decision x as

(p + xb o x)Tqt = (p + xbo )T[qbo (e + Ax + w)],
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where o denotes element-wise multiplication. The first term gives the modified profit

margins given the change in prices, x, and the second term gives the usual treatment

demand level.

7.2 Maximizing expected profit gain

Because the demand levels are random variables, the resulting profit is also a random

variable. A reasonable statistic to maximize is the expected profit1 :

Ew (p + xb o x)T[qb o (e + Ax + w)]].

Given our assumption of zero-mean noise (Assumption 1), the expression for expected

profit simplifies to

(p+b o x)T[qb o (e + Ax)]

SpT q b+ P o Ax) + (xb o X)Tqb+ Xb X)T(b o Ax).

The first term gives the baseline profit level. Since it has no dependence on x, we need

consider only the remaining terms when maximizing profit: we maximize the expected

gain in profit.

Let us define

P(x) pT(qb o Ax) + (xbo x)Tqb (X o x)T(qb o Ax) (7.1)

as the expected profit gain due to a decision x. Note that the expected profit gain

decomposes into three parts: the first term gives the gain due to the change in demand

only, the second term gives the gain due to the change in profit margins only, and the

third term gives the gain due to the combination of both changes.

Given the matrix A, we maximize profit by solving the following optimization prob-

'Henceforth, we will use the terms "profit" and "expected profit" interchangeably.
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lem:

max P(x),

where we constrain the price variation of each product to be no more than p in magni-

tude.

Let x* be an optimal set of prices and P* be the optimal profit gain. Because we

do not know the true A matrix, we may not be able to discover x* nor achieve this

optimal profit gain. Instead, we have only an estimate A, based on which we choose

some k that achieves a profit gain of P A P(k). We are interested in how close we

come to achieving P* and how many experiments that requires.

7.2.1 Knowing the true A matrix

First we consider the ideal case where we know the true A matrix exactly. Note

that Equation (7.1) is quadratic in x. After some algebra, we find that the profit

maximization problem is equivalent to the following constrained quadratic program:

P* = max xT Hx + fTx, (7.2)
-p~x~p

where

hij = x bq baij,
bbb

fi = Epfqaf + xjq.
f=1

Since H and f are known, we can solve this quadratic program using one of vari-

ous algorithms and available software libraries. The quantity P* gives the maximum

possible profit gain, assuming we know A perfectly. Because choosing x = 0 (i.e., not

changing any prices) is always an option, we know that by maximizing over x, P* > 0.

In other words, taking advantage of our knowledge of A can only help to increase the

expected profit.
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7.2.2 Knowing an estimate A

In reality, we do not know the true A matrix; instead, we have an estimate A given by

our experiments and estimation method described in Section 3. Hence, we do not have

the true values of H and f to be used in (7.2). A simple approximation is to calculate

estimates H and i using the estimate A and to find x that solves

: E arg max xTfhx + jTx. (7.3)

This approximate k can also be found numerically.

Suppose we believe that the true A matrix is sparse, having at most k nonzero

entries in each row. Then we can use this information to try to improve the preceding

procedure. Specifically, we can perform a form of thresholding on our estimate A. In

particular, we choose some r, (e.g., based on an estimate of k as obtained using the

method described in Chapter 4), retain only the r largest entries in magnitude in each

row of A, and set all other entries to zero. In doing so, we try to take advantage of

our knowledge of the sparse structure of A. The benefit of this thresholding procedure

depends on our choice of K and how it compares to the true sparsity index k. However,

we will show using simulations that overall performance is largely insensitive to incorrect

values of ,.

7.2.3 Performance of profit maximization

Because different retailers have different product assortments with different associated

elasticities, one store or category may have more potential for profit gains on an absolute

scale than another. In terms of our model, one A matrix may have more inherent

potential profit gains to be extracted than another. As such, we judge our profit

maximization procedure not by the absolute profit gain we achieve but by the fraction

of the maximum profit gain that we can capture. Our quantity of interest is therefore

the ratio P/P*.
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We perform simulations to test the speed with which we can achieve significant profit

gains in the case of sparse A matrices. We generate a sequence of matrices {A} of

increasing size, with some true sparsity level, using the seed distributions. We also draw

the quantities xzq.j and pjq from distributions seeded by parameters obtained from the

same study that was used to generate the A matrices. By following the methodology

described in Chapter 3, we obtain a sequence of estimates { A}. We select a value of K.,

which is an estimate of the true sparsity parameter k, and threshold the estimates {An}

as described in Section 7.2.2. We then use these thresholded estimates to calculate H

and f. By solving (7.3), we obtain the decision :c and the corresponding profit gain P.

By using the true A matrix that was initially generated, we also find an optimal decision

vector x* and the optimal profit gain P*. As a measure of the profit maximization

procedure's performance, we record the number of experiments needed to achieve 50%

of the maximum possible profit gain.

A key parameter in the maximization procedure is the threshold level r,: the number

of elements in each row of A to retain. In reality, even when the true A matrix is sparse,

we will not know the exact sparsity constant k and will need to approximate it with an

estimate. Therefore, we would like our procedure to be robust to a range of choices of V.

In the ideal scenario, we correctly select , = k. In this case, as Figure 7-la shows, the

number of experiments needed to achieve 50% of the maximum profit gain is relatively

small. Fortunately, even if we choose r, to be too small or too large, we still achieve

similar results (see Figures 7-1b and 7-1c).

7.2.4 Using Lasso estimates

An alternative method of estimating the A matrix is to solve the Lasso program as

defined in (4.1). In Chapter 4, we used this method to obtain estimates of the sparsity

parameters. However, the Lasso also produces estimates of the A matrix itself. Recall

that the estimation is performed row by row. Hence, we perform the methodology

given in Section 4.2 on each row and combine the resulting estimates to construct

85



# of experiments needed to reach 50% of optimal profit gain

0

0D
0El

0

- E0

0 o
-1 00

0
- E

0 so 100 150 200 250 300 350 400
# of products

(a) This illustrates the ideal thresholding scenario, with k = K = 10. The

ments needed remains only about 40 even for a large number of products.
number of experi-

# of experiments needed to reach 50% of optimal profit gain

11

-l E

- 001
- 00 0

0 0

000

0

01
0

0

0

El

E

X

50 100 150 200 250 300 350 400 450
S0 50 100 150 200 250 300 350 400 450

# of products

100 -

90-

80-

70

60

50

40

30

20

10

# of experiments needed to reach 50% of optimal profit gain

0

11

0

0

0 0
El

0
00 0 0

El 0l

El

0

- E0

-EP

500 0 50 100 150 200 250 300 350 400
# of products

450 500

(b) In this scenario, we choose . = 2 when the
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(c) In this scenario, we choose . = 20 when

the true k is 10. Despite this incorrect choice,
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Figure 7-1: In these plots, we illustrate the number of experiments needed to achieve

50% of the optimal profit gain for matrices of increasing size and under various choices

of r.
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Figure 7-2: By using Lasso to estimate the A matrix, we also have that the number of

experiments needed to achieve 50% of the optimal profit gain is relatively small. The

number of experiments needed also grows sublinearly with the number of products.

the complete estimate . Since the cross-validation process implicitly estimates the

sparsity parameter, we do not need to pick a value of r, as in Section 7.2.2. As Figure 7-

2 illustrates, by using Lasso estimates, we again require few experiments in order to

achieve 50% of the optimal profit gain. Moreover, the number of experiments needed

also grows sublinearly with the number of products. Hence, using a relatively small

number of experiments, we can not only obtain accurate estimates of elasticities, but

we can also use these estimates to obtain substantial gains in profit.
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Chapter 8

Promotional decisions

Besides setting prices, firms make many other types of marketing decisions, including

which products to advertise or promote. Although our analysis has been focused on

pricing decisions, our model can be adapted to advertising or promotional decisions,

which we shall consider in this chapter.

8.1 Modeling demand

As with setting prices, promoting a product will affect its demand, and the substitu-

tion and complementarity effects between products will also carry over to promotional

decisions. Therefore, we can again use a matrix A to represent the own- and cross-

product elasticities and a vector Aq to represent the percentage change in demand

for each product, compared between treatment and control conditions. However, some

modifications are required to adapt the model to the setting of promotional decisions.

If we interpret the decision to advertise or promote a product as a binary decision,

then the decision variables become

1, if product j is promoted,

0, if product j is not promoted.
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For ease of exposition (and without loss of generality), we will assume that there are

no promotions under the control condition. We can then model the percentage change

in demand in response to the promotional decisions as

Aq Ax+w.
qb

In this model, we capture own- and cross-product promotional responses in the A

matrix. This model retains the same form as our standard model, defined in Equation

(2.4), with a different interpretation for the decision variables xj and elasticities aij.

8.2 Estimating A

Given that the model under promotional decisions has the same form as the model

under pricing decisions, we can apply a modified form of our estimation procedure to

obtain similar results. Specifically, we now make 0/1 Bernoulli decisions for each xj

under the promotional setting. This is essentially the same setup as under the pricing

setting, and we can again find estimators for each aij such that Theorem 1 holds (with

slightly different constants). Therefore, we are still able to achieve uniformly c-accurate

estimation with O(k log n) experiments under sparsity and O(d 2 log n) experiments un-

der bounded influence.

8.3 Maximizing profit

We can also consider the profit maximization problem under the promotional setting.

Promoting a product simply calls attention to that particular product and does not

change its price. Therefore, the firm's actions do not affect profit margins, and so

the resulting optimization problem does not have the same form as the one under the

pricing setting.

To extend our demand model to profit maximization, let p be the vector of profit
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margins for each product, which are assumed to be known. We can then express the

expected profit due to a decision x as

EpTqt] = E [pT[q o (e + Ax + w)]

where o denotes element-wise multiplication. Given our assumption of zero-mean noise

(Assumption 1), this simplifies to

E[pTqt] pT[qb o (e + Ax)]

pTqb + pT(q b o Ax).

The first term is the baseline level of profit and the second term is the gain (or loss) in

profit due to the decision vector x. As in the case of optimizing prices, we can maximize

just the expected gain in profit since the first term does not depend on x. Following

Section 7.2, we calculate the maximum profit gain assuming the true A matrix is known

and use it as a benchmark to compare against the profit gain obtained from an estimate

Ak.

8.3.1 Knowing the true A matrix

First we consider the ideal case where we know the true A matrix exactly. We are

maximizing

pT (qb oAx) = (po qb)T (Ax). (8.1)

Since this function is linear in x, it can be maximized element-wise (i.e., independently

for each product):

1. Compute v = p o qb, the vector of baseline profits for each product.

2. For each product i, compute iri = vTAi, where A is the jth column of A. This

gives the change in profit if product i were promoted.
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3. If 7i > 0,set xi = 1. Otherwise, set x* = 0. The resulting vector x* is an optimal

solution to (8.1).

The preceding algorithm calculates the potential change in profit if a product were

promoted and chooses to promote it if and only if this change is positive. Although

products are coupled by their substitution and complementarity effects through the

matrix A, once we know this matrix, the profit maximization problem is very simple:

we can decide whether or not to promote each item independently by calculating its

potential contribution to the gain in profit.

8.3.2 Knowing an estimate A

Since we do not know the true A matrix, we instead use our estimate A. As described

in Section 7.2.2, we employ thresholding on A and keep only the , largest entries in

magnitude in each row. Given A, a simple approximation is to find a vector k that

maximizes the expected profit gain assuming that A is correct:

E arg max pT(q o x)
xE{O,1}1

This approximate k can be found in a similar manner as x*: simply substitute the

estimated columns Ai for the true columns Ai in Step 2 of the algorithm described in

Section 8.3.1.

8.3.3 Performance of profit maximization

As with the case of optimizing pricing decisions, we focus on the fraction of the maxi-

mum profit gain that we can capture. Using a similar procedure as the one described in

Section 7.2.3, we perform simulations to determine the number of experiments needed

to achieve 50% of the maximum possible profit gain. Because we are now considering

the promotional setting, we draw the elements of the A matrix from different seed

distributions. The study that was used to obtain seed distributions under the pricing

92



Number at experments needed to reach 50% of optimal prolit gain (k=r-10)

00

---..-.-.-.

- 0-.-.- .--- -- - 0 0

- 0- - -- - - -

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of products

(a) This plot illustrates the ideal thresholding scenario, with k = r = 10. We see clear

sublinear growth, so that only around 160 experiments are needed even with 10,000 products.
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(c) Here, we choose . = 50 when the true k is

10. Despite this incorrect choice, we again see

a clear sublinear growth relationship.

Figure 8-1: In these plots, we illustrate the number of experiments needed to achieve

50% of the optimal profit gain under the promotional setting for matrices of increasing

size and under various choices of ,.

setting also experimentally manipulated promotional decisions, and hence we can also

obtain seed distributions for the promotional setting from that dataset.

As Figure 8-1 illustrates, the number of experiments needed is relatively small and

grows sublinearly with the number of products. Moreover, the performance is similar

for different choices of r,, demonstrating that our method is robust.
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Figure 8-2: Under the promotional setting, using Lasso estimates of the A matrix also

achieves 50% of the optimal profit gain with relatively few experiments. The number

of experiments needed also grows sublinearly with the number of products.

8.3.4 Using Lasso estimates

As in Section 7.2.4, we can also use Lasso to estimate A and use the resulting A in

the profit maximization algorithm. As Figure 8-2 illustrates, by using Lasso estimates,

we again require few experiments in order to achieve 50% of the optimal profit gain.

Moreover, the number of experiments needed also grows sublinearly with the number

of products. Therefore, for the problem of choosing which products to advertise or

promote, managers can also achieve significant profit gains using a practically feasible

number of experiments.

94



Chapter 9

Conclusions

While many firms lack the capabilities to estimate sophisticated econometric models,

almost any firm can compare the results between experimental treatment and control

groups. We have investigated whether conducting these simple comparisons can help

firms improve their managerial decisions even as the complexity of the problem grows.

In particular, we consider settings where actions taken to impact the sales of one product

tend to spill over and also affect sales of other products. As the number of products, n,

grows, the number of parameters to estimate grows as 0(n2 ). This suggests that the

number of experiments required to estimate these parameters will quickly grow beyond

what is feasible.

However, we show that if the category exhibits a favorable structure, then firms can

learn these parameters accurately using a relatively small number of experiments. We

investigate two such structures. The first is sparsity, in which any one product can be

affected by at most k products. An important point is that we do not need to know

which specific products affect that one product's demand, only that there is a limit to

how many such products there are. Given this restriction, the number of experiments

required to estimate the matrix of elasticities drops from O(n log n) to O(k log n).

We also describe a second restriction that yields similar results. Rather than limiting

the number of products that can affect any one product, it may be more appropriate to
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restrict how much the total percentage change in sales of one product can be affected by

actions on all of the products. As long as there is a limit to the aggregate magnitude of

these interactions, then we again have a favorable scaling of the number of experiments

with the number of products.

To investigate whether these favorable structures exist, we propose a method for

estimating the level of sparsity in a given category. We use this method to analyze

actual historical sales data and estimate the sparsity parameters for the "Cold remedies"

category. The empirical results show that sparse structures do appear to exist. In

estimating the sparsity parameters, we also obtain estimates of elasticities. Using these

preliminary elasticity estimates to help design subsequent experiments is an interesting

opportunity for future research.

Given actual estimates of the sparsity parameters, we then test our main method of

estimating the matrix of elasticities using a simulation seeded from real experimental

data. The results verify that the number of experiments needed to obtain accurate

estimates does indeed grow logarithmically with the number of products, as our theory

predicts.

The use of historical data is convenient because it is often readily available. How-

ever, care must be taken because historical prices are often endogenous, which may

lead to biased parameter estimates. To account for potential endogeneity, we modify

our method of estimating the sparsity parameters to use an instrumental variable ap-

proach. The results show that our data does exhibit endogeneity but that our estimation

methodology is robust to this source of bias.

In addition to estimating elasticity parameters, we have also explored the problem

of choosing prices in order to maximize profit. We propose an algorithm for making

this decision and use simulations to show that it achieves significant profit gains us-

ing relatively few experiments. Hence, experiments are valuable not only for learning

elasticities but also for making decisions and realizing tangible benefits.

Our findings provide guarantees about the rate of learning from experiments. These

guarantees are obtained using randomized experiments and simple comparisons of out-
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comes between treatment and control conditions. Firms may increase the rate of learn-

ing by optimizing the experimental designs and/or using more sophisticated analyses

to estimate the parameters. While our guarantees will continue to hold under these

alternative approaches, future research may investigate the extent to which the bounds

can be improved in these circumstances.

We have framed our findings by focusing on pricing decisions. However, the results

can be extended to other marketing decisions in which actions targeted at an individual

product spill over to affect other products as well. In the context of learning demand

elasticities, we have extended our findings to choosing which products to promote and

demonstrated that similar results are obtained as in the case of choosing prices. Other

applications to which our model could apply include the allocation of sales force re-

sources across products or the focus of future investments in product development.

It may also be possible to extend the results to settings in which marketing actions

targeted at one customer (or group of customers) also impact the decisions of other

customers. Spillovers between customers may arise when customers can observe the

decisions of other customers, or when their decisions depend on the recommendations

of other customers. Extending our results to these forms of externalities may present

fertile opportunities for future research.
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Appendix A

Multiplicative demand model

Consider an alternative multiplicate demand model of the following form:

Taking the logarithm of both sides, we obtain

log(Aqi) ail log(xi) + ai2 log(X2 ) + --- + a log(x,) + log(wi)
n

- a log(xf) + log(wi).

f=1

By defining Aji l og(Aqi), ze log(xf), and i7i -A log(wi), we can rewrite the above

as

A = E ajet + iivi,
f=1

which is of the same form as our standard linear additive model.

Suppose that the noise term wi is log-normally distributed and hence 'i ~ N(O, c2 ). 1

We are free to choose the decisions Xe, and so let us choose each one randomly by first

choosing uf uniformly from the interval [-p, p] and then assigning xt = eut. Thus, fe ~

'More generally, we can relax this assumption - we require only that ziii is zero-mean and sub-

Gaussian with parameter c.
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U[-p, p]. We continue to assume independence among the x's and w's, which translates

into independence among the z's and tvs. Therefore, we can apply the same estimation

method as described in Chapter 3 to learn the A matrix under this multiplicative model.

In particular, the statistic defined in Section 3.5 becomes jj -& 6 -A&j - , which would

again be an unbiased estimator of aij. In addition, our methodology for estimating k

and d and our profit maximization algorithm, presented in Chapters 4 and 7, can be

similarly adapted to fit the multiplicative model.
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Appendix B

Asymptotic notation

Let n be a vector of variables; then we say:

(i) f(n) E O(g(n)) if there exist constants N and C > 0 such that If(n)I < Clg(n)

for all n such that ni > N, Vi;

(ii) f(n) E Q(g(n)) if there exist constants N and C > 0 such that If (n)I > C~g(n)I

for all n such that ni > N, Vi;

(iii) f(n) E e(g(n)) if f(n) E O(g(n)) and f(n) E Q(g(n)).

In the first case, f(n) E O(g(n)) essentially means that f(n) grows no faster than

g(n) as n becomes large. In this sense, g(n) can be thought of as an "upper bound" on

the rate of growth of f(n). An example is f(n) = 100n and g(n) = n2

In the second case, f(n) E Q(g(n)) essentially means that f(n) grows at least as

fast as g(n) as n becomes large. And so in this case, g(n) can be thought of as a

"lower bound" on the rate of growth of f(n). An example is f(n) = n and g(n) =

log n + 100V.

In the last case, f(n) E 8(g(n)) means that f(n) and g(n) grow at essentially the

same rate as n becomes large. An example is f(n) = n + - and g(n) = 2n - 1, as

both grow linearly with n. We say that f(n) E O(n) and g(n) E E(n).
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As illustrated above, asymptotic notation focuses on the order of growth and ignores

constants. To justify the importance of focusing on the order of growth in the regime

of large numbers of products, let us consider the following example.

Example 1 (Impact of linear vs. logarithmic growth). Suppose that there are two

estimation methods, requiring s1 (n) = n and s2(n) = 10 log n experiments, respectively,

in order to estimate an A matrix for n products. For a small number of products, such

as n = 10, the first method requires just 10 experiments, whereas the second method

requires 10 log(10) ~ 23 experiments. However, with a large number of products, such

as n = 100, the first method now requires 100 experiments, whereas the second method

requires 10 log(100) ~ 46 experiments, a much smaller number. As the number of

products increases further, the difference between the two methods becomes more and

more pronounced.

The purpose of asymptotic notation is to focus on the dominant scaling factor

and ignore constants, such as 10 in method 2 of the example above. Although these

constants have a relatively larger impact when n is small, they become insignificant as

n becomes large. Specifically, we say that for method 1, s1 (n) E O(n), and for method

2, s2 (n) E E(log n).
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Appendix C

Proof of Theorem 1

Proof. Let our decisions be i.i.d. continuous random variables x distributed uniformly

on [-p, p], so that E[x] = 0 and var(x) = E[p 2 /3. We perform an experiment

using a vector of decisions x. Let Aqj be the observed percentage change in demand

for product i, and let xj be the pricing decision for product j.

Having defined # A 3/p 2 , we consider the statistic

yij = #(Aqjxj) = ajexe + wi Xj.

A simple calculation shows that it satisfies E[ypj] = aij. Therefore, yij is an unbiased

estimator of a23 . Let yij(t) be the statistic calculated from the tth experiment. By

Assumption 1, for each (i, j), the statistics yij(t) are independent and identically dis-

tributed across different experiments t. By the laws of large numbers, the sample mean

di yij (t) converges to aij as we take many samples from many experiments.

We wish to bound the concentration of dij around its mean, aij.

To do so, we show that &ij is sub-Gaussian. A random variable X is sub-Gaussian

with parameter - > 0 if

E[exp(A(X - E[X]))] < exp(o-A2 /2), VA C R. (C-1)
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We make use of the following well-known properties:

1. If X is sub-Gaussian with parameter -, then aX + b is sub-Gaussian with param-

eter jaj-.

2. If X is bounded a.s. in an interval [a, b], then X is sub-Gaussian with parameter

at most (b - a)/2.

3. If X 1 and X 2 are sub-Gaussian with parameters o-i and O2, respectively,

(a) and if X 1 and X 2 are independent, then X1 + X 2 is sub-Gaussian with

parameter Vo + r .

(b) and if X1 and X 2 are not independent, then X 1 + X 2 is sub-Gaussian with

parameter at most V2(o + o2).

4. If X is sub-Gaussian with parameter a, then it satisfies the following concentration

bound:

P(JX - E[X]| I> c) < 2 exp - VC > 0. (C.2)

We first consider the random variable yij:

y = (j atx +wi xi

= (Z aitxe+wi)

= jVxj + aiyj} ,

xj + aijx }
i

where we have defined

V ajxt + wi.

We now show that V is sub-Gaussian. For each f, xe is bounded on [-p, p] and

therefore sub-Gaussian with parameter p. Hence, aext is sub-Gaussian with parameter

laiep. Also, under Assumption 1, wi is sub-Gaussian with parameter c. The random
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variables axfe and wi are all independent. Therefore, their sum, V, is also sub-Gaussian

with parameter -y a > ap 2 + c2 .

Next, we show that Vxj is sub-Gaussian using the definition. For any A E R,

E [exp {A(Vxj - E[Vxj])}] E [exp {A(Vxj)}] (C.3)

= E[exp{A(V)}]- dx (C.4)/P 2p

< j exp {(xlyUV) 2A 2/2} d (C.5)

<j exp {(pV)2A 2/21 1-dr
_P 2p

= exp {(prV)2A2/2},

where (C.3) holds because Vx, has zero mean; (C.4) is obtained by conditioning on the

values of xj; and (C.5) follows from (C.1) and the fact that for any x E [-p, p], Vx is

zero-mean and sub-Gaussian with parameter Irx-v. Therefore, Vxj is also sub-Gaussian

with parameter pov.

Next, we show that ajjx is sub-Gaussian. Since x2 is bounded a.s. in [0, p2], it is

sub-Gaussian with parameter p2 /2. Therefore, ajjx is sub-Gaussian with parameter

p 2|jajj/2.

Finally, yij is a sum of two (dependent) sub-Gaussian random variables: /Vxj

with parameter /pc-v, and 3aij X2 with parameter /p 2 aijl/2. Therefore, yij is also

sub-Gaussian with parameter

c-y V 2(# 2p2J + p2 4aj,/4) 2 {2P2 (z 2 ±c2 + 2P4 4

< 202p4 (ae + c2P2

= 18 ( a2 +c22)
\ f=1 e /
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Since dij = E' yij(t) is a sample mean of s independent yij's, dij is sub-Gaussian

with parameter

o~~~7 < - a 2p

8\ f=1

We can then bound the concentration of our estimator dij around the true parameter

aij using (C.2):

P(I di - aj >E) < 2 exp{ 2

< 2 exp - SC2'

36 (E",a2 + C2/p2)-

This gives a concentration bound for the error of a particular aij. To arrive at the

final result, which bounds the maximum error over all aij's, we apply the union bound

and conclude that

P (maxI -ij - aj I > C < 2n2 exp m _S + C2/p2 )
7113 4 maxi 36 (E'", ai 2/2
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Appendix D

Proof of Theorem 2

Proof. For any A > 0, consider the class A.,k (A). Fix some c E (0, A/2) and 6 C (0, 1/2).

In what follows, all estimators use the results of s experiments, for some arbitrary s.

Define the sub-class A or" (A) {A E R xn : I{j : ai =4 0} = k, Vi= 1, ... ,n; ai

A, Vij s.t. aij $ Of} C Ank(A), which is the class of all n x n A matrices whose rows

are k-sparse and whose nonzero entries are all exactly equal to A.

The desired specification is an estimator that for any A matrix in An,k(A) achieves

uniformly c-accurate estimates with probability 1 -6. In order to obtain a lower bound

on the number of experiments needed to meet this specification, it suffices to obtain a

lower bound on the number of experiments needed to meet the following looser spec-

ification: we let the A matrix be generated uniformly at random from the sub-class

Aconst (A) and require that with probability at least 1 - 6 the first row of A is correctly

estimated to uniform c-accuracy. Because A E Ac"t(A), all elements of A are either

exactly 0 or A, and since c E (0, A/2), achieving uniform c-accuracy is equivalent to

perfectly recovering A, which is also equivalent to perfectly recovering the sparsity pat-

tern of A (i.e., identifying the locations of all nonzero entries). Let Rconst denote the

event of exactly recovering the sparsity pattern of the first row of an A matrix chosen

uniformly at random from Ans t (A).

We now focus on the event Ri "at and find an upper bound on its probability.
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Within the sub-class Acons, (A), there are exactly N A (') possible sparsity patterns

for the first row of any A matrix. Moreover, because all nonzero entries are equal to

the same value A, each unique sparsity pattern corresponds to a unique row vector,

and vice versa. Suppose that we randomly choose the first row a' by choosing one of

the N possible sparsity patterns uniformly at random. We can then view the sparsity

pattern recovery problem as a channel coding problem. The randomly selected sparsity

pattern 0 E {1,. . . , N} is encoded, using a sequence of s experimental decisions X E

Rnxs, into codewords r = afX = (ri, r 2 ,... ,r) E R'. These codewords represent the

uncorrupted percentage changes in demand for product 1 in each of the s experiments.

The codewords are sent over a Gaussian channel subject to noise w = (w1 , w 2 , - - -, ws) ~

A(O, c2 1) and received as noisy measurements y = r + w = (yI, y2,... , yS) E R8, which

are equal to the observed noisy percentage changes in demand, Aqi. The goal is to

recover the pattern 0 from the measurements y.

The power of a Gaussian channel is given by P = 2"1r2. Since aT is k-sparse

and any decision x is bounded in [-1, 1], we have that Irtl < kA for all t, and hence

P < k2A2. From standard results (Cover and Thomas 1991), the capacity of a Gaussian

channel with power P and noise variance c2 is } log (1+ ) . Therefore, the capacity

of our particular channel is

C < I log I+ k2A2)
- 2 c2

From Fano's inequality (Cover and Thomas 1991), we know that the probability of

error, Pe, of a decoder that decodes the sparsity pattern 0 from noisy measurements y
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is lower bounded as

H(9 I y) - 1

Pe - log N

H(O) - I(O;y) - 1
log N

log N - I(0; y) - 1
log N

I(O;y)+ 1
log N

where H denotes entropy and I denotes mutual information. The first equality is by

the definition of mutual information, and the second equality follows from the fact that

9 is chosen uniformly over a set of cardinality N. We can upper bound the mutual

information between 0 and y as

I(O;y) < I(r;y) (D.1)

= h(y) - h(y r)

= h(y) - h(w)
S 8

< h(yt) - E h(wt) (D.2)
t=1 t=1

E[h(yt) - h(yt I rt)]
t=1

S

E I(rt; y)
t=1

< sC, (D.3)

where h denotes differential entropy, (D.1) follows from the data processing inequal-

ity, (D.2) follows from the independence of the wt's and the fact that the entropy of

a collection of random variables {ytj is no more than the sum of their individual en-

tropies, and (D.3) follows from the definition of channel capacity as the maximal mutual
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information. And so by Fano's inequality, the probability of error is lower bounded by

Pe sC + IPe > 1 -s+
logN'

which immediately gives the following upper bound on the probability of Ru"t:

<sC± 1
P( " m) = 1-Pe < .+

- log N

Therefore, achieving the looser specification of uniform e-accurate estimates of the

first row of a random A E A"Ot (A) with probability 1-6 implies the following condition

on the number of experiments, s:

<sC + I S (1- 6)logN -1I
-- log N -- C

Consequently, achieving the stricter original specification of an estimator that for all A

matrices in An,k (A) achieves uniformly E-accurate estimates with probability 1 - 6 also

requires the number of experiments to satisfy the above condition.

With some simple rearrangement, and noting that log N = log (n) > k log(n/k) and

6 E (0, 1/2), we obtain the desired lower bound:

S > (1 6) log N - 2(1 - 6)k log(n/k) - 2 k log(n/k) - 2
C log(1 + k2A2 /c 2 ) log(1 + k2 A2 /c 2 )
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