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ABSTRACT

Experiments to date probing adaptive evolution have predominantly focused on
studying a single species or a pair of species in isolation. In nature, on the other
hand, species evolve within complex communities, interacting and competing with
many other species. We developed experimental microbial ecosystems with which
we can start to answer some of the fundamental questions regarding evolution in
complex ecosystems. We first tested how the evolution of cooperation within a
species can be affected by the presence of competitor species in an ecosystem. To
achieve this, we used sucrose metabolism of budding yeast, Saccharomyces
cerevisiae, as a model cooperative system that is subject to social parasitism by
cheater strategies. We found that when co-cultured with a bacterial competitor,
Escherichia coli, the frequency of cooperator phenotypes in yeast populations
increases dramatically as compared to isolated yeast populations. These results
indicate that a thorough understanding of species interactions is crucial for
explaining the maintenance and evolution of cooperation in nature. Next, we wanted
to explore the question of whether evolution in a multispecies community is
deterministic or random. We let many replicates of a multispecies laboratory
bacterial ecosystem evolve in parallel for hundreds of generations. We found that
after evolution, relative abundances of individual species varied greatly across the
evolved ecosystems and that the final profile of species frequencies within
replicates clustered into several distinct types, as opposed to being randomly
dispersed across the frequency space or converging fully. These results suggest that
community structure evolution has a tendency to follow one of only a few distinct
paths.

Thesis supervisor: Jeff Gore
Title: Assistant Professor of Physics
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INTRODUCTION

Experiments to date probing adaptive evolution have predominantly focused on

studying a single species or a pair of species in isolation. In nature, on the other

hand, species evolve within complex communities, interacting and competing with

many other species. In this thesis, we aim to develop experimental systems with

which we can start to answer some of the fundamental questions regarding

evolution in such complex ecosystems. The experimental systems we develop

consist of microbes. There are several advantages to using microbes to study

evolution (1) Microbial model systems are amenable to easy genetic manipulation

(2) Generation times of microbes are much smaller than animal models allowing

controlled long-term evolution experiments and (3) Microbes are easy and

inexpensive to maintain and propagate.

We use these model systems to answer two fundamental questions: (1) How does

cooperative behaviors within a species evolve in a complex ecosystems? i.e. Does

the presence of other species have any effect on the evolution and maintenance of

cooperation within a focal species? (2) How does a community of species evolve as a

whole? If we were to replay evolution in a complex multi-species community many

times over, would we get the same outcome or different outcome each time?

To answer the first question we developed a microbial ecosystem consisting of two

coexisting species: yeast and bacteria. Yeast cells use sucrose metabolism to

cooperate with each other. By adding another species (bacteria) we were able to

experimentally test the effect of a competitor species on the cooperative dynamics

within the yeast population. We found that presence of bacteria can drive the

evolution of cooperation within yeast. For the second question, we designed and

developed a multispecies community consisting of six soil bacteria species that

could robustly coexist in a relatively simple environment. We created many

replicates of this model ecosystem and let these evolve for hundreds of generations.

At the end, we looked at the differences across replicates in terms of community
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structure (relative abundances of species present in the community). We found that

after evolution, community structure across the replicates clustered into several

distinct types, rather than being randomly dispersed in the frequency space or

converging completely.

PART I

Effect of competitor species on the evolution of cooperation within a species

Competition between species is a major ecological force that can drive evolution.

Here we test the effect of this force on the evolution of cooperation within a species.

We use sucrose metabolism of budding yeast, Saccharomyces cerevisiae, as a model

cooperative system that is subject to social parasitism by cheater strategies. We find

that when co-cultured with a bacterial competitor, Escherichia coli, the frequency of

cooperator phenotypes in yeast populations increases dramatically as compared to

isolated yeast populations. Bacterial competition stabilizes cooperation within yeast

by limiting the yeast population density and also by depleting the public-goods

produced by cooperating yeast cells. Both of these changes induced by bacterial

competition increase the cooperator frequency because cooperator yeast cells have

a small preferential access to the public-goods they produce; this preferential access

becomes more important when the public good is scarce. Our results indicate that a

thorough understanding of species interactions is crucial for explaining the

maintenance and evolution of cooperation in nature.

INTRODUCTION

Cooperation is a widespread phenomenon in nature. However, costly cooperative

strategies are vulnerable to exploitation by cheats that do not cooperate but

freeload on the benefits produced by the cooperating individuals [1,2]. Therefore,

the persistence of cooperation in nature has been a puzzling question for

evolutionary biologists and there has been much theoretical and experimental
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research trying to elucidate the mechanisms underlying this phenomenon [3-6].

Microbial studies have suggested that cooperation can be maintained in nature by

mechanisms such as reciprocity[7,8], spatial or temporal heterogeneity[9-11], and

multi-level selection[12]. Recently it has become increasingly clear that in addition

to population dynamics, external ecological factors can also play significant roles in

affecting the evolution of cooperation[13,14].

One such important ecological factor is interspecies interactions[15]. However,

almost all laboratory experiments aimed at understanding cooperation have relied

on studying a single species in isolation. In contrast, species in the wild live and

evolve within complex communities where they interact with other species[16].

Interspecific competition-that is competition between species-has been shown to

play a key role in shaping species distributions[17,18] and evolution of character

displacement [19,20]. Nevertheless, little effort has focused on establishing a link

between this ecological pressure and the evolution of cooperation within a

species[21-24]. As one of the few studies that tried to answer this question,

Harrison et al found that interspecific competition with S. aereus can select for

cheats within P. aeruginosa for the production of an iron scavenging siderophore

molecule. The authors speculated that this result was probably due to increased

competition for iron [22]. In another study, computer simulations of biofilms

showed that in spatially structured environments, when competition for essential

nutrients is strong, the addition of more species can inhibit cooperation within a

focal species because the added species can outcompete the cooperating cells [24].

On the other hand, when nutrients were abundant, their model predicted that the

public-good producing cells would be surrounded by other species and insulated

from cheater cells of the same species, thus cooperators would be favored. In our

paper, we aimed to systematically quantify the effect of interspecific competition on

the evolution of cooperation using an experimental microbial system, yeast sucrose

metabolism. We found that the presence of a bacterial competitor could

dramatically increase the cooperator frequency.

7



Wild-type yeast cells break down extracellular sucrose cooperatively by paying a

metabolic cost (Fig. Si) to synthesize the enzyme invertase[25,26]. Invertase is

secreted into the periplasmic space between the plasma membrane and the cell wall

where it hydrolyzes sucrose to the sugars glucose and fructose. In a well-mixed

environment, most of the sugars produced in this manner diffuse away to be

consumed by other cells in the population, making the sugars a shared public good.

Under these conditions, an invertase knockout strain can act as a cheater that takes

advantage of and invades a cooperating population. However, cooperator cells

capture - 1% of the sugar they produce due to a local glucose gradient (Gore et al,

2009, Dai et al, 2012). This preferential access to the public good provides

cooperators an advantage when present at low frequency, since in this case there is

little glucose for the cheaters to consume (experiments here are done in media with

4% sucrose and 0.005% glucose). The cooperator and cheater strategies are

therefore mutually invasible, leading to steady-state coexistence between the two

strategies in well-mixed batch culture [26].

RESULTS

Effect of interspecific competition on the evolution of cooperation within yeast

First, we confirmed that there is coexistence between cooperator and cheater

strategies in pure yeast cultures. Starting with an initial cooperator fraction of 10%,

we observed little change in cooperator frequency after 10 days of co-culture (Fig.

1). In these experiments, every 48 hours we performed serial dilutions into fresh

sucrose media and measured the fraction of cooperator cells within the yeast

population using flow cytometry (materials and methods and Fig. S2).

To test whether interspecific competition can influence cooperation within the yeast

population, we performed the same experiment, but this time co-cultured the

cooperator and cheater yeast along with a bacterial competitor, E coli (DHSc). This

strain of E coli cannot utilize sucrose[27] but could grow on arabinose (another

carbon source present in the media), on the other hand arabinose could not be
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utilized by our yeast strains (Fig. S3). We found that the presence of bacteria led to a

large and rapid increase in the cooperator fraction in the yeast population over the

10 days of growth. Whereas the cooperator fraction in the pure yeast cultures was

only -14% at the end of the experiment, in cultures with the bacterial competitor

the cooperator fraction increased to -45% (Fig. 1). We also confirmed that this

increase in cooperator frequency is not due to a hidden fitness difference between

the two yeast strains uncovered by the presence of bacteria. Addition of excess

glucose (0.2%) completely eliminated any increase in cooperation in all of the tested

conditions, even though bacteria were still present (Fig. S4). Therefore, the increase

in cooperator fraction upon addition of the bacterial competitor is indeed related to

sucrose metabolism.

A possible explanation for this increase in cooperator fraction within the yeast

population is that bacteria behave as a 'superior' cheater strain by assimilating

available free glucose, thus depriving cheater yeast cells of any sugar. In such

a scenario, cooperator cells would do better than cheaters since they have at least

some preferential access to the produced glucose. To test this, we competed yeast

against a mutant strain of E. coli (JM1100) that has much reduced glucose and

fructose uptake rates (materials and methods) [28]. We found a somewhat smaller

albeit still significant increase in the cooperator fraction within the yeast population

under the same conditions (Fig. 1). Bacterial competition for the public good may

therefore be a contributing factor towards increasing cooperator frequency in the

yeast population, but there is another mechanism at work as well. We will show

later that the other mechanism by which bacterial competition is selecting for

cooperator cells in yeast is by limiting the yeast population density.

Two species growth dynamics

To gain insight into the dynamics of competition between the two species, we

monitored the optical absorbance of batch cultures seeded with yeast and bacteria.

We found that the overall growth follows reproducible successional stages (Fig. 2A).

Bacteria have a higher growth rate than yeast and rapidly increase in biomass until
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they stop growing early during culture. In contrast, the yeast population takes

relatively longer to establish but is able to continue growth after bacteria have

stopped dividing. We reasoned that this succession might be due to acidification

caused by fermentation, since E. coli growth can be severely limited at acidic

conditions[29,30]. Indeed, when we monitored the fluorescence of a pH sensitive

dye (fluorescein) in the media, we measured a sharp drop in fluorescence (-pH)

coinciding with bacterial growth and saturation (Fig. 2A and Fig. S5). This suggests

that the limited bacterial growth may be caused by low pH brought about by sugar

fermentation. Compared to bacteria, yeast cells are better able to tolerate the harsh

acidic conditions[29] present in the later stages and can therefore continue to grow,

albeit on depleted resources. In microbial assemblages, such ecological succession is

a commonly observed phenomenon[31-33].

We reasoned that if acidic conditions restrict bacterial growth then it should be

possible to delay the onset of this limitation by adding more pH buffer in the media.

Consistent with this expectation, we found that the final biomass achieved by

bacteria increased with the concentration of the pH buffer (PIPES) in the culture

(Fig. 2A). We also saw that this increased bacterial density restricted the yeast

growth due to pronounced competition between the two species. Prompted by these

observations, we decided to use the buffering capacity as an environmental variable

to tune the niche overlap and thus the intensity of competition between yeast and

bacteria.

Cooperator yeast cells do better under interspecific competition

If cooperator cells were indeed selected as a result of interspecific competition, we

would expect to see a positive correlation between the level of final cooperator

fractions within the yeast population and the degree of competition imposed by

bacteria. To test this, we performed competition experiments with yeast and

bacteria as before and varied the buffering capacity of the media. As expected,

increasing the buffering further caused the cooperator fractions to increase within

the yeast population, but only when competing against bacteria (Fig. 2B).
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We next repeated these experiments by starting out with different initial fractions of

cooperators (30%, 50%, 90%) and observed the same trend in all the conditions we

examined (Fig. S6). Even starting with an initial fraction of 90% cooperators, at high

buffering we saw an increase of -6% in the frequency of cooperators after 10 days

of growth. This result suggests that at equilibrium the cheater cells might even be

completely purged from the yeast population under the pressure of interspecific

competition. Finally, to probe the generality of our results, we competed cooperator

and cheater yeast against bacteria on solid agar with sucrose as the sole carbon

source. Consistent with the results in liquid cultures, we observed that the presence

of bacteria (JM 1100) strongly selected for cooperator cells within yeast (Fig S10).

Although in our experiments the cooperator fractions after ten days are not

necessarily the values at equilibrium, the rapid increase of cooperator fraction in the

presence of bacteria is a striking effect of interspecific competition on the evolution

of cooperation. The fact that the change in cooperator frequency is extremely slow

in isolated cultures as compared to the change in our two-species competition

experiments suggests that even transient bacterial competition can have a lasting

impact on the fraction of cooperator cells within yeast populations. In fact, in some

of the low buffering conditions the bacterial species went extinct but the cooperator

fraction within the yeast population was nevertheless significantly enhanced as

compared to isolated yeast populations (Fig S6). Given the importance of non-

equilibrium dynamics in nature[34], we believe that these findings may aid in

understanding the of evolution of cooperation in wild populations.

To measure the density of the yeast and bacteria in these experiments, we used flow

cytometry at the end of each growth cycle (see materials and methods and Fig. S7).

We found that by the end of the last cycle, in cultures without any added buffer,

bacteria went extinct, whereas at the highest buffer concentration used (20 mM),

yeast was outcompeted by bacteria (Fig. 2C). However, at intermediate levels of

buffering, yeast and bacteria could stably coexist. This coexistence is a result of the
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temporal heterogeneity mediated by acidification and the fact that bacteria and

yeast partition into different niches[35] by utilizing different carbon sources in the

media (arabinose and sucrose respectively). At high buffer concentrations,

cooperator yeast are favored relative to cheater yeast. However, as the total yeast

population density decreases with increased buffering (eventually going to zero),

the absolute number of cooperator yeast decreases as well. It is therefore important

to distinguish between selection for cooperator cells in a population (fraction of

cooperators in the yeast population) versus the absolute number of cooperator cells.

Although in co-cultures bacteria went extinct without buffering, in pure cultures we

found that bacteria could grow robustly under the same conditions. This

observation suggests that the presence of yeast has a negative effect on bacteria. We

speculate that faster acidification due to increased glucose concentrations with

higher yeast population density combined with ethanol production during the later

stages of yeast growth (after bacterial growth stops, i.e. second phase of succession)

might be causing bacterial death [29,36]. When we analyzed the overall relationship

between yeast density versus bacterial density across all buffer conditions for each

cycle and different initial cooperator fractions, we found a consistent negative linear

dependence (Fig. 2D). This relationship is the hallmark of interspecific competition

whereby the two species reciprocally repress each other's growth [37].

Two-phase logistic yeast growth model

It has been shown that due to the cooperative nature of growth on sucrose, the per-

capita growth rate is lower at low cell density and becomes higher as the cell density

increases because more of the sucrose has been converted to glucose [26].

Moreover, in these low-density conditions, cooperator cells grow faster than

cheaters, as they have preferential access to the produced glucose and 'feel' a higher

glucose concentration than cheaters do (Fig. S8). At high cell density, we found that

cheaters have a growth advantage over cooperators, since enough glucose can

accumulate in the media to support cheater growth.
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Using these results, we developed a simple two-phase logistic growth model

describing the cooperative dynamics within a pure yeast population in batch culture

(see Fig. S8). The model incorporates the fact that in the beginning of a culture, the

yeast density is low and there is little glucose in the media because there are not

enough cooperators to supply it. Therefore, at the beginning of each growth cycle

the cooperators have an advantage. However, as the yeast population grows

eventually the density of cooperators increases above a critical value, at which point

cheating starts to be favored because now there is enough glucose in the media that

cooperators are at a disadvantage by carrying the burden of public good [26]. In the

end, the culture logistically saturates to a set carrying capacity, K. This

phenomenological model has been previously used to yield accurate quantitative

agreement to experimental data for yeast growth in sucrose, including the presence

of a fold bifurcation that leads to catastrophic collapse of the population in

deteriorating environments (Dai et al, 2012). Moreover, this simple model is

quantitatively identical to a more mechanistic model that incorporates changes in

glucose concentration over the course of each growth cycle (Fig S 11).

Prompted by our experiments with two-species competition, we reasoned that the

first order effect of bacterial competition might be to decrease the carrying capacity

of the yeast population by depleting essential nutrients in the media (Fig 2D).

Indeed, our model predicts that the cooperator frequency should increase as the

carrying capacity decreases (Fig 3 and Fig S8 and Fig S11). This increase in

cooperation results from the fact that a decrease in the carrying capacity makes the

yeast populations spend more time in the low cell density regime (where

cooperators have an advantage) and less time in the high cell density regime (where

cheater cells have an advantage). Thus, smaller yeast population density mediated

by low nutrient availability should increase the frequency of cooperator phenotypes

within yeast

Nutrient limitation causes cooperator frequency to increase within a pure

yeast population
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If bacterial competition is selecting for cooperator cells within the yeast population

via reduced yeast population density, then it should be possible to experimentally

induce the same effect even in the absence of bacteria. To test this prediction of our

model we limited essential nutrients in pure yeast cultures experimentally. We

competed cooperator and cheater yeast cells in uracil limited cultures. Our yeast

strains are uracil auxotrophs and require uracil to be supplied in the media to grow

(see Materials and methods). As before, we performed serial dilutions every 48 hrs

into fresh media and measured the final fraction of cooperators and total yeast

density. Consistent with the predictions of our model, we found that the frequency

of cooperators increased with decreasing concentrations of supplemented uracil

(Fig. 4A). To make sure that this result is not due to an anomaly related to the

synthetic nature of auxotrophy, we also repeated this experiment by limiting a

universal essential nutrient, phosphate. Again, consistent with our predictions, we

observed that the cooperator fraction increased at low phosphate concentrations

(Fig. 4B). In all these conditions, we saw that yeast density decreased with limiting

concentrations of nutrients as expected. Once again, we observed a negligible

change in cooperator fraction in cultures with abundant glucose (0.2%), confirming

that the observed behavior is intimately related to the sucrose metabolism.

These results show that limiting the carrying capacity can increase the cooperator

frequency within the yeast population. If it is indeed the limited carrying capacity

that is causing this effect, then we would expect that the increase in cooperator

fractions to be strictly dependent on the yeast density rather than the specific type

of nutrient limitation. Consistent with this expectation, when we plotted the final

cooperator fraction as a function of the final yeast density for both uracil and

phosphate limitation conditions, we found that the resulting relationship was nearly

indistinguishable for the two treatments. This observation argues that the

underlying force selecting for cooperators was the limited carrying capacity in both

cases. Interestingly, we also found that, for both treatments, the

final cooperator fraction was approximately linear as a function of the logarithm of

the final yeast density (Fig. 4C). Our model could explain this feature of the
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experimental data and followed a similar log-linear relationship. All the relevant

parameters in the model were consistent with independent experimental

measurements (Fig. S8).

Bacteria both limit yeast carrying capacity and act as cheaters

Next, we analyzed our two species competition experiments to see if there is a

similar relationship between yeast density and cooperator frequency. We found that

competition with bacteria also resulted in a log-linear dependence between yeast

density and final cooperator fraction (Fig. 4C and Fig. S9). However, controlling for

yeast population density, we found that competition with bacteria was more

effective in increasing cooperator fractions within yeast than resource limitation

alone. A possible explanation for this difference is that bacteria behave as a

'superior' cheater strain by assimilating available free glucose as we have indicated

earlier.

To test this hypothesis, we again competed yeast against our mutant strain of E. coli

(JM 1100) that has much reduced glucose and fructose uptake rates[28] compared to

DH5x. In this case, across the same yeast densities, the effectiveness of the bacteria

in selecting for cooperators within yeast decreased significantly, although the final

increase in cooperator fractions was still higher than the resource limitation

treatment. This result suggests that competition for glucose and fructose is the

reason why bacterial competition favors cooperator cells more than resource

limitation alone (controlling for yeast population density).

To account for glucose consumption by bacteria in our phenomenological model we

made the cheater growth rate at low cell density a linearly decreasing function of

the final bacterial density (which is linearly related to the yeast carrying capacity,

Fig 2D). We found that this simple assumption could reliably reproduce the effect of

bacterial competition on the evolutionary dynamics within the yeast population (fig

4C). By fixing the final yeast density in our model (yeast carrying capacity not

limited by bacteria), we found that bacterial competition for glucose alone
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significantly underestimated the final cooperator fraction. Taken together, these

results indicate that bacterial competition for both essential resources and glucose

increases the frequency of cooperators within the yeast population.

We note that this selection of cooperator cells by bacteria is occurring in a yeast

growth regime where there is little to no transfer of benefits between yeast cells (i.e.

low cell density conditions). Therefore, the cooperator cells are favored by bacteria

not because they "cooperate" with other cells, but because they have private access

to some of the glucose that they create. The cheater cells are therefore deprived of

glucose due to the presence of bacteria (either by direct glucose consumption or by

limiting yeast density, which limits the amount of sucrose broken down). So,

bacterial competition actually selects for "invertase producing cells" rather than

"cooperators" per se. However, since the invertase producing cells are breaking

down sucrose outside of the cell, -99% of the resulting glucose diffuses away before

it can be captured (Gore et al, 2009). All cells in the population then benefit from

this sucrose hydrolysis during the high-density growth phase, where the bulk of

yeast growth occurs in our experiments (see Fig 3 and Fig S8). Selection for

invertase producing cells during the first phase of growth (when yeast density is

low) then indirectly acts as a stabilizing agent for the cooperator genotype in the

yeast population.

A glucose producing bacterial species can select for cheats within the yeast

population

Finally, we asked how the cooperative dynamics within yeast would be affected if

the competing bacteria were also producing glucose just like cooperator yeast. We

found previously that bacterial competition for the public good could select for

cooperators within the yeast population beyond that expected based on resource

competition alone. If the competing bacteria instead produce the public-good then it

may even be possible for the bacteria to favor cheating behavior within the yeast

population. To test this, we inoculated yeast cells on sucrose plates together with

the soil bacteria Bacillus subtilis instead of E. coli. Similar to wild-type yeast, B.
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subtilis breaks down sucrose with a secreted enzyme and generates extracellular

glucose[27]. Interestingly, we found that now cheating is favored within the yeast

population (Fig S10). Control competition experiments on glucose only media

resulted in no difference among various treatments, strongly suggesting that

glucose production by B. subtilis is responsible for the decrease in cooperator

phenotypes on sucrose plates. Thus, it seems that although B. subtilis cells compete

for resources with yeast, they can produce enough glucose to reverse selection for

cooperators within the yeast population. We therefore conclude that other

competing species do not necessarily select for cooperators within a species. Thus,

caution must be taken in assessing the effect of one species on the other, as the

nature of the interaction can drastically modulate the outcome.

DISCUSSION

Our results indicate that social evolution within a species can be greatly affected by

interspecies interactions. Specifically, we found that interspecific competition for

essential nutrients can limit the carrying capacity of our focal species, yeast, and

therefore increase the frequency of cooperator phenotypes. In nature, such

interspecific competition is ubiquitous and one of the major factors limiting species

ranges [38]. This fact suggests that our findings should be relevant where

communities of species coexist and occupy partially overlapping niches. Evolution of

cooperation is strongly related to population density. In general, cooperators feel

the burden of exploitation by cheater phenotypes at high population densities [6,39].

Our results show that interspecific competition can limit the overall population

density of the focal species, and therefore drastically alter the outcome of

competition between cooperators and cheaters. As discussed before, this result is

due to the fact that cooperators have an advantage in low-density conditions, since

they have preferential access to the produced public-goods.

Next, we also showed that competition between species directly for the public-

goods produced by one of them can select for cooperators within the producing

species. In our experiments, bacteria deplete the public good available for both
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cooperator and cheater yeast, but since cooperators have a "private" access to some

of the glucose produced they grow faster than cheaters during the initial period of

low cell density. Such competition between species for a public-good is a common

phenomenon in nature. Among microbial organisms, there are many cases whereby

the diffused products of extracellular enzymes can be assimilated by other species

of microbes-examples include the extracellular products of siderophore

metabolism[2 2,40], cellulose degradation[41,42], starch[43] and inulin[44]

degradation. Therefore, maintenance of the production of these public-goods by one

species might be mediated by the presence of other species occupying the niche

space where cheaters within the same species would have to radiate into. It is often

the case that public-good producing individuals benefit preferentially from being

producers, mainly because of spatial heterogeneity (viscous environments in which

the produced extracellular products form a diffusion gradient around the producing

individuals). This is analogous to our experimental system where we have spatial

heterogeneity (despite the fact that we use a well-mixed environment) simply

because of the biophysical features of the yeast cell wall. We speculate that such

maintenance of cooperation through interspecific competition for public goods

might also be present within animal populations, such as primary cavity excavation

by woodpeckers (abandoned nests can be utilized by non-excavating bird species

instead of next generation woodpeckers, forcing woodpeckers to excavate new

cavities)[45], cooperative hunting by hyenas (exploitative competition from lions

and mammalian carnivores for the captured prey) [46] etc.

In conclusion, our findings provide evidence for an important ecological

mechanism-competition between species-for the evolution of public-goods

cooperation within a species. Our results also suggest that cooperation may be more

stable than would be concluded from experiments that study a single species in

isolation. These findings can help explain the apparent ubiquity of cooperative traits

found in nature and improve our understanding of social evolution in natural

microbial communities[23]. Our findings also indicate that depending on the nature

of interspecific interaction (e.g. competition vs mutualism), other species may also
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disfavor cooperation within a species as we have seen in our experiments with B.

subtilis. Our two species community, which consists of widely used model

organisms, is amenable to genetic manipulation and can be reconfigured to explore

more complicated interactions between species-such as parasitism and warfare-

that may affect within-species cooperation.

MATERIALS AND METHODS

Strains

All yeast (S. cerevisiae) strains were derived from haploid cells BY4741 (mating

type a, EUROSCARF). The 'wild-type' cooperator strain has an intact SUC2 gene and

yellow fluorescent protein (yEYFP, gift from G. Stephanopoulos) expressed

constitutively by the TEF1 promoter inserted into the HIS3 locus using the backbone

plasmid pRS303. The mutant cheater strain lacks the SUC2 gene (EUROSCARF,

suc2A::kanMX4) and has the red fluorescent protein tdTomato expressed

constitutively by the PGK1 promoter inserted into the HIS3 locus using the backbone

plasmid pRS303. Both of these strains had the same set of auxotrophic markers:

leu2A0, metl5A0, ura3A0. Both E.coli strains were derived from E.coli K-12. JM1100

was obtained from The Coli Genetic Stock Center (CGSC#: 5843). JM1100 strain

(ptsG23, fruA10, manXYZ-18, mgl-50, thyA111) could grow on minimal media

without additional thymine probably due to a picked up deoC mutation, therefore no

additional thymine was used in the media for experiments with this strain. Bacillus

subtilis 168 was obtained from ATCC (#23857).

Batch culture media

All experiments were performed in defined media supplemented with the following

carbon sources: 4% sucrose, 0.2% -Arabinose and 0.005% glucose. For experiments

with excess glucose, extra 0.2% glucose was added to cultures. Our default defined

media consisted of 0.17% yeast nitrogen base (Sunrise Science) plus ammonium

sulfate (5 g/L) supplemented with the following amino acid and nucleotide mixture:

adenine (10 mg/L), 1-arginine (50 mg/L), 1-aspartic acid (80 mg/L), 1-histidine (20
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mg/L), 1-isoleucine (50 mg/L), -leucine (200 mg/L), 1-lysine (50 mg/L), 1-

methionine (20 mg/L), 1-phenylalanine (50 mg/L), 1-threonine (100 mg/L), 1-

tryptophan (50 mg/L), 1-tyrosine (50 mg/L), 1-uracil (20 mg/L), -valine (140 mg/L).

For uracil limitation, uracil concentration was varied below the amount used in the

default media. Uracil concentrations used in Fig 3C: 1, 2, 4, 6, 10, 14 mg/L.

Phosphate limited media contained 0.071% yeast nitrogen base without KH 2 PO 4

(Sunrise Science) supplemented with 80 mM K2SO4 and the amino acid mixture used

in the default media. To limit phosphate concentration, KH 2 PO 4 was added to this

media below the concentration (7.3 mM) used in the default nitrogen base. KH 2 PO 4

concentrations used in Fig 3C: 0.01, 0.03, 0.05, 0.1, 0.2, 0.3 mM. In all the

experiments, pH was adjusted to 6.5 with NaOH and PIPES (pKa 6.8 @ 25 0 C) was

used as a buffering agent for different conditions. For nutrient limitation

experiments, a set PIPES concentration of 10 mM was used for all the conditions. In

competition experiments with DH5a, a buffer range of 0-20 mM was used. We found

that JM1100 was more acid tolerant than DH5a, therefore a narrower range of 0-10

mM of buffering was used for this strain.

Growth conditions

Before each experiment, yeast strains were grown in minimal media (2% glucose)

for 20h at 30*C and bacterial strains were grown in LB at 37"C for 20h. These initial

cultures were diluted in fresh media to start the experiments. In all the experiments

described, initial inoculation densities were 106 cells/mL for bacteria and 7.5x10 4

cells/mL for yeast. These initial inoculation densities were chosen based on

preliminary experiments where average densities of two species after stable

coexistence was measured. This ensured that bacteria and yeast would not

outcompete each other initially by simple overabundance of one species versus the

other. All experiments were performed in 96-well microplates containing 150 [tL

media per well. To enable gas exchange, microplates were sealed with two layers of

a gas permeable tape (AeraSeal) and incubated at 30*C, 70% relative humidity,

shaken at 825 r.p.m. Evaporation per well was measured to be 20% over 48h. For

20



multi-day experiments, cultures were serially diluted 1:1,000 into fresh media every

48 hrs, taking evaporation into account.

Flow cytometry

Grown cultures were diluted 1:100 in PBS (phosphate buffered saline) and cells

were counted on BD LSR II equipped with an HTS unit. For each well, two separate

measurements using different settings were taken for yeast and bacteria. For

measuring cooperator fraction and yeast density, a high SSC threshold (300) with

SSC voltage 200 V was used to exclude bacterial counts (FSC voltage, 270 V).

Cooperator and cheater yeast strains were gated on fluorescence (YFP and RFP

respectively). For each well, 20 [tL of sample was measured with flow rate 1.5

piL/sec. Yeast was assumed to be extinct in wells with less than 400 counts and

cooperator fraction was not calculated for these cases. To estimate the yeast

population density, a calibration was used with measurements of yeast cultures

with known densities. To measure bacterial density, SSC voltage was set to be 300 V

with threshold 1000 to capture all the bacterial population. For each well, 5[tL

sample was analyzed with flow rate 0.5 [tL/sec. Bacterial counts overlapped with

noise in FSC and SSC plots. To distinguish bacteria from noise, in every cycle, pure

yeast culture controls was measured with the same settings used for bacteria (Fig.

S8). From these control measurements, noise was calculated and found to have a

maximum coefficient of variation less than 0.03. To calculate actual bacterial counts,

mean noise of 8 control wells of pure yeast cultures was subtracted from bacterial

counts in each competition experiment. In conditions where bacterial population

was not extinct, the bacterial counts with noise subtracted were always larger than

the noise counts; therefore the variation in noise had little effect on bacterial density

measurements. Bacterial density was estimated based on a calibration obtained by

measurements of bacterial cultures with known densities.

Successional growth assay

Yeast and bacteria were grown and diluted in fresh media with initial densities

same as described in 'growth conditions' section. Initial cooperator fraction was
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50%. Culture media was the default media used in all two species competition

experiments and cells were grown in microplates. Cultures were incubated using an

automated shaker Varioskan Flash (Thermo Scientific) at 30'C, 800 r.p.m. To

monitor pH, 0.6 pM fluorescein sodium salt (Sigma) was added to cultures. Every 15

minutes, absorbance (600 nm) and fluorescence (excitation: 488 nm, emission: 521

nm) measurements were taken for 40h.

Competition on agar plates

Solid agar media was prepared using 1.6% agar, 1% yeast extract, 2% peptone

supplemented with either 2% glucose or 2% sucrose. Cells were spread on plates

(100 mm diameter) containing 20 mL solid media using glass beads. In all the

conditions, initial cooperator yeast to cheater yeast ratio was 1:5 (-17%

cooperators). Plating density for yeast was aimed to be -900 cells/plate (15

cells/cm 2 ), for JM1100 it was -12 cells/plate (0.2 cells/cm 2) and again for B. subtilis

-12 cells/plate (0.2 cells/cm 2). Inoculated cultures were incubated for 4 days at

30'C until no further growth could be observed. Then, plates were illuminated

under a blue light (-470 nm) transilluminator (Invitrogen) and imaged through an

orange filter. Later, plates were destructively sampled by washing off colonies in

PBS. Fractions were measured on BD LSR II flow cytometer using the yeast settings

(see flow cytometry section). We used JM1100 instead of DH5a in these

experiments because DH5a formed minute colonies on 2% Glucose agar due to

excessive acidification. We also tried competing yeast against B. subtilis in liquid

well-mixed culture, however we could not get coexistence of the two species, and B.

subtilis was outcompeted by yeast, presumably due to the less acid tolerant nature

of this bacterium compared to E. coli.

Glucose and fructose uptake measurements for E.coli strains

DH5a and JM1100 strains were grown overnight at 37*C in LB and then diluted into

media containing 0.2% arabinose plus either 0.05% glucose or 0.05% fructose.

Initial cell density for each strain was 5x10 6 cells/mL. For DH5a and JM1100, media
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contained 8 mM and 4 mM buffer respectively. After inoculation, 5 mL cultures were

incubated at 30'C in 50 mL falcon tubes shaking at 300 r.p.m. Sugar uptake rates

were determined by measuring the depletion of sugars during exponential growth

according to the following equation[47]:

So - S(t*)
N(t*) -No

where r is the uptake rate of sugar and y is the growth rate measured during

exponential phase. N is the cell density inferred from optical density measurements.

S represents the measured sugar concentration in the media. Measurements taken

at two time points separated by t* were used to calculate the uptake rates. The

timing of the two measurements was chosen so that there was substantial depletion

in sugar concentration during that period. Glucose concentration was determined by

using a commercial glucose (hexokinase) assay reagent (Sigma). Fructose

concentration was measured by using the same assay reagent in conjunction with

the enzyme phosphoglucose isomerase (PGI), which converts fructose 6-phosphate

to glucose 6-phosphate. Glucose uptake rates for DH5a and JM1100 were found to

be 4.14x10 4 molecules s-1 cell-' and 0.72x10 4 molecules s-1 cell-' respectively.

Fructose uptake rates for DHSct and JM 1100 were found to be 0.47x10 4 molecules s-

1 cell-' and 0.08x10 4 molecules s-1 cell-' respectively.
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Figure 1: When co-cultured with bacteria in sucrose media, cooperator cell

fraction increases within yeast populations. Both with E. coli strains DH5c or

JM1100 - a mutant strain that grows poorly on glucose and fructose - a significant

increase in cooperator fraction was observed compared to a pure yeast culture

(isolated yeast) over 10 days of growth. Addition of excess glucose (+0.2%) to these

cultures eliminated this increase in cooperator fraction, indicating that selection for

cooperators is linked to sucrose metabolism. In this experiment, culture media

contained 4 mM buffer (PIPES). Total final yeast and bacterial densities did not

change significantly over the course of five cycles of growth (Fig S9). Error bars,

s.e.m. (n = 3).
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Figure 2: Correlation between the intensity of interspecific competition and

cooperator cell frequency within yeast (A) Successional growth dynamics in

mixed cultures of yeast and bacteria. Absorbance (600 nm) was measured for

different buffer (PIPES) concentrations: 4 mM (circles), 8 mM (triangles), 12 mM

(diamonds). Simultaneously, fluorescence of a pH sensitive dye (fluorescein) was

measured and a sharp pH drop was observed coinciding with bacterial growth. Note

that as the buffering increases, the pH drop is slower and the final bacterial biomass

is higher. Initial pH was 6.5 (-220 fluorescence a.u.) in all the cultures used in our

experiments (see methods and Figure S5B). (B) Frequency of cooperators within

yeast increases faster with increasing buffer concentration when competing against

bacteria. Isolated control populations under the same conditions displayed little

change in cooperator fraction (orange symbols). (C) Yeast (triangles) and bacterial
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(circles) density at the end of the last growth cycle as a function of buffering

capacity. (D) Yeast density versus bacterial density across all buffer concentrations

and different initial cooperator fractions for each cycle (initial fractions: 0.1, 0.3, 0.5,

0.9). Control cultures (isolated yeast) for the same conditions are shown in

triangles. Error bars, ± s.e.m. (n = 3).
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Figure 3: A phenomenological model describes the growth dynamics of

cooperator and cheater yeast during each cycle of batch culture This sketch of

our yeast growth model describes how the per capita growth rate changes as a

function of yeast density. At low density, cooperators have a higher growth rate than

defectors. Above a yeast density Nc where cooperator density is at a critical value, it

is assumed that the growth rate is higher for both cooperators and cheaters since

glucose has accumulated in the media[26]. Then, the growth rate decreases

logistically to zero as the yeast density reaches its carrying capacity, K. If the yeast

carrying capacity were limited (Knew), starting yeast density would be lower after

dilution into fresh media.
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Figure 4: Nutrient limitation can select for cooperator cells within the yeast

population even in the absence of bacteria. Limiting either uracil (A) or

phosphate (B) increases frequency of cooperators within isolated yeast populations.

Control cultures (gray symbols) with excess glucose (0.2%) displayed negligible

change in cooperator frequency. (C) Final cooperator fraction versus final yeast

density in bacterial competition and nutrient limitation experiments: DH5a,

JM1100, uracil, phosphate. Note that for both of the limiting nutrients (uracil and
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phosphate) yeast density vs cooperator fraction relationships are extremely similar,

indicating that the underlying force for increase in cooperator fraction is the limited

carrying capacity. With controls: uracil + 0.2% Glucose (gray triangles), phosphate +

0.2% Glucose (gray squares). Controls (isolated yeast) for competition with bacteria

are shown in orange circles and diamonds for DH5a and JM1100 conditions

respectively. Solid lines are model simulations for each condition. Error bars,

s.e.m. (n = 3).
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Figure Si: Metabolic cost of invertase production. Invertase expression is

maximal at low glucose concentrations but repressed when glucose is

abundant[48,49]. We measured the metabolic cost of invertase production by co-

culturing cooperator and mutant cheater yeast strains in media containing only

glucose as carbon source, by daily serial dilution (1:1,000) for three days. Starting

cooperator fraction was 50% and initial cell density was 1.5x10 5 cells/mL. At high

concentrations of glucose, invertase expression is repressed and as expected, there

was little fitness difference between the two strains. On the other hand, at low

concentrations of glucose where invertase expression reached to its maximum, the

cooperator strain had a fitness deficit of -3-4% consistent with a metabolic cost

associated with production and secretion of invertase. Left panel shows the relative

fitness (w) values which are calculated using the following expression[25]:

w =ln In[f(- ]
Dif I D,(1 - f,)I

wherefi andff are the initial and final cooperator fraction and Df and D are the final

and initial total cell densities for each day. Right panel shows the final fraction of

cooperators in the same experiment after three days of transfers. Data points

represent mean of 3 measurements over 3 days with error bars ± s.e.m.
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Figure S2: Measurement of cooperator fraction with flow cytometry. Our yeast

strains were tagged with constitutively expressed YFP and RFP proteins (cooperator

and cheater respectively). We could distinguish between the two strains on BD LSR

II flow cytometer. YFP was excited with a blue laser (488 nm) and emission was

collected through a 530/30 nm filter (FITC-A channel). RFP was excited with a

yellow/green laser (561 nm) and emission was collected through a 610/20 nm filter

(PE Texas Red-A channel). The dot plot in the figure is a sample from a competition

experiment between yeast and bacteria after 10 days of co-culture. The two strains

were well separated on the different fluorescence channels. Cooperator fraction and

final yeast density in each well were measured using yeast settings on the flow

cytometer (see Methods).
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Figure S3: Yeast growth on arabinose and Ecoli growth on sucrose. (A) We

grew yeast (50% cooperator) on 0.2% arabinose, 0.2% glucose or 2% glucose.

Initial cell density was the same as in the competition experiments (7.5x10 4

cells/mL). Absorbance at 600 nm was measured for 40 hrs. The results are plotted

in the above figure. Our yeast strains were not able to grow on 0.2% arabinose. (B)

E.coli strains were grown on either 4% sucrose or 0.2% arabinose. Our E.coli strains

were not able to grow on sucrose.
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Figure S4: Excess glucose eliminates selection for cooperators in the presence

of bacteria. Cooperator fraction after 5 cycles of dilution (10 days of growth) and

corresponding final yeast density in competition against bacteria on default media

(see Methods). Starting cooperator fraction was 10% for all the data presented. For

the conditions with a bacterial competitor (w/ DH5a and w/ JM1100) media

contained additional 0.2% glucose. Each individual data point represents the result

for a different buffer concentration used. We see that although the yeast density is

limited by the presence of bacteria, there is little increase in cooperator fractions

when there is excess glucose in the media. Isolated yeast data (triangles) show the

highest density yeast population can reach without the presence of bacteria. Black

data points are the results for the condition used in figure 1 (4 mM buffering). The

reason that the number of data points differ between DH5ta and JM1100 treatments

is that with DH5a yeast went extinct at some of the highest buffer conditions used

and fractions were not calculated for those cases (see Methods).

In addition to these controls, we also tried to grow yeast on media spent by bacteria.

To achieve this, we first grew bacteria on default media with varying buffer
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concentrations. Then, bacteria were spun down and yeast was grown in the

supernatant with added glucose (0.2%) for 48 hrs. The results showed no change in

the cooperator fraction, again ruling out a fitness difference between our two yeast

strains that might be mediated by bacterial resource depletion. However, we could

not dilute and propagate these cultures into new spent media, as the final yeast

density was much lower than we observed in our competition experiments. Error

bars, s.e.m. (n = 3).
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Figure S5. Successional growth dynamics in mixed batch culture. (A) Absorbance

and fluorescence (-pH, see Methods) measurements for a co-culture of bacteria

(DHSa) and yeast, an isolated bacterial culture and an isolated yeast culture. Initial

cell densities were as described in Methods and were the same for each species in

competition with the other species or by itself. All cultures were buffered with 4 mM

PIPES. Dotted lines are the tangents to the absorbance traces during exponential

growth. We see that the initial drop in pH in the mixed culture coincides with the pH

drop in the isolated bacterial culture, which indicates that initial acidification in the

mixed culture is strongly mediated by bacterial fermentation. In contrast, pH drop

occurs much later in the isolated yeast culture, as the yeast population takes longer

to establish. (B) Fluorescein vs. pH calibration curve with and without cells in the

media. pH of our default media was adjusted using NaOH without any added buffer

and fluorescence was measured as described in Methods. Fluorescein was

fluorescent across the relevant pH range (-4.5 to 6.5) and lost its fluorescence

completely around pH 4.5, which is also quite close to the pH value where bacterial

growth is limited[30]. The drop in pH shown in (a) and figure 2a is not due to

accumulating cell mass obscuring fluorescence measurement. By suspending yeast

cells in the media at a density of 15x10 7 cells/mL (A600 - 1.2) - which is the

maximum density we observed in our experiments - we show that although there is

a drop in fluorescence due to the presence of cells, it is not as dramatic as measured
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during growth. Inset shows the fluorescence versus absorbance (-cell density)

relationship measured by suspending yeast cells in PBS (pH = 7.4) at different

densities. Error bars, ± s.e.m. (n = 3).
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Figure S6: Competition between yeast and bacteria with different initial

cooperator fractions. Each individual plot shows the final cooperator fraction

(after 10 days of growth) as a function of buffer concentration in the media. Top row

shows the results for competition between yeast and DH5a (circles) and the bottom

row shows the results for competition between yeast and JM1100 (diamonds). In all

the plots, pure yeast controls are shown in triangles. Note that when competing

against DH5a, even starting with 90% initial cooperator frequency, cooperator

fraction increased in most of the buffering conditions, suggesting that at equilibrium

yeast population might consist of only cooperators. For experimental details see

Methods. Error bars, ± s.e.m. (n = 3).
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Figure S7: Bacterial density measurements using flow cytometry. Left column

shows a typical bacterial density measurement from a two species competition

culture. This particular sample is competition after 10 days of growth with 30%

initial cooperator fraction and 12 mM buffer (PIPES). To collect the data, bacterial

settings were used on the flow cytometer (see Methods). As seen in the top SSC/FSC

plot bacteria (red) and yeast (blue) populations were well separated and easily

distinguished. Bottom plot shows the histogram SSC counts for the same condition.

In this histogram, skewed left tail of the bacterial counts is due to noise overlapping

with the bacterial population counts. To quantify the noise and subtract it from

bacterial counts, every growth cycle we measured event counts occurring in the

'BACTERIA' gate for 8 pure yeast cultures (isolated yeast controls) again using the

bacterial settings. Right column shows a typical result from such a measurement.

This particular sample is from a culture after 10 days of growth with 30% initial

cooperator fraction and 12 mM buffer (PIPES) - same as the conditions used in the
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left column except without bacteria. Top right plot shows SSC/FSC plot with noise

appearing in the region where bacteria was before. In the SSC histogram for this

sample (bottom right plot), we see that noise counts overlap nicely with the left tail

of bacterial counts from the sample with bacteria (bottom left plot). Bacterial counts

in mixed culture experiments were corrected by subtracting the mean of such 8

controls from each sample for every different microplate measurement.
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Figure S8: Two-phase logistic growth model. To model the cooperative dynamics

within the yeast population, we developed a simple growth model based on

experimental measurements. It has been shown that due to the cooperative nature

of growth on sucrose, yeast growth rate is lower at low-density conditions and

becomes higher as population density increases [26]. We have measured the low-

density and high-density growth rates of cooperating yeast populations (as reported

below) and confirmed that this was indeed the case. This observation led us to

develop a two-phase growth model whereby during the low-density conditions

(initial stages of batch culture) yeast growth rate is lower compared to the later

stages of the culture where the cell density is higher and faster glucose

accumulation occurs. Furthermore, it was shown that when grown separately in

low-density conditions, the cooperator growth rate was higher than cheater

(defector) growth rate on media containing low glucose concentrations but high

concentrations of sucrose [26]. This result was expected, as cheater cells effectively

cannot utilize sucrose, while cooperator cells can break down sucrose and capture

some of produced products before they get diluted away in the well-mixed

environment that was experimentally imposed. This conclusion was further
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supported by experiments in which we observed that if the dilution factor between

successive cycles of batch growth was higher (>1,000) or cycle length was

shortened (24 h instead of 48 h)-thereby imposing low-density conditions-

cooperator frequency increased faster in mixed cultures of cooperator and cheater

yeast cells. Therefore, we chose to assign a lower value to cheater growth rate at

low-density conditions (described in detail below). Since our experiments are

performed in batch culture, to simulate the nutrient limited nature of the total

growth and final biomass, we let yeast growth to be logistic. We have observed this

sort of logistic growth dynamics consistently during our experiments whereby the

yeast density saturated after a certain amount of time (Fig 2A, Fig S5A).

A sketch of this model shown in the above figure describes how the growth rate

changes as a function of yeast density. At low density, cooperators have a higher

growth rate (Yc, ) than cheaters (yD ). Above a yeast density Nc where cooperator

density is at a critical value, it is assumed that the growth rate is higher for both

cooperators and cheaters since glucose accumulates faster in the media[26]. Then,

the growth rate decreases logistically to zero as the yeast density reaches its

carrying capacity, K. We measured the critical cooperator density at Nc to be about 3

x 10s cells/mL and ycs as 0.33 hrF. These measurements were taken by observing

the time it took purely cooperative yeast cultures to reach a certain density, starting

with different initial cell densities. Note that Nc is more than two orders of

magnitude lower than final cell density that can be achieved by a pure yeast culture

in our prepared media over 48 hrs (see Kmax below). Therefore, we assumed growth

rate below this yeast density to be approximately constant (no logistic decline). This

assumption can be visualized on the above figure, where below Nc, on a log scale,

projections of logistic lines can be taken to be not a function of yeast density as they

are nearly constant. In other words, we can ignore the drop in nutrient

concentration during the period in which yeast density reaches Nc, as this value is

much lower compared to the final yeast density, therefore the nutrient depletion is

only a small fraction of the total nutrients present in the media. Yc',,h was measured
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to be 0.45 hr' on 4% sucrose by measuring growth rate during exponential growth.

Taking the cost of cooperation into account, yD,,,,was assigned such that yc,,, was

1% lower than yDhgh (Figure Si). Highest K value in a pure yeast culture on our

default media was measured to be 15x10 7 cells/mL (Km.). To simulate nutrient

limitation or competition with bacteria, K was varied across the experimentally

observed range.

YD, (cheater growth rate at low density) was treated as a phenomenological

parameter and was varied to fit the data shown in figure 3c. In nutrient limitation

conditions, cheaters had a growth deficit of 4.85% at low density compared to

cooperators. For JM1100 treatment, this deficit was 4.85% + 5.45% * (1- K/ Kmax)

and for DH5 a it was 4.85% + 13% * (1- K/ Kmax). These values were assigned so as

to fit the data. We assumed that cheaters have a lower growth rate than cooperators

when competing against bacteria, because bacteria might compete for glucose with

yeast and this would further limit the available glucose in the media during low-

density conditions (yeast density <Nc). This model enabled us to calculate temporal

dynamics and simulate the entire growth process over 5 cycles of growth (10 days)

with 1:1,000 serial dilutions in between. Lower carrying capacity due to nutrient

limitation or bacterial competition meant that the yeast population would spend

more time during the first phase of this growth model where cooperation is favored.

According to our model, equilibrium fraction of cooperators without the presence of

bacteria is 61%.
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Figure S9: Log-linear relationship between yeast density and final cooperator

fraction shown for different initial cooperator fractions (A, B) and different time

points during experiments (C). (A) Competition results between yeast and DH5a

with different initial cooperator fractions (circles) after 5 cycles. (B) Competition

results between yeast and JM1100 with different initial cooperator fractions

(diamonds) after 5 cycles. Triangles represent results for pure yeast cultures both in

(A) and (B). (C) Final cooperator fraction within the yeast population over time

while competing against DHSa. Each cycle is 48 hrs. Data points represent different

buffering conditions. Yeast density decreases monotonically with buffering in all the

plots above. Note the apparent increase in the final yeast density as the yeast

population becomes more cooperative in (C). Dotted lines represent least squares fit

for the data. Error bars, s.e.m. (n = 3).
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Figure S10: Competition against E colH or B. subtilis on agar plates. Growth on

agar plates of yeast only, yeast with E coli, and yeast with B. subtilis (A) Images

were taken after 4 days of growth at 30*C. Yeast (Y) was competed against either E.

coli (JM1100) or B. subtilis on rich media plates (100mm diameter) supplemented

with either 2% Glucose or 2% Sucrose. Cooperator yeast colonies appear

yellow/green, cheater yeast colonies appear red and bacterial colonies appear dull

colored and bigger compared to yeast colonies. (B) Colonies were washed off of

imaged plates and yeast cooperator fractions were measured by flow cytometry. As

expected, competition with E coli selected for cooperators within yeast. In contrast,

B. subtilis favored cheating. Error bars, s.e.m. (n = 3).
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Figure S11: A detailed yeast growth model produces similar results as our

phenomenological model: To show that our phenomenological model (Figure S8)

can predict yeast growth dynamics accurately, we developed a logistic growth

model incorporating glucose production by cooperator cells. In this extended model,

the growth rates of cooperators (yc) and defectors (yD) were assumed to follow

Monod-like dynamics as a function of the glucose concentration together with

logistic growth at high cell density:

Yc =c( 1 -- G+ g
SIO (K (G +2+Km(

( N G '

Here, yDO is 0.45 hr-1 and yco is 0.99x0.45 hr-1 corresponding to the 1% fitness cost of

producing invertase as used in the phenomenological model. N is the varying total

yeast density during a batch culture and K (15x10 7 cells/mL) is the carrying capacity

of the yeast population. Growth rate of yeast cells is assumed to be a function of G

(which denotes the glucose concentration (%) in the media) with Michaelis-Menten

(Monod) dynamics, where Km is 0.005% to yield an approximately correct growth

rate at low cell density. However, we note that previous measurements suggest that

the growth rate saturates more rapidly with increasing glucose concentration than

is assumed in the Monod / Michaelis-Menten form above (Gore et al, 2009). Initial G

concentration is set to be 0.005%, as in our experiments. g denotes the small
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amount of glucose concentration felt and captured directly by the cooperator cells.

g was set to be 0.003% as described in Gore et al.

We modeled the glucose production to be proportional to the cooperator cell

density:

_____L _( 
el) x 4.5x 10 8  (m olecules

dG(%) Cooperator density seclxsxellsL_ sec x cell) g180( xdt NA 0) X 0.1

Time step (dt) used in the simulations is 1 sec. Based on our previous

measurements, we set the sucrose hydrolysis rate to be 4.5x10 8 (molecules (Gore et
\ secx cell )

al 2009). In this model we only explicitly consider glucose creation (not glucose

consumption), as the primary dynamics between the cooperator and cheater yeast

strains are determined by the glucose concentration at low cell density. As the cell

density increases glucose and other resources will be exhausted, which is what

leads to the logistic slow-down of cell division at high cell density. NA is the

Avagadro's number and 180 g/mol is the molecular weight of glucose. We multiply

by 0.1 to convert g/L into % (w/v) concentration.

Using this model, we simulated the growth dynamics of mixed yeast cultures and

compared the results to the predictions of our phenomenological model. (A) We

found that growth rates of yeast strains as a function of yeast cell density behave

qualitatively very similar to the phenomenological model. Moreover, we found that

after a critical cooperator cell density, the cheater growth rate exceeds the

cooperator growth rate, although at low-density conditions the cooperator growth

rate is higher. This critical density was almost exactly the same for the extended

model as the one used in our phenomenological model. For the parameters of the

phenomenological model, we used exactly the same values given in Figure S8 (e.g.

critical cooperator density was 3 x 10s cells/mL, cheater growth deficit at low

density conditions was 4.85%). Starting cell densities were 1.5x10 5 cells/mL and

initial cooperator fraction was 60% for the plots in (A).
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Next, we simulated cultures with different starting cooperator fractions and plotted

the relative fitness of cooperators as a function of starting cooperator frequency (B).

We found that the results of the extended model were almost identical to the

phenomenological model and both models predicted the equilibrium fraction of

cooperators to be around -60%. For these simulations, we used an initial yeast

density of 1.5x10 6 cells/mL (equilibrium density during experiments with 1000x

dilution). The relative fitness was calculated using the formula given in Figure S1.

These results show that although simple, our phenomenological model captures the

essential dynamics of yeast growth on sucrose accurately. In our simulations, by

decreasing the initial glucose concentration, we can indeed drive the equilibrium

fraction of cooperators to 1 (occurs at initial glucose concentration of -0.001%).

This result shows that glucose consumption due to the presence of bacteria would

drive the increase in cooperator fractions in this model.

In this mechanistic model we have attempted to use experimentally measured

parameters together with well-known growth equations (i.e. Monod), meaning that

the growth rates at low cell density are different in the mechanistic model and in

our phenomenological model. Nevertheless, the primary argument that we are

attempting to make here is that a mechanistic model which explicitly treats glucose

concentration will yield similar predictions regarding cooperation/cheating as our

phenomenological model that simply has two-phases of growth corresponding to

low and high cell density. Figure S11B above argues strongly that the two modeling

approaches make similar predictions.
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PART II

Evolutionary outcomes in community structure across replicate ecosystems

Experiments to date probing adaptive evolution have predominantly focused on

studying a single species or a pair of species in isolation. In nature, on the other

hand, species evolve within complex communities, interacting and competing with

many other species. It is unclear how reproducible or predictable adaptive evolution

is within the context of a multispecies ecosystem. To explore this problem, we let

many replicates of a multispecies laboratory bacterial ecosystem evolve in parallel

for hundreds of generations. We found that after evolution, relative abundances of

individual species varied greatly across the evolved ecosystems and that the final

profile of species frequencies within replicates clustered into several distinct types,

as opposed to being randomly dispersed across the frequency space or converging

fully. By substituting individual evolved species back into the ancestral community

we demonstrated that these divergent community structure patterns were driven

by specific species adapting exceptionally well in each community structure state.

Our results suggest that community structure evolution has a tendency to follow

one of only a few distinct paths.

INTRODUCTION

Although research is abound focusing on the adaptive evolution of a single species

or a pair of interacting species, the problem of how evolutionary processes shape a

complex natural ecosystem has received less attention [50]. Given the initial biotic

and abiotic components of an ecosystem, it is not obvious whether we can ever

predict the future community structure and species distribution for that ecosystem

[51]. Resolving this challenging problem about community evolution is not only

important from an intellectual standpoint, but also has implications for our ability to

forecast the evolutionary responses of ecosystems to recent anthropogenic

pressures [52].
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Traditionally, research has pointed to character displacement, whereby co-

occurring similar species diverge in their adaptations, and co-evolution as

mechanisms to explain and predict adaptation in simple communities [51].

However, recent theory and experiments suggest that such predictions from niche

occupancy patterns or pairwise species interactions often fail to predict adaptive

evolution in more complex ecosystems composed of more than two species [53,54].

For instance, a recent experimental study with microbes found that community

complexity can greatly alter adaptive evolution in a way that is not obvious from

single species evolution [55]. Diffuse coevolution studies have also found evidence

that coevolution of a focal pair of interacting species can be influenced by the

presence of other species [54,56].

All of these and similar studies mainly strive to elucidate deterministic mechanisms

for multispecies adaptive evolution. However, we may also ask, to what degree is

there randomness in the path that a multispecies ecosystem follows through

adaptive evolution? If we could replay the evolution in a closed community many

times starting from the same initial state, would we always end up in the same final

state with the same abundances and kinds of species? Or would we get a different

result each time? Recent theoretical and empirical studies using a single species

suggest that adaptive diversification can be a surprisingly deterministic

evolutionary process [57,58]. However, how this relates to multispecies adaptive

evolution is less clear [51].

To address this problem, here we present experiments probing the adaptive

evolution of a multispecies model community. We found evidence that the adaptive

evolution of this experimental community is not deterministic, yet at the same time

is not completely random. Our model community consisted of six soil bacteria

species spanning three different genera: Enterobacter aerogenes (EA), Serratia

marcescens (SM), Pseudomonas fluorescens (PF), Pseudomonas aurantiaca (PA),

Pseudomonas veronii (PV) and Pseudomonas putida (PP). We let this community

evolve in a complex environment containing dozens of carbon sources that can be
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found in soil (see methods) [59]. We chose the species on the criteria that they could

grow together in our media without aggressively antagonizing each other via either

predation or expression of anti-microbial compounds. The carbon utilization

profiles for these species were not completely overlapping, but also not fully

orthogonal (Fig Si). Compared to natural ecosystems with complex trophic levels

and numerous types of species interactions, our model ecosystem is a simple one,

where we expect most of the interactions between species to be driven by

competition for resources [60].

RESULTS

We began by characterizing the relative abundance of the six bacterial species when

mixed together. We prepared 96 identical ecosystems containing all six species,

which we will refer to as the ancestral communities. We then allowed these

ecosystems to reach (short-term) equilibrium by propagating through four growth

dilution cycles. Each cycle of growth was 48 hours without shaking and the dilution

was by 1,500, corresponding to approximately 10.5 cellular divisions per cycle. We

were able to quantify the final species abundance by plating the communities on

solid agar media and counting the colony numbers for each species, as each species

had a unique colony color/morphology (Fig 1A). We found that Pseudomonas putida

(PP) quickly fell to less than 1% abundance, whereas the other species were all

between 15 - 35% in frequency. This coexistence of five of the six bacterial strains

was observed in all 96 of our replicate ecosystems, suggesting that the short-term

equilibrium of this ecosystem is reproducible and robust to experimental

procedures and errors in measurement.

Next, we performed a long-term evolution experiment consisting of 96 identical

replicates of the six species community and let these evolve in parallel for -400

generations, which we call the "multispecies evolution" treatment (Fig 1B). At the

end of the experiment, we measured the final community structures (i.e. the relative

abundance of each species) in all communities. We found that all species except PP

were very robustly coexisting in all of the replicate ecosystems. Surprisingly, in 9
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out of the 96 ecosystems Pseudomonas putida (PP) not only survived the

multispecies evolution process, but came to dominate the resulting communities

(mean frequency of -25%). This stark bimodality in survival probability observed

with PP may be due to a rare mutational event that rarely occurred before PP went

extinct.

In addition to evolution of the multispecies ecosystems, we in parallel performed

isolated evolution of each of the individual species constituting this multispecies

community ("isolated evolution"). The isolated evolution treatment was designed to

tease apart whether multispecies evolution was in any way different from the case

where each species would evolve purely in response to the abiotic environment,

irrespective of the presence of other species. For this, we let six replicates of each

species evolve in isolation, in parallel with the multispecies treatment. After the

long-term evolution experiment was over, we consolidated 96 multispecies

communities by using the species from the isolated treatment (see methods). These

new communities were grown for several cycles to reach equilibrium, after which

we measured the final community structure by plating as we did for the

multispecies treatment (Figure 1B). Similar to the results with the ancestral

communities, the newly generated communities using the isolated evolution lines

yielded coexistence of species EA, SM, PF, PA and PV. Again, PP was going extinct or

may be surviving only below 1% in frequency after a few cycles of growth in all

communities (see methods).

Focusing on the mean abundances from the two treatments, the most striking

difference was that the abundance of PV was significantly lower in the isolated

treatment compared to both the multispecies and the ancestral treatment (Fig 2A).

The outcome of evolution in this new environment was therefore different

depending upon whether the species were co-evolving or evolving in isolation, in

line with previous experimental results in a different microbial ecosystem [55].
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A second notable feature of the relative abundance data was that PF was more

abundant in the multispecies and isolated treatments than in the ancestral

community, which might be due to some inherent advantage that this species

possesses in terms of being able to adapt to this new environment. We also note that

although we measure relative abundances (frequencies) of species in our

experiments, these measurements can also be taken as a proxy for absolute

abundance, since we did not observe any significant differences in final community

productivity/optical density across treatments and replicates within each treatment

(Fig S2).

The level of variation in relative species abundances across replicate communities

also differed across the three treatments (Figure 2A). Variation in species

frequencies in the ancestral communities was much lower in comparison with the

isolated and multispecies treatments, consistent with the expectation that adaptive

evolution would increase community structure variation. Given that ancestral

replicates were identical and had no time to evolve, variation in this treatment can

be treated as a sum of measurement error and intrinsic fluctuations in the

community structure. Therefore, by looking at the variation in the ancestral

treatment, we can get a measure of this base error rate (Figure 2A, Interquartile

range: 6-8%). We also measured the beta diversity of each treatment as another

measure of variation Uenson-Shannon divergence). We found that the multispecies

treatment had a considerably higher beta diversity compared to both isolated and

ancestral treatments (Fig 2B).

As discussed previously, PP went extinct in most of the multispecies community

replicates (86/96; see figure 2C), but when it survived came to dominate the

community. This conclusion is also apparent looking at the raw frequency data

plotted for each treatment (Figure 2C). PP dominance is unique to the multispecies

treatment, since in both ancestral and isolated treatments, we did not have any PP

penetration to this degree.

53



So far, we observed variation in community structure after adaptive evolution in

multispecies and isolated treatments, and significantly more so in multispecies

treatment. It is also important to determine whether there is anything deterministic

about this variation. For instance, do the final community structures across

replicates cluster into distinct types, where some fraction of the replicates

converges onto the same community structure? If true, is there anything different

between the treatments in terms of the cluster types and frequencies that we

observe? To this end, we performed cluster analysis on our relative abundance data.

We used consensus clustering, which provides quantitative and visual stability

evidence for estimating the number of unsupervised classes in a dataset [61].

Briefly, consensus clustering involves repeated subsampling of the data and then

applying a clustering algorithm to each subsample (see methods). In the case where

there are very distinct clusters in the data, an observation in each subsample would

always cluster with the same set of observations regardless of which portion of the

whole dataset we are using. Alternatively, if the clusters were not robust depending

on the subsample then the cluster assignment for each observation would vary. The

"rconsensus" score of two observations is essentially the frequency with which they

cluster together. This score would be 1 if the two observations always clustered into

same class in each subsample where they happened to be both present.

A clustering analysis of the relative species abundances from the multispecies

evolution experiment argued that our 96 replicates can be divided into four distinct

outcomes (Figure 3A). Visual inspection of the heat maps of consensus score

matrices for different k's (number of clusters) suggests that the most clean matrix is

for k=4, indicating that the optimal number of classes in this dataset is 4 (for a more

detailed analysis, see fig S3). We also performed the same clustering analysis for the

isolated evolution treatment which indicated that the optimal clustering of this data

is in two classes (Fig 3B, fig S4). The same analysis was performed for a randomly

generated dataset and the ancestral dataset. The results from these analyses

showed that multispecies treatment has a comparably higher clustering quality and

larger number of distinct clusters (Fig SS-S6).
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We further evaluated the quality of clustering by looking at the mean cluster

consensus for each treatment, where we took the mean of the average consensus

scores for each cluster identified. We observed that mean cluster consensus values

for both the ancestral and random datasets were lower compared to multispecies

and isolated treatments, random dataset being the least robust overall (Fig S7A). We

also confirmed that our results were robust to the clustering method used, as

similar cluster quality and number trends were observed with hierarchical

clustering of the same data (Fig S7B).

Taken together these results suggest that adaptive evolution in our experimental

system often resulted in one of several distinct community structure states in

multispecies and isolated treatments, more so than would be expected by random

variation. Moreover, multispecies treatment resulted in higher number of these

states/clusters compared to the isolated treatment, suggesting that multispecies

adaptive evolution might be less predictable compared to single species evolution.

This result is also consistent with the high beta diversity observed in the

multispecies dataset.

Next we wanted to understand the underlying mechanisms leading to this

clustering effect. To address this question, we compared each cluster to the

ancestral community structure (Fig 4A). We quickly realized that each cluster was

mostly defined by one single species doing significantly better compared to its

counterpart in the ancestral community. The most extreme example of this occurred

in cluster 1, where PP was present in very high frequency whereas it was practically

extinct in the ancestral community. We observed similar shifts in frequency in other

clusters, yet the species that seemed to be doing better was different in each case. In

cluster 2, EA was higher compared to its level in the ancestral community. PV and PF

had higher relative abundance in cluster 3 and 4 respectively. Given this

observation, we hypothesized that the behavior of each cluster could be mainly

55



driven by only one species (PP, EA, PV or PF) increasing in frequency, probably

owing to a relatively rare mutation conferring a significant selective advantage.

To test this hypothesis, we collected isolates for each species from each cluster in

the multispecies treatment (4 randomly chosen communities per cluster and 3-5

pooled colonies per species in each community, giving 4 clusters x 4 communities x

5 species = 80 isolates plus 4 PP isolates from cluster 1, totaling 84 isolates). We

then systematically created communities where each evolved isolate replaced its

counterpart species in the ancestral community (84 communities corresponding to

84 isolates from evolved communities). We then grew these communities to

equilibrium and measured relative abundances.

A principal component analysis (PCA) of the resulting species abundances was

consistent with our hypothesis that the clusters were largely driven by adaptive

evolution of the common species from each cluster. Given this hypothesis, we

expected to see clusters in PCA plots due to the possibly distinct behavior of

communities assembled with isolates we thought were driving the behavior of each

cluster (eg PP from cluster 1, EA from cluster 2 etc). Indeed, we found that

communities assembled with PP isolates from cluster 1, EA isolates from cluster 2

or PF isolates from cluster 4 had distinct community structures and clustered

separately in PCA plots (big circles in fig 4B). However, we did not observe a

separate cluster corresponding to communities prepared with PV isolates from

cluster 3. When we compared all the communities excluding the ones assembled

with our hypothesized isolates (big circles in fig 4B) against the ancestral

community structure, we found that there was little difference (fig 4C). The only

exceptions were that communities with PF or PV isolates did in general have higher

PF or PV frequencies respectively, compared with the ancestral community. This

observation suggests that in all the clusters there might be across the board

adaptation within the context of certain species.
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Finally, we compared the ancestral communities assembled with our hypothesized

isolates (PP from cluster 1, EA from cluster 2, PV from cluster 3, PF from cluster 4)

with the evolved clusters and the original ancestral community. We found that we

could reproduce the qualitative behavior of each cluster observed in multispecies

treatment (Fig 4D). In conclusion, these results suggest that the significant

clustering we observed was the result of a single species gaining an advantage and

increasing in frequency in each cluster. This strong effect seemed to produce

divergent states in the community structure across replicates, because in each

distinct outcome a different species was more abundant.

DISCUSSION

Here we developed an experimental model ecosystem that exhibits robust

coexistence of 5-6 soil bacteria species. This system allowed us to perform highly

parallel long-term co-evolution experiments. In the end, we found that although

there is variation in the final outcome of adaptive community evolution, the final

community structure seems to end up in one of a few distinct states. Moreover,

these final states depend on whether the evolution occurred in a multispecies

community or as isolated single species, suggesting that multispecies ecosystem

evolution is fundamentally different from species evolving by themselves. We found

that the discreet states we observed after multispecies evolution are the result of a

different species doing substantially better than others in each case. It would be

interesting to probe even longer term co-evolution, as the "final" ecological states

that we have examined here are of course simply a snapshot in time of the co-

evolutionary process.

We can ask whether the large changes in community structure that we observed are

really due to evolution as opposed to being manifestations of different stable

ecological states. Firstly, if this were true, we would expect to observe such variation

in ancestral communities or consolidated isolated lines. Instead, ancestral

communities displayed no significant clustering or variation and the isolated

treatment had only two clusters compared to the four observed in the multispecies

57



treatment These results are also in line with our repeated observations with

ancestral lines where, independent of the initial inoculation frequencies of the

species, the measured community structures were invariably the same after a few

cycles of transfers. Moreover, replacement experiments showed that by using

isolates from evolved communities, we could reproduce the community structures

observed at the end of the evolution experiment, suggesting that the changes in

community structure were driven by evolutionary responses rather than stochastic

fluctuations.

The predictability of adaptive evolution is a fundamental question that has puzzled

evolutionary biologists since Darwin[62]. Studies investigating the determinism of

adaptive evolution have historically focused on adaptive radiation of single species

into new environments. For instance, more than a decade ago, researchers reported

that replicated adaptive radiations of island lizards indicate that adaptive radiation

follows deterministic paths resulting in convergent evolution[63]. Since then,

subsequent studies using lizards or other animals have reinforced these results [64-

67]. In addition to such animal studies, microcosm experiments have also pointed to

similar conclusions. Evolution experiments using organisms like E. coli or viral

models found evidence of parallel evolution, whereby replicate populations evolved

convergent characteristics when adapting to new environments [58,68-71].

Similarly, instances of parallel evolution have also been observed among higher

organisms like plants and insects and also in nematode development [72-75]. These

studies suggest that at least within the context of a single species, evolution can be

surprisingly deterministic and convergent

In contrast to these previous studies, our experiments looked at adaptive evolution

of a multispecies community rather than focusing on a single species. We found that

this multispecies aspect can result in a less predictable outcome of adaptive

evolution than single species studies would suggest. Even without external

perturbations or environmental fluctuations, we observed intrinsic randomness in

evolution that comes with having a multispecies ecosystem. Nevertheless, we still
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found that the adaptive community evolution is not completely random and final

community structures cluster into several distinct types. However, more laboratory

experiments and data from wild populations are needed to validate the generality of

our results. Experiments using tractable multispecies ecosystems like ours can

improve our understanding of the predictability of community structure evolution.

MATERIALS AND METHODS

Species and media

The six soil bacteria species we used were Enterobacter aerogenes (ATCC#13048),

Serratia marcescens (ATCC#13880), Pseudomonas fluorescens (ATCC#13525),

Pseudomonas aurantiaca (ATCC#33663), Pseudomonas veronii (ATCC#700474) and

Pseudomonas putida (ATCC#12633), and they all were obtained from ATCC. The

growth media was prepared using commercially available BIOLOG EcoPlates. These

microplates contain 31 different carbon sources useful for soil community analysis.

In addition to these carbon sources, in each well there is a tetrazolium dye (5 cyano-

2,3 ditolyl tetrazolium chloride), which is reduced to a violet-fluorescent formazan

molecule, when the carbon source is oxidized by the cells. The color development

was measured by light absorption at 590nm, which quantified the productivity of

cultures. At the same time, the optical density of the cultures was measured at

750nm, where the tetrazolium dye is not absorbent. Our base media was M9

minimal media, which contained 1X M9 salts (Sigma Aldrich), 2mM MgSO4, 0.1 mM

CaCl2, 1X trace metals (Teknova). We filled the EcoPlate by adding 140uL of this

base media into each well and let the lyophilized carbon sources dissolve for 30 min.

Then, we mixed all the contents of the wells (except the blanks) to get a complex

medium containing all of the 31 carbon sources. For initial inoculation and growth

of the species before experiments, we used nutrient broth (0.3% yeast extract, 0.5%

peptone). We used nutrient agar plates (nutrient broth + 1.5% agar) to count

colonies and measure the relative abundances of species. All experiments were done

at 24C.

Evolution experiment
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From frozen stocks of ancestral lines, we directly inoculated each species separately

into nutrient broth and let them grow for 48 hrs in loose cap culture tubes without

shaking. Next, we inoculated the grown cultures into our base media and again let

the species grow separately for two cycles of transfers (48 hrs each). We diluted

these by 1/100 into M9 minimal media (w/o carbon sources) then added 10 uL of

this mixture onto 140 uL of our base media corresponding to 1/1500 dilution in

total. These cultures were inoculated into flat bottom 96 well plates, every well of

the microplate contained 150 uL of media plus cells. For each transfer, we diluted

cultures by 1/1500 into freshly prepared media. After this initial period of growth,

we made frozen stocks of these cultures and at the same time we initiated the two

treatments of the long-term evolution experiment: (1) For the multispecies

treatment, we diluted each of the individual species by 1/100 and then mixed them

by equal volume. After this, we diluted that mixture by 1/15 into freshly prepared

base media and then used this final mixture to inoculate the wells. We had 96

replicates for this treatment, and these replicates were spread over two 96 well

plates using a checkerboard pattern to mitigate risk of cross-contamination. (2) For

the isolated treatment, we diluted those same cultures for the individual species by

1/1500 and had 8 replicates for each species adding up to 48 cultures in total for six

species. These were also spread over a 96 well plate in a checkerboard pattern.

Throughout the course of the evolution experiment, every 48 hrs, cultures in both

treatments were diluted by 1/1500 into media that were freshly prepared just

before the experiment. The cultures were incubated without orbital shaking.

Measurements after the evolution experiment

After 42 cycles of transfers, we measured the relative abundances in the

multispecies treatment by plating on nutrient agar plates. For each replicate, we

diluted the final cultures by 1/106 in phosphate buffered saline, and plated 75uL of

this solution onto an agar plate. We plated each replicate twice, as during

preliminary experiments, we found that there was large variation in the total

number of colonies that showed up on plates. After 48 hrs, we counted all the

colonies on two plates together to measure the relative species abundances. For
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each replicate at least -90 colonies were counted. We also plated all 48 cultures in

the isolated evolution treatment to check for possible contamination. We found that

2 replicates of one of the species (PA) had no colonies on agar plates possibly due to

external contamination. We discarded these replicates and used the remaining ones.

We also made frozen stocks for all of these final cultures.

To prepare the consolidated communities for the isolated treatment, we randomly

chose 6 of the replicates from 8 replicates for each species. We chose 6 to balance

out the fact that we had only 6 viable replicates for one of the species (PA). Next,

after inoculation into base media from frozen cultures and growth for two cycles, we

randomly chose a replicate from the 6 replicates for each species and mixed them

equally by volume then repeated this process for 96 times to get 96 randomly

consolidated communities using the species from the isolated evolution. We diluted

these communities by 1/1500 into fresh media and let them grow for 4 cycles of

transfers after which we plated them and measured the relative species abundances

as we have done for the multispecies treatment We found that 4 of these cultures

had no growth in the end so we used the 92 remaining for our measurements. We

got visible PP survival only in 3 of the communities but in very low abundance

(-1%, 1 colony in -100). To see if this was due to the initial mixing ratios we had

used, we repeated consolidation again using the same procedure of random mixing

but this time instead of using 1/6 of volume for PP, we used a proportionately

excess amount of 1/4 in volume while the other species equally occupied the other

3/4. After 4 cycles of growth, PP was visible only in 6 communities but was still less

than 3% in frequency. We decided to use the initial dataset where we had initially

mixed all the species by equal volume, as there was no appreciable effect of

increasing the initial frequency of PP. For preparing the ancestral communities, we

revived the frozen stocks of ancestral species that were stored during the initiation

of the evolution experiment and let them grow in base media for 2 cycles then mixed

them by equal volume, and created 96 replicate communities. After 4 cycles of

transfers of these communities, we plated them and measured relative species

abundances. PP colonies were found in 4 communities, but we could count only one
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or two colonies per plating in all of these cases. We did not observe any significant

difference in community structure with or without PP either for ancestral

communities or for the communities created using isolated lines (data not shown).

Therefore, for our analyses with the ancestral and isolated treatments, we assume

that PP is essentially extinct and exclude PP data, also taking into account that these

low frequency measurements could be false positives. We also note that our

measurement resolution was not sufficient enough to measure frequencies lower

than -1% but PP could still be surviving in lower frequencies in these experiments

albeit not detectable by our measurements.

Cluster analysis

For consensus clustering, we used k-means clustering algorithm with Pearson

distance. 80% of the data was subsampled without replacement for a total of 100

iterations. This process was repeated for each k (number of clusters) and the results

from these were used these to create consensus matrices and calculate mean

consensus values for each class and each observation in the dataset. Items or

clusters were not weighted in the subsamples. We generated a random dataset by

creating 96 artificial observations, where each observation contained five frequency

variables, as in our actual relative abundance datasets. These frequency values were

assigned by drawing from a uniform distribution and then normalizing across each

observation. Having six frequency variables instead of five did not change the

results. Hierarchical clustering was performed using Euclidean distance and 'ward'

linkage. Calinski-Harabasz index is a measure of the ratio of inter-cluster variation

to within cluster variation, hence the larger this number is the better the cluster

separation and cluster compactness. These analyses were performed using R

statistical language and open source packages [61,76].

Replacement experiments

At the end of the evolution experiment we froze all the communities as mentioned

previously. To perform the replacement experiments, for each identified cluster in

the multispecies treatment, we inoculated 4 randomly selected communities into
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fresh media from the frozen stocks (4x4 = 16 communities). We propagated these

cultures for 4 cycles of transfers using the same scheme we had in the long-term

evolution experiment. Then, we plated these 16 communities and picked 3-5

colonies per species from each plate. We pooled the picked colonies for a given

species from a plated community and then inoculated those into fresh media (5

species per plate from clusters 2,3,4; and 6 species per plate from cluster 1, i.e. 3

clusters x 4 communities x 5 species = 60 isolates in total from clusters 2,3,4; plus 1

cluster x 4 communities x 6 species = 24 isolates from cluster 4). We let these

isolates grow for 2 cycles. For the replacement experiment, we mixed each isolate

with its complementary ancestral species (which were also grown for 2 cycles in

parallel with isolates). For instance, for an EA isolate, we mixed it with ancestral

species SM, PF, PA, PV. We again let these newly prepared communities grow for 4

cycles of transfers before we plated them to measure relative abundances.
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Figure 1: Species appearance on an agar plate and evolution experiment

design (A) A photograph of colonies of all six species spread plated on an agar plate.

Note the distinct colors and sizes of colonies, which enabled us to distinguish

between the species (EA: Enterobacter aerogenes, SM: Serratia marcescens, PF:

Pseudomonasfluorescens, PA: Pseudomonas aurantiaca, PV: Pseudomonas veronll and

PP: Pseudomonas putida). (B) This schematic shows the different treatments of the

evolution experiment and how they were prepared. Ancestral species were mixed to

create ancestral communities. For the multispecies treatment, again ancestral

species were mixed together to establish 96 identical multispecies communities, but

this time they were propagated as part of the long term evolution experiment For

the isolated treatment, ancestral species were inoculated separately to create

"isolated" lines with 8 replicates for each species and propagated along with the

multispecies treatment These long term evolution treatments were propagated for

-400 generations corresponding to 42 cycles of transfers into fresh media every 48

hours. In the end, multispecies communities were plated to measure relative

abundance of species in each of the 96 replicates. Isolated lines were consolidated to

make 96 multispecies communities. These consolidated communities from isolated

lines were propagated for a short time and then plated for measurements.
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Figure 2: Community structure outcomes look different across evolutionary

treatments (A) Box plots of relative abundance of each species for the replicates of

different treatments. Note the 10 outliers in multispecies treatment for PP (B) Beta

diversity for different treatments, calculated using Jensen-Shannon divergence. Bars

represent mean of 1000 bootstrap runs with sample size 96 (with replacement),

error bars too small to be visible (<le-15) (C) Stacked area plots of raw relative

abundance data for ancestral, isolated and multispecies treatments. Data is

clustered and ordered using a hierarchical clustering algorithm to aid with

visualization of distinct community structures. Horizontal axes represent

observations (Ancestor: 96 samples, cluster # k=2; Isolated: 92 samples, k=2;

Multispecies: 96 samples, k=4).
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Figure 3: Multispecies treatment results in higher number of distinct

community structures as quantified by consensus clustering (A) Consensus

matrices for multispecies treatment (B) Consensus matrices for isolated treatment

k values indicate number of clusters used in k-means algorithm. Rows and columns

correspond to observations. Note that the cleanest matrix for multispecies

treatment is at k = 4, whereas for the isolated treatment it is at k = 2 (indicated by

big squares). Consensus values range between 0 and 1, colored by white to dark

blue. Scaling is the same across all plots. A consensus value of 1 for two items means

these two items clustered together 100% of the time across all subsamples, whereas

a value of 0 means that two items never clustered together (see methods). A

dendrogram of consensus clustering results is plotted above the columns of the heat

maps, and the identified clusters are color coded.
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ancestral species with evolved isolates in the ancestral

community reproduces the clustering behavior (A) Comparison of each cluster

against ancestral community (n = 9 for cluster 1, n = 18 for cluster 2, n = 22 for

cluster 3, n= 47 for cluster 4. Species that are significantly higher in frequency

compared to their ancestral level are indicated with arrows. (B) Principal

component analysis (PCA) plots for replacement experiment data. Each circle

represents an ancestral community in which a species is replaced with an evolved

isolate from the multispecies treatment Circles are color-coded based on the

species that is replaced in the ancestral community. Big circles represent

communities in which ancestral species are replaced with evolved isolates that were

highlighted in (A) (C) Mean relative abundance for the communities shown in PCA

analysis in (B), excluding big circles. (D) Comparison of each cluster against

ancestral community and the communities created by replacement with the

hypothesized species from (A) (big circles in B). Replaced species are highlighted in

squares on the x-axis labels, error bars are 95% confidence interval around mean.
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SUPPLEMENTARY FIGURES
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Figure Sl: Carbon utilization profiles. Heat map of productivity measurements

(OD @ 750 nm) for each species on 31 different carbon sources present in the

Biolog EcoPlate (see methods). Each square represents final productivity

measurement after 48 hours of growth on an individual carbon source. Leftmost

column is blank (no carbon source). White represents no growth, with darker

squares indicating higher growth. Color scale is the same across all heat maps.
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Figure S2: Optical absorbance data for different treatments. Just before the

relative abundance measurements, micro plates containing the replicates for each

treatment were used to measure optical absorbance of the cultures at 590nm and

750nm. At 590nm, the tetrazolium dye in the media has an absorption peak. The

measurement at this wavelength gives a quantitative proxy for C02 production (or

respiration/productivity) in the cultures. At 750nm, this dye is not absorbent and

the measurement at this wavelength gives a value for optical absorbance of the

cultures due to cell density/biomass. The average of these measurements across all

replicates for different treatments is plotted. Error bars are standard deviation. We

see that there is little variation in these measurements within treatments. Moreover,

multispecies and isolated treatments are similar in their mean measurements.

However, at both 590 and 7590nm, ancestral treatment seems to have a larger

mean and relatively less variation. The blank represents measurements over

cultures inoculated with media but without cells. Cell density per optical density at

750nm were very similar across species: EA: 11.1e9 cells/mL/OD750, SM: 11.5e9
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cells/mL/OD750, PF: 10.4e9 cells/mL/OD750, PA: 11.2e9 cells/mL/OD750, PV:

11.7e9 cells/mL/OD750, PP: 10.8e9 cells/mL/OD750.
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Figure S3: Consensus clustering for multispecies treatment. (A) Consensus

matrix heat maps for k=3,4,5 and 6 (number of clusters). Rows and columns

correspond to observations (items). Consensus values range between 0 and 1,

marker by white to dark blue. Scaling is the same across all plots. A consensus value

of 1 for two items means these two items clustered together 100% of the time

across all subsamples, whereas a value of 0 means that two items never clustered

together (see methods). A dendrogram of consensus clustering results is plotted

above the columns of the heat maps, and the found clusters are color coded. (B)

Consensus cumulative distribution function plot. This plot shows the cumulative
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distribution of consensus matrix for each k (legend) estimated by a histogram of

100 bins. (C) Relative change in the area under the CDF curves (change between k

and k-1). For k = 2, the total area under the curve is plotted. (D) Mean consensus

value for each cluster plotted for k=2 through 7 (black dots). The red line

corresponds to the average of all the cluster means for a given k. (E) Item consensus

plots. The mean consensus of each item with all the other items in a cluster is

plotted. The values for the different clusters are stacked together for each item and

the stack colors correspond to the clusters indicated above the heat maps in (A).

Item consensus plots for k = 3,4 and 5 is plotted. If a sample is a stable and pure

member of a cluster, it would not share consensus with any clusters but just one.

Stacks containing more than one large bars indicate unstable members.
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Figure S4: Consensus clustering for isolated treatment. (A) Consensus matrix

heat maps for k=2,3,4 and 5 (number of clusters). Rows and columns correspond to

observations (items). Consensus values range between 0 and 1, marker by white to

dark blue. Scaling is the same across all plots. A consensus value of 1 for two items

means these two items clustered together 100% of the time across all subsamples,

whereas a value of 0 means that two items never clustered together (see methods).

A dendrogram of consensus clustering results is plotted above the columns of the

heat maps, and the found clusters are color coded. (B) Consensus cumulative

distribution function plot. This plot shows the cumulative distribution of consensus

matrix for each k (legend) estimated by a histogram of 100 bins. (C) Relative change

in the area under the CDF curves (change between k and k-1). For k = 2, the total

area under the curve is plotted. (D) Mean consensus value for each cluster plotted

for k=2 through 7 (black dots). The red line corresponds to the average of all the

cluster means for a given k. (E) Item consensus plots. The mean consensus of each
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item with all the other items in a cluster is plotted. The values for the different

clusters are stacked together for each item and the stack colors correspond to the

clusters indicated above the heat maps in (A). Item consensus plots for k = 2,3 and 4

is plotted. If a sample is a stable and pure member of a cluster, it would not share

consensus with any clusters but just one. Stacks containing more than one large bars

indicate unstable members.

73



A

k=2
Consensus CDF

S2
043M.2 - 3 4

IE'05

0.0 - 7I Ut i I

0.0 0.2 04 0.6 0.8 1.0

Consemus idax

E Item consensus k=2
141.21

0.4-
02

C

1.5 -

1.0 -

Deft.

OW -

k=4 k=5
aresa_____________

0.5- 0

0.0 -

2 3 4 5 6 7

Numnber of Ousleis

Ie consenaus W-
1.4 -
1.2 !'06-Fs.aee. .. k

0.4
0215

0.0 -

0.

i0.78-

0.5 -

0.4-

Figure S5: Consensus clustering for randomly generated data. (A) Consensus

matrix heat maps for k=2,3,4 and 5 (number of clusters). Rows and columns

correspond to observations (items). Consensus values range between 0 and 1,

marker by white to dark blue. Scaling is the same across all plots. A consensus value

of 1 for two items means these two items clustered together 100% of the time

across all subsamples, whereas a value of 0 means that two items never clustered

together (see methods). A dendrogram of consensus clustering results is plotted

above the columns of the heat maps, and the found clusters are color coded. (B)

Consensus cumulative distribution function plot. This plot shows the cumulative

distribution of consensus matrix for each k (legend) estimated by a histogram of

100 bins. (C) Relative change in the area under the CDF curves (change between k

and k-1). For k = 2, the total area under the curve is plotted. (D) Mean consensus

value for each cluster plotted for k=2 through 7 (black dots). The red line

corresponds to the average of all the cluster means for a given k. (E) Item consensus
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plots. The mean consensus of each item with all the other items in a cluster is

plotted. The values for the different clusters are stacked together for each item and

the stack colors correspond to the clusters indicated above the heat maps in (A).

Item consensus plots for k = 2,3 and 4 is plotted. If a sample is a stable and pure

member of a cluster, it would not share consensus with any clusters but just one. So,

stacks containing more than one large bars indicate unstable members.
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Figure S6: Consensus clustering for ancestral treatment (A) Consensus matrix

heat maps for k=2,3,4 and 5 (number of clusters). Rows and columns correspond to

observations (items). Consensus values range between 0 and 1, marker by white to

dark blue. Scaling is the same across all plots. A consensus value of 1 for two items

means these two items clustered together 100% of the time across all subsamples,

whereas a value of 0 means that two items never clustered together (see methods).

A dendrogram of consensus clustering results is plotted above the columns of the

heat maps, and the found clusters are color coded. (B) Consensus cumulative

distribution function plot. This plot shows the cumulative distribution of consensus

matrix for each k (legend) estimated by a histogram of 100 bins. (C) Relative change

in the area under the CDF curves (change between k and k-1). For k = 2, the total

area under the curve is plotted. (D) Mean consensus value for each cluster plotted

for k=2 through 7 (black dots). The red line corresponds to the average of all the

cluster means for a given k. (E) Item consensus plots. The mean consensus of each
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item with all the other items in a cluster is plotted. The values for the different

clusters are stacked together for each item and the stack colors correspond to the

clusters indicated above the heat maps in (A). Item consensus plots for k = 2,3 and 4

is plotted. If a sample is a stable and pure member of a cluster, it would not share

consensus with any clusters but just one. So, stacks containing more than one large

bars indicate unstable members.
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Figure S7: Comparative mean consensus plots and hierarchical clustering

results for different treatments. (A) Mean consensus plots for multispecies,

isolated, ancestral treatments and also for randomly generated data. (B) Calinski-

Harabasz validation index for hierarchical clustering results for the different

treatments. The optimal cluster number is at k, where the validation index is at its

maximum. The higher this index value is the better the clustering. The black line

represents the mean of the results for 50 randomly generated datasets (gray lines).

78



REFERENCES

1. Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:
1390-1396. Available: http://www.ncbi.nlm.nih.gov/pubmed/7466396.

2. Nowak MA (2006) Five Rules for the Evolution of Cooperation. Science 314:
1560-1563. Available:
http://www.sciencemag.org/cgi/content/abstract/314/5805/1560.

3. Frank SA (1998) Foundations of Social Evolution. Economic Analysis 82: 343-
344. Available: http://books.google.com/books?id=i84aDNaxyOEC.

4. Nowak MA, Tarnita CE, Wilson EO (2010) The evolution of eusociality. Nature
466: 1057-1062. Available:
http://www.nature.com/doifinder/10.1038/nature09205.

5. West S (2007) Social Evolution Theory in Microbes: Cooperation and Conflict
Annual Review of Ecology Evolution and Systematics 38. Available:
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.38.0
91206.095740.

6. West SA, Diggle SP, Buckling A, Gardner A, Griffin AS (2007) The Social Lives
of Microbes. Annual Review of Ecology Evolution and Systematics 38: 53-77.
Available:
http://arjournals.annualreviews.org/doi/abs/10.1 146/annurev.ecolsys.38.0
91206.095740.

7. Smukalla S, Caldara M, Pochet N, Beauvais A, Yan C, et al. (2009) FLO1 is a
variable green beard gene that drives biofilm-like cooperation in budding
yeast. Cell 135: 726-737. doi:10.1016/j.cell.2008.09.037.FLO1.

8. Queller DC, Ponte E, Bozzaro S, Strassmann JE (2003) Single-gene greenbeard
effects in the social amoeba Dictyostelium discoideum. Science 299: 105-106.
Available: http://www.ncbi.nlm.nih.gov/pubmed/12511650.

9. Rainey PB, Rainey K (2003) Evolution of cooperation and conflict in
experimental bacterial populations. Nature 425: 72-74. Available:
http://www.ncbi.nlm.nih.gov/pubmed/12955142.

10. MacLean RC, Gudelj I (2006) Resource competition and social conflict in
experimental populations of yeast Nature 441: 498-501. Available:
http://opus.bath.ac.uk/7039/.

11. Diggle SP, Griffin AS, Campbell GS, West SA (2007) Cooperation and conflict in
quorum-sensing bacterial populations. Nature 450: 411-414. Available:
http://www.ncbi.nlm.nih.gov/pubmed/18004383.

12. Chuang JS, Rivoire 0, Leibler S (2009) Simpson's paradox in a synthetic
microbial system. Science 323: 272-275. Available:
http://www.ncbi.nlm.nih.gov/pubmed/19131632.

13. Brockhurst MA, Buckling A, Gardner A (2007) Cooperation peaks at
intermediate disturbance. Current Biology 17: 761-765.
doi: 10.1016/j.cub.2007.02.057.

14. Brockhurst MA, Habets MGJL, Libberton B, Buckling A, Gardner A (2010)
Ecological drivers of the evolution of public-goods cooperation in bacteria.

79



Ecology 91: 334-340. Available:
http://www.ncbi.nlm.nih.gov/pubmed/20391997.

15. Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J (2008) Rules of
engagement: interspecies interactions that regulate microbial communities.
Annual Review of Microbiology 62: 375-401. Available:
http://www.ncbi.nlm.nih.gov/pubmed/18544040.

16. Thompson IN (1999) The Evolution of Species Interactions. Science 284:
2116-2118. Available: http://www.ncbi.nlm.nih.gov/pubmed/10381869.

17. Connell JH (1961) The influence of interspecific competition and other factors
on the distribution of the barnacle Chthamalus stellatus. Ecology 42: 710-723.
Available: http://www.esajournals.org/doi/abs/10.2307/1933500.

18. Schoener TW (1983) Field experiments on interspecific competition. The
American Naturalist 122: 240-285. Available:
http://www.jstor.org/stable/2461233.

19. Schluter D (1994) Experimental evidence that competition promotes
divergence in adaptive radiation. Science 266: 798-801. Available:
http://www.ncbi.nlm.nih.gov/pubmed/17730400.

20. Grant PR, Grant BR (2006) Evolution of character displacement in Darwin's
finches. Science 313: 224-226. Available:
http://www.ncbi.nlm.nih.gov/pubmed/16840700.

21. Korb J, Foster KR (2010) Ecological competition favours cooperation in
termite societies. Ecology letters 13: 754-760. Available:
http://www.ncbi.nlm.nih.gov/pubmed/20584170. Accessed 5 July 2011.

22. Harrison F, Paul J, Massey RC, Buckling A (2008) Interspecific competition
and siderophore-mediated cooperation in Pseudomonas aeruginosa. The
ISME journal 2: 49-55. Available: http://dx.doi.org/10.1038/ismej.2007.96.

23. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition:
surviving and thriving in the microbial jungle. Nature Reviews Microbiology
8: 15-25. Available: http://www.ncbi.nlm.nih.gov/pubmed/19946288.

24. Mitri S, Xavier JB, Foster KR (2011) Social evolution in multispecies biofilms.

Proceedings of the National Academy of Sciences 108: 10839-10846.
25. Greig D, Travisano M (2004) The Prisoner's Dilemma and polymorphism in

yeast SUC genes. Proceedings of the Royal Society of London Series B
Biological Sciences 271: S25. Available:
http://rspb.royalsocietypublishing.org/content/271/Suppl_3/S25.short

26. Gore J, Youk H, Oudenaarden AV (2009) Snowdrift game dynamics and
facultative cheating in yeast Nature 459: 253-256. Available:

http://www.ncbi.nlm.nih.gov/pubmed/19349960.
27. Reid SJ, Abratt VR (2005) Sucrose utilisation in bacteria: genetic organisation

and regulation. Applied Microbiology and Biotechnology 67: 312-321.
Available: http://www.ncbi.nlm.nih.gov/pubmed/15660210.

28. Henderson PJ, Giddens RA, Jones-Mortimer MC (1977) Transport of galactose,
glucose and their molecular analogues by Escherichia coli K12. The
Biochemical journal 162: 309-320. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid= 1164603.

80



29. Davison BH, Stephanopoulos G (1986) Effect of pH oscillations on a competing
mixed culture. Biotechnology and Bioengineering 28: 1127-1137.

30. Foster JW (2004) Escherichia coli acid resistance: tales of an amateur
acidophile. Nature Reviews Microbiology 2: 898-907. Available:
http://www.ncbi.nlm.nih.gov/pubmed/15494746.

31. Okafor N (1975) Microbiology of Nigerian Palm Wine with Particular
Reference to Bacteria. Journal of Applied Microbiology 38: 81-88. Available:
http://doi.wiley.com/10.1111/j.1365-2672.1975.tb00507.x. Accessed 26
October 2011.

32. Kuramae EE, Gamper HA, Yergeau E, Piceno YM, Brodie EL, et al. (2010)
Microbial secondary succession in a chronosequence of chalk grasslands. The
ISME journal 4: 711-715. Available:
http://www.ncbi.nlm.nih.gov/pubmed/20164861.

33. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, et al. (2011)
Succession of microbial consortia in the developing infant gut microbiome.
Proceedings of the National Academy of Sciences 108 : 4578-4585.

34. Murdoch WW (1991) The shift from an equilibrium to a non-equilibrium
paradigm in ecology. Bulletin of the Ecological Society of America 72: 49-5 1.

35. Tilman D (1982) Resource competition and community structure. Princeton
University Press.

36. Thomson JM, Gaucher EA, Burgan MF, De Kee DW, Li T, et al. (2005)
Resurrecting ancestral alcohol dehydrogenases from yeast Nature Genetics

37: 630-635. Available: http://www.ncbi.nlm.nih.gov/pubmed/15864308.
37. Molles MC (2010) Ecology: Concepts and Applications. McGraw-Hill.
38. Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and Ecology of

Species Range Limits. Annual Review of Ecology Evolution and Systematics
40: 415-436. Available:
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.1103
08.120317.

39. Ross-Gillespie A, Gardner A, Buckling A, West SA, Griffin AS (2009) Density
dependence and cooperation: theory and a test with bacteria. Evolution:
International Journal of Organic Evolution 63: 2315-2325. Available:
http://www.ncbi.nlm.nih.gov/pubmed/19453724.

40. Lesuisse E, Blaiseau PL, Dancis A, Camadro JM (2001) Siderophore uptake and
use by the yeast Saccharomyces cerevisiae. Microbiology 147: 289-298.
Available: http://www.ncbi.nlm.nih.gov/pubmed/11158346.

41. Chen J, Weimer P (2001) Competition among three predominant ruminal
cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria.
Microbiology 147: 21-30. Available:
http://www.ncbi.nlm.nih.gov/pubmed/ 11160797.

42. Flint HI, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide
utilization by gut bacteria: potential for new insights from genomic analysis.
Nature Reviews Microbiology 6: 121-131. Available:
http://www.ncbi.nlm.nih.gov/pubmed/ 18180751.

81



43. Flint HJ, Duncan SH, Scott KP, Louis P (2007) Interactions and competition
within the microbial community of the human colon: links between diet and
health. Environmental Microbiology 9: 1101-1111. Available:
http://www.ncbi.nlm.nih.gov/pubmed/17472627.

44. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, et al. (2006) Two
Routes of Metabolic Cross-Feeding between Bifidobacterium adolescentis and
Butyrate-Producing Anaerobes from the Human Gut. Society 72: 3593-3599.
doi: 10.1 128/AEM.72.5.3593.

45. Loeb SC, Hooper RG (1997) An experimental test of interspecific competition
for red-cockaded woodpecker cavities. The Journal of Wildlife Management
61: 1268-1280. Available:
http://www.jstor.org/stable/3802126?origin=crossref.

46. Caro TM, Stoner CJ (2003) The potential for interspecific competition among
African carnivores. Biological Conservation 110: 67-75. Available:
http://inkinghub.elsevier.com/retrieve/pii/S0006320702001775.

47. Youk H, Van Oudenaarden A (2009) Growth landscape formed by perception
and import of glucose in yeast Nature 462: 875-879. Available:
http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature08653.ht
ml.

48. Gancedo JM (1998) Yeast Carbon Catabolite Repression. Microbiology and
Molecular Biology Reviews 62: 334-361. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=98918&tool=p
mcentrez&rendertype=abstract.

49. Ozcan S, Vallier LG, Flick JS, Carlson M, Johnston M (1997) Expression of the
SUC2 gene of Saccharomyces cerevisiae is induced by low levels of glucose.
Yeast 13: 127-137. Available:
http://www.ncbi.nlm.nih.gov/pubmed/9046094.

50. Johnson MTJ, Stinchcombe JR (2007) An emerging synthesis between
community ecology and evolutionary biology. Trends in Ecology & Evolution
22: 250-257. Available: http://www.ncbi.nlm.nih.gov/pubmed/17296244.

51. Turcotte MM, Corrin MSC, Johnson MTJ (2012) Adaptive Evolution in
Ecological Communities. PLoS Biology 10: e1001332. Available:
http://dx.plos.org/10.1371/journal.pbio.1001332.

52. Lavergne S, Mouquet N, Thuiller W, Ronce 0 (2010) Biodiversity and Climate
Change: Integrating Evolutionary and Ecological Responses of Species and
Communities. Annual Review of Ecology Evolution and Systematics 41: 321-
350. Available: http://www.annualreviews.org/doi/abs/10.1146/annurev-
ecolsys-102209-144628.

53. De Mazancourt C, Johnson E, Barraclough TG (2008) Biodiversity inhibits
species' evolutionary responses to changing environments. Ecology Letters

11: 380-388. Available: http://www.ncbi.nlm.nih.gov/pubmed/18248449.
54. Strauss SY, Sahli H, Conner JK (2005) Toward a more trait-centered approach

to diffuse (co)evolution. New Phytologist 165: 81-89. Available:
http://www.ncbi.nlm.nih.gov/pubmed/15720623.

82



55. Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, et al. (2012)
Species Interactions Alter Evolutionary Responses to a Novel Environment.
PLoS Biology 10: e1001330. Available:
http://dx.plos.org/10.1371/journal.pbio.1001330.

56. Stinchcombe JR, Rausher MD (2001) Diffuse selection on resistance to deer
herbivory in the ivyleaf morning glory, Ipomoea hederacea. The American
naturalist 158: 376-388. Available:
http://www.ncbi.nlm.nih.gov/pubmed/18707334.

57. Burbrink FT, Chen X, Myers EA, Brandley MC, Pyron RA (2012) Evidence for
determinism in species diversification and contingency in phenotypic
evolution during adaptive radiation. Proceedings of the Royal Society B
Biological Sciences. Available:
http://rspb.royalsocietypublishing.org/content/early/2012/09/26/rspb.201
2.1669.abstract.

58. Herron MD, Doebeli M (2013) Parallel evolutionary dynamics of adaptive
diversification in Escherichia coli. PLoS Biology 11: e1OO 1490.

59. Gravel D, Bell T, Barbera C, Bouvier T, Pommier T, et al. (2011) Experimental
niche evolution alters the strength of the diversity-productivity relationship.
Nature 469: 89-92. Available:
http://www.ncbi.nlm.nih.gov/pubmed/21131946.

60. Foster KR, Bell T (2012) Competition, not Cooperation, Dominates
Interactions among Culturable Microbial Species. Current biology CB: 1-6.
doi: 10.1016/j.cub.2012.08.005.

61. Monti S, Tamayo P, Mesirov J, Golub T (2003) Consensus Clustering: A
Resampling-Based Method for Class Discovery and Visualization of Gene
Expression Microarray Data. Machine Learning 52: 91-118. Available:
http://www.springerlink.com/index/V2LN11K7071VH7V.pdf.

62. Stern DL, Orgogozo V (2009) Is genetic evolution predictable? Science 323:
746-751. Available: http://www.ncbi.nlm.nih.gov/pubmed/19197055.

63. Losos JB, Jackman TR, Larson A, De Queiroz K, Rodriguez-Schettino L (1998)
Contingency and determinism in replicated adaptive radiations of island
lizards. Science 279: 2115-2118. Available:
http://www.sciencemag.org/cgi/doi/10.1126/science.279.5359.2115.

64. Buckley TR, Attanayake D, Bradler S (2009) Extreme convergence in stick
insect evolution: phylogenetic placement of the Lord Howe Island tree lobster.
Proceedings of the Royal Society B Biological Sciences 276: 1055-1062.
Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2679072&tool=
pmcentrez&rendertype=abstract.

65. Poe S, Goheen JR, Hulebak EP (2007) Convergent exaptation and adaptation in
solitary island lizards. Proceedings of the Royal Society B Biological Sciences
274: 2231-2237. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2287374&tool=
pmcentrez&rendertype=abstract.

83



66. Reding DM, Foster JT, James HF, Pratt HD, Fleischer RC (2009) Convergent
evolution of "creepers" in the Hawaiian honeycreeper radiation. Biology
Letters 5: 221-224. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2665804&tool=
pmcentrez&rendertype=abstract.

67. Duponchelle F, Paradis E, Ribbink AJ, Turner GF (2008) Parallel life history
evolution in mouthbrooding cichlids from the African Great Lakes.
Proceedings of the National Academy of Sciences of the United States of

America 105: 15475-15480. Available:
http://dx.doi.org/10.1073/pnas.0802343105.

68. Cooper TF, Remold SK, Lenski RE, Schneider D (2008) Expression Profiles
Reveal Parallel Evolution of Epistatic Interactions Involving the CRP Regulon
in Escherichia coli. PLoS Genetics 4: 10. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2242816&tool=
pmcentrez&rendertype=abstract.

69. Bollback JP, Huelsenbeck JP (2009) Parallel Genetic Evolution Within and
Between Bacteriophage Species of Varying Degrees of Divergence. Genetics

181: 225-234. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2621170&tool=
pmcentrez&rendertype=abstract.

70. Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, et al. (2012) Repeatability
and Contingency in the Evolution of a Key Innovation in Phage Lambda.

Science 335: 428-432. Available:
http://www.sciencemag.org/cgi/doi/10.1126/science.1214449.

71. Wichman HA, Badgett MR, Scott LA, Boulianne CM, Bull JJ (1999) Different
Trajectories of Parallel Evolution During Viral Adaptation. Science 285: 422-

424. Available:
http://www.sciencemag.org/cgi/doi/10.1126/science.285.5426.422.

72. Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, et al. (2005) Role of
FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time
of Arabidopsis. Plant Physiology 138: 1163-1173. Available:
http://www.plantphysiol.org/content/138/2/1163.short.

73. ffrench-Constant RH, Pittendrigh B, Vaughan A, Anthony N (1998) Why are
there so few resistance-associated mutations in insecticide target genes?

Philosophical Transactions of the Royal Society of London - Series B:

Biological Sciences 353: 1685-1693. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1692388&tool=
pmcentrez&rendertype=abstract.

74. Stern DL, Orgogozo V (2008) The Loci of Evolution: How Predictable is
Genetic Evolution? Evolution: International Journal of Organic Evolution 62:

2155-2177. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2613234&tool=
pmcentrez&rendertype=abstract.

75. Kiontke K, Barriere A, Kolotuev I, Podbilewicz B, Sommer R, et al. (2007)

Trends, stasis, and drift in the evolution of nematode vulva development.

84



Current Biology 17: 1925-1937. Available:
http://www.ncbi.nlm.nih.gov/pubmed/18024125.

76. Wilkerson MD, Hayes DN (2010) ConsensusClusterPlus: a class discovery tool
with confidence assessments and item tracking. Bioinformatics 26: 1572-
1573. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2 881355&tool=
pmcentrez&rendertype=abstract.

85




