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This assignment should be done in a team totaling three people. 
This assignment will be graded pass-fail. 

Delays are a critical source of dynamics in nearly all systems. Thus far in our modeling, however, 
we have represented delays in causal diagrams qualitatively. In this assignment you explore the 
structure and behavior of delays and test their responses to a range of inputs. The assignment helps 
you understand the dynamics of delays so that you can use them appropriately in more complex 
models. The assignment also develops your skills in model formulation and analysis. To do this 
assignment it is essential that you read chapter 11 in the text. 

A.	 Material Delays 

�	 A1. Do the challenge on page 425 of the text (Response of Material Delays to Steps, Ramps, 
and Cycles). Note that you are asked to: 

�	 Sketch your intuitive estimate of the response of a first order material delay to the 
four test inputs shown in Figure 11-9. 

�	 To assist you, Figure 11-9 is reproduced on the following pages so you can 
sketch your estimates directly on the graphs. 

�	 Your grade will not be affected by your answer to this part of the question. 
Please be honest and sketch your responses before simulating the model; this is 
important for building your intuition about delays. 

�	 A2. After sketching your intuitive estimates, build and simulate the model for the first-order 
material delay. 

�	 The structure and equations for a first-order delay are described in the text 
(section 11.2.4). Build the delay explicitly as a stock and flow structure shown 
in Figure 11-4 (that is, do not use Vensim's built-in function DELAY1). 

�	 Set the initial value of the stock of letters in transit so that the delay is always 
initialized in equilibrium, independent of the initial value of the input. In 
equilibrium, the stock in transit is unchanging, so the inflow and outflow to the 
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� denotes a question for which you must hand in an answer, a model, or a plot. 

� denotes a tip to help you build the model or answer the question. 
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delay must be equal. Solve this equation for the equilibrium value for the stock 
in transit, and enter this expression as the initial condition for the stock in your 
model. Run your model with a constant input to confirm that it begins and 
remains in equilibrium. You do not need to hand in the equilibrium run. 

�	 We have created a “test input generator” that will make it easy for you to 
generate the step, ramp, sine wave, and other test inputs you need to run the tests. 
Download the model, TestGen.mdl, from the course website and use it to 
generate the input patterns you need. The test input generator is fully 
documented and dimensionally consistent (see the appendix). 

�	 To learn more about the parameters for the built-in functions used in the Test 
Input Generator (specified in the Appendix) and in the following exercises, use 
the pull-down “Help” menu in Vensim. Click on “Keyword Search...” and 
type in the function name (e.g., STEP), and hit Enter. 

�	 Note that the test generator has an initial value of one, so the exponential growth 
rate you need to replicate the test input in the graphs is 0.05/day. The ramp 
slope needed is 0.05/day. 

�	 Set the initial time to –5 days, the final time to 25 days, and the Time Step (dt) to 
0.125 days. Be sure to save output every time step (in the Time Bounds tab 
under Settings…, in the Model menu). 

�	 To show the relationship between the input and output, define a custom graph 
that shows the input and output rate on the same graph, and with the same scale. 
Also use the strip graph tools to examine the behavior of the stock in transit. 

�	 It may be helpful to envision the delay as the post office, with the input 
representing the mailing rate, the output representing the delivery rate, and the 
stock in transit representing the letters in the post office system. 

�	 After you run the model for each of the test inputs, compare the results to your 
intuitive estimates and comment briefly. Were your mental simulations correct? 
Why? / Why not? In particular, 

1.	 Consider the linear ramp. The response of any system to a shock consists of a 
transient, during which the relationship of input and output is changing, and a 
steady state in which the relationship between input and output is no longer 
changing (even though the input and output might both be growing, for example). 
Does the output of the delay (e.g., the delivery rate of letters) equal the input (e.g., 
the mailing rate) in the steady state for the linear ramp? Explain. 

2.	 How does the response to the sine wave depend on the delay time relative to the 
period of the cycle? In particular, as the delay time increases relative to the period of 
the cycle, what happens to the amplitude and timing of the output? 

A3. �	 Next, repeat the steps above (both mental and formal simulation) for a third order 
material delay with the same average delay time of 5 days. 

�	 Build the delay explicitly as shown in section 11.2.5. Do not use the Vensim 
built-in function DELAY3. Figure 11-6 shows a second order material delay; 
the third order delay is analogous but contains three intermediate stocks of 
material in transit (see equation 11-4). 
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� Build the third order delay in the same model as your first-order delay and use 
the same input test generator. This allows you to compare the behavior of the 
third order delay to the first order delay. 

A4. � Next, repeat the steps above (again both mental and formal simulation) for a pipeline 
delay with the same average delay time of 5 days. 

� Build the pipeline delay using the DELAYFIXED function in Vensim. The 
pipeline delay is described in section 11.2.3. To access the DELAYFIXED 
function from the variable definition dialog in VensimPLE, click on the tab 
labeled Functions; you will then see an alphabetical list of all the built in 
functions available in PLE. The syntax for the DELAYFIXED function is: 

OUTPUT = DELAYFIXED(INPUT, DELAY TIME, INITIAL OUTPUT) 

� Build the pipeline delay in the same model as your other delays so you can 
easily compare the output of the three delay types. 
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Four test inputs to a delay 

Before simulating the model, sketch the response of a first order material delay to each of these inputs, assuming a 5 day average 
delay time. 



Four test inputs to a delay 

Before simulating the model, sketch the response of a third order material delay to each of these inputs, assuming a 5 day average 
delay time. 
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Four test inputs to a delay 

Before simulating the model, sketch the response of a Pipeline delay to each of these inputs, assuming a 5 day average delay time. 
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B. Information Delays 

In the previous sections we considered material delays, where the input to the delay is a physical 
inflow of items to a stock of units in transit, and the outflow is the physical flow of items exiting the 
stock. Many delays, however, exist in channels of information feedback—for example, in the 
measurement or perception of a variable, such as the order rate for a product. 

Order Rate 

Delay 
+ 

Expected Order Rate 

In this example, the expected order rate is management’s belief about the value of the order rate. 
The expected order rate lags behind the actual order rate due to delays in measuring and reporting 
orders, and due to the time it takes managers to update their beliefs about the order rate. The 
physical order rate does not flow into the delay; rather information about the order rate enters the 
delay. For reasons you will discover below, a different structure is needed to represent these 
information delays. 

As an example of an information delay, consider the way a firm forecasts demand for its products. 
Why does forecasting inevitably involve a delay? Firms must forecast demand because it takes time 
to adjust production to changes in demand, and because it is costly to make large changes in 
production. They don’t want to respond to temporary changes in demand but only to sustained 
new trends. A good forecasting procedure should filter out random changes in incoming orders to 
avoid costly and unnecessary changes in output (setups, changeovers, hiring and firing, overtime, 
etc.) while still responding quickly to changes in trends to avoid costly stockouts and lost business. 
To do so, firms constantly revise their forecasts as conditions change. 

Consider the stream of successive forecasts rather than any particular forecast. Even though the 
firm is trying to anticipate the future order rate, the only information available upon which to base a 
forecast is information about the current or past behavior of the system. Since it takes time to 
gather the information required to forecast, and since it takes time to decide whether a change in the 
current order rate heralds a new trend or represents a random change that will rapidly reverse, 
changes in the forecast will lag behind changes in actual conditions. That is, all forecasts create 
delays in decision making. The challenge is to respond to changing rates without overreacting to 
noise, to tell which change in demand is the beginning of a new trend and which a mere random 
blip. 

One of the most widely used forecasting techniques is called “exponential smoothing” or 
“adaptive expectations.” As discussed in section 11.3.1, “Adaptive expectations” means the 
forecast adjusts (adapts) gradually to the actual stream of orders for the product. If the forecast is 
persistently wrong, it will gradually adjust until the error is eliminated. The structure of an 
exponential smoothing delay is shown in Figure 11-10.  Specifying this structure for the case of a 
demand forecast leads to the following: 
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The equation for the rate at which expectations adapt—the rate at which the forecast is revised—is: 

d(EOR)/dt = (IOR - EOR)/TEOR 
where 

EOR = Expected Order Rate (widgets/month) 
IOR = Actual Incoming Order Rate (widgets/month) 
TEOR = Time to adjust the Expected Order Rate (months) 

The “time constant” TEOR represents the time required, on average, for expectations to respond to 
a change in actual conditions. The forecast, EOR, is a stock, since the forecast is a state of the 
system, in this case representing a state of mind of the managers regarding what the future order 
rate will be. This stock remains at its current value until there is some reason to change it. In 
adaptive expectations, the stock (the managers’ belief about the future order rate) changes when 
there is a difference between the current order rate and their belief about the expected order rate. 
This structure is known as a first-order information delay, or ‘first-order exponential smoothing’. 

Build a model to represent this forecasting procedure. Your model should include the equations 
above exactly. Do not add any additional structure. 

•	 Assume TEOR is 6 months. 
•	 Assume the order rate IOR is exogenous. Use the Test Input Generator in the Appendix to 

determine the incoming order rate. You will have to change the units for time in the test 
generator from days to months. 

•	 Set the initial value of the forecast to 100 widgets/month. 
•	 Use a simulation time step of 0.25 months and simulate the model for 60 months. 
•	 Create a custom graph that traces the behavior of both IOR and EOR. 

� B1.	 What kind of feedback loop does the forecasting procedure represent? 

B2. 

�	 a. What are the units for EOR? 

�	 b. What are the units for the flow into EOR? 

B3.	 Run your model with a random input to demand. Set the Noise Standard Deviation to 0.50, 
and the Noise Start Time to 5 months. That is, the noise should have a standard deviation of 
50% of the initial input. 
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� a.	 About how much of the random noise is filtered out by exponential smoothing? 

�	 b. How does the amount of noise filtered out depend on the value of the adjustment time 
TEOR? 

�	 c.  To filter out random variation in incoming orders, should the adjustment time be long or 
short? 

B4.	 Consider the response to a step input. Set the Step Height to 0.50 and the Step Time to 5 
months. 

� a.	 About how long does it take for adaptive expectations to adjust about two-thirds of the way? 

�	 b. About how long does it take for adaptive expectations to adjust 85% of the way? 95% of 
the way? 

� c.	 What is the relationship between these adjustment times and TEOR? 

� d.	 Does the size of the step play a role in the adjustment time? 

�	 Review section 8.3 (especially 8.3.1) for information about the adjustment time and its 
function in a negative feedback system. 

B5.	 Investigate what happens when the order rate is growing linearly. Before you simulate the 
model, make a sketch of the forecast EOR over time for the case where the actual order rate, 
from an initial equilibrium, suddenly starts rising linearly (following a ramp input). Make 
your sketch before you run the model. Your grade will not be affected by your answer to 
this question.  Sketching the response you anticipate before running the model helps make 
your mental model and intuitive understanding explicit and speeds your learning. After 
you’ve drawn the behavior you expect, run the model with a ramp input with Ramp Slope = 
0.10 and Ramp Start Time = 5 months.

�	 a. Explain the behavior and compare it to your expectations (include your graph of 
expectations, even though your grade will not depend on its accuracy). 

�	 b. Is the forecast accurate in the steady state? Why or why not? A persistent difference 
between the forecast and the actual order rate in the steady state is known as “steady state 
error.” 

�	 c. Use the equation for the change in the expected order rate to derive a simple expression for 
the steady state expected order rate as a function of the actual order rate, the slope of the 
ramp, and the adjustment time. In steady state, what is the rate of change of the forecast? 

B6.	 Now test the response of the exponential smoothing structure to a fluctuating input. Set the 
amplitude of the sine wave to 0.50 and the period to 12 months, to approximate a seasonal 
cycle in demand. 

� a.	 What is the steady state behavior of the forecast? 

� b.	 How does the amplitude and timing of the forecast compare to that of the input? 
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� c.	 How the amplitude and timing of the forecast depend on the forecast adjustment time? 

B7.	 Based on your experiments, consider exponential smoothing as a forecasting technique. 

�	 a. Under what circumstances (that is, what demand characteristics) would exponential 
smoothing be a useful forecasting technique? 

� b.	 Under what circumstances would it be ineffective or even damaging? 

�	 c. Under what circumstances would you want to have a long forecast adjustment time? A 
short adjustment time? 

C.	 Response to Changing Delay Times 

Until now all our tests have considered the response of different delays to changing inputs. We 
have assumed the delay time has remained constant. Now we consider what happens when the 
delay time changes. 

The delay times for both material and information delays can change. For example, raising the 
speed limit on the interstate highways from 55 to 65 reduced the delay in the transport of raw 
materials from supplier to customer (assuming any truckers were actually obeying the 55 mph 
speed limit in the first place). Similarly, replacing a paper-based invoicing system with a globally 
integrated, real-time client-server network can reduce the delay in the perception by senior 
management of the order rate for their firm’s products. 

� C1.	 Do the Challenge "Response of Delays to Changing Delay Times" on p. 435 of the text. 

�	 For part 1 and part 2 of the challenge, do not use the computer. Be sure to sketch the 
behavior you expect for each case before you build and simulate the models. 

�	 Hand in the graphs showing your estimate of the behavior for each case. Your grade 
does not depend on the accuracy of your answer to this question.  Explain your graphs 
briefly. 

� C2. For part 3 of the challenge you will simulate the effect of the changes in delay times 
described in parts 1 and 2. To do so you need to modify the equation for the delay time in 
your models so that it can change. 

To implement the test, modify the equation for the delay time to: 

Delay Time = IF_THEN_ELSE(Time < Time to Change Delay Time,
 Base Delay Time, New Delay Time) 

where the Time to Change Delay Time is the time at which the value of the delay time will 
switch from the Base Delay Time to the New Delay Time. 

�	 The challenge does not require you to experiment with changing delay times for the 
pipeline delay. 

�	 Hand in plots of the behavior of the first- and third-order material delay when the delay 
time changes from 5 to 10 days, and from 5 to 2.5 days (all changes occur on day 5). 
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Was your intuition correct? Explain the dynamics and the equilibrium state (the 
magnitude of the stock in transit). If there are differences between the response of the 
material and information delays, explain why. 

� C3. 0 points--unless you don’t document your model, in which case the grader may deduct an 
arbitrary number of points.  Hand in the diagrams and documented equation listings for 
your models (including the first order, third order, and pipeline material delays, and for the 
information smoothing delay). 
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Appendix: Test Inputs


System dynamics modeling software provides functions for the most commonly used test inputs: 
step, pulse, ramp, sine wave, exponential, and uncorrelated (or “white”) noise, etc. These inputs are 
not necessarily intended to correspond to anything that really happened in the past or that will 
happen in the future. Rather, the inputs are designed to help you easily explore the dynamics of a 
model. With a very simple input, it is easy to see the dynamics generated by the model. More 
complicated input patterns, such as actual historical data, make it difficult to isolate the behavior 
generated by the model’s structure from the input pattern. Once the dynamics of the structure are 
understood, it is usually possible to grasp how the structure will behave with more complicated 
inputs such as the actual historical input data. 

A useful “Test Input Generator” is provided by the following structure. Note: When using this in 
other models, be sure to check the units for time and modify if necessary, along with the default 
parameters. 

Pulse Quantity Sine Amplitude 

Input 
<Time> 

Step Time 

Step Height 

Pulse Time 

<TIME STEP> 

Sine Period 

Ramp Slope 

Ramp Start Time 

Ramp End Time 

Exponential 
Growth Rate 

Exponential 
Growth Time 

Noise Start 
Time 

Noise Standard 
Deviation 

Sine Start 
Time 

Noise Seed 

Equations: 

Input=

1+STEP(Step Height,Step Time)+

(Pulse Quantity/TIME STEP)*PULSE(Pulse Time,TIME STEP)+

RAMP(Ramp Slope,Ramp Start Time,Ramp End Time)+

STEP(1,Exponential Growth Time)*(EXP(Exponential Growth Rate*Time)-1)+

STEP(1,Sine Start Time)*Sine Amplitude*SIN(2*3.14159*Time/Sine Period)+

STEP(1,Noise Start Time)*RANDOM NORMAL(-4, 4, 0, Noise Standard


Deviation, Noise Seed)


~ Dimensionless

~ The test input can be configured to generate a step, pulse, linear


ramp, exponential growth, sine wave, and random variation. The initial value

of the input is 1 and each test input begins at a particular start time. The

magnitudes are expressed as fractions of the initial value.




13 

Step Height=0

~ Dimensionless

~ The height of the step increase in the input.


Step Time=0

~ Day

~ The time at which the step increase in the input occurs.


Pulse Quantity=0

~ Dimensionless*Day

~ The quantity added to the input at the pulse time.


Pulse Time=0

~ Day

~ The time at which the pulse increase in the input occurs.


Ramp Slope=0

~ 1/Day

~ The slope of the linear ramp in the input.


Ramp Start Time=0

~ Day

~ The time at which the ramp in the input begins.


Ramp End Time=1e+009

~ Day

~ The end time for the ramp input.


Exponential Growth Rate=0

~ 1/Day

~ The exponential growth rate in the input.


Exponential Growth Time=0

~ Day

~ The time at which the exponential growth in the input begins.


Sine Start Time=0

~ Day

~ The time at which the sine wave fluctuation in the input begins.


Sine Amplitude=0

~ Dimensionless

~ The amplitude of the sine wave in the input.


Sine Period=10

~ Day

~ The period of the sine wave in the input.


Noise Seed=1000

~ Dimensionless

~ Varying the random number seed changes the sequence of realizations


for the random variable.


Noise Standard Deviation=0

~ Dimensionless

~ The standard deviation in the random noise. The random fluctuation


is drawn from a normal distribution with min and max values of +/­

4. The user can also specify the random number seed to replicate
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simulations. To generate a different random number sequence,

change the random number seed.


Noise Start Time=0

~ Day

~ The time at which the random noise in the input begins.


********************************************************

.Control


********************************************************~

Simulation Control Parameters


|


FINAL TIME = 25

~ Day

~ The final time for the simulation.


INITIAL TIME = -5

~ Day

~ The initial time for the simulation.


SAVEPER =

 TIME STEP

~ Day

~ The frequency with which output is stored.


TIME STEP = 0.125

~ Day

~ The time step for the simulation.
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A Note on Random Noise 

The random input is useful to simulate unpredictable shocks. The RANDOM_NORMAL function 
in Vensim samples from a normal distribution with parameters the user specifies. The function has 
the following syntax: 

RANDOM_NORMAL (min, max, mean, std dev, seed) 

Vensim uses a default random number “seed.” You can specify a different seed by defining a 
constant called “Noise Seed” in your model and setting it equal to some value (e.g. Noise Seed = 
1000). Vensim generates a single random sequence for any given seed. Let’s say the sequence is: 
0.500, 0.213, 0.678, 0.932, 0.340, 0.015. If there is a single random number function in the model 
it will simply yield the random sequence. If there are two or more random functions, the functions 
will take turns accessing the sequence. For example, if you have two functions, the first will yield 
0.5, 0.678, 0.34; and the second will yield 0.213, 0.932, 0.015. If you run two simulations with the 
same seed, you will get exactly the same sequence of random numbers. This is important so that 
you can compare two runs with different policies and be sure the differences in behavior are due 
only to the policies and not to different realizations of the random number generator. When you do 
want to examine runs with different realizations of the random process, you need to change the 
value of the random number seed. 

Note also that the use of a function such as RANDOM_NORMAL means a new random number 
is selected every time step. Cutting the time step in half would then double the number of random 
shocks to which the model is subjected, and increase the highest frequency represented in the 
random signal. This is generally not good modeling practice. In realistic models, one must not 
only select the standard deviation of any random processes, but also specify its frequency spectrum 
(or, equivalently, the autocorrelation function). Failure to do so can lead to spurious results and 
make your model overly sensitive to the time step. These issues are discussed in Appendix B. 

A Note on the Pulse Function 

The pulse function is used to simulate the effect of instantaneously adding a fixed quantity Q to a 
variable. To ensure the entire quantity is added all at once (within a single time step, or DT [delta 
time]), the duration of the pulse is set to the smallest interval of time in the model, that is, to the time 
step DT. The height of the pulse is then the quantity to be added divided by the time step in the 
model, Q/DT. The inflow increases by the height of the pulse and remains at the higher level for 
one time step, so that the total quantity added to the accumulation is (Q/DT)*DT = Q units. 


