
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2014-027 October 24, 2014

tBurton: A Divide and Conquer Temporal Planner
David Wang and Brian C. Williams

tBurton: A Divide and Conquer Temporal Planner

David Wang and Brian Williams
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

Planning for and controlling a network of interacting de-
vices requires a planner that accounts for the automatic
timed transitions of devices while meeting deadlines and
achieving durative goals. For example, a planner for an
imaging satellite with a camera intolerant of exhaust
would need to determine that opening a valve causes
a chain reaction that ignites the engine, and thus needs
to shield its camera. While planners exist that support
deadlines and durative goals, currently, no planners can
handle automatic timed transitions. We present tBurton,
a temporal planner that supports these features while
additionally producing a temporally least-commitment
plan. tBurton uses a divide and conquer approach: divid-
ing the problem using causal-graph decomposition and
conquering each factor with heuristic forward search.
The ‘sub-plans’ from each factor are unified in a conflict
directed search, guided by the causal graph structure.
We describe why tBurton is fast and efficient and present
its efficacy on benchmarks from the International Plan-
ning Competition.

Introduction
Embedded machines are being composed into ever more
complex networked systems, including earth observing sys-
tems and transportation networks. The complexity of these
systems require automated coordination, but controlling
these systems pose unique challenges: timed transitions – af-
ter turning a projector off a cool-down period must be obeyed
before the projector will turn on again; periodic transitions
– a satellite’s orbit provides predictable time-windows over
when it will be able to observe a phenomenon; required con-
currency (Cushing et al. 2007), – a communication chan-
nel must be open for the duration of a transmission. Fur-
thermore, a user may wish to specify when different states
need to be achieved (time-evolved goals) and expect a plan
that allows flexibility in execution time (a temporally least-
commitment plan).

While there has been a long history of planners developed
for these systems, no single planner supports this set of fea-
tures. Model-based planners, such as Burton (Williams and
Nayak 1997), the namesake of our planner, have exploited
the causal structure of the problem in order to be fast and
generative, but lack the ability to reason over time. Time-
line based planners such as EUROPA (Frank and Jónsson
2003) and ASPEN (Chien et al. 2000) can express rich

notions of metric time and resources, but have tradition-
ally depended on domain-specific heuristics to efficiently
guide backtracking search. Finally, metric-time heuristic
planners (Coles et al. 2010; Benton, Coles, and Coles 2012;
Röger, Eyerich, and Mattm̈uller 2008) have been developed
that are domain-independent, fast and scalable, but lack sup-
port for important problem features such as timed and peri-
odic transitions.

tBurton is a fast and efficient partial-order, temporal plan-
ner designed for networked devices. Our overall approach is
divide and conquer, a.k.a factored planning (Amir and En-
gelhardt 2003), but we leverage insights from model, time-
line, and heuristic-based planning. Like Burton, tBurton fac-
tors the planning problem into an acyclic causal-graph and
uses this structure to impose a search ordering from child to
parent. Associated with each factor is a timeline on which the
plan will be constructed. Timelines help maintain locality of
the causal information, thereby reducing the need for time-
consuming threat-detection steps common in partial-order
planning. To find a plan, we use a conflict directed search
that leverages the efficiency of a heuristic-based sub-planner
to completely populate the timeline of a factor, before re-
gressing the sub-goals of that plan to the timeline of its par-
ent.

The contributions of this paper are three fold: First, we in-
troduce a planner for networked devices that support a set of
features never before found in one planner. Second, we intro-
duce a new approach to factored planned based on timeline-
based regression and heuristic forward search. Third, we
demonstrate the effectiveness of this approach on planning
benchmarks.

We start by elaborating more on tBurton’s approach in the
context of prior work and introduce a running example. We
then define our notation, before presenting the algorithms
underlying tBurton. Finally, we close with an empirical val-
idation on IPC benchmarks.

Background
Divide and conquer is the basic principal behind factored
planning, but is only part of the story. A factored planner
must decide how to factor (divide) the problem, how to plan
for (conquer) each factor,andhow to unify those plans.

Divide Key to tBurton’s approach to factored planning is
exploiting the benefits of causal-graph based factoring in
partial-order, temporal planning.

tBurton inherits its causal reasoning strategy from name-
sake, Burton (Williams and Nayak 1997), a reactive, model-
based planner demonstrated on the Deep Space-One space-
craft. Burton, exploited the near-DAG structure of its do-
main and grouped cyclicaly-dependent factors to maintain
an acyclic causal graph. The causal graph could then be
used to quickly determine a serialization of subgoals. Even
though this strategy is not optimal in the general case, com-
plexity analysis has shown it is difficult to do better in the
domain independent case (Brafman and Domshlak 2006;
2003).

Despite the lack of optimality, the clustering of variables
identified by an acyclic causal-graph has important ramifica-
tions. Goal-regression, partial-order planners (Penberthy and
Weld 1992; Younes and Simmons 2003) traditionally suffer
from computationally expensive threat detection and resolu-
tion, where interfering actions in a plan must be identified
and ordered. Factoring inherently identifies the complicat-
ing shared variables, reducing the number of cases that must
be checked for interference. Furthermore, threat resolution is
equivalent to adding temporal constraints to order sub-plans
during composition – reducing the number of threats under
consideration also reduces the difficulty of temporal reason-
ing.

Conquer In order to plan for each factor, tBurton uses a
heuristic-based temporal planner. Heuristic-based planners,
and esp. heuristic forward search planners have scaled well
(Röger, Eyerich, and Mattm̈uller 2008; Coles et al. 2010;
Vidal 2011), and consistently won top places in the Inter-
national Planning Competition. Using a heuristic forward
search planner (henceforth sub-planner) allows tBurton to
not only benefit from the state-of-the-art in planning, but de-
grade gracefully. Even if a problem has a fully connected
causal-graph, and therefore admits only one factor, the plan-
ning time will be that of the sub-planner plus some of tBur-
ton’s processing overhead.

tBurton plans for each factor by first collecting and order-
ing all the goals for that factor along its timeline. The sub-
planner is then used to populate the timeline by first planning
from the initial state to the first goal, from that goal to the
next, and so on. The problem presented to the sub-planner
only contains variables relevant to that factor.

Unify Sub-plans are unified by regressing the subgoals re-
quired by a factor’s plan, to parent factors. Early work in fac-
tored planning obviated the need for unification by planning
bottom-up in the causal-graph. Plans were generated for each
factor by recursively composing the plans of its children,
treating them as macro-actions (Amir and Engelhardt 2003;
Brafman and Domshlak 2006). This approach obviated the
need for unifying plans at the cost of storing all plans. Sub-
sequent work sought to reduce this memory overhead by us-
ing backtracking search through a hierachical clustering of
factors called a dtree (Kelareva et al. 2007). While tBurton
does not use a dtree, we do extend backtracking search with
plan caching and conflict learning in order to more efficiently
unify plans.

Projector Example A running example we will use in the
remainder of this paper involves a computer, projector, and

Figure 1: A simple computer-projector system represented as
Timed Concurrent Automata.

connection between them, which are needed to give a presen-
tation. The computer exhibits boot-up and shutdown times.
The projector exhibits similar warm-up and cool-down pe-
riods, but will also shutdown automatically when discon-
nected from the computer. Figure 1 depicts this example in
tBurton’s native, automata formulation.

Problem Formulation
The representation tBurton uses for the planning problem in-
herits from prior work in extending Concurrent Constraint
Automata (CCA) based reasoning to time (Ingham 2003). It
can be viewed as a variation on timed-automata theory (Alur
and Dill 1994), where transitions are guarded by expressions
in propositional state-logic rather than symbols from an al-
phabet.

Formally, the planning problem tBurton solves is the tu-
ple, 〈TCA, SPpart〉, whereTCA is a model of the system
expressed as a set of interacting automata calledTimed Con-
current Automata, andSPpart is our goal and initial state
representation which captures the timing and duration of de-
sired states as aPartial State Plan. We represent our plan as
a Total State PlanSPtotal, which is an elaboration ofSPpart

that contains no open goals, and expresses not only the con-
trol commands needed, but the resulting state evolution of
the system under control.

Timed Concurrent Automata

Definition 1. aTCA, is a tuple〈L, C,U ,A〉, where:

• L is a set of variables,l ∈ L, with finite domainD(l), rep-
resenting locations within5 the automata. An assignment
to a variable is the pair(l, v), v ∈ D(l).

• C is a set of positive, real-valued clock variables. Each
clock variable,c ∈ C , represents a resettable counter that
increments in real-time, at the same rate as all other clock
variables. We allow the comparison of clock variables to
real valued constants,c op r, whereop ∈ {≤, <, =, >,≥
}, r ∈ R, and assignment of real-valued constants to clock
variablesc := r, but do not allow clock arithmetic.

• U is a set of control variables,u ∈ U , with finite domain
D(u), representing commands with which users outside
theTCA can control them.

• A is a set of timed-automata,A∈A,.

A TCA can be thought of as a system, where the location
and clock variables maintain internal state, while the control
variables provide external inputs. The automata that com-
pose theTCA are the devices of our system.

Definition 2. A single automaton,A is the 5-tuple
〈l, c, u,T, I〉.

• l ∈ L is a location variable, whose values represent the
locations over which this automata transitions.

• c ∈ C is the unique clock variable for this automaton.
• u ∈ U is the unique control variable for this automaton.
• T is a transition function, that associates with a start and

end locationls, le a guardg and a reset value for clock
c := 0. A guard is expressed in terms of propositional for-
mulas with equality,ϕ, where:ϕ ::= true | false |
(lo = v) | (u = v) | (c op r) | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2.
The guard can be expressed only in terms of location vari-
ables not belonging to this automaton,lo ∈ L\l, and the
control and clock variable of this automaton. For brevity,
we will sometimes use the expressionl 6=v in place of
¬(l = v). The automaton is said to instantaneously tran-
sition from ls to le and reset its clock variable when the
guard is first evaluated true. More conveniently, we also
define the related next-state function,t(g, ls) → le.

• I is a function that associates with each location an in-
variant, a clock comparison of the formc < r or c ≤ r
that bounds the maximum amount of time an automata can
stay in that location.

In the projector example (figure 1), the projector has
locationsOff , WarmUp, On, Waiting , Confirm , and
CoolDown . The transitions, represented by directed edges
between the locations, are labeled by guards that are a func-
tion of other location variables, clock variables (denoted by
c), and control variables (denoted bycmd). Invariants label
some states, such asWarmUp, which allows us to encode the
bounded-time requirement that the projector must transition
from WarmUp to On in 30.

An automaton iswell formedif there exists a unique next-
state for all possible combination of assignments to location,
control, and clock variables. With regards to the transitions,
an automaton is said to bedeterministicif for any ls only
the guardg of one transition can be true at any time. Fig-
ure 2 depicts the set of next-states from the ‘Waiting’ state
of the well-formed, deterministic Projector automaton. Note
that there is exactly one possible next-state for each combi-
nation of inputs, and a unique next-state at the upper-bound
of the invariant. In order to produce plans with predictable
behavior, tBurton must plan overTCA models consisting of
well-formed, deterministic automata.

State Plans
To controlTCA, we need to specify and reason about exe-
cutions (runs) of the system in terms of state trajectories; we
represent these as state plans. A state plan specifies both the
desired (goals) and required (plan) evolution of the location

Figure 2: A graphical representation of the possible set of next-
states from the Waiting state of the Projector automaton. a well-
formed and deterministic automaton.

and command variables through a set of timelines we refer to
as a statehistories. The temporal aspect of these histories and
the relationship between events within them are expressed
through simple temporal constraints (Dechter 2003). The
flexibility afforded by simple temporal constraints allows the
state plan to be a temporally least commitment specification,
which is important in enabling plan executives (Levine 2012;
Muscettola, Morris, and Tsamardinos 1998) to adapt to a
range of disturbances without the need to replan.

Definition 3. a HistoryH is a tuple〈EV,EP 〉 where:
EV = {e1, e2, ..., en}, is a set of eventsei (that represent
positive, real-valued time points), and
EP = {ep1, ep2,, epn}. is a set of episodes, where each
episode,ep = 〈ei, ej , lb, ub, sc〉, associates with a tempo-
ral constraintlb ≤ ej − ei ≤ ub, a state constraintsc ex-
pressed as a propositional formula over location and control
variables.

Definition 4. a State PlanSP is a tuple 〈GH,VH,J 〉
where:

• GH is agoal history, a type of history in which episodes
represent thedesired evolution of location and control
variables.

• VH is a set of value histories,V H ∈ VH. Eachvalue his-
tory, V H , is a type of history that represents the planned
evolution of locations or control variables. The state con-
straints in a value history are restricted to contain only
variable assignments and only assignments to the vari-
ables to which the value history is associated. As such,
a value history represents the trace of the corresponding
variables.

• J is a justification, a type of episode with a state con-
straint of valuetrue , which is used to relate the temporal
occurrence of events in goal histories to events in value
histories.

As with many partial-order planners, tBurton searches
over a space of partial plans, starting from the partial state-
planSPpart and elaborating the plan until a valid total plan
SPtotal, in which all goals are closed, is reached. State plans
allow tBurton to not only keep track of the plan (through
value histories), but also keep track of why the plan was cre-
ated (goal histories). This is useful for post-planning vali-
dation, but also allows tBurton to keep track of open-goals
during the planning process.

Semantics of TCAs and State Plans
Until now, we have used the wordsrun, trace, closed, valid,
and least-commitmentin a general sense. We now return to
formalize these definitions, starting with the semantics of
TCAs and their relation to state plans.

The run of a single timed-automaton,Aa, can
be described by its timed state trajectory,Sa =
((la0, 0), (la1, ta1)..., (lam, tam)), a sequence of pairs
describing the location and time at which the automaton
first entered each state.la0 is the initial assignment to the
location variable ofAa. We say a run((lai, tai), (laj , taj))
is legal if two conditions are met. First, iflai has invariant
guard c < r, then taj − tai < r must be true. Second,
if there exists a transition between locationslai to laj ,
guarded byg, the first timeg became true in the interval
from tai to taj must be at timetaj . A trace in timed
automata theory is usually defined as the timed-trajectory of
symbols, a word. Relative to TCAs, this corresponds to the
timed trajectory of the guard variables. ForTCAs, where
automata asynchronously guard each other through their
location variables, a trace and run are almost identical, with
the exception that a trace for aTCA would also include the
timed state trajectory of control variables used in guards. A
trace for aTCA therefore captures the evolution of all the
variables.

Definition 5. closed.A goal-episode with constraintscg

is considered trivially closed, ifscg evaluates to true, and
trivially un-closable, if it evaluates to false. Otherwise, a
goal-episode is consideredclosedif there is a co-occurring
episode in a value-history whose constraint entails the goal’s
constraint. Formally, a goal-episode〈egs, ege, lbg, ubg, scg〉
is closed by a value-episode〈evs, eve, lbv, ubv, scv〉, if
scv |= scg, and the events are constrained such thatevs =
egs and eve = ege. A goal appearing in the goal-history
which is not closed isopen.

Definition 6. valid. In general,SPtotal is a valid plan for
the problem〈TCA, SPpart〉, if SPtotal has noopengoal-
episodes,closesall the goal-episodes inSPpart, and has
value-histories that both contain the value history ofSPpart

and is a legal trace of theTCA.
For tBurton, we help ensureSPtotal is a valid plan by in-

troducing two additional requirements. First, we require that
SPpart contains an episode in the value history of each loca-
tion variable,l, whose end event must precede the start event
of any goal onl, thus providing a complete ‘initial state’.
Second we require thatSPpart be a subgraph ofSPtotal.
These two additional requirements allow us to simplify the
definition of valid:SPtotal is a valid plan if it has no open
goals and is a trace of the TCA.

To ensureSPtotal is temporally,least commitment, the
state plan must be consistent, complete, and minimal with
respect to the planning problem. A valid state plan is already
consistentand completein that it expresses legal behavior
for the model and closes all goals. We consider a state plan
to beminimal if relaxing any of the episodes (decreasing the
lower-bound, or increasing upper-bound) in the histories ad-
mit traces of the TCA that are also legal. Note, that by the
definition of the state plan, tBurton cannot return plans con-
taining either disjunctive temporal or disjunctive state con-
straints.

tBurton Planner
The tBurton planner consists of several algorithms, but the
fundamental approach is to plan in a factored space by per-

forming regression over histories. Practically, this search in-
volves: 1. Deciding which factor to plan for first. This scopes
the remaining decisions by selecting the value history we
must populate and the goal-episodes we need to close. 2.
Choosing how to order the goal-episodes that factor can
close 3. Choosing a set of value-episodes that should be
used to close those goal-episodes. 4. Choosing the plans
that should be used to achieve the value-episodes. 5. And
finally, extracting the subgoals of the value history (guards)
required to make the value-history a legal trace of the au-
tomata and adding corresponding goal-episodes to the goal
history. These steps repeat until a plan is found, or no choices
are available.

As a partial order planner, tBurton searches over variations
of the state plan. Since we use the causal graph to define a
search order, and subgoal extraction requires no search, tBur-
ton only has three different choices with which to modify
SPpart.:

1. Select a goal ordering.Since actions are not reversible
and reachability checking is hard, the order in which goals
are achieved matters. tBurton must impose a total order-
ing on the goals involving the location of a single automa-
ton. Recall that since an automaton can have no concur-
rent transitions, a total order does not restrict the space of
possible plans for any automaton. Relative toSPpart, im-
posing a total order involves adding episodes to the goal
history of the formep = 〈ei, ej , 0,∞, true〉, for eventsei

andej that must be ordered.

2. Select a value to close a goal.Since goals can have con-
straints expressed as propositional state-logic, it is possi-
ble we may need to achieve disjunctive subgoals. In this
case, tBurton must select a value that entails the goal.
To properly close the goal (definition 5), tBurton must also
represent this value selection as an episode added to the
value history of the appropriate automata or control vari-
able, and introduce justifications to ensure the .

3. Select a sub-plan to achieve a value.The sub-plan tBur-
ton must select need only consider the transitions in a
single automaton,A. Therefore, the sub-plan must be se-
lected based on two sequential episodes,eps epg, in the
value history ofA (which will be the initial state and goal
for the sub-plan), and the set-bound temporal constraint
that separates them. The method tBurton uses to select this
sub-plan can be any blackbox, but we will use a heuris-
tic forward search, temporal planner. To properly add this
sub-plan toSPpart, tBurton must add the plan to the value
history and introduce any new goals this plan requires of
parent automata.

Adding the plan to the value history is a straightforward
process of representing each action in the plan as a sequen-
tial chain of episodesep1, ep2, ..., epn reaching from the end
event ofeps to the start event ofepg. Introducing goals is a
bit trickier. We must introduce subgoals for all episodes in
the value history corresponding to the sub-plan,epi, as well
asepg (for which we did not introduce goals as a result of
the previous type of plan-space action, selecting a value to
close a goal). The purpose of these goals is to ensure the
parent automata and control variables have traces consistent
with the trace (value-history) ofA. There are two types of

goals we can introduce: One is a maintenance related goal,
that ensuresA is not forced by any variables it depends on
to transition early out ofepi; The other expresses the goal
required to effect a transition.

To formalize the modifications toSPpart, defineep1 =
〈es1, ee1, lb1, ub1, sc1〉 as a generic placeholder for either
episodeepi or epg in the value history ofA, for which
we need to introduce goals. We similarly defineep2 as the
episode that immediately followsep1. Sinceep1 (and simi-
larly for ep2) is in the value history, we know from definition
4 thatsc1 can only involve an assignment tol, the location
variable ofA. Let’s also identify the set of transition func-
tions of the form,T = 〈ls, le, g, c := 0〉 [def. 2], for which
sc1 is the assignmentl = ls.

The maintenance goal requires the following additions: A
new goal episode for eachT wheresc2 is not the assign-
ment l = le, of the form epnew = 〈es1, ee1, 0,∞,¬g〉.
The goal required to affect a transition requires both a new
goal episode and a justification. We add one goal episode
for T where sc2 is the assignmentl = le, of the form
epnew = 〈ee1, enew, 0,∞, g〉. We also add a justification of
the formJ = 〈ee1, enew, 0,∞〉. These last two additions en-
sure that as soon as the guard of the transition is satisfied,A
will transition to its next state.

Algorithm Specifics At this point we have defined many
of the underlying details of the tBurton algorithm. In order
to maintain search state, the algorithm uses a queue to keep
track of the partial plans,SPpart that it needs to explore.
For simplicity, one can assume this queue is FIFO, although
in practice, a heuristic could be used to sort the queue. To
make search more efficient, we make two additional modi-
fications to theSPpart we store on the queue. First, we an-
notateSPpart with which of the three choices it needs to
make next. The second involves the use of Incremental Tem-
poral Order (ITO). When tBurton needs to select a goal or-
dering for a given partial plan, it could populate the queue
with partial plans representing all the variations on goal or-
dering. Since storing all of these partial plans would be very
memory intensive, we add to the partial plan a data structure
from ITO, which allows us to store one partial plan, and poll
it for the next temporally consistent variation in goal order-
ing.

Unifying a Goal History

One of the choices that tBurton needs to make is how to or-
der the goals required of an automaton. More specifically,
given a set of goal-episodes, we want to add temporal con-
straints relating the events of those goal-episodes, so any
goal-episodes that co-occur have logically consistent guards.
By computing the total order over all the goal-episodes we
can discover any inconsistencies, where, for example two
goal-episodes could not possibly be achieved. In practice,
computing the total order of goal-episodes is faster than
computing a plan, so we can discover inconsistencies inher-
ent in the set of goal-episodes faster than we can discover
that no plan exists to get from one goal-episode to the next.

Our incremental total order algorithm builds upon work
which traverses a tree to enumerate all total orders givena

Algorithm 1 : ITO(ITOdata, SPpart, l)
Input : The ITO data structureITOdata, Partial State PlanSPpart, and the

variable for which we want to unify the goal histories.
Output : Partial State PlanSPpart with the a total order over the goal episodes

of l.
while Truedo1

//return the total order over all events inSPpart;2
total-order = ITOdata.next();3
if total-order = null then4

return null;5

started-goal-episodes =∅;6
for eacheventin total-orderdo7

ep =get episodestartedby event(SPpart,event);8
if (ep != null) and (ep.guard.contains(l))then9

for each episode ep2 instartedgoal episodesdo10
if guard(ep) ∧ guard(ep2) = false then11

continue;12
else13

startedgoal episodes =startedgoal episodes∪ ep;14

ep = event endsan episode(SPpart,event));15
if (ep != null) and (ep.guard.contains(event))then16

startedgoal episodes =startedgoal episodes\ ep;17

// induce the total order in the goal episodes of the partial plan.;18
for each sequential pair of events{e1, e2} in total-orderdo19

SPpart.add-episode(e1,e2,0,∞);20

If ITC(SPpart) is true, returnSPpart. Otherwise, continue.21

partial order (Ono and Nakano 2005). We modify their algo-
rithm into an incremental one consisting of a data structure
maintaining theposition in the tree, an initialization function,
init , and an incremental function,next , which returns the
next total order.

Our ITO algorithm is similarly divided into two pieces.
The initITO algorithm, not shown, creates the ITO data
structure by callinginit on SPpart, treating the episodes
as partial orders.ITO , as given in algorithm 1, can then be
called repeatedly to enumerate the next temporally consis-
tent goal ordering.

Causal Graph Synthesis and Temporal Consistency

We use existing algorithms for Causal Graph Synthesis and
Incremental Temporal Consistency (ITC), so we briefly mo-
tivate their purpose and use.

The Causal Graph Synthesis (CGS) algorithm is based on
the algorithm used for Burton (Williams and Nayak 1997),
and is simple to describe. Given a TCA, CGS checks the de-
pendencies of each automaton in TCA and creates a causal
graph. If the causal graph contains cycles, the cycles are col-
lapsed and the product of the participating automata are used
to create a new compound automata. Finally, each automaton
in the causal graph is numbered sequentially in a depth-first
traversal of the causal graph starting from 1 at a leaf. The
numbering imposes a search order (with 1 being first), which
removes the need to choose which factor to plan for next.

The ITC algorithm is used to check whether the partial
plan SPpart is temporally consistent, or that the temporal
constraints in goal, value histories, and justifications are sat-
isfied. Since tBurton will perform this check many times
with small variations to the plan, it is important this check be
done quickly. For this purpose we use the incremental tem-
poral consistency algorithm defined in (Shu, Effinger, and
Williams 2005).

Figure 3: An example TCA automaton for a generic PDDL
grounded action.

Mapping PDDL to TCA
Even though tBurton reasons over TCAs, it is still a capable
PDDL planner. In order to run tBurton on PDDL problems,
we developed a PDDL 2.1 (without numeric fluents) to TCA
translator. Here, we provide only a sketch of this translator.

In order to maintain required concurrency, the translator
first uses temporal invariant synthesis (Bernardini and Smith
2008) to compute a set of invariants. An instance of an in-
variant identifies a set of ground predicates for which at most
one can be true at any given time. We select a subset of these
invariant instances that provide a covering of the reachable
state-space, and encode each invariant instance into an au-
tomaton. Each possible grounding of the invariant instance
becomes a location in the automata.

Each ground durative action is also translated into an au-
tomaton (Figure 4). Three of the transitions are guarded by
conditions from the corresponding PDDL action, translated
into propositional state logic over location variables. An-
other transition usesε to denote a small-amount of time to
pass for the start-effects of the action to take effect prior to
checking for the invariant condition. A fifth transition is used
to reset to the action.

Finally, the transitions of each invariant-instance based
automata is labeled with a disjunction of the states of the
ground-action automata that affect its transition.

Inherent in this mapping is an assumption that PDDL du-
rative actions will not self-overlap in a valid plan. Planning
with self-overlapping durative actions in PDDL is known to
be EXPSPACE, without is PSPACE (Rintanen 2007). This
suggests that tBurton may solve a simpler problem, but the
actual complexity of TCA planning with autonomous transi-
tions has yet to be addressed. In the meantime, if the number
of duplicate actions can be known ahead of time, they can be
added as additional ground-action automata.

Results
We benchmarked tBurton on a combination of IPC 2011
and IPC 2014 domains. Temporal Fast Downward (TFD)
from IPC 2014 was used as an ‘off-the-shelf’ sub-planner for
tBurton because it was straight-forward to translateTCAs
to the SAS representation used by TFD (Helmert 2006).
For comparison, we also benchmarked against YAHSP3-MT
from IPC 2014, POPF2 from IPC 2011, and TFD from IPC
2014, the winner or runners up in the 2011 and 2014 tempo-
ral satisficing track (Table 1). Each row represents a domain.
Columns are grouped by planner and show the number of
problems solved (out of 20 for each domain) and the IPC
score (out of 20, based on minimizing make-span). Rows

Figure 4: Benchmark results on IPC domains

with interesting results between TFD and tBurton are itali-
cized, and the best scores in each domain are bolded. The
tests were run with scripts from IPC 201 and were limited to
6GB memory and 30 minute runtime.

In general, tBurton is capable of solving approximately
the same number of problems as TFD with the same quality,
but for problems which admit some acyclic causal factoring
(parcprinter, satellite, and TMS), tBurton performs particu-
larly well. On domains which have no factoring, tBurton’s
high-level search provides no benefit and thus degrades to
using the sub-planner. This often resulted in tBurton receiv-
ing the same score as its subplanner, TFD (elevators, park-
ing, openstack). While the same score often occurs when
TFD is already sufficiently fast enough to solve the problem,
there are a few domains where tBurton’s processing over-
head imposes a penalty (floortile, sokoban). A nice benefit of
using tBurton is that it is capable of solving problems with
required concurrency. For TMS, tBurton is able to consis-
tently solve more problems than the other planners. How-
ever, the IPCScore of tBurton is lower than POPF, perhaps
because the goal-ordering strategy used by tBurton does not
inherently minimize the make-span like the temporal relaxed
planning graph used by POPF.

While bench-marking on existing PDDL domains is a use-
ful comparison, it is worth noting that these problems do not
fully demonstrate tBurton’s capabilities. In particular, none
of these domains have temporally extended goals, and all ac-
tions have a single duration value, instead of an interval. We
look forward to more comprehensive testing with both exist-
ing PDDL domains and developing our own benchmarks.

Conclusion

This paper presents tBurton, a planner that uses a novel com-
bination of causal-graph factoring, timeline-based regres-
sion, and heuristic forward search to plan for networked de-
vices. It is capable of supporting a set of problem features
not found before in one planner, and is capable of doing so
competitively. Furthermore, tBurton can easily benefit from
advancements in state-of-the art planning by replacing its
sub-planner. The planning problem tBurton solves assumes
devices with controllable durations, but we often have little
control over the duration of those transitions. In future work
we plan to add support for uncontrollable durations.

References
Alur, R., and Dill, D. 1994. A theory of timed automata.
Theoretical computer science126(2):183–235.

Amir, E., and Engelhardt, B. 2003. Factored planning. In
IJCAI, volume 3, 929–935. Citeseer.

Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal plan-
ning with preferences and time-dependent continuous costs.
In ICAPS, volume 77, 78.

Bernardini, S., and Smith, D. 2008. Translating pddl2. 2.
into a constraint-based variable/value language. InProc. of
the Workshop on Knowledge Engineering for Planning and
Scheduling, 18th International Conference on Automated
Planning and Scheduling (ICAPS08).

Brafman, R. I., and Domshlak, C. 2003. Structure and com-
plexity in planning with unary operators.J. Artif. Intell.
Res.(JAIR)18:315–349.

Brafman, R. I., and Domshlak, C. 2006. Factored planning:
How, when, and when not. InAAAI, volume 6, 809–814.

Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engel-
hardt, B.; Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.; Barrett,
T.; et al. 2000. Aspen–automated planning and scheduling
for space mission operations. InSpace Ops, 1–10.

Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. InICAPS, 42–49.

Cushing, W.; Kambhampati, S.; Weld, D. S.; et al. 2007.
When is temporal planning really temporal? InProceedings
of the 20th international joint conference on Artifical intelli-
gence, 1852–1859. Morgan Kaufmann Publishers Inc.

Dechter, R. 2003.Constraint processing. Morgan Kauf-
mann.

Frank, J., and J́onsson, A. 2003. Constraint-based attribute
and interval planning.Constraints8(4):339–364.

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research26(1):191–246.

Ingham, M. D. 2003.Timed model-based programming: Ex-
ecutable specifications for robust mission-critical sequences.
Ph.D. Dissertation, Massachusetts Institute of Technology.

Kelareva, E.; Buffet, O.; Huang, J.; and Thiébaux, S. 2007.
Factored planning using decomposition trees. InIJCAI,
1942–1947.

Levine, S. J. 2012.Monitoring the execution of temporal
plans for robotic systems. Ph.D. Dissertation, Massachusetts
Institute of Technology.

Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Refor-
mulating temporal plans for efficient execution. InIn Princi-
ples of Knowledge Representation and Reasoning. Citeseer.

Ono, A., and Nakano, S.-i. 2005. Constant time generation
of linear extensions. InFundamentals of Computation The-
ory, 445–453. Springer.

Penberthy, J., and Weld, D. 1992. Ucpop: A sound, com-
plete, partial order planner for adl. Inproceedings of the
third international conference on knowledge representation
and reasoning, 103–114. Citeseer.

Rintanen, J. 2007. Complexity of concurrent temporal plan-
ning. In ICAPS, 280–287.

Röger, G.; Eyerich, P.; and Mattm̈uller, R. 2008. Tfd: A
numeric temporal extension to fast downward. ipc 2008 short
pape rs.
Shu, I.; Effinger, R.; and Williams, B. 2005. Enabling
fast flexible planning through incremental temporal reason-
ing with conflict extraction.Proce. ICAPS-05, Monterey.
Vidal, V. 2011. Yahsp2: Keep it simple, stupid.The 2011
International Planning Competition83.
Williams, B., and Nayak, P. 1997. A reactive planner for a
model-based executive. InInternational Joint Conference on
Artificial Intelligence, volume 15, 1178–1185. LAWRENCE
ERLBAUM ASSOCIATES LTD.
Younes, H. L., and Simmons, R. G. 2003. Vhpop: Versa-
tile heuristic partial order planner.J. Artif. Intell. Res.(JAIR)
20:405–430.

