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ABSTRACT

Using the recently developed Cahn-Hilliard reaction (CHR) theory, we present a simple math-
ematical model of the transition from solid-solution radial diffusion to two-phase shrinking-core
dynamics during ion intercalation in a spherical solid particle. This general approach extends
previous Li-ion battery models, which either neglect phase separation or postulate a spherical
shrinking-core phase boundary under all conditions, by predicting phase separation only under
appropriate circumstances. The effect of the applied current is captured by generalized Butler-
Volmer kinetics, formulated in terms of the diffusional chemical potential in the CHR theory. We
also consider the effect of surface wetting or de-wetting by intercalated ions, which can lead to
shrinking core phenomena with three distinct phase regions. The basic physics are illustrated by
different cases, including a simple model of lithium iron phosphate (neglecting crystal anisotropy
and coherency strain).

INTRODUCTION

Intercalation compounds, such as lithium iron phosphate (Li
x

FePO4, LFP), a popular cathode
material for lithium-ion batteries, present ongoing challenges for mathematical modeling. In spite
of some early reported disadvantages in its conductivity and high-current capability by Padhi et
al. [20], advances in surface coatings and nanoparticles have led to good cycle life and high rate
capability, using a relatively low cost and environmentally friendly material. It has attracted interest
for high-power applications [26, 15, 25], such as electric vehicles and hybrids [21] [28].

A striking feature of LFP is its strong tendency to separate into stable high density and low
density phases, indicated by a wide voltage plateau at room temperature [20, 26] and other direct
experimental evidence [11, 27, 12, 1, 19, 7]. Similar phase-separation behavior arises in many other
intercalation hosts, such as graphite, the typical lithium insertion anode material, which exhibits
multiple stable phases. This has inspired new approaches to model the phase separation process
coupled to electrochemistry, in order to gain a better understanding of the fundamental lithium-ion
battery dynamics.

The first mathematical model on two-phase intercalation dynamics in LFP was proposed by
Srinivasan and Newman [23], based on the concept of a spherical “shrinking core" of one phase
being replaced by an outer shell of the other phase, as first suggested by Padhi et al [20]. By as-
suming isotropic spherical diffusion, the sharp, radial “core-shell" phase boundary can be moved
in proportion to the current. This single-particle model was incorporated into traditional porous
electrode theory for Li-ion batteries [13, 18] with Butler-Volmer kinetics and concentration depen-
dent diffusivity and fitted to experiments. The shrinking-core porous-electrode model was recently
extended and refitted by Dargaville and Farrell [10].



In recent years, the shrinking-core hypothesis has been called into question since other phase
behavior has been demonstrated experimentally [16, 6, 1, 12, 7] and predicted theoretically [3]. It
has become clear that a more realistic particle model must account for crystal anisotropy [22, 2, 24],
coherency strain [9, 8] and reaction limitation in nanoparticles [22, 2, 14] in nanoparticles. In
larger, micron-sized particles, however, the shrinking-core model may still have some relevance
due to solid diffusion limitation and defects (such as dislocations and micro cracks) that can re-
duce coherency strain. Moreover, diffusion becomes more isotropic in larger particles due to the
increased frequency of point defects, such as channel-blocking Fe anti-site defects in LFP [17].

Regardless of the details of the model, fundamental questions remain about the dynamics of
phase separation driven by electrochemical reactions, even in the simplest case of an isotropic
strain-free spherical particle, which we consider here. When should we expect core-shell phase
separation versus pure diffusion in a solid solution? What other transient phase morphologies are
possible? How are reaction kinetics affected by phase separation? Traditional battery models,
which place artificial spherical phase boundaries and assume classical Butler-Volmer kinetics, are
not able to answer these questions.

A more accurate and consistent approach to model electrochemical kinetics with phase sep-
aration is based on non-equilibrium thermodynamics [3]. For reaction-limited anisotropic LFP
nanoparticles, the general theory can be reduced to the Allen-Cahn reaction (ACR) equation for
the depth-averaged ion concentration [22, 2], which has been applied successfully to predict experi-
mental data, using generalized Butler-Volmer kinetics and accounting for coherency strain [9, 8, 3].
An important prediction of the ACR model is the dynamical suppression of phase separation [2, 9].
For large micron-sized particles, solid diffusion limitation leads to a different limit of the general
theory, the Cahn-Hilliard reaction (CHR) model for bulk phase separation with heterogenous sur-
face reactions [22, 4, 3]. The CHR model in three dimensions, however, is quite challenging to
solve, and is not required to understand some of the basic physics.

In this article, we solve the CHR model with generalized Butler-Volmer kinetics for a spherical
intercalation particle with concentration varying only in the radial direction. This simple one-
dimensional version of the model is valid for large, defective crystals with negligible coherency
strain and isotropic diffusion. It may also be directly applicable to low-strain materials such as
lithium titanate, a promising long-life anode material. We simulate phase separation dynamics at
constant current, which sometimes, but not always, leads to shrinking-core behavior, and we focus
on the electrochemical signatures of the dynamics, which are uniquely provided by the theory [3].

ISOTROPIC CAHN-HILLIARD REACTION MODEL

In this section, we will present the basic continuum mathematical framework for ion-intercalation
dynamics based on non-equilibrium thermodynamics [3]. The ion concentration profile in the bulk
solid material determines the chemical potential by a Cahn-Hilliard type regular-solution model.
The key innovation in the CHR model is to formulate the heterogeneous charge-transfer reaction
rate via a generalized Butler-Volmer equation, which enables us to unify the concentration, current
and voltage prediction from the model. Then the nondimensionalization of our system will be
derived, together with an intuitive physical explanation of these nondimensional groups. Finally,
we will very briefly talk about the numerical method we used for solving this system.



Model Development

The basic equation expresses mass conservation

∂c

∂ t

=�— ·F, (1)

where c is the concentration of the ion and F the ion flux. This ion flux is driven by the gradient of
the chemical potential µ , which can be described as,
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Here we assume the transition state of the solid diffusion will exclude two sites, which indicates
the tracer diffusivity D = D0(
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ion concentration within the particle.

In this model, we assume the particle is isotropic and spherical, which reduces the original
3D problem to a one-dimensional model, since the concentration now only depends on the radius
dimension. For the chemical potential µ , in this model, we will use the form derived from the
Cahn-Hilliard free energy functional with the regular solution model, which takes into account the
contribution from pure homogeneous system and the gradient penalty. The corresponding chemical
potential µ is defined as,
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when k

B

is the Boltzmann’s constant, T is the absolute temperature, W is the enthalpy of mixing
per site, k is the gradient energy penalty coefficient, and V

s

is the volume of each intercalation site.
Here we will neglect the influence from the elastic strain.

At the surface of the particle, if we know the current I, by the isotropic assumption and charge
conservation,
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while R

p

is the particle size in radius, F

s

is the surface flux, n is the ion charge number, e is the
charge of a single electron, and N

A

denotes the Avogadro’s number. This current condition together
with the symmetric condition at the sphere center gives us the Neumann boundary condition,

F |
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where n̂ is the out-point unit normal vector. Furthermore, we impose the "natural boundary condi-
tion" for the Cahn-Hilliard equation,

n̂ · (k—c)|
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where g

s

is the surface energy per area, which generally depends on ion concentration. The natural
boundary condition expresses continuity of the chemical potential and controls the tendency for a
high or low concentration phase to preferentially “wet" the surface [5, 8]. These three boundary
conditions suffice us to solve our model.



Dimensionless Equations

To nondimensionalize the PDE system, we will use several basic references to scale the model,
which includes the particle radius R

p

for the length scale, the diffusion time R

2
p

D0
for the time scale,

the maximum possible ion concentration c

m

for the concentration scale and the thermal energy k

B

T

for any energy scale. We will follow Table 1 for each variable and parameter nondimensionaliza-
tion.

Table 1: Relations for the system parameters’ nondimensionalization.
c̃ = c

c

m

t̃ = D0
R

2
p

t F̃ =
R

p

c

m

D0
F —̃ = R

p

— µ̃ = µ

k

B

T

W̃ = W
k

B

T

k̃ = kV

s

R

2
p

k

B

T

F̃

s

=
R

p

c

m

D0
F

s
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Here c̃ can be seen as the local filling fraction of ions, W̃
2 is the ratio of the critical temperature
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radius scale. 1
2 k̃0 is the nondimensional exchange current density when the particle is uniformly

half filled while the total surface area is normalized to 4p . We will introduce this parameter k0 in
the later of this subsection. Moreover, we define a new parameter b = 1
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.
Then the nondimensional system can be written as,
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together with the nondimensional boundary conditions,
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Furthermore, the reaction rate is given by Butler-Volmer equation, which enables us to relate
the concentration and the current to the voltage. The parameters are again nondimensionalized by
the relations in Table 1.
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i0 is the exchange current, h is the surface overpotential, DF is the cathodic potential drop across
the particle surface, and a is the Butler-Volmer parameter.



Numerical Scheme

In solving this PDE system, we will employ a new numerical scheme similar to the finite
volume method. This new numerical method can provide us immediately the concentration on the
node point but still conserve mass. Compare to the finite volume method, another major difference
is the discretized equations system has a tri-diagonal mass matrix, instead of a diagonal matrix in
the finite volume method.

As in the model we are mostly focusing on the activities exactly on the particle surface, the
finite volume method can only provide us information about the average concentration in the shell
closed to the surface, our scheme will have a great advantage in avoiding extrapolation step in
the finite volume method for both surface concentration and chemical potential. After obtaining
the spatial discretization of the PDE system, we employ the implicit ODE solver "ode15s" in
MATLAB for the time integration. The detailed derivations of the numerical scheme can be found
in the full article of this project [29].

SOLID SOLUTION

When the particle repulses the new added ions, or even the particle attracts the ions, but the
temperature is higher than the critical temperature T

c

= W
2k

B

, we would not expect any phase sepa-
ration. In this case, our ion intercalation system is only a simple nonlinear diffusion process of the
ion. We will focus on the simulation results from the lithiation dynamics (the discharging case). A
more detailed study on both lithiation and delithiation dynamics can be found in the full article of
this work [29].

In this section, we will present the concentration distribution within the sphere over time during
the ion intercalation when the phase separation does not occurr, both the repulsion W

2k

B

T

< 0 and
the attraction 0 < W

2k

B

T

< 1 cases. We will also provide the voltage prediction plots during this ion
intercalation process with different currents.

Table 2: Parameter settings for the numerical simulation for the case of repulsive ionic interactions,
W < 0. The same parameters settings are used to model a phase separating material with attractive
interactions, W > 0, motivated by LiFePO4 reported in [2, 9].

Parameter Value Unit Parameter Value Unit
R

p

1⇥10�7 m W �5.14⇥10�2 eV
k 3.13⇥109 eV/m D0 1⇥10�12 m2/s

C
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10 mol / m3
C

max

2.29⇥104 mol / m3

c
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0 eV/m2
a 0.5 -

DF
a

�3.42 V k0 1000 A/m2

Solid Solution with Repulsive Forces

When W < 0, the enthalpy in the regular solution model describes a mean-field repulsion be-
tween intercalated ions, or equivalently, an attraction between ions and vacancies, which tends to
promote mixing. The enthalpic contribution to the chemical potential is then proportional to the ion



concentration. We use the following parameter setting in Table 2 to run the numerical simulation
of the PDE system. Here we assume no surface wetting, which is equivalent to b = 0.

With this setting, the nondimensional W̃ = W
k

B

T

= �2. When the current is small, the numeri-
cal simulations show that the ion is almost uniformly distributed inside the particle during the ion
insertion process. While the current is relatively large, the diffusion of ion is slower than the ion
intercalation, we see a higher ion concentration closed to the surface x̃ = 1. This is similar to a sim-
ple spherical diffusion without any phase transition, just as expected. In the simulation, we always
drive the system with a constant current. A detailed demonstration of this concentration dynam-
ics is shown in Figure 1. The overall filling fraction X is defined as the average nondimensional
concentration of the particle,
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R
cdV

4
3pR

3
p

c

m

. (18)

We can easily see a uniform filling without any phase separation.

Figure 1: Solid solution with repulsive forces (W̃ =�2) ion distribution plots with different overall
filling fractions. The vertical dimension in the plots shows the concentrations, while the horizontal
circle denotes the hyperplane cut at the equator of the sphere. The nondimensional current i/i0 =
0.25 and the X in the plot represents the overall filling fraction of lithium ion.

Given the Butler - Volmer parameter a = 0.5, the total voltage drop between anode and particle
surface can be obtained by,

DE = DF�DF
a

=�DF
a

+
k

B

T

e

(�µ̃ �2sinh�1(
Ĩ

2Ĩ0(c̃)
)) (19)

while DF is the cathodic potential drop across the particle surface defined before, DF
a

is the
anode potential drop, and Ĩ0(c̃) is the exchange current at the given concentration profile. Here we
assume that DF

a

is always a constant. We always drive the system with a constant current. The
voltage is lower when we use a higher current and we observe no voltage plateau with any of these
currents. This is mainly because that a larger current will enhance the lithium ion concentration at
the surface. Meanwhile, a larger running current will also lead to a larger activation potential drop,
which will further decrease the total voltage. The plot of results is shown in Figure 2.
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Figure 2: Solid solution with repulsive forces (W̃ = �2) voltage vs. filling fraction plot with
different currents. The reference current density i0 = 500 A/m

2 is the exchange current density
when particle is uniformly half filled. Four curves from top to bottom in the figure represent four
different currents i/i0 = 0.01, 0.1, 1 and 10 respectively.

Solid solution with Attractive Forces

When the mixing enthalpy per site W is positive, there are attractive forces between intercalated
ions, or equivalently, repulsive forces between ions and vacancies, which tend to promote de-
mixing and phase separation. However, when the temperature T is higher than the critical value T

c

,
we will still observe very similar behavior as the system with repulsive ion-ion forces. The critical
temperature for this threshold in the regular solution model is given by T

c

= W
2k

B

.
The numerical result from simulation in fact is consistent with our anticipation mentioned

above. Here we use the same parameter as the simulation in ion repulsion system in Table 2,
except for the W, which is set to be 2.57⇥ 10�2 eV, With this parameter W̃ = 1 then T is twice
higher than T

c

. The concentration profile is very close to the ones from ion repulsion systems
shown in Figure 1, and the voltage plot is similar to Figure 2. Therefore, we do not include the
figures for the ion distribution or the voltage plot.

PHASE SEPARATION WITHOUT SURFACE WETTING

In some materials such as the lithium iron phosphate, phase separation will be an important
behavior in the ion intercalation process. In fact, when W̃ > 2, we can approach to such a phe-
nomenon. This is essential in the lithium battery modeling and other applications.

In this section, we will show the simulation results from our model, both in concentrations
and the voltages with different current. We may see from the results there is always a sudden
phase transition with a sharp shock propagating in the particle after the phase separation, under
our parameter choices. Later we will also give a good approximation of the voltage value when
there exists a voltage plateau.
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Figure 3: Phase separation system (W̃ = 4.48) concentration distributions within the spherical
particle during the ion intercalation with different currents i

i0
= 0.01 (top left), 0.25 (top right), 1

(bottom left) and 4 (bottom right), while the uniformly half filled exchange current density i0 is
chosen to be 500 A/m2. The x-axis represents the nondimensional radial position r̃ and the y-axis
presents the overall average filling fraction X of the whole particle, which can be also seen as the
time dimension. The warmer color in the figure indicates a higher local filling fraction.

Phase Separation

When the temperature is lower than the critical temperature, if we further assume the concen-
tration is uniform, the chemical potential is then no longer a monotone function of concentration.
This makes it possible for us to have a phase separation. In the simulation of this system, we again
use the parameters in Table 2 but set the W = 1.15⇥ 10�1 eV, which makes the W̃ = 4.48 > 2.
Very different from the uniformly filling outcomes in Figure 1, the concentration profiles here with
different constant currents all indicate phase separations in the concentration. Numerical results
are included in Figure 3.

Indeed, the modeling results are analogous to the shrinking core model, which will create two
phases section during the ion insertion. A more detailed demonstration of this phenomenon is
included in the following Figure 4. But less artificially, we do not need to presume there are two
regions of different phases at the beginning and we can predict when the phase separation will take
place. Moreover, we do not need to solve the moving boundary problem like the shrinking core
model, which makes the numerical problem more efficient to be solved.

The voltage-filling fraction curves are also quite different from the results in the previous sec-
tion in Figure 2. The new results are shown in Figure 5, where we can see a sudden change in
voltage when the phase separation takes place and the voltage stays on a plateau when the current
is not large.



Figure 4: Phase separation system (W̃ = 4.48 and no surface wetting) ion distribution plots with
different overall filling fractions. The vertical dimension in the plots shows the concentrations,
while the horizontal circle denotes the hyperplane cut at the equator of the sphere. The reference
current density i0 is the exchange current density is 500 A/m

2 when particle is uniformly half filled.
The nondimensional current i/i0 = 0.25 and the X in the plot represents the overall filling fraction
of lithium ion.
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Figure 5: Phase separation system (W̃= 4.48) voltage vs. filling fraction plot with different currents
and two different reference exchange currents. The reference current density i0 is the exchange
current density which takes values 50 A/m

2 (left) and 500 A/m

2 (right) when particle is uniformly
half filled.

Voltage Plateau Estimation

As we see from Figures 3, 4 and 5, under our parameter setting, we always have a phase
separation in the system, which leads to a voltage plateau. In the case without surface wetting, i.e.
b = 0, to approximate such voltage plateau value, we can apply the following method.

When the phase separation occurs in the case b = 0, the concentration within the highly filled
phase is relatively uniform, especially when the current is not very large. Therefore, we may ignore
the second order penalty term k—2

c. Then the chemical potential approximately equals to,

µ̃ ⇡ ln
c̃

1� c̃

+ W̃(1�2c̃). (20)



When the phase separation occurs, the nondimensional concentration in each phase is approx-
imately the root of µ̃ = 0. Then in the ion intercalation process, the surface concentration is
approximately the larger solution c̃

l

of this equation. Given the nondimensional current - exchange
current ratio x = Ĩ

Ĩ0(c̃=
1
2 )

, where Ĩ0(c̃ = 1
2) is the exchange current when the concentration c̃ = 1

2
throughout the whole particle, we can use the following equation to estimate the plateau voltage,
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The comparison of the actual voltage plot and the plateau estimation from the above equation is
shown in Figure 6. The results show when we are in a region of low current, the predictions fit
well to the numerical simulation results.
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Figure 6: The comparison of real simulations of voltage in Figure 5 and the estimations of the
voltage plateau in phase separation. The approximation results are shown in the dash lines.

The voltage plateau formula can be understood physically as follows. As a result of our as-
sumption of spherical symmetry, the intercalation reaction must proceed into the outer "shell
phase". In the case of lithiation, the shell has high concentration and thus strong entropic con-
straints inhibiting further insertion that lower the reaction rate, increase the overpotential, and
lower the voltage plateau when phase separation occurs. In contrast, when the phase boundary
is allowed to move along the surface as an intercalation wave [22], insertion occurs with higher
exchange current at intermediate concentrations, although the active area is reduced, which leads
to suppression of surface phase separation at high currents [2, 9].

PHASE SEPARATION WITH SURFACE WETTING

The surface wetting, which is the property that the ion tends or avoids to stay at the surface,
may significantly change the dynamics of the ion intercalation process. In this section, we will
show how the surface wetting affects the concentration and voltage during the ion insertion, with a
focus on the the de-wetting case, which may create more than two stable phase regions inside the
particle.

The surface wetting or de-wetting condition can be analytically expressed by the following
formula,

n̂ · —̃c̃|
R̃=1 = b , (22)



here we no longer assume b is zero. When b > 0, the ion tends to be concentrated on the surface,
which is so called surface wetting. While this value is negative, we call the case as surface de-
wetting. This condition determines the concentration derivative at the spherical particle surface.

When in the surface wetting case, the surface concentration will be always higher than the
remain region during the ion insertion if we start from a uniform low concentration. As results,
the surface hits the spinodal point earlier than other places inside the particle, which means the
Li-rich phase always nucleates at the surface. This is somehow similar to the two stable region
shrinking core phenomenon in the phase separation without surface wetting system which we
already discussed in the previous section.

A more interesting case takes place when we have surface de-wetting, the surface concentration
derivative is negative, which is equivalent to b < 0. Since the surface concentration is always lower
than the nearby concentration in the interior, especially when the current is small. Thus, the interior
point will hit the spinodal concentration earlier than the surface and Li-rich phase nucleates, which
differentiates itself from other previous cases.

In the numerical modeling, we set b =�17.9. This is about to set the maximum filling surface
energy density of our particle to be g = �90 mJ/m2 in our particle size setting, if we assume the
g is a linear function of concentration. Figure 7 shows how the simulated concentration grows in
this system with several currents.

0 0.5 1
0

0.5

1

i/i0 = 0.01

Position r

Fi
llin

g 
Fr

ac
io

n 
X

 

 

0 0.5 1
0

0.2

0.4

0.6

Position r

Fi
llin

g 
Fr

ac
tio

n 
X

i/i0 = 4

0 0.5 1
0

0.2

0.4

0.6

0.8

Position r

Fi
llin

g 
Fr

ac
tio

n 
X

i/i0 = 1

0 0.5 1
0

0.5

1

Position r

Fi
llin

g 
Fr

ac
tio

n 
X

i/i0 = 0.25

Figure 7: Concentration distributions within the surface de-wetting (b =�17.9) spherical particle
during the ion intercalation with different currents i

i0
= 0.01 (top left), 0.25 (top right), 1 (bottom

left) and 4 (bottom right), while the uniformly half filled exchange current density i0 is chosen to be
500 A/m2. The x-axis represents the nondimensional radial position r̃ and the y-axis presents the
overall average filling fraction of the whole particle, which can be also seen as the time dimension.
The warmer color in the figure indicates a higher local filling fraction.

A detailed demonstration of this concentration dynamics is shown in Figure 8. We can observe
the initially uniform system later separates into three regions of two phases (Lithium rich and
poor), i.e., sandwich morphology of Li poor-rich-poor three regions. The middle Li-rich region
expands inward and outward simultaneously, it first fills up the Li-poor phase located at the center,



and finally it fills the whole particle. This is a prediction of shrinking core phenomenon with three
phase regions. In this situation, the shrinking core model may not be easy to capture the whole
concentration distribution, since we may have two or three phase regions depending on the current.
The associated voltage plots of the ion insertion process in the surface de-wetting case in shown in
Figure 9.

Figure 8: Phase separation system (W̃ = 4.48 and surface de-wetting b = �17.9) ion distribution
plots with different overall filling fractions. The vertical dimension in the plots shows the concen-
trations, while the horizontal circle denotes the hyperplane cut at the equator of the sphere. The
reference current density i0 is the exchange current density is 500 A/m

2 when particle is uniformly
half filled. The nondimensional current i/i0 = 0.25 and the X in the plot represents the overall
filling fraction of lithium ion.

0 0.2 0.4 0.6 0.8 1
3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5

3.55

Filling Fraction X

Vo
lta

ge
 (V

)

 

 

i/i0 = 0.01

i/i0 = 0.125

i/i0 = 0.25

i/i0 = 0.5

 

 

i/i0 = 1

i/i0 = 2

i/i0 = 4

Figure 9: Strong surface de-wetting (b = �17.9) voltage vs. filling fraction plot with different
current sizes i/i0 = 0.01, 0.125, 0.25, 0.5, 1, 2 and 4 from top to bottom.

As we can see the surface is always in the lower stable concentration after the initial phase
separation, which does not vary according to the surface derivative b , we should expect the voltage



has very weak dependence on the surface de-wetting condition. The voltage - filling fraction plot
in Figure 10 actually is consistent with our intuition.
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Figure 10: Surface De-wetting voltage vs. filling fraction plot, with different negative nondimen-
sional surface concentration derivatives b . The current is chosen to be i/i0 = 0.01.

CONCLUSIONS

In summary, we have studied the dynamics of ion intercalation in an isotropic spherical battery
intercalation particle using the CHR model [3]. The model predicts either solid solution with radial
nonlinear diffusion or core-shell phase separation, depending on the thermodynamic, geometrical,
and electrochemical conditions. The model is able to consistently predict the transient voltage
after a current step, regardless of the complexity of the dynamics, far from equilibrium. Surface
wetting plays a major role in nucleating phase separation. The simplifying assumptions of radial
symmetry and negligible coherency strain maybe be applicable to some materials, such as lithium
titanate anodes or defective lithium iron phosphate cathodes, while the basic principles illustrated
here have broad relevance for intercalation materials with complex thermodynamics and multiple
stable phases.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation Graduate
Research Fellowship under Grant No. 1122374. This work was also partially supported by the
Samsung-MIT Alliance.

Reference
[1] JL Allen, TR Jow, and J Wolfenstine. Analysis of the FePO4 to LiFePO4 phase transition.

Journal of Solid State Electrochemistry, 12(7-8):1031–1033, 2008.



[2] Peng Bai, Daniel Cogswell, and Martin Z. Bazant. Suppression of phase separation in
LiFePO4 nanoparticles during battery discharge. Nano Letters, 11(11):4890–4896, 2011.

[3] M. Z. Bazant. Theory of chemical kinetics and charge transfer based on non-equilibrium
thermodynamics. Accounts of Chemical Research, 46:1144–1160, 2013.

[4] Damian Burch and Martin Z. Bazant. Size-dependent spinodal and miscibility gaps for inter-
calation in nanoparticles. Nano Letters, 9(11):3795–3800, 2009.

[5] J. W. Cahn. Critical point wetting. J. Chem. Phys., 66:3667–3672, 1977.

[6] Guoying Chen, Xiangyun Song, and Thomas Richardson. Electron microscopy study of the
LiFePO4 to FePO4 phase transition. Electrochemical and Solid State Letters, 9(6):A295–
A298, 2006.

[7] William C Chueh, Farid El Gabaly, Josh D Sugar, Norman C. Bartelt, Anthony H. McDaniel,
Kyle R Fenton, Kevin R. Zavadil, Tolek Tyliszczak, Wei Lai, and Kevin F. McCarty. Inter-
calation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge
mapping. Nano Letters, 13:866 – 872, 2013.

[8] D. A. Cogswell and M. Z. Bazant. Theory of coherent nucleation in phase-separating
nanoparticles. Nano Letters, Article ASAP, 2013.

[9] Daniel A. Cogswell and Martin Z. Bazant. Coherency strain and the kinetics of phase sepa-
ration in LiFePO4 nanoparticles. ACS Nano, 6:2215–2225, 2012.

[10] S. Dargaville and T.W. Farrell. Predicting active material utilization in LiFePO4 electrodes us-
ing a multiscale mathematical model. Journal of the Electrochemical Society, 157(7):A830–
A840, 2010.

[11] Charles Delacourt, Philippe Poizot, Jean-Marie Tarascon, and Christian Masquelier. The
existence of a temperature-driven solid solution in Li

x

FePO4 for 0  x  1. Nature materials,
4(3):254–260, 2005.

[12] C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, and F. Weill. Lithium deintercalation
of LiFePO4 nanoparticles via a domino-cascade model. Nature Materials, 7:665–671, 2008.

[13] Marc Doyle, Thomas F. Fuller, and John Newman. Modeling of galvanostatic charge and
discharge of the lithium/polymer/insertion cell. Journal of the Electrochemical Society,
140(6):1526–1533, 1993.

[14] T. R. Ferguson and M. Z. Bazant. Non-equilibrium thermodynamics of porous electrodes. J.

Electrochem. Soc., 159:A1967–A1985, 2012.

[15] Byoungwoo Kang and Gerbrand Ceder. Battery materials for ultrafast charging and discharg-
ing. Nature, 458:190–193, 2009.

[16] L. Laffont, C. Delacourt, P. Gibot, M. Yue Wu, P. Kooyman, C. Masquelier, and J. Marie
Tarascon. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy
loss spectroscopy. Chem. Mater., 18:5520–5529, 2006.



[17] Rahul Malik, Damian Burch, Martin Bazant, and Gerbrand Ceder. Particle size dependence
of the ionic diffusivity. Nano Letters, 10:4123–4127, 2010.

[18] John Newman and Karen E. Thomas-Alyea. Electrochemical Systems. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, third edition, 2004.

[19] Gosuke Oyama, Yuki Yamada, Ryuichi Natsui, Shinichi Nishimura, and Atsuo Yamada. Ki-
netics of nucleation and growth in two-phase electrochemical reaction of LiFePO4. J. Phys.

Chem. C, 116:7306–7311, 2012.

[20] A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough. Phospho-olivines as positive-
electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society,
144(4):1188–1194, 1997.

[21] Andrew Ritchie and Wilmont Howard. Recent developments and likely advances in lithium-
ion batteries. Journal of Power Sources, 162(2):809–812, 2006.

[22] Gogi Singh, Damian Burch, and Martin Z. Bazant. Intercalation dynamics in rechargeable
battery materials: General theory and phase-transformation waves in LiFePO4. Electrochim-

ica Acta, 53:7599–7613, 2008. arXiv:0707.1858v1 [cond-mat.mtrl-sci] (2007).

[23] Venkat Srinivasan and John Newman. Discharge model for the lithium iron-phosphate elec-
trode. Journal of the Electrochemical Society, 151(101):A1517–A1529, 2004.

[24] Ming Tang, James F. Belak, and Milo R. Dorr. Anisotropic phase boundary morphology in
nanoscale olivine electrode particles. The Journal of Physical Chemistry C, 115:4922–4926,
2011.

[25] Ming Tang, W. Craig Carter, and Yet-Ming Chiang. Electrochemically driven phase transi-
tions in insertion electrodes for lithium-ion batteries: Examples in lithium metal phosphate
olivines. Annual Review of Materials Research, 40:501–529, 2010.

[26] J.M. Tarascon and M. Armand. Issues and challenges facing rechargeable lithium batteries.
Nature, 414:359–367, 2001.

[27] Atsuo Yamada, Hiroshi Koizumi, Noriyuki Sonoyama, and Ryoji Kanno. Phase change in
Li

x

FePO4. Electrochemical and Solid-State Letters, 8(8):A409–A413, 2005.

[28] Mats Zackrisson, Lars Avellán, and Jessica Orlenius. Life cycle assessment of lithium-ion
batteries for plug-in hybrid electric vehicles–critical issues. Journal of Cleaner Production,
18(15):1519–1529, 2010.

[29] Yi Zeng and Martin Z. Bazant. Phase separation dynamics in isotropic ion-intercalation
nanoparticles. in preparation, 2013.


