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Abstract

Several ways to model stiffened plate structures using the finite element method are
discussed. Special attention is given to the assumptions involved within each finite
element model. The modeling capabilities of the relevant elements are investigated
thoroughly by constructing and solving finite element models of simple cantilever beam
structures. In particular, the influence of the depth of the web on the performances of the
different modeling methods is examined.

We evaluate three basic modeling methods, which differ by the way the stiffeners
are modeled: two methods use beam elements (Hermitian and isoparametric beam
elements) and the third uses shell elements. The displacement and stress solutions,
obtained by these methods, are measured against solutions of a three-dimensional
element model. We identify several limitations of the modeling methods under
investigation, and we show that their performances are strongly depended on the depth of
the stiffeners. We offer modifications to the different models, and we show them to be
efficient for modeling stiffened plate structures with different boundary conditions. In
particular, the modification of the classical and commonly used Hermitian beam elements
is shown to yield excellent results.
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1 Introduction

1.1 Background

A stiffened plate structure is a common occurrence. Its application exists in

various engineering structures; namely, ship hulls, offshore structures, rail/road bridges,

aircraft structures, printed circuits boards and many others. In a stiffened plate, stiffeners

may occupy any position depending on the design requirements. The objective is to make

an efficient structural arrangement to sustain the externally applied forces with minimum

material weight, by limiting the displacements and stresses to their permissible values.

These stiffened plate structures are highly indeterminate in nature and as such they pose a

great challenge to the analysts.

The different approaches available for the analysis of stiffened plate problems can

be put under three broad categories: orthotropic plate model, grillages and plate-beam

systems.

Huber [9] considered the orthotropic plate model in which the stiffened plate is

replaced by a bare plate with orthotropic properties. This model, which is often referred

to as the smearing technique model, is used efficiently if the stiffeners are small, identical

and placed uniformly at close intervals. Identical stiffener profiles and equal spacing of

stiffeners impose limitations on the use of this model and further, the evaluation of the

stresses in the plate and in the stiffeners creates additional difficulties.

Idealization of a stiffened plate as a grillage starts with the assumption of an

effective breadth of plating. According to various researches this effective breadth varies

from 50% to 80% of the stiffener spacing. The comparatively complicated theories for

plated grillages, as put forward by Kendrick [11] and Clarkson [5] have indicated that

good results may be obtained for design work by a grillage calculation. This method of

analysis gives deflections normally within 5% and occasionally within 10%, and the

beam stresses vary generally within 10% to 20% of the experimental values.
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The analysis of a stiffened plate structure as a plate-beam system, which reflects the

true or near-true nature of the physical problem behavior, was enabled with the advent of

digital computers, which resulted in attempts to solve the problem with numerical

methods. Among the numerical methods, the finite element method is the most powerful

one, and indeed great research effort was made in trying to achieve accurate and efficient

finite element models for stiffened plates.

1.2 Recent efforts in the field of static finite element analysis of stiffened plates

The field of static finite element analysis of stiffened plates was studied extensively

and much literature can be found on the subject. The following is a brief summary of

some of the significant studies conducted in the recent years.

Cho and Vorus [4] proposed a three-dimensional method for analyzing stiffened plate

structures. Their work was based on a formerly derived well-known method that uses two

dimensional plane-stress elements and one-dimensional beam elements. The connection

between the stiffeners and the plate is incorporated through constraints imposed on the

relationship of rotational and translation displacements between the two element systems.

In this model the displacement compatibilities of the beam and plate elements is satisfied

only at the nodal points. The contacting shear compatibility condition along the elements

is not maintained.

The contribution of the authors was the modification of this model to allow for

continuous shear transmission between the plate and the matching beam elements along

the joining lines. This is done by imposing equal strain along the interface of the plate

and the stiffeners, which leads to correction terms in the global stiffness matrix. The

derivation of the correction terms is based on a simple case in which a complex beam is

modeled by two beam elements, and hence the incorporation of the method to a stiffened

plate structure requires the knowledge of the effective breadth of the plate, which is

difficult to obtain accurately. The paper concludes with numerical examples in which a
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good performance of the modified method is reported.

Mukhopadhyay and Satsangi [13] developed isoparametric stiffened plate elements for

the analysis of stiffened plate structures. The concept of a stiffened plate element is based

on the projection of the stiffener stiffness to the nodes of the plate element. This approach

enables flexibility in the analysis process, since the location of the stiffeners can be

redefined, without changing the plate element mesh. The evaluation of the element

matrices is based on the following assumptions: (i) the bending deformations follow

Mindlin's hypothesis which allow shear deformation; therefore straight planes which are

perpendicular to the mid-surface of the plate, remain straight but not normal to the

deformed mid-surface; (ii) the deflection w in the z-direction is a function of x and y

only; (iii) the stresses in the z-direction are assumed to be zero irrespective of the loading

(plane stress condition); and (iv) the displacements of the points on the mid-surface in the

normal direction to this plane is small in comparison to the thickness of the plane.

The authors have shown that the element is capable of idealizing structures such as

concentrically and eccentrically stiffened plates, but it is limited to modeling of

orthogonal stiffened plates.

O'Leary and Harari [14] developed a stiffened plate finite element from a constraint

variational principle, using Lagrange multipliers to impose the constraints between the

stiffeners and the plate. In the development of the stiffened plate element, the bending

and membrane behaviors are treated separately. The stiffness matrix of the plate was

augmented by formulating the beam element stiffness with additional terms to impose the

constraints between the stiffener and the plate. Even though the shear distortion is not

included in the element formulation, the method was shown to be efficient and reliable in

modeling thin flat plates reinforced with relatively widely spaced, heavy stiffeners.

Boot and Moore [3] attempted to identify the generalized conditions under which

stiffened plates can be approximated as a two-dimensional orthotropic plate. This

approximation is based on the concept of smoothed flexural, torsional and transverse

shear rigidities. The authors obtained, by making suitable assumptions, a simplified set of
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constitutive equations defining the stiffened plate problem, subjected to elastic behavior.

The significance of these assumptions is investigated under a wide range of conditions,

and the results calculated for typical problems using the simplified theory are compared

with experimentally obtained data. The authors concluded that a two-dimensional

approximation can be theoretically justified only if the stiffeners form an orthogonal

network. They also concluded that the assumption of centroidal neutral axes is

sufficiently accurate under arbitrary conditions for engineering purposes. However, the

stresses generated in the stiffeners due to Poisson's ratio effects, which are normally

ignored, may be significant.

1.3 Thesis area of concentration.

As described above, a wide range of element types has been proposed for the

analyses of stiffened plates. However, we can identify three basic types of finite element

models that are widely used by analysts, and are available in most of the finite element

codes. These model types can be summarized as: I) orthotropic plate model, II) plate-

beam systems and III) models in which the stiffeners, as well as the plate, are built up

from plate/shell elements. This thesis work concentrated on the evaluation of model types

II) and III), compared with a full three-dimensional model.

The accuracy of solution of a physical problem model depends on the information

contained in the mathematical (and therefore finite element) model that describes the

physical problem. Since a real structure is obviously three-dimensional, only three-

dimensional elements can model the real physical problem without undertaking

assumptions concerning the mechanics of the structure. The assumptions involved with

the one- and two- dimensional elements lead to simpler and cheaper (in computer

resources and engineering time) models, but also to lack of ability to predict some

physical phenomena.

The goal of this research is to conclude whether certain simplified finite element
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models can provide satisfactory engineering results despite the assumptions involved in

them.

In the category of the plate-beam systems, two different types of models were

investigated; in each type different beam elements and constraints between the beams and

the plate were used. In both cases, the plate was modeled with flat shell elements.

In the first plate and beam element model, Hermitian beam elements are used.

These two-noded elements are formulated by solving the beam differential equations of

equilibrium and hence yield the exact (within beam theory) solution of simple beam

structures, even when a very coarse mesh is used (see detailed description of the element

formulation in Section 3.1.2). The Hermitian beams are placed along the nodal lines of

the shell elements, in the plane of the plate. The eccentric position of the stiffeners in the

real structure is modeled by assigning an offset value to the beam elements, which results

in constraints between the beam and the shell degrees of freedom.

In the second plate and beam element model, isoparametric beam elements are

used. These elements are formulated using the virtual work principle, and the differential

equilibrium equations are not satisfied exactly. As a result, the solution of the

mathematical model (see Section 2.1) is approached only when a relatively large number

of elements is used. The isoparametric beam elements (which are referred to as "iso-

beam" elements below) can have one or two internal nodes along the element, and hence

better (relative to the Hermitian beam elements) compatibility can be obtained with shell

elements that have internal nodes along the edges.

The iso-beam elements are constrained to the plate by rigid links: the nodal

displacements of the beam element are made to undergo the displacements prescribed by

the corresponding nodes of the shell element.

The second general type of models that was investigated (marked as model type

III above) is the "all-shell" model, in which the stiffeners (as well as the plate) are built

up from shell elements. This type of models is obviously more expensive in computer

resources and engineering time than models which use beam elements to model the

stiffeners, but they are a better representation of the real physical problem.
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The performances of the models described above were compared with a three-

dimensional model. The use of a three-dimensional model is extremely expensive (about

one order of magnitude more expensive in computer resources than a two-dimensional

model), and hence it is rarely used to model stiffened plates. As mentioned above, the

formulation of a general three-dimensional element is free from a priori kinematic

structural assumptions about the material particle behavior (of course, the finite element

displacement assumptions are present) and hence an assembly of three-dimensional

elements can be an excellent replica of nature, provided that the mesh of the elements is

fine enough. For this reason, three-dimensional models were constructed and solved for

each variation of the stiffened plate structure that was analyzed by the simplified finite

element models, in order to obtain a "reference solution" with which the solutions could

be compared.

In order to gain insight into the modeling capabilities of the different elements,

some simple geometries of cantilever beams (with various cross-sections) were

examined. The cantilever beams were modeled using the same modeling methods as in

the case of the stiffened plate analysis (see detailed description in Chapter 4). The study

using the beam geometries led to several conclusions that proved to be valuable for the

analysis of a stiffened plate structure.

The performances of the models were investigated with different stiffener depths.

It was found that the accuracy of the various modeling methods is strongly dependent on

the depth of the stiffeners.



15

2 Finite element formulation and assumption

2.1 Physical problem s mathematical models and finite element solution

Figure 2-1 (taken from [2]) summarizes the finite element solution process. This

process is usually used to solve physical problems such as structures subjected to certain

loads. We use assumptions to idealize the physical problem as a mathematical model,

which is stated by a set of differential equations, and we use the finite element procedure

to solve the mathematical model.

It is important to note that only the selected mathematical model is solved by the finite

element method, and hence the accuracy with which the physical problem is modeled is

totally governed by the mathematical model that we choose to use. Even the most refined

mesh cannot contain all the information that exists in the real physical problem, and

hence the solution of the mathematical model can only give us an approximation of the

real response.

We choose the mathematical model according to the phenomena we want to predict

(small deflections, nonlinear response, etc.), and we must make sure that we choose

reliable and effective models. A reliable model is one that predicts the required response

within a selected level of accuracy. An effective model is one that yields the required

response at relatively low cost.

The reliability and effectiveness of a given model can be examined versus a solution

of a more comprehensive model of the same physical problem. In general, the most

comprehensive model that can be thought of is a three-dimensional model that also

includes nonlinear effects. Therefore, it may be necessary to solve higher-order

mathematical models in order to asses the solution of the chosen model.
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Figure 2-1: The process of finite element analysis (taken from [2]).
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As discussed in details in the following chapters, a beam structure can be analyzed by a

sequence of such mathematical models. The beam may first be analyzed using Bernoulli

beam theory, then Timoshenko beam theory, then two-dimensional plane stress theory,

and finally using a full three-dimensional continuum. Such a sequence of models is

referred to as a hierarchy of models. It is obvious that a model higher in the hierarchy

yields to a more accurate prediction of nature, but it is also more expensive in computer

resources and engineering time. In most common cases, a full three-dimensional analysis

is about an order of magnitude more expensive than a two-dimensional solution.

We can summarize the basic steps in the process of analysis using finite elements as

the proper choice of the mathematical model, the solution of the model by finite element

procedures and the evaluation of the results. We must judge, for each finite element

analysis, if an appropriate mathematical model was chosen (in light of the characteristics

of the physical problem) and if the model was solved to sufficient accuracy.

2.2 General finite element formulation

In this section we begin by stating the general elasticity problem to be solved. We then

discuss the principle of virtual displacements, which is the basis of the finite element

solution, and we describe the derivations of the finite element equations. It should be

mentioned that in the following we use the approach given in [2].

2.2.1 Problem statement

Figure 2-2 (taken from [2]) shows a general three-dimensional body that will serve to

demonstrate the general problem to be solved. The body is supported on the area Su with

prescribed displacements U su and is subjected to surface loads (force per unit area) f s'

on the surface area Sf.
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Sf fS Y

Z, w RcY

Wj

V j

Y, VU

z, ' y vNodal pointi

x,

Finite element m

'/11

Su

Figure 2-2: General three-dimensional body with an 8-node three-dimensional

element.

The body is also subjected to body forces fB (per unit volume) and concentrated loads

R (i indicates the point where the load is applied). The externally applied forces have

three components corresponding to the X,Y,Z coordinate axes:

fB SS

f B fy ; Rc Rc, (2.1)[B S R

The displacements of the body are denoted as:
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UU

U(X,Y,Z)= V

_W

(2.2)

where on the surface area Su we demand U = Usu . The strains corresponding to the

displacements above are:

E = [e, XX EL E y yz Y ] (2.3)

where:

" ~3X'
ajv

y -- jy" Y ' S= w

" Z

au av
V jxa = ---;

=v aw
YVZ =-+-

aZ aY'

aw au
ax = Z

The stresses which corresponds to the strains are:

where

(2.6)

In (2.6) C is the stress-strain material matrix and the vector r' indicates initial

stresses.

The problem to be solved is now defined by the geometry of the body, the applied

loads, the boundary condition, the material law and the initial stresses. Our objective is to

obtain the displacement field, and by doing so to derive the strains and stresses.

(2.4)

T = [- rr X r Y rz yz (2.5)

r = CE+r' I



20

In the following we assume linear analysis conditions, which require that the

displacements are infinitesimally small. A consequence is that we can express the

equilibrium of the body with respect to its unloaded configuration with the calculation of

the strains by (2.4). We also require that the relation between the strains and stresses is

constant (not dependent on the loading or stresses), although it might vary inside the

body.

2.2.2 The principle of virtual work

The principle of virtual work (also known as the principle of virtual displacements) is

the basis of the displacement-based finite element procedures. It states that the

equilibrium of any general body requires that for any field of virtual displacements that

the body virtually undergoes, the total internal virtual work is equal to the total external

virtual work. This can be stated as

- T S T __Tf Tiv JUfBv fuf Uffd R' (2.7)fe rdV = f BdV + fU s, 'dS +XU R, 2
V V S

where U is the virtual displacement field and e indicates the virtual strains.

It is important to note that the body does not physically undergoes the virtual

displacement field U, since this displacement field is totally independent of the actual

loading. The virtual displacements are only used to invoke the equilibrium of the body, as

stated above.

When the principle of virtual work is fulfilled for all allowable virtual displacement

fields, the three fundamental requirements of mechanics - namely, differential

equilibrium, compatibility and the stress-strain law are satisfied.
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2.2.3 Finite element equations

The essence of the finite element analysis is the approximation of the body as an

assemblage of finite elements, which are connected through the nodes at their boundaries.

In each element, the displacements are assumed to be a function of the displacements at

the nodes. Hence, for a given element m, we can write:

U(i) (x Y, z) = H (") (x, y, z) U (2.8)

where H (") is the displacement interpolation matrix, and U denotes the displacements at

all nodal points, including those at the supports of the body. U is a vector of dimension

3N, where N is the number of the nodes of the element assemblage:

U T =[UI V, W, U2 V2 W2 ... UN N WN

A typical finite element is shown in figure 2-2. The mesh of the complete body

corresponds to the assemblage of all elements (or elements with different geometry) such

that no gaps are left.

It is important to note that the displacement field (and hence strains) within a given

element is influenced only by the displacements of the nodes of this element.

The strains that correspond to the displacement vector U are:

e " (x, y, z) = B('" (x, y, z) 0 (2.10)

where B(") is the strain-displacement matrix, constructed by using the relations in (2.4).

The stress vector can be stated as:

T(") = CW"E ('")+rI(n) (2.11)

(2.9)
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where C"' is the stress-strain matrix of element m and r() denotes the initial stresses.

The material law (which is specified in C&")) can vary within the element assemblage.

We can now derive the equilibrium equations that correspond to the finite element

assemblage, by rewriting (2.7) as a sum of integration over the volume and areas of all

finite elements:

m (M)m f "( m sm "s+

(2.12)

where m=1,2,... ,k , k being the number of elements, and S("),..., S m denotes the

element surfaces that are part of the body surface S.

We use the relations in (2.8) and (2.10) to obtain the virtual displacements and strains:

--(n) ~m )
u (x, y, z)= H (")(x, y, z) U (2.13)

-(M)
e (x, y, z)= B'")(x, y, z) U (2.14)

By substituting into (2.12), we get:

-T T

U [ B("')TC(')B'"dV(M)] = U [{X H(m)Tf B(m)dV (m) }+
Mn Vin )

+{ f H (")Tfs(n)d") }-{ JB (m)T"Rmdv'") } +Rc ] (2.15)
In Vin )/n)

We can take U and U out of the summation signs since they are independent of any

particular element. In order to obtain the equations for the unknown nodal point
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displacements, we use the principle of virtual work n times by imposing unit virtual

displacements for all components of U . The result is:

KU=R (2.16)

The matrix K is the stiffness matrix of the element assemblage,

K = B(n)TC"(m)
m yjim)

The load vector R is given by:

R = RB + Rs - I

where RB is the effect of the element body forces,

RB=> fH (")T f
m yH

Rs is the effect of the element surface forces,

Rs = f H S(m)
m S(m),...,Sq(m)

R1 is the effect of the element initial stresses,

R, = f B' ( T''") dV (')
M i(n)

and Rc is the vector of the nodal concentrated loads.

B (m)dV ("')

I+ Rc

(2.17)

(2.18)

B(m)dV (in) (2.19)

f S (m)dS(m) (2.20)

(2.21)
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2.3 Some aspects of the finite element formulation

In the following we discuss some aspects concerning finite element formulations and

we distinguish between several groups within the family of finite elements. In Chapter 3,

where we describe the formulation of the elements that were used along the course of this

research, we revisit these formulation aspects.

2.3.1 Truss and beam elements versus general two- or three- dimensional

elements.

* Truss and beam elements.

Originally, the truss and beam element assemblages were not referred to as finite

element models since the exact (within beam theory) stiffness matrices of these elements

can be calculated by solving the differential equations of equilibrium of the elements

rather than by using the principle of virtual work. As a result, all three requirements of an

exact solution (the stress equilibrium, the compatibility, and the constitutive

requirements) are fulfilled, and hence the exact element internal displacement and

stiffness are calculated.

* General two- and three- dimensional finite elements.

We use the principle of virtual work to formulate the stiffness matrix of two- and

three- dimensional finite elements. Since we do not know the exact displacement

variation (as in the case of a beam element) we use various functions that approximate

the actual displacements. As a result, the differential equations of equilibrium are not

satisfied, but this error vanishes as we refine the mesh.
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2.3.2 Generalized coordinates finite elements versus iso-parametric finite elements.

In the discussion below we distinguish between two methods that serve to assemble

the finite elements matrices: generalized coordinates and iso-parametric formulations.

The first method enhance the understanding of the finite element method, while the other

is more effective in most practical analyses. It should be mentioned that in the discussion

below we use the finite element matrices derivations given in [2].

e Generalized coordinates finite elements

The derivation of the generalized coordinate finite elements

approximation of the element displacements as polynomials in

undetermined constant coefficients a,, Qj and y , i=1,2,..., referred

is based on the

x,y and z with

to as generalized

coordinates.

In the general case we have:

u(x, y, z)=a, +a 2x+a 3 y+a4z+a 5xy+...

v(x, y,z)= 1 82x+,83y+/34 z+ 5xy+...

w(x, y,z) = 71 + 72X+ 3y +Y 4z+YSXY+ .

(2.22)

where a, , , and y, are the generalized coordinates. The relation in (2.22) can be written

in matrix form,

u =cDa (2.23)

where (D contains the polynomials terms, and a is a vector of the generalized

coordinates. In order to state the generalized coordinates as functions of the nodal point

displacements, we evaluate the relation in (2.23) for U^ (which denotes the displacements

at the nodes):
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u =A-a

If A is not singular, we get:

a= U.

The generalized strain vector is given by:

(2.24)

(2.25)

(2.26)e = Ea

where the terms in the matrix E are obtained by using the displacement approximation

given in (2.22). The stresses -r are obtained by:

r = CE (2.27)

From (2.23) to (2.27), we obtained all the terms

element matrices. Using the notation of Section 2.2,

H = OA-1

B = EA-'

needed for the evaluation of the finite

we have:

(2.28)

(2.29)

* Iso-parametric elements.

The essence of the iso-parametric finite element formulation is the direct relationship

between the element displacements at any point in the element and the element nodal

point displacements, which is established through the use of interpolation functions. As a

result, there is no need to calculate the transformation matrix A' [see (2.25)]; Instead, the

element matrices are obtained directly.
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The element coordinates and displacements are expressed in the form of an

interpolation using the natural coordinate system of the element. This coordinate system

may be one-, two-, or three dimensional, depending on the dimensionality of the element.

Considering a general three-dimensional element, the coordinate interpolations are:

q -

x = Xhxj; y = hjyj; z= hi zi (2.30)
i=1 = =

where x, y and z are the coordinates at any point in the element, and xi, yi, z, i=l,..

are the coordinates of the q element nodes. The interpolation functions hi are defined with

the variables of the natural coordinate system of the element. These variables - r, s and t

- vary from -1 to +1. We use only the r variable in the case of the one-dimensional

element, r and s for two-dimensional elements and r,s,t for a three-dimensional case. The

principal property of a certain interpolation function, say hi, is that its value is unity at

node i and zero at all the other nodes of the element. This fundamental property enables a

systematic derivation of the interpolation functions.

The element displacements are interpolated using the same method:

U= vhiuj ; = hivj ; = hiwi (2.31)
i=1 i=1 i=1

where u, v, and w are the displacements at any point in the element and ui, vi and wi, are

the displacements at the nodes.

In order to evaluate the element stiffness matrix, we have to calculate the strain

displacement transformation matrix. We obtain the element strains via derivatives of the

element displacements with respect to the local coordinates. Since these displacements

include natural coordinate variables, we need to relate the x,y,z derivatives to the r,s,t

derivatives. We can rewrite (2.30) as:
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x = f, (r, s,t); y = f 2 (r,s, t); z = f3 (r,s,t)

where the fi imply that x, y and z are functions of the natural coordinate variables.

obtain the required derivatives, , I and dz by using the chain rule:

L/r 1 x/dr

dlds = dx/ds

d/dt] L ax/at

ay/dr az/dr d/dx

dy/ds az/ds d/dy

ay/at az/dt d/dz _

or in a short matrix form,

-= J -
ar ax

(2.34)

where J is the Jacobian operator. Since we need the derivatives with respect to the local

coordinates, we use:

(2.35)
ax dr

The inverse of J exists if there is a unique relation between the natural and the local

coordinates of the element, as expressed in (2.32). Using (2.31) and (2.35), we evaluate

the derivatives of the displacements, and construct the strain-displacement transformation

matrix B, with

. = Ba (2.36)

where a denotes the element nodal point displacements. The element stiffness matrix is

then given by

(2.32)

We

(2.33)
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K = BC TCBdV (2.37)
V

Since the terms in B are functions of the natural coordinates, the volume integration is

conducted over the natural coordinate volume. Hence, the volume differential dV must

also be written in terms of the natural coordinates:

dV = det(J) dr dsdt (2.38)

where det (J) is the determinant of the Jacobian operator in (2.34).
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3 Assumptions involved with relevant elements

The understanding of the mechanical assumptions involved in each finite element used

in a finite element analysis is essential for an educated judgment of the results obtained

by the finite element solution. In this chapter, we discuss the assumptions involved with

the elements that were used along the course of the research work.

As briefly described in Section 1.3, three types of elements were used during the

thesis work: beam elements (including two sub-types: Hermitian beams and

isoparametric beams), shell elements and three-dimensional elements. In the following

we discuss the assumptions involved with the beam and the shell elements, and we

present brief descriptions of the element formulations. It should be noted that there are no

structural assumptions involved with the three-dimensional elements, a fact that enables

excellent modeling capabilities but also leads to high cost in computer resources and

engineering time.

3.1 Beam elements

We begin the beam elements description with a discussion of general beam

considerations. These considerations relate to both beam element types (Hermitian and

isoparametric [or in short "iso"] beam elements) that are presented afterwards.

3.1.1 General beam considerations

The classic bending analysis does not account for shear deformation. As a result, a

normal to the neutral axis of the beam stays straight during and after deformation, and its

rotation is equal to the rotation of the beam neutral axis. This hypothesis, which relates to

the Bernoulli beam theory, is illustrated in Figure 3-la (taken from [2]). The above
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Neutral axis

Beam section

HW

3-la

Beam deformation

excluding shear effect

dx 1 dx
Neutral axis

Beam section

H W

3-lb

Beam deformation

including shear effect

Figure 3-1: Beam deformation assumptions (taken from [2]).

assumption results into the well-known differential equation in which the transverse

displacement w is the only variable.

The inclusion of shear deformations corresponds to Timoshenko's beam-bending

theory. According to this theory, a normal to the neutral axis stays straight, but due to

shear deformation it does not remain perpendicular to the neutral axis. As shown in

Figure 3-ib, the total rotation of such a fiber is the difference between the rotation of the

tangent to the neutral axis and the shear deformation,

dw
#= Y

dx
(3.1)

where / is the shear strain across the section. The actual shear strain varies across the

section, and hence the shear strain y in (3.1) is an equivalent constant strain over a

corresponding shear area As,



32

V
r=-; y=-; As =kA (3.2)

As G

where V is the shear force at the section. Various hypotheses may be used in order to

evaluate the shear correction factor, k (see [18] for details). One possibility is to assume

that when acting on A,, the equivalent shear stress must result in the same shear strain

energy as the actual shear stress acting on the real cross-sectional area A. As shown in

[18], this procedure leads to k=5/6 for a rectangular cross-section.

3.1.2 Hermitian beam element

3.1.2.1 General description

The Hermitian beam element is formulated by solving the beam differential equations

of equilibrium (see discussion in Section 2.3.1). As a result, all three requirements of

exact solution - namely, the stress equilibrium, the compatibility, and the constitutive

requirements are fulfilled, and the exact ("exact" within beam theory) element stiffness

and displacements are obtained.

The Hermitian beam is a 2-node element with a constant cross-section and 6 degrees

of freedom at each node (see Figure 3-2). The displacements modeled by the beam

element are cubic transverse displacements, linear longitudinal displacement and linear

torsional displacement. Off-centered beams can be modeled by using an offset definition.

3.1.2.2 Formulation of Hermitian beam element.

In the following we describe the formulation of the Hermitian beam element using

the approach presented in [16]. We describe the formulation for an element representing a

straight beam with uniform cross-section, which can carry axial forces, bending moments

and twisting moments. The various forces and moments acting on the beam are the axial

forces F, and F7; shearing forces F2, F3, F8 and F9; bending moments F5, F6, Fit and F12 ;

and twisting moments (torques) F4 and F10. The location and positive directions of these
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F8
F11

x F7
FlO

zF2 
FF9

F5 F12

F1 F4 F 3

Figure 3-2: Hermitian beam element (taken from [16]).

forces are shown in Figure 3-2. The corresponding displacements ul,...,U12 are taken to

be positive in the positive directions of the forces.

In the following we assume that the axial forces act along the centroidal axis of the

beam, and that the shearing forces and the bending moments act in the planes of the

principal axes of the beam's cross-section. Consequently, the shearing forces and the

bending moments that act in the x-y plane (F2 ,F8, F6 and F 12) yield displacement

that are decoupled from the shearing forces and bending moments in the x-z plane (F3,

Flo, F5 and F,1 ). As a result, all forces (F1 to F12) can be divided into six groups, which

can be treated independently of each other. Considering each group separately, we derive

the corresponding stiffness terms, which together assemble the element stiffness matrix -

as described below.

* Axial forces (F1 and F7)

The axial displacement shown in Figure 3-3 is obtained from the equation

du
F, = EA (3.3)

dx

The integration of Equation (3.3) gives
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Fi -
-~ I

(a)

Fl

U1=0

F7

U7= 0

U7

F7

(b)x

Figure 3-3: Axial forces F1 and F7.

FX=-UEA+C 1 (3.4)

where C1 is a constant of integration. Imposing displacement ul at x=O, and zero

displacement at x=l yields

C, =Fl

Using equations (3.4) and (3.5), for x=0 we get

(3.5)

(3.6)EA
F, =-U 1

From equilibrium in the x direction we have

(3.7)

We use the force-displacement relation, F=ku, to define the individual stiffness

terms kij. The physical meaning of the term kij is the element force Fi due to unit

displacement uj. Therefore

U1
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ki, - F,
u )

EA
1

and

F EA
kyi - 7 -

U1

(3.8)

(3.9)

Since the axial displacement is uncoupled from the other displacements, the rest of the

terms in the first column of the stiffness matrix are equal to zero. Similarly, if ui=0 and u7

is nonzero (as demonstrated in Figure 3-3b), we have

k77 = EA
1

(3.10)

* Twisting moments (F4 and Flo)

The differential equation for the twist angle 6 of the beam (as demonstrated in

Figure 3-4) is given by

F = -GJ dO
dx

where GJ is the torsional stiffness. The integration of (3.11) gives

F4x=-GJO+C

By imposing 0=0 at x=l we evaluate the constant of integration

C, =Fl41

Since 9=u4 at x=0, (3.12) and (3.13) result in

(3.11)

(3.12)

(3.13)
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Fio

Uio=0
(a)

Fo

U o
(b)

Figure 3-4: Twisting moments F4 and FiG.

GJ
F4 =-U44 1 4

From equilibrium of the twisting moments, we have

F-o = -F4

Therefore

rF4  GJ
k4,4 - 4 -

U4 1

and

k - (Fm - G10,4 F 4 I
SU4 ) 1

All other terms in the fourth column of the stiffness matrix are zero. In a similar way, if

u4=0, as demonstrated in Figure 3-4b, it can be shown that

F4

U4 -10 x

F4

U4= 0
x

(3.14)

(3.15)

(3.16)

(3.17)
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t F8

U2tF. Us=0
--- ----- U12=0

Ue=O F12
x (a)

Fs

F12
F2.

U2= -0 _-._.
U6=0

F6

x

U 12=0

Us

(b)

Figure 3-5: Shear forces F2 and F8.

k10,1 =
GJ

1
(3.18)

a Shearing forces (F2 and F8)

The transverse displacement v of the beam, as demonstrated in Figure 3-5a is given by

V =v + v, (3.19)

where vb is the transverse deflection due to bending and v, is the deflection due to shear,

governed by

dv F2

dx GAS
(3.20)

where As is the effective cross-sectional area in shear. The bending deflection (shown in

Figure 3-5a) is governed by the differential equation

EIz 2 = 2 F6  (3.21)
Zdx2



38

Integration and addition of equations (3-20) and (3-21) gives

F2x_ Fox2  F2 EIzEI v = +(C1 _ 2 )x+C26 2 GAS

By imposing the boundary conditions given in Figure 3-5a we get

dv dv -F2
- - atx=0,

dx dx GAs
x=l

v = 0 at x=l

Substituting the values of C1 and C2 into (3.22) leads to

Fx 6X2 F (x2s
EIzv= 2  _ F2  +(1+D) 2

6 2 12 12

where

FF- 2 '
6 2

and

12EI

GAs 1 2

From equilibrium we get

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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(3.28)

and

Fu =-F, + F~F12 - 6 F 21

Since at x=O the transverse displacement is u2, we have from (3.25) that

13 F
U 2= (I + D) 1 2

12EIZ

From Equations (3.26), (3.28), (3.29) and (3.30), we get

F 12EI
22 U 2 (1 + ()13

F6  ) F2 l 6EI ,
' u2 ) 2 (I+ D 2

F -12EIZ
82 (U2 (I + ()13

k F j-F6+F2j 6EIz
k12,2 - 2 2 

-I -- zD 1 u2 u2(1+11)12

while all other terms in the second column are equal to zero. In a similar way, b

the left hand side of the beam, as demonstrated in Figure 3-5b, it can be shown that

k 8 =k2  12EI
(1 + )l3

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

y fixing

(3.35)
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k12 8 =-k 2 . z6EI
(1+ D)12

(3.36)

9 Bending moments (F6 and F 12 )

Figure 3-6 shows the deformation caused to the beam by bending moments. The

governing differential equation is again (3.22), but the constants C1 and C2 are now

evaluated using different boundary conditions. Considering first the boundary condition

shown in Figure 3-6a we have

v=O at x=O, x=I

dv dvi - Fx
d d 2 atsx=
dx dx GAS

(3.37)

(3.38)

As a result, Equation (3.22) becomes

(3.39)EZV = F2 (X3 _12x)+-(lx -x 2 )
6 2

6S6
(4+D)l (3.40)

Using the equilibrium stated in (3.28) and (3.29), we have at x=O

and

and
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F2 U6.......I''tF S=

U= F6 F12

(a)

Fs
U2=0 U8=0
U6=0 F6U12

F12

(b)

Figure 3-6: Bending moments F6 and F12.

dvb dv dvL=U
dx dx dx

so that

EIz (4+ cD)

Therefore, from equations (3.28), (3.29), (3.40) and (3.42) we get

k6,6 = F6 (4+ D)E 7Iz
' 6 (I + (Dl

k F F 
F 6EIz 86 U6 ) 1  U6 ) (+)l2

k12,6- F12 _ ~F6 + F 2 1 _(2 - D)EIz
6 ) U6(1+ D)l

Using the boundary condition in Figure 3-6b and symmetry we obtain

F2

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

x
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(4+.ID)EI~
k12= k6,6 =

(2 +,)l
(3.46)

The stiffness terms that correspond to the shear forces F3 and F9, and the bending

moments F5 and F11 can be obtained by derivations that are similar to those discussed

above.

The complete stiffness matrix, as given in [16], can now be assembled, and it is

given by

EA

0 12EIZ
13 (1 +<D )

0 0 12EIY
P'(1+ (z)

0 0 0
- 6EIY

0 0 1 2(1 + (D)

0 6EIz 0
12 (1 + (D

EA 0 0

0 12EIZ 0
I'(1 + 12%)

o o 12EIy

0 0

0 0

0 6EIz
L2(1+%DY)

13(1+ z)

0

-6EIY

12(1+4z)

0

GJ

0 (4+4z)EIy
1 (1+4z)

o 0

0 0

0 0

0 - 6EIy
12(1+4)z)

- GJ

Symmetric

(4 + by)EIz

1(1 + )

0 AE

-6EIz
12(1+ D)

0

0 (2-z)Ey
0(1+4)

o 0

0 0 0 12EIY
3 (1+ z)D

0 0 0 0

0

(2-D y)EIz
(1+%DY)

o 0

0 -6EIz
1'2(1 + Dy)

6EIY

12 (1+ (D)

0

(3.47)

where

0 12EIz
1 '(1 +(DY

D 1 2EIz = 24 (1+ V) (rz
GAsyl As

F-

F

F2

F5

F6

F,

F

F,

F,F,,

-F,2

U1

U,
U

3

U 4

U,

U 6

U,

us

U,

U555

U
11

.U
12 -GJ

0 (4+%z)EIy
0(1+4z)

o o (4+ Dy)EIz

1(1+4DY)

and

(3.48)

-
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z = GA = 24(1

are shear deformation terms. Note that rz and ry are the

section, and given by

rZ =

ry = FL

If rz/l and r/l are small relative to unity, as is t

neglect the shear deformation and hence the terms 'Dy ar

radiuses of gyration of the cross-

(3.50)

(3.51)

he case with a thin beam, we can

d Dz in (3.47) are set to zero.

3.1.3 Iso-beam element

The iso-beam element is formulated by using the virtual

that approximate the actual displacements. As a result,

equilibrium are not satisfied exactly, but the error reduces as

work principle with functions

the differential equations of

the mesh is refined.

In the following we describe the formulation of the iso-beam element, as given in

[2]. The formulation of the iso-beam element is derived using the principle of virtual

work discussed above. This is demonstrated below using a simple case of a two-

dimensional element with rectangular cross section, as shown in 3-7. The beam is

subjected to transverse loading p and moment loading m, both per unit length. Applying

the principle of virtual work with the assumptions discussed in section 3.1.1 we get:

43

+ v) A
Asz 1

(3.49)
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dx+ GAk i (dw
dx 0 dx

- Ldw -
8)( B)dx = f

dx0

-- L
pwdx + fm/idx

0

We obtain the element stiffness matrix by using the method of iso-parametric formulation

discussed in Chapter 2, and by using the relations

W = 1hiwi;
i=1

(3.53)= hi __

where hi are the interpolation functions given in Figure 3-8 and q is the number of the

nodes. We define

w=HWa; 8=Hg

a =B

U = [w,...wq 01.0"q]

HW = [h...hq 0...0]

Hfl =[O ...0 h ... hq]

L (d,8
EI ( d

0
(3.52)

=w A
aJx

where

(3.54)

(3.55)

(3.56)
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(a) Beam with applied loading

Wi r

AL !L

(b) 2-, 3- and 4- node iso-beam elements

Figure 3-7: Formulation of two-dimensional iso-beam element.

0h 0 0 0
Node I Node 3

r=-1 r =0

r=-1 r =-1/3

Node 4 Node 2

r=+] 3-node case

r = 1/3 r=+l 4-node case

(a) 2 to 4 variable- number - nodes element

include only if
node 3 is present

include only if
nodes 3 and 4 are present

2 + (-9 r' +-r
2 +9r-1)

2 16
- 1 1

h, -(I+ r) + 16i-2  O -(r +r' 9r1
2 6

h3 =(1- r2  + (27r +7r2 -27r -7)
16

/4 =6 (-27r3 -9r2 + 27r +9)

(b) interpolation functions

Figure 3-8: Interpolation functions of two to four variable-number-nodes one-

dimensional element (taken from [2]).
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h = (1-r)
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and

J-h[a ahq
B =J - - 0... 0]

ar ar

(3.57)

ahk ahq
B =J-[ ... 0 ... ]

ar ar

ax
where J = . Using the above definitions we can construct the element stiffness matrix

Dr

K=EI BB,BdetJdr+GAkf(B - HY)T(Bw - H,)det J dr (3.58)

3.1.4 Comparison between Hermitian and iso-beam elements

Since both the isoparametric beam and the Hermitian beam elements can be used to

model beam structures, we may ask which element should be preferred. It is clear that in

the case of linear analysis of straight beams the Hermitian elements are more cost-

effective, since they can describe cubic variations of displacements with half the degrees

of freedom. However, the isoparametric beam element predicts the shear deformation

more accurately, and enables a natural representation of curved beams. In the analyses of

stiffened plates and shells the use of isoparametric elements may be effective, since the

number of nodes along the isoparametric beam can be set to fit the number of nodes on

the shell element edge (when the 4-, 8- or 16-node shell element is employed, the

isoparametric element is employed with 2,3 and 4 nodes).
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3.2 Shell elements

During the course of this research work, shell elements were used extensively,

both in the "all-shell" models, where only shell elements are present, and in hybrid

models, where the shell elements are assembled with different types of beam elements.

In the various finite elements models that were constructed and solved, we used

flat rectangular shell elements, which are a special case of the general curved shell

element. Therefore, we shall limit the discussion about the mechanics and formulation of

the shell elements to the special case of flat rectangular elements.

In the following we describe the formulation of a flat shell element using the

approach given in [2]. A simple rectangular flat shell element can be obtained by

superimposing the plate bending behavior and the plane stress behavior. This

superposition and the resulting element are shown in Figure 3-9. We designate the

bending stiffness matrix of the element as K Band the membrane stiffness matrix as Km.

Using these matrices we can assemble the total stiffness matrix

KB o
B

Ks -2X12 (3-59)
20X20 [ KM

8X8i

The formulation of the matrices kB and M is discussed in the following. We start with

the iso-parametric formulation of KB ' which is basically the stiffness of a plate element.

* Iso-parametric formulation of a plate element

The formulation of the plate element is based on the plate theory by E. Reissner

and R.D. Mindlin, which includes shear deformation. According to this theory, material
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Figure 3-9: Flat shell element - superposition of a plate element and a plan stress

element.

particles that were on a straight line, perpendicular to the mid-surface of the

undeformed plate, remain on a straight line during deformation, although this line is no

longer normal to the deformed mid-surface. As a result, we can state the displacement of

the material particles to be as follows

U = - z8j(x, y); w = w(x, y) (3.60)

where w is the lateral deflection, , is the rotation of the normal to the mid-surface in

the x,z plane and #, is the rotation in the y,z plane, as demonstrated in Figure 3-10.

The bending strains ex, ,, vary linearly through the plate thickness and are

given by

[ xx]
LyyH-

YXIj

ay aJx

(3.61)

while the transverse shear strains, which are constant across the thickness, are given by

V=- -Z#, "(x, y);
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Figure 3-10: Deformation assumptions in analysis of plate including shear deformation.

1=' __ (3.62)

_ay

Since the normal stress in the z direction is zero, we have a plane stress condition. For

this case, the relations between the stresses and strains, provided that the material is

isotropic, are

T IV 0 /3x

E =2 Y 1a (3.63)

-V - 2

ay ay

aw

= 3a x (3 .6 4 )
TYZ_ 2(1+ v) aw-)

For a plate loaded with a force per unit area, p, the principle of virtual work takes

the form
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h h

f[E, ,, Yf,] ldzdA+k 2, 7, dzdA= pdA (3.65)
Ah Ah A

2 _ _ 2

where the terms designated with the overbar stand for virtual quantities, and k is a

constant used to obtain the effective shear area. By substituting (3.71) to (3.74) into

(3.75), we get

fTCKdA+ fyTCsYdA= W PdA (3.66)
A A A

where CbiK are the internal bending moments, Cs y are the shear forces and

ax

Ky (3.67)

y a(x

E/3

C = [x x (3.68)IV 0
Cb= h 1( V 1 0~v (3.69)

12(1-2) F 01 -V
2

Ehk 10
C=I2(1 +v) 0 1 3.0

We use the following displacement relations
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q q

i=1 i=1

q

LJ Xhj1 '1=1

where q is the number of nodes and the interpolation functions (hi) are given in Figure 3-

11 for various number of nodes per element.

By letting

K(r, s) BK

y(r, s) B, 

w(r, s) H

(3.72)

(3.73)

(3.74)

where

(3.75)

and using (3.67) to (3.75) we obtain the stiffness matrix of the plate element:

(3.76)K = f(BTCB, +B TCsBY)drdsdet J
-1 -1

As stated in (3.59), the stiffness matrix of a flat shell element can be constructed

by superimposing the plate bending and plane stress behaviors. We shall now complete

the formulation of the flat shell element by description of the derivation of KM,, the

stiffness matrix of a plane stress element (also referred to as membrane element). This

derivation also serves as an explicit demonstration of the isoparametric formulation

method.

(3.71)
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9 Iso-parametric formulation of plane stress element.

For simplicity we derive the stiffness matrix of the 4-node two-dimensional element,

described in Figures 3-12. The derivation is based on the approach given in [2]. The

coordinate interpolation functions (using the 4-node element case in Figure 3-11) are

given by

1 1 1 1

4 4 4 4

1 1 1 1
y =-(l + r)( + s)y, +-(1- r)(I+s)y 2 +-(1- r)(- s) y 3 +-(I+ r)(1- s)y 4  (3.77)

4 4 4 4

Similarly, the displacement interpolation functions are

11 1 1
u =-(1+ r)(+ s)u, +-(1- r)(+ s)u2 +I-(1- r)(l- s)u3 +-(1+ r)(1- s)u44 4 4 4

1 1 1 1
v =-(I + r)(l + s)v +I-(1- r)(1+ s)v 2 +-(1- r)(1- s)v3 +-(I + r)(1- s)v44 4 4 4

The strains that correspond to the element degrees of freedom are

.T = [E E Y), ]

(3.78)

(3.79)

where

aJu av au aJv
E - E =-, y = -

x'~ d y * y 3x
(3.80)
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Figure 3-12: Four node two-dimensional element.

The displacement derivatives are obtained by:

__irax ay - 1[r ar ar ax
_a ax ay ay_

as- aL s as -L ay]

or in shorter form

= -a
ar ax

1 1
+s)x1 -- (1 + s)x 2 -- (1- s)x 34 4

1
+-(1

4
1

-r)x 2 -- (-r)x 34

1 1+Is)y1 -(1+s)y 2 -- (1

1

4

1
-- (1+ r)x44

1-s)y3 -(1-s)y 4
4 4 4

(3.81)

where

(3.82)

1
= -(1

4
ax
ar

a x =

as 4

ay 1
ar 4
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1
+r)y, +-(1-r)y 24

11
-I(1-r)y 3 -I(1I+ r)y 44 4

To strains are obtained by

+ s)u, - (1
4

+r)u1 +-(14

+ s)u 2 -1 (1- s)u 3 + -(1- s)u44 4

-r)u 2 -1(1-r)u 34
-- (1+ r)u44

= (I+ s)vI 1 (1 + s)V2
ar 4 4

- (1- -s)v 3 -1 (1- s)v 44 4

+ r)v + (1-
4

r)v2 -1 (1- r
4

)v 3 - (1+r)V 44

consequently,

1

4

[1+s

1+r

0 -(1+s) 0

0 1-r 0

-(1-s) 0 1-s 0~

-(1-r) 0 -(1+r) 0]

1+s 0 -(1+s) 0 -(1-s)

1+r 0 1-r 0 -(1-r)

0 1-s ~

0 -(1+r)_

ay- -- (1
as 4

(3.83)

-(1
ar 4

a -(1

av
1

4
(3.84)

au
ay

and

(3.85)

av

ax
av 4
ay

- 0
0

where

(3.86)
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u =[u1 vI u 2 v 2 u3 v 3 u 4 v4 ]

Using the relations in (3.85) and (3.86) we can establish the

transformation matrix B:

0 -(1+s)

1+r

l+s

0

1-r

strain-displacement

0 -(1-s) 0 1-s 0

1-r 0 -(1- r) 0 (1+r)

-(1+s) -(1-r) -(1-s) -(1+r) 1-s

(3.88)

and the stiffness matrix is then given by

K =f fB T
r=-I s=-I

CBt det J dr ds (3.89)

where t is the element thickness, and C is the stress-strain matrix for plane stress

condition:

C= E2V
1-V2

0

V
1

0

0

0
--v
2

(3.90)

(3.87)

B=I-J-1 0
4

-I+r
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4 A study of element modefinig capabilities: analysis of cantilever beams

4.1 The purpose of this study

In order to gain insight into the modeling capabilities of the different elements,

various simple models of beams were constructed and solved. The conclusions obtained

by the solution of these simple models were found valuable for the analysis of the

stiffened plate structure.

The demonstrating models included the cantilever beams with "I" and "T" cross-

sections, described in Figure 4-1. The beams were subjected to bending and torque by

means of a concentrated force and a concentrated moment at the tip. The analysis

included the solution of deflections and stresses.

First, a three-dimensional model was constructed and solved, in order to obtain a

reference solution. This model's solution was compared to the well-known analytical

solutions by Bernoulli and Timoshenko. Then, the other modeling methods were

examined by comparison to the three-dimensional model. The next step was to

investigate the influence of the depth of the web on the performance of the different

models.

Different cross-section types ("T" and "I") were used in order to see whether the

conclusions about the modeling capabilities would be valid for more general cases. The

"T" cross-section is more attractive since its components, the web and the flange,

resemble the components of the stiffened plate: the stiffener and the effective breadth of

the plate, above each stiffener. However, the experiments using both types of cross-

sections yielded the same conclusions about the modeling capabilities.
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Figure 4-1: Cross-sections of cantilever beams under investigation.

4.2 Finite elements models.

The "T" beam was modeled using four different methods, as described in Figure 4-2.

The formulation of the various elements is discussed in Chapter 3. The following is a

description of the models, by decreasing order of mathematical hierarchy:

1). "Three-dimensional model" - constructed from solid elements with 20 nodes per

element. The three-dimensional model is the most comprehensive of all mathematical

models. The major disadvantage of the usage of the three-dimensional model is the cost

in computer resources. For many engineering problems the usage of less comprehensive

models will be adequate, and there is no need to use three-dimensional solid elements.

2). "All shell model" - constructed from 8-node shell elements.

3). "Iso beam model" - a combination of 3-node iso-beam elements with 8-node shell

elements. The Iso-beam element nodes are connected to the shell element nodes by

means of rigid links. Rigid links are special constraint equations between two nodes - a

master node and a slave node. As the nodes displace due to deformation, the slave node is

constrained to translate and rotate such that the distance between the master node and the

slave node remains constant, and that the rotations at the slave node are the same as the

corresponding rotations at the master node.

4). "Hermitian beam model" - a combination of a Hermitian beam element (2-nodes

per element by definition of the Hermitian beam element) and 4-node shell elements. The
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Figure 4-2: Finite element models of cantilever beam with a "T" cross-section.

low order (4-node) shell elements were used in order to have compatibility (as per the

nodes, but not by the displacement functions) with the 2-node Hermitian beam elements.

The Hermitian beam elements are in the flange plane, and hence are sharing the nodes of

the shell elements. The fact that the web is eccentric to the flange surface is taken care of

by definition of an offset value.

The "I" cross-section beam served to further investigate particular issues, as

described below, and was modeled using the "all-shell" and the "Iso-beam" methods.

4.3 Summary of results

A bending load case (applied by a tip force) was solved using the various modeling

methods. This load case solution was the basis for the evaluation of the various models.

First, the cross-section described in Figure 4-la was modeled. This beam will be referred

to below as the "reference beam". Then, a further investigation on the influence of the

web depth was conducted. Displacement and stresses (both axial and shear) were studied

using each model.
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We begin the results summary with the three-dimensional solution. This solution,

together with some analytical results, will be used for the evaluation of the other

modeling methods.

4.3.1 Three-dimensional model - the reference solution

As mentioned above, the reference beam was analyzed with a tip load. Figure 4-3

describes the comparison of the three-dimensional solution with the well-known solutions

based on Bernoulli and Timoshenko beam theory.

The analytical beam theory solutions do not coincide with the three-dimensional

solution (which is a better representation of the real beam): the Bernoulli beam is too

rigid, while the Timoshenko beam is too flexible. The discrepancies are due to the

assumptions involved with these theories. Bernoulli's classic beam theory does not

account for deflections due to shear strain, and assumes that planes originally normal to

the neutral axis remain plane and normal during deformation. This assumption introduces

a constraint that does not exist in reality.

The Timoshenko theory, which includes (in a simplified manner) deflections caused

by shear strain, assumes that planes remain plane, but no longer normal to the neutral

axis. The latter assumption relaxes the constraint used in the Bernoulli theory. The

Timoshenko theory yields slightly larger displacements than the three-dimensional

model, since it does not include the three-dimensional material effect (Poisson's effect)

near the fixed end of the beam. It should be noted that this is true also for the Bernoulli

beam theory, which nevertheless yields smaller deflections than the three-dimensional

model

4.3.2 Hermitian beam model

4.3.2.1 Predicted displacements

Figure 4-4 describes the deflection of the reference beam, subjected to the tip load. It

can be seen that the Hermitian beam model solution (marked as the "original Hermitian
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Figure 4-4: Deflection of a "T" beam - original and modified Hermitian beam models.
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model") yields substantially smaller deflections than the three-dimensional solution. The

reason for it lies in the nature of the model's definition, as explained below.

As demonstrated in Figure 4-2a, the Hermitian beam elements are placed in the plane

of the shell elements. The fact that the actual beam in the real structure is eccentric

(located on one side of the plate) is taken into account by a definition of an offset value.

The apparently natural definition of the offset value is the distance between the mid-

surface of the plate and the centroid of the web, as demonstrated in Figure 4-5a (noted as

doriginai). Although it seems natural, this definition of the offset will result in an erroneous

representation of the beam (too-rigid model) since the fibers of the cross-section

represented by the Hermitian beam and the shell elements will bend about the midsurface

of the plate and not about the real neutral axis of the cross- section, which is somewhere

in-between the midsurface of the plate and the centroid of the web. Hence, when the use

of the Hermitian beam is considered, the offset of the beam centroid from the location of

the nodes should be adjusted such that the combination of the elements will yield the real

moment of inertia. This value of offset should be calculated separately, as explained

below.

Since the moments of inertia of the flange and the web are well modeled by the

elements, the offset value should be calculated in such a way that it compensates for the

fact that both the flange and the web are bent about an axis that is not their own centroids.

We shall now derive the expression for the modified offset.

The moment of inertia of the cross section is given as:

I =I,+ A,- d 2 +12+ A 2 Ad 2  (4.1)

where I1 and 12 are the moments of inertia of the web and the flange respectively, about

their own centroids. The definitions of A1, A 2, d, and d2 are given in Figure 4-5.
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Figure 4-5: Original and modified Hermitian beam models - definition of cross-

section.

The definition of the "original" Hermitian model, as described above, leads to a

moment of inertia that is equivalent to:

(4.2)Itotal =11+I2 + A1 (doriginai ) 2

where the definition of dorigina is given in Figure 4-5a. The expression in (4.2) is clearly

different from the one given in (4.1), and hence needs to be adjusted. The adjustment is

done by a variation of the offset value, namely, by deriving a modified value of the offset

such that the expressions in (4.1) and (4.2) will yield the same result. By equating (4.1)

and (4.2) and dropping identical terms from both sides we get:

A 1 -(dnodfied 2 = A*1 2+ A2 d 2
2 (4.3)

The solution for dmodified from equation (4-3) yields:
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22 2

= A 1.d 1 + A2 .d2  (44)
dmod ified ~~ ::: 44

A1

This way, we obtain a value that is smaller than the actual distance between the mid-

surface of the plate and the centroid of the web. Once the adjusted offset value is entered

into the model, the results are close to those obtained using the three-dimensional model

and the analytical beam theories (see Figure 4-4).

4.3.2.2 Predicted stresses

Figure 4-6 depicts the bending stress in the reference beam, at the bottom of the web.

It can be noted that the original Hermitian model yielded substantially smaller stresses

than the three-dimensional model or the analytical beam theory solution (maximum error

of -38.5%, relatively to three-dimensional model). Once the Hermitian model was

defined using the adjusted offset, the correct stresses were obtained.

Figure 4-7 depicts the shear stress due to bending in the web of the reference beam. It

can be seen that the Hermitian beam models (both the original and the modified models)

yield a constant shear stress across the web, as opposed to the quadratic analytical

solution pattern (which is also observed in the three-dimensional and all shell models).

Furthermore, the Hermitian models do not predict correctly the distribution of the shear

force over the whole cross-section area. They predict that about 75.9% of the shear force

is carried by the web, while the analytical solution gives a value of 93.4%.

We can conclude that the assumption of constant shear stress in the Hermitian beam

element (see derivation of the element formulation in Section 3.1.2) leads to erroneous

shear force (and hence stress) prediction in the stiffeners.
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4.3.3 Iso beam model

4.3.3.1 Predicted displacements

As opposed to the Hermitian beam model, the iso-beam model does not use an offset

definition. Instead, the iso-beam element nodes lie on a line located at the natural axis of

the web. The displacements predicted by the iso-beam element model are very close to

those obtained by the three-dimensional model - see Figure 4-4.

4.3.3.2 Evaluation of stresses

The bending stresses, as obtained by the iso-beam model, are very close to the three-

dimensional and analytical solutions, as described in Figure 4-6.

Similar to the Hermitian model, the iso-beam model predicts an erroneous constant

shear stress pattern in the web (see Figure 4-7). This leads to a wrong shear force taken

by the web: 20.3% of the total shear force instead of 93.4% obtained by the analytical

solution. We can conclude that the rigid link connection between the shell elements and

the iso beam elements cannot model correctly the distribution of shear force over the

cross section.

This error, in predicting the shear force distribution repeats for the "I" cross-section

case, where the iso-beam model predicts that 65.9% of the shear force is carried by the

web, while the analytical solution gives that 91.6% of the force is carried by the web.

4.3.4 All shell model

4.3.4.1 Predicted displacements

In general, the construction of a model of a beam of arbitrary cross-section using only

shell elements, results in a geometric error due to the overlapping that occurs in the

intersection between the shell elements. This applies for the "T" cross-section, as can be

seen in Figure 4-8. The analyst may approach the problem by several ways, as described

below.
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Figure 4-8: "All-shell" models of a beam with "T" cross-section.

. Cross-section definition - approach no. 1.

The first approach, which is most likely used, is depicted in Figure 4.8b and

results into a "too rigid" cross-section. In this approach, the depth of the web is defined

as the real web depth plus half of the plate thickness. The model is then too rigid, due to

the extra segment of the web in the overlapping area, and hence smaller deflections are

predicted. The error is relatively small: about 1.3% of discrepancy from the three-

dimensional solution (see Figure 4-9).

. Cross-section definition - approach no. 1 - influence of the web's depth.

The discrepancies of the "too rigid" model relatively to the three-dimensional

model vary with the depth of the web, diminishing as the web depth approaches very

large values. This follows from the fact that the error of having an extra portion of the

web inside the half thickness of the plate has a negligible contribution to the total

moment of inertia, when the web depth is very large. The error in the "too rigid" model

approaches (from below) a final value when the web depth approaches zero, due to the

contribution of the extra portion of the web in the half thickness of the plate.

0.11

...........

......................
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Figure 4-9: Cantilever beam with "T" cross-section - evaluation of the "all-shell" models

tip displacement solution

. Cross-section definition - approach no. 2.

Another possible approach to tackle the problem is to define the distance between the

midsurface of the flange and the bottom of the web as the value of the real height of the

web - see Figure 4.8c. This approach leads to a too-flexible model (relative to the real

structure) due to the reduction of the offset of the web, and as a result, reduction of the

cross-sectional moment of inertia. This model has a substantial error compared to the

exact solution: for the reference beam, the tip deflection has an error of 14% relative to

the analytical solution.

. Cross-section definition - approach no. 2 - influence of the web's depth.

As for the "too rigid" model definition, the value of the discrepancy varies with the

depth of the web, and has a maximum value (about 70%) at the point where the bending

stiffness of the flange and the web are equal - see Figure 4-9. This is due to the relative

influence of the incorrect location of the web on the overall bending stiffness of the cross

section. When the bending stiffness of the flange is very large compared to the web, the

contribution of the web to the overall stiffness is relatively small. Hence, the fact that the

A

- Ratio: finage stiffness
to web stiffness

A All shell (too rigid)

a All shell (modified)

+ All shell (too flexible)

r-
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web is misplaced has a minor importance. The same reasoning applies when the web

stiffness is much larger than that of the flange: the cross section is mainly the web, so the

relative location between the flange and the web has little importance. Once both the

flange and the web make similar contributions, then the moment of inertia of the whole

cross-section is affected in a dramatic way.

The maximum discrepancy between the "too flexible" model and the reference

solution is smaller if the flange (which is kept fixed while the web's depth is varied) is

larger. This is due to the fact that a deeper web is needed in order to match the stiffness of

the flange - and hence the real distance between the mid-surface of the flange and the

centroid of the web will be larger. As a result, the error involved with the misplacement

of the web will be relatively smaller, since the ratio between the actual offset and the real

offset value is smaller for this case. This phenomenon is demonstrated with the "T"

cross-section no. 2, described in Figure 4-lb. This "T" cross-section has a thicker and

wider flange, and a thinner web. Hence, the maximum discrepancy has a lower value

(about 43%), and it is obtained for a deeper web - see Figure 4-10.

* Cross-section definition - approach no. 3.

In order to achieve a better representation of the cantilever beam using an all-shell

element model, a third approach can be used. According to this approach, the depth of the

web is defined such that the whole cross-section (web and flange) will have the same

moment of inertia as the real cross section. The procedure to obtain the appropriate web

depth is described below.

The moment of inertia of the real cross-section is given by the following expression:

IRea1 = 12 +thd 2 + b2 +tbfdf 2  (4.5)
12 W W 12
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Figure 4-10: Cantilever beam with wide flange "T" cross-section - evaluation of the

"all-shell" models tip displacement solution

The various terms are depicted in Figure 4-11 a. The terms dw and df are the

distances from the cross-section neutral axis to the centroids of the web and the flange,

respectively. These distances are given by the following expressions:

d=W

t h 2

tfbf(hw+ -)+tw $
2 2

tf bf + h~tW
(4.6)

h

2

tf h 2

t tfbf(hw+ t )+t 2

f 2 2df = hW +
tf'bf + h~tW

(4.7)

Dg

0 *

a ,-

a -

The "all-shell' (too
flexible) model curve is -

* plotted versus the right

g hand side Y axis scale -

-Ratio: flange stiffness to
web stiffness

* All shell (too rigid)

o All shell (modified)

* All shell (too flexible)

2
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Figure 4-11: Modified "all-shell" model - definition of cross-section

The cross-section of the modified all shell model is described in Figure 4-11 b. The

moment of inertia of this cross-section is given by:

IModfied = 12 +
12

tvxdwm2 + b2 +t, b d
12 ffn

2 (4.8)

It should be noted that the term x is the depth of the modified web, which is to be

calculated. The terms d, and dwm are the distances from the neutral axis of the modified

cross-section to the centroids of the flange and the modified web, respectively. They are

given by:

x2

tfb X+t

d~ 1 =x_ 2
tfb, + xtW

(4.9)

tf tf

NA

C.G. web

tw

F
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2
= x

d
tfbf + xt W

(4.10)
2

Since we wish to define the modified cross-section such that it will have the same

moment of inertia as the real cross section, we require that:

IReal - IModified (4.11)

By substituting (4.5), (4.6), (4.7), (4.8), (4.9) and (4.10) into (4.11), and dropping

identical terms from both sides, we get:

t 2

tbf(hw+ f )+t , 2
2 2

tfbf +h t

x
t1 x3 tfb,x+t w )

1 2 t b, + xtw 2

ht
) +tfbf (h+ f

2 2

tf h 2

tfb (h+ - _+_t _

2 2 2

t b +hwtV

tf b fx+tX
tfbx+tW

+tfbf(X 2)2
tfbf + xtw

(4.12)

Equation (4.12) can be simplified to:

3 tx+4tf bf
tfbf +tx

hw 3t+4hw tf bf +6tf 2 bfhW +3tf bi
tfb, +t~hW

The value of x, the modified depth of the web, can be obtained by an iterative solution.

12

(4.13)
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Figure 4-12: Modified web depth and moment of inertia.

Figure 4-12 describes the ratio between the modified web depth (x) to the real web

depth (h,). It can be noted that the depth of the modified web is very close to the depth

of the real web. This means that the too-rigid all-shell model is only "slightly too rigid",

as demonstrated in Figure 4-12 by the ratio of the moments of inertia.

The modified all shell model, which uses the modified web depth, yields

displacements that are very close to the three-dimensional model solution. The

displacement solutions for the various web depths, as obtained by the modified all-shell

model, are given in Figure 4-9 for the reference beam, and in Figure 4-10 for the wide

flange "T" cross-section.

4.3.4.2 Predicted stresses

Figure 4-13 gives the bending stresses, as obtained by the various "all shell" models. It

is noted that the too-flexible shell model yields higher stresses than the three-dimensional

model or the analytical solution - about 9.8% higher than the three-dimensional solution

near the fixed end of the beam. The too-rigid shell model solutions are about 1% smaller

-- Modified web depth /"too-rigid" web
-M depth

-+I (momnent of inertia) of the modified
cross-section /I of the "too rigid" cross-
section



5.0E+05

O.0E+00

-5.0E+05

-1.OE+06

-1.5E+06

-2.0E+06

E -2.5E+06

Q -3.OE+06

-3.5E+06

74

-Analytic

'3D

0 shell only (too rigid)

* All shell (too flexible)

z a All shell (modified)

0 0.2 0.4 0.6 0.8 1 1.2

Position along the beam [m]

Figure 4-13: "All-shell" model - bending stresses

than the three-dimensional solution, and the modified all-shell model error is below

0.5%. The shear stresses due to bending are well predicted by the all-shell models, as

describes in Figure 4-7.

4.3.5 Over-all comparison

The comparison of the displacement solution of the three-dimensional model to the

solutions obtained with the other models, as a function of the depth of the web, is

summarized in Figure 4-14.

It can be seen that the modified "all shell" model solution is the closest to the

three-dimensional model solution. The original "Hermitian model" solution error

increases with the web depth since the distance between the mid-surface of the flange and

the neutral axis of the cross-section is increasing, as the web becomes deeper.

The modified "Hermitian model", the "Iso-beam model" and the modified all-shell

model solutions are within 0.25% of the three-dimensional model solution in the

investigated range of cross-sections.
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Figure 4-14: Cantilever "T" beam - comparison of all models to the 3D model

4.4 Conclusions reached from the analyses

The results obtained from the demonstrating problems lead to several conclusions,

regarding the modeling of a stiffened plate structure.

. Modeling a stiffened plate structure using a combination of Hermitian beam and

shell elements.

In a similar way to the modeling of a "T" cross-section, a stiffened plate model that is

constructed from Hermitian beam and shell elements will be too rigid, if the value of the

offset is not properly adjusted.

It should be noted, though, that when modeling a stiffened plate, the error described

above would be less significant, since the neutral surface of the stiffened plate is located

close to the plate. However, one should be aware of the existence of the error, which may

result in smaller deflections and stresses relative to those obtained by the three-

dimensional model.
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. Modeling a stiffened plate using Hermitian or iso-beam elements, and shell

elements.

The results obtained from the analysis of cantilever beams demonstrated that models

constructed from Hermitian beam or iso-beam elements with shell elements cannot

predict correctly the flow of the shear stresses from the flange to the web. This is due to

the lack of shear compatibility between the plate and beam elements.

. Modeling a stiffened plate using only shell elements.

Construction of a model with intersecting shells, which are defined by their mid-

surfaces, will yield an error due to the overlapping zones - as demonstrated above. If the

"too flexible" approach is used, the displacement solution will be substantially in error.

The maximum error occurs when the bending stiffness of the stiffener is equal to the

bending stiffness of the effective breadth of the plate. The effect on a stiffened plate

structure is described in Section 5.
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5 Analyses of stiffened plate

5.1 Introduction

The main goal of the thesis research was to investigate different methods to model

stiffened plate structures, and to gain insight into the modeling capabilities of each

method. The study of the modeling capabilities, as described in the last chapter,

contributed to the understanding of the mechanics of each modeling method, and the

ability to make several modifications in order to improve their performances. The

modifications were proved to be efficient for the cantilever beam geometry, and herein

they are examined for a stiffened plate structure.

The stiffened plate is described in Figure 5-1. The structure consists of a plate and two

sets of orthogonal stiffeners and is subjected to a uniform pressure of 9800 [Pa], the

equivalence of 1 [m] height of water column. Two boundary condition cases were

examined: clamped and simply supported edges.

Four types of models were constructed and solved using ADINA

(see Figure 5-2):

1. "Hermitian beam" model: constructed from Hermitian beam and 4-node shell

elements. The offset of the Hermitian beam elements was defined using two

approaches (see discussion on Hermitian beam definition approaches in Section

4.3.2): "original" and "modified" offset definition.

2. "Iso-beam" model: constructed from isoparametric beam and 8-node shell

elements.

3. "All-shell" model: constructed from 8-node shell elements. Three "all-shell"

models were studied (see definitions in Section 4.3.4): the "too flexible" model, the

"too rigid" model and the "modified" model.

4. Three-dimensional model: constructed from 27-node three-dimensional elements.
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As already discussed in Chapter 4, the solution of a three-dimensional model provides

the best prediction of the response of the real structure, since the model does not include

pre-defined assumptions about the mechanics of the structure. Our objective is to

evaluate the performances of the simplified finite element models (models number 1 to 3

from the list above) by comparing their solutions to the solution of the three-dimensional

model. Doing so allows us to evaluate the predicted solutions of displacements and

stresses. The comparison was conducted for different depths of stiffeners, in order to

generalize the conclusions derived from the investigation.

We begin with the derivation of an approximate analytical solution to the physical

problem. This solution served to assess the order of magnitude of the stiffened plate

response, as obtained by the finite element model solutions.

5.2 Analytical solution

The analytical solution was obtained by solving the Huber equation for

orthotropic plates. In the following we describe the analytical solution for the case of

simply supported edges, where the different dimensions of the stiffened plate structure

are as given in Figure 5-1, with stiffeners' depth of 0.1 [m].

The Huber equation for an orthotropic plate under distributed load (pressure) P is:

D +2H +D =P(x y) (5-1)
X ax4 a2,2Xa Y y 4

where

EIY

DV =_

EI
Sa1
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G hih 2 d2
3)D =-( +a)

S 3 a, b,

G
E

2(1+v)
(5-2)

Et'

12(l -_V2) X1

The definition of hl, h2 , ai, bi, dj, d2 and t are given in Figure 5-3, for a general case of

stiffened plate structure. For the stiffened plate structure discussed here, we have

hi=h2=0. 1 [m], a 1=bi=0.29 [m] and d1=d2=0.01 [M]. Ix and Iy are the moments of inertia

of the combined cross section (plate and stiffeners together).

The Huber equation has a general solution of the form:

W(x, y) = XX Bmn
m=1 n=1

mny . nnxsin( ) sin( )
a b

We can express a uniform pressure Po over the area of the plate (a in length, b in

width) by the following series expression:

*16P0  mify nfxx
P 2 sin( )sin( )

,m=1 n z mn a b

By substituting the general solution for W(x,y) in (5-3) and the expression for

(5-4), into (5-1), and by dropping common terms, we get:

(5-4)

Po in

+ 2 m 2H
a2 b 2

74n4 16PO+ 4 D,)= 2b Vmn

(5-3)

Bmn( 4 Ya
(5-5)
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Figure 5-3: Definitions of the terms in the Huber equation.

and so the coefficients for the general solution in (5-2) are:

(5-6)B 16PO 1
S
2  4 m4 4 2 2 4 4

a 4 D+ a2 2 2 H+ 4 D,

Using MATHCAD, the different coefficients were calculated (in principle, the

coefficients should be calculated with n=m=1 L. oo, but a sufficient accuracy can be

obtained with n=m= 1..100), and the displacements W(x,y) were derived. Figure 5-4

describes the displacements of the structure, as obtained from the solution of the Huber

equation. The maximum deflection (in the center of the plate, as can be expected) is

1.266*105 [M].

As discussed later, the three-dimensional model solution for the same physical

problem yielded a maximum deflection of 2.941* 10- [m], which has the same order of

magnitude as the result obtained by the analytical solution. Obviously, once we find that

I ZZ
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def

Figure 5-4: Solution of the Huber equation.

the comprehensive finite element solution and the analytical solution are of the same

order of magnitude, we should note that the finite element solution is more accurate

(closer to reality), since it does not include the assumptions and approximations involved

within the analytical solution.

5.3 Solutions of finite element models

The response of the stiffened plate described in Figure 5-1 was investigated for two

boundary condition cases: clamped and simply supported edges. For each boundary

condition case, a series of models of stiffened plates was constructed and solved. Each

model was defined with different depth of stiffeners, which was varied from 0.1 [m] to

0.01 [m]. In the following, we focus on the evaluation of the displacement and stress

solutions of the various models.

5.3.1 Clamped edges boundary condition.

The clamped boundary condition is modeled by fixing all the degrees of freedom at the

outer edges of the plate and stiffeners: three degrees of freedom in the three-dimensional

1*10

5110 -
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model (three translations) and six degrees of freedom for all other models (three

translations and three rotations).

* Predicted displacements

The maximum displacement of a stiffened plate structure subjected to a uniform

pressure load is naturally obtained in the center of the plate. Figure 5-5 describes the

displacement in this location as obtained by the various models, for different depths of

stiffeners. It can be noticed that all the models yielded similar results, except the "too-

flexible" all-shell model, which yielded substantially larger (and erroneous)

displacements.

We evaluate the displacement solutions of the various models by comparison to the

three-dimensional solution, as described in Figure 5-6. From this comparison a

significant result arises: the modified all-shell model yields solutions that differ from the

three-dimensional solution by up to 6.21%, a discrepancy which is larger (in absolute

values) than the discrepancies of the iso-beam and the modified Hermitian models. This

result might be thought of as surprising if we recall that for the cantilever beam case, that

was covered in Chapter 4, the modified all-shell model yielded almost the same results as

the three-dimensional model (within 0.09%). Furthermore, the "too-rigid" all-shell

model, which can be expected to yield smaller displacements than the three-dimensional

model, is found to be more flexible by up to 6.13%.

As can be noticed, the modified and the "too-rigid" all-shell models yielded almost

the same solutions, which implies that the modified and "too-rigid" stiffener depths are

very close (see definitions of modified and "too rigid" depth values in Figure 4-8). This

is due to the nature of the modification method, which involves the width of the flange

(or in the case of a stiffened plate, the width of the plate that is taken as the flange). As

the width increases, the modified stiffener depth approaches the "too-rigid" value since

the extra portion of the stiffener inside the plate has negligible contribution to the overall
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Figure 5-5: Stiffened plate with clamped edges - maximum displacement as function

of the depth of the stiffeners.
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Figure 5-6: Discrepancy of the maximum displacement as predicted by the various

models relative to the three-dimensional model solution.
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bending stiffness, and hence the original all-shell model is not altered in a significant

way.

The discrepancy between the all-shell model displacement solutions and the three-

dimensional solution, is mainly due to the way in which the thickness of the plate and

stiffeners is modeled. In the three-dimensional model the plate and stiffeners are modeled

in a natural and accurate way that corresponds to the real three-dimensional geometry of

the structure. In the all-shell models we represent the plate and the stiffeners by flat two-

dimensional shell elements, where the physical thickness of the real structure is defined

separately from the definition of the geometry itself. This thickness definition is used in

the element stiffness matrix calculation (see Chapter 3), and hence the mechanics of the

real structure is, in general, represented accurately. The problem arises when we have

intersections of shells: due to the two-dimensional nature of the shell elements they

cannot predict three-dimensional effects that exist in nature.

In the studied stiffened plate structure this phenomenon appears in the intersection

between the stiffeners, and the intersection between the stiffeners and the plate. A two-

dimensional all-shell model cannot represent these intersections correctly, as

demonstrated in Figure 5-7(a), since it cannot predict the influence of the thickness of the

stiffener on the deformed shape of the plate (or the thickness of one stiffener on the

deformed shape of another stiffener). This influence is well predicted by the three-

dimensional model as shown in Figure 5-7(b).

As a result of the lack of ability to predict three-dimensional effects, the all-shell

models are too flexible and yield larger displacements than the three-dimensional model

as shown in Figure 5-6. In order to further assess the effect of this phenomenon, a new

modified all-shell model was defined: in this model rigid links were used to link the

nodes of the plate under the stiffeners, in order to imitate the effect of the stiffeners'

thickness. This new modified all-shell model yielded a displacement solution that is very

close to the three-dimensional solution: for stiffener depth of 0.1 [m] the discrepancy of

the maximum displacement was 0.4%. We can conclude that the way by which the
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Figure 5-7: Intersection between plate and stiffener.

thickness of the stiffeners is modeled has a substantial effect on the displacements

solution.

All of the other models (iso-beam model, original and modified Hermitian beam

model) contain the same problem, since they all use one- and two-dimensional elements,

which cannot predict three-dimensional effects. Fortunately, the extra-flexibility

introduced by this phenomenon is balanced by the extra-rigidity already existing in the

Hermitian beam and iso-beam models, extra rigidity that is caused by the assumptions

within the models. This balancing of the two influences leads to relatively good results of

the modified Hermitian beam and iso-beam models, as shown in Figure 5-6.

In the iso-beam model, the extra rigidity is introduced by the rigid links that connect

the beams to the plate (see Figure 5-2). The outcome of a rigid link is that one node (the

"slave" node, in this case a given node along the beam) is constrained to translate so that

the distance between it and another node (the "master" node, in this case the

corresponding node in the plate) is constant, and further constrained to rotate with the

same rotation as the master node. In the real physical problem, these constraints on the

displacements of the material particles do not exist, of course, and hence extra-rigidity is

introduced into the iso-beam model.
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In the Hermitian beam models (original and modified) extra-rigidity is introduced

by the fact that the shear-lag effect cannot be predicted. Let us discuss briefly the essence

of the shear-lag phenomenon.

Simple beam theory assumes that plane cross-sections remain plane, and that

therefore the bending stress is directly proportional to the distance from the neutral axis.

Thus in any flange-and-web type of beam the predicted stress is constant across the

flange. However, in reality, the bending loads applied on the beam deflect the web to

some radius of curvature, thus inducing large strain in the flange. Since it carries large

strain, and hence large stress, the flange makes the significant contribution to the bending

stiffness. It is important to note that this large strain comes initially from the web and

only reaches the flange by shear. This is demonstrated in Figure 5-8, which shows a wide

flange "T" beam loaded with a vertical force. The web deflects such that the upper and

lower edges of the web are elongated and shortened. At the upper edge the elongated web

pulls the plating with it, resulting into in-plane shear forces, which sets up shear stresses

in the flange. The bending and shear stresses cause stretching and in-plane distortion of

the flange. In the figure an element is shown before and after this distortion: the shear

distortion is such that the outer edge of the element does not have to stretch as much as

the inner edge. That is, the longitudinal strain is less at the outer edge and therefore so is

the longitudinal stress. This same phenomenon will occur at each element, from the

centerline to the edges, although it will diminish steadily and disappear at the edges

because the shear stress diminishes to zero. The overall result is that the flange undergoes

in-plane longitudinal distortion and therefore plane cross-sections do not remain plane.

This distortion is commonly referred to as "warping" of the cross section. The most

significant aspect of the shear distortion is that the outer portion of the flange carries less

bending stress, and is therefore less effective than the inner portion. That is, due to shear

effects, the bending stress remote from a web "lags behind" the stress near the web, and

hence the phenomenon is termed "shear lag" effect. Shear lag is of importance in beams

having very wide flanges and shallow webs, or in stiffened plates with wide spacing

between the stiffeners.
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Figure 5-8: Shear lag in a wide flange "T" beam.

As mentioned above, the shear lag effect cannot be predicted accurately by the

Hermitian beam model. This is a consequence of the way in which the model is

constructed: the Hermitian beam elements are defined in the plane of the plate (see Figure

5-2), and hence the transmission of the longitudinal strains of the stiffeners to the plate by

shear forces is not predicted. As a result, the whole breadth of the plate is effective in

bending and extra-rigidity is introduced to the Hermitian beam model.

As described in Section 4.3.2, the modified Hermitian beam is defined by adjusting

the offset of the stiffener from the flange (or the offset of the web from the flange, in the

case of the "T" beam model) such that the resulting combined section will have the same

moment of inertia as the section of the real structure. Since the calculation of the adjusted

offset involves the breadth of the plate, we can use an effective plate breadth in order to

indirectly include the shear lag phenomenon in the model. The effective breadth of the

plate for different types of structures and loadings cases may be found in various

references (see [10] for example). The effective breadth of the stiffened plate analyzed

herein, for the case of clamped edges, is 58% of the stiffeners spacing.

By applying this approach to the analyzed stiffened plate, a new series of

Hermitian beam models was constructed and solved. The displacement solutions obtained

by these models (referred to as "modified Hermitian beam model, compensated for shear

lag") are described in Figure 5-6. It can be noticed that by involving the shear lag
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phenomenon in the models we obtain larger displacements, as expected. One should keep

in mind that this approach only roughly approximates the shear lag phenomenon, and

hence will not yield an accurate prediction of the effect obtained via three-dimensional

model.

* Predicted stresses.

From the comparison of the various models on the basis of maximum deflection, we

can conclude that the "too-flexible" all-shell model can not be considered as an

appropriate model for the stiffened plate structure. Hence, the stress investigation was

limited to the original and modified Hermitian beam models, iso-beam model, and the

"too-rigid" and modified all shell models.

The bending stresses in the mid-span of the stiffeners (point A in figure 5-1) were

investigated. Although the maximum stresses in a clamped stiffened plate subjected to

uniform pressure are obtained at the clamped edges, the investigation of the stresses was

focused on the mid-span of the stiffeners in order to isolate the influence of the

singularities introduced by the sharp corners at the clamped edges.

Since the natural axes are located between the plate and the mid-depth of the

stiffeners, the maximum bending stresses in the stiffeners are obtained in the fibers which

are most remote from the plate. Due to the symmetry of the structure and loading, the

same bending stress was obtained in all of the stiffeners. Figure 5-9 gives the stresses

predicted by the various models, as a function of the depth of the stiffeners. It can be

noticed that the three-dimensional model, all shell models and the iso-beam model

predicted very similar results.

Figure 5-10 shows the discrepancies in bending stresses between the three-

dimensional model and the rest of the models. As expected, the prediction of higher
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displacements by the all-shell models (relative to the three-dimensional model) led to

higher stress prediction, up to a maximum discrepancy of 2.9% for stiffener height of

0. 1[m].

The iso-beam model yielded higher stresses than the three-dimensional model for

depth of stiffeners smaller than 0.05 [m], and lower stresses above this stiffener depth.

This trend of the stress discrepancy resembles the trend of the displacement discrepancy

of this model.

The original Hermitian beam model yielded smaller stresses than the three-

dimensional model, with a maximum discrepancy of about -20%. It can be noted that the

trend of the stress discrepancy is inverse to the trend of the displacement discrepancy: for

depth of stiffeners of about 0.05 [m] the displacement discrepancy is the maximum, while

the stress discrepancy is the least. This is due to the way in which the load is distributed

between the stiffeners and the plate: when the stiffeners are modeled as too-stiff by the

Hermitian beam model, the displacements are smaller but the relative percentage of the

load carried by the stiffeners is larger, and so the predicted stresses are higher.

The modified Hermitian beam yielded better results than the original Hermitian beam

model, with a discrepancy (relative to the three-dimensional model) of about -5% for

depth of stiffeners of 0.05[m] and above. A further improvement was obtained by

compensating the Hermitian beam model for shear lag in the plate. These results

demonstrate the effectiveness of the modification process, when modeling stiffened plate

structures with Hermitian beam elements.

5.3.2 Simply-supported boundary conditions

For the all-shell, iso-beam and Hermitian beam models, the simply supported

boundary condition was applied by fixing only the translation degrees of freedom (and
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enabling the rotations) at the edges of the plate. In the three-dimensional model, where

only translation degrees of freedom exist, the nodes at the mid-thickness of the plate were

fixed, such that rotations about the mid-thickness are enabled.

* Predicted displacements.

Figure 5-11 gives the displacements at the center of the plate, as obtained by the

various models, for different depths of stiffeners. The figure also includes the solution of

the approximated analytical solution presented in the beginning of the chapter. The

discrepancies between the two- and three- dimensional model solutions are shown in

Figure 5-12. The major observations made in the case of the clamped edges boundary

condition repeat here: the modified and "too-rigid" all-shell models yield larger

displacements than the three-dimensional model, with a maximum discrepancy of about

2.46% for depth of stiffeners of 0.1[im].

It can be noticed from Figure 5-12 that the maximum discrepancy of the "too-flexible"

all-shell model is obtained for depth of stiffeners of 0.03 [m], while the maximum

discrepancy of the same model with clamped edges boundary condition is obtained for

depth of stiffeners slightly above 0.02 [in] (see Figure 5-6). The disparity is driven by the

shear lag phenomenon which is well predicted by the all-shell models. The effective

breadth of the plate depends on the distance between points of zero bending moment,

which governs the radius of curvature of the deformed structure. Since in the clamped

edges case the distance between points of zero bending moment is smaller, the effective

breadth of the plate is smaller: 58% of the spacing between the stiffeners, compared with

71 % in the simply supported case.

Since the maximum error of the "too-flexible" all-shell model is obtained when the

bending stiffness of one stiffener is equal to the stiffness of the effective breadth of the

plate, the difference in effective plate breadth leads to different depths of stiffeners for

which a maximum discrepancy is obtained.
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The approximate analytical displacement solution, obtained by the equivalent orthotropic

plate method, yields considerably smaller displacements than the three-dimensional

model. Even tough, the approximated analytical solution, due to its simplicity, can be

easily used to verify the order of magnitude of a given finite element solution.

* Predicted stresses.

As for the clamped edges case, the bending stresses in the mid-span of the stiffeners

were investigated. Figure 5-13 gives the stresses obtained by the various models while

Figure 5-14 shows the discrepancy of the various stresses solutions from the three-

dimensional solution. It can be noticed that the stress-discrepancy curves of the

Hermitian beam models have an inverse trend to that seen in the displacement-

discrepancy of the same models, as shown in Figure 5-12. The same phenomenon was

observed and discussed in the case of the clamped edges boundary condition case.
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6 Concluding remarks

We have described several ways to model stiffened plate structures using the finite

element method, and discussed in detail the assumptions involved with each finite

element model.

The modeling capabilities of the various elements were investigated thoroughly by

constructing and solving finite element models of a simple "T" beam structure. In

particular, we examined the influence of the depth of the web on the performances of the

different modeling methods. Using the knowledge gained from this investigation, it was

possible to perform several modifications to the original modeling methods, in order to

improve their performances. These improved modeling methods were shown to yield

enhanced displacement and stress predictions.

We have shown that the solution of a stiffened plate model that uses a combination of

Hermitian beam and shell elements predicts significantly smaller deflections and stresses

than those obtained by the corresponding three-dimensional model. We have offered a

modification to this model, based on the adjustment of the way in which the eccentricity

of the stiffeners is defined. This modified modeling method was shown to yield good

results when used for modeling stiffened plate structures, subjected to different boundary

conditions.

We have also shown that a stiffened plate model that uses Hermitian beam elements to

model the stiffeners cannot predict accurately the shear lag phenomenon. This is a

consequence of the position of the Hermitian beam elements in the model: they are

placed in the plane of the plate, and hence the local transmission of the axial strain from

the edge of the stiffeners to the plate (the essence of the shear lag phenomenon) can not

be predicted accurately. We have offered further modification to the Hermitian beam

model, in order to accommodate the influence of the shear lag phenomena.
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Using shell elements to model the stiffeners, as well as the plate, is known to yield a

good replica of the physical problem. We investigated the influence of the depth of the

stiffeners on the performances of these models, and concluded that the intuitive

approaches to model the depth of the stiffeners may result in considerable errors in the

predictions of the displacements and stresses. Maximum errors are obtained when the

bending stiffness of a single stiffener is equal to the bending stiffness of the effective

plate to which it is attached. We have offered a modification to this modeling method,

based on the adjustment of the definition of the stiffeners' depth. This modified depth

allows for the inherent inaccuracy present in the modeling of the plate and stiffeners

intersections (or web and flange intersection in case of a beam) using the shell elements.

We have shown that finite element models that use two-dimensional elements, such as

shell elements, cannot predict the effect of the thickness of the stiffeners on the deformed

shape of the plate, and hence they predict larger displacements than the three-dimensional

element model. We have demonstrated that the influence of the stiffener thickness can be

introduced into the shell element model by imposing rigid links along the intersections

between the plate and the stiffeners. However, this process requires a very fine mesh and

hence is not practical for large finite element models.

It is important to note that this research included only static linear structural finite

element analysis for beam and stiffened plate structures. Hence, we can recommend the

use of the modified modeling methods discussed above only when static linear analysis is

considered. Therefore, it is recommended that future research on these modeling methods

for stiffened plate structures will examine their validity for nonlinear analyses (large

displacements, buckling) and dynamic (transient) analyses.

As a summary, it should be mentioned that all of the modeling methods discussed in

this thesis are adequate for the analyses of stiffened plates. The employment of the

modifications suggested above to the various modeling methods will yield more accurate

solutions but will also require more engineering time. The decision whether to apply

these modifications should be made according to the required accuracy of the solution,
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depending on the physical problem and the analyst judgment. For an analysis of a typical

stiffened plate structure, such as a deck of a ship, the use of the Hermitian-beam model

(once modified as described above) is recommended due to its attractive cost-

effectiveness.
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Appendix A - Incompatibility of complex cross-sections

In general, as the mesh of a given finite element model is refined, the numerical

solution of that model converges monotonically to the solution of the mathematical

model (see discussion in Chapter 2). This is true provided that the elements used in the

model are displacement-based and complete (able to represent rigid body displacement

and constant strain states), and the mesh is compatible (i.e. the displacements are

continuous across the element assemblage). Under these conditions, as the mesh is

refined the numerical solution yields increasingly larger strain energy (but all below the

exact strain energy), and hence we approach the solution of the mathematical model from

below. In the following we consider a special case in which incompatibility of the

displacement field happens to lead to convergence of the numerical solution to the

mathematical model solution from above.

In ref. [8] A.K. Gupta examines the influence of the displacement incompatibility in

a stiffened plate finite element model, where Hermitian plate and beam elements

(elements in which the section rotations are obtained by differentiation of the transverse

displacements) are used to model the plate and stiffeners, respectively. The

incompatibility arises from the fact that the linear longitudinal displacement of the

stiffeners is linked to the cubic transverse displacement of the plate, as further discussed

below. In the following we briefly describe the error involved with this model, as

presented in ref. [8], and then show that the error is eliminated once iso-parametric shell

elements are used to model the plate.

The problem can be simplified as a two-dimensional beam with a "T" cross-section,

modeled by two Hermitian beam elements (one represents the flange and the other

represents the web) as described in Figure A-1. This model contains the same

displacement incompatibility as the stiffened plate model discussed above, and hence can

serve for demonstration. The assembly of the combined stiffness matrix requires the

transformation of the stiffness matrix of beam 2 (the web) such that it will
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Figure A-1: "T" cross-section modeled by Hermitian beam elements

correspond to the displacements of beam 1 (the flange). Hence, the first step is to

determine the transformation matrix. The relation between the displacements of beam 2

and beam 1 is given by

u2 =u, - a,

w 2 =W

02 =01

Accordingly, the transformation matrix, D, takes the form

(A.1)

U2 U1

W2 =D wi

02 _ _01 _

The original stiffness matrix of beam 2

without shear deformations) is given by

K 2 = E

A 2
1

0

0

1 0 -a]

D= 0 1 0 (A.2)

[0 0 1

(two-dimensional Hermitian beam element

0

1212

13
-612

12

0

-612

12

1

(A.3)

1~

4



103

The transformed stiffness matrix is obtained by

K* -D T K2 D

which results in

K = E

A 2
1

0

-A 2a
1

0

1212

-612

12

The total stiffness matrix is obtained by

OT =K +K*

which leads to the following displacement-load equation

-A 2a
1

-6(I + '2)

12

4(11 + 2) A2
2

1 1

where Px, Pz and M are applied on the centroid of beam 1.

transverse deflection) is given by

13 12
W = Pz ,(+C)+MI z3EI* 2EI*

Letting Px = 0, w, (the tip

(A.8)

(A.4)

-7-A 2a

1
-612

12

A 2a2  4

1
12

1

(A.5)

(A.6)

Al + A2
1

0

-A 2a

I

0

12(1 +12)

-6(1 +12)

12

ull

W1

[0j

P1
iPZ
E

[M]

(A.7)
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where

C A1A2a 2  (A.9)
4(A] + A2 )Y 12)

and I* is the moment of inertia of the composite section, given by

I =I+12+ AAa2  (A.10)
A, +A2

Considering (A.8), it can be noticed that the well-known expression for the transverse tip

deflection of a cantilever beam subjected to moment and transverse load is given here

containing the term C, which can be considered as an error term. The error, which leads

to a larger tip displacement, is a result of the displacement incompatibility introduced by

the beam representing the web. The stiffness matrix presented in (A.3) is based on the

assumptions of a linear longitudinal displacement variation, and a cubic variation of the

transverse displacement. The latter assumption results in a quadratic variation of the

rotation 01. Consequently, the variation of the longitudinal displacements at the nodes of

beam 2, as given in (A.1), is quadratic, which contradicts the linear variation assumption

and hence introduces an incompatibility into the model.

It is interesting to note that an error is introduced to the expression of the vertical tip

displacement [as given in (A.8)] only when a transverse force (Pz) is applied. When only

a moment exists, the exact solution by Bernoulli is obtained, since the moment induces a

quadratic variation of the transverse displacement (wj) along beam 1. This quadratic

variation results into a linear variation of the rotation (0,), and hence all the terms in the

expression of the longitudinal displacement given in (A. 1) are linear. Therefore, the

incompatibility discussed above does not take place when only a moment is present.

Once a transverse load is applied, the incompatibility is introduced only in the span

between the nodes. The geometrical constrains on the degrees of freedom of beam 2 [as
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given in (A. 1)] result in compatible displacements of beam 1 and beam 2 at the nodes, as

shown in Figure A-2a. Along the span of the element (i.e. between the nodes) the

incompatibility results in overlapping of beam 1 (the flange) and beam 2 (the web), as

demonstrated in Figure A-2b. It should be emphasized that when only a moment is

applied, the compatibility is maintained along the length of the elements, as well as at the

nodes.

Considering now a beam with the same cross-section (as given in Figure A-1),

modeled by 2n elements (n in the flange, n in the web) and subjected to a tip load Pz- as

described in Figure A-3. The transverse force and the moment acting on the right hand

side of element r (also shown in Figure A-3) are

PZr=PZ (A.11)

M,=Pz(n-r)le (A.12)

where le is the length of one element. Using (A.8) the tip displacement of one element,

treated as cantilever beam, can be given as

Wr = Pz 3E * (2+EC)+M, 1 * (A.13)

Following the same procedure, we can obtain the tip rotation

Or = le + (A.14)
2EI EI*
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Figure A-2: Geometrical constrains and incompatibility of the displacements of the
eccentric beam.

The tip displacement of the beam is accumulated through the elements, and is given by

n

W = Wr
r=

+Ior(n-r)l
r=1

which results in

(A.15)

(A.16)W= P, +3EI* n2

A , LIlA vl--------
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Figure A-3: Cantilever beam modeled with 2n elements - n in the flange, n in the

web.

As can be seen, the error term in (A. 16) diminishes as n approaches infinity. This

means that a refinement of the mesh decreases the error, and hence results in smaller tip

deflection. The physical reasoning for the reduction of the error term, as the mesh is

refined, is that the gap between the cross-sections of the flange and the web (as shown in

Figure A-2b) reduces as the span between the nodes (where the displacements

compatibility is maintained) is reduced.

The above analytical result was examined by constructing and solving the

corresponding finite element model using ADINA. The "T" cross-section beam

(described in Figure 4-la) was modeled as a combination of two beams (using Hermitian

beam elements) - representing the flange and the web. The mesh was refined gradually,

and the tip deflection was recorded for each case. The same physical problem was also

solved by the classical beam theories by Bernoulli and Timoshenko, and the comparison

between the various solutions is given in Figure A-4. As can be seen, the solution of the

"all-Hermitian beam element" model converges to the mathematical solution (which is

the simple Bernoulli theory when we use Hermitian beam elements without inclusion of

shear deformation) from above, as predicted by the analytical result in (A. 16). For n=200

the numerical solution for the tip deflection has a 0.165% discrepancy relatively to the

Bernoulli solution.
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Figure A-4: Comparison of tip deflection solution.

Modeling the same beam with a combination of shell elements (representing the

flange) and Hermitian beam elements (representing the web) eliminates the error

discussed above, and the finite element numerical solution converges to the mathematical

solution from below.

The error is eliminated since the variation of the rotation degrees of freedom of the 4-

node isoparametric shell element is linear and hence it does not introduce quadratic terms

into the longitudinal displacement of the eccentric beam as in the case of modeling the

flange by Hermitian beam elements. As discussed above, this trend of convergence is to

be expected for a general case of a finite element model solution, as further demonstrated

by the solution of the "all-shell" mode


