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Abstract

Computer based simulations of the motion responses of spar type oil
platforms were carried out. Theses simulations examined both the linear
and nonlinear coupled responses in surge, heave, and pitch to plane
progressive wave trains as well as random waves. A twelve line mooring
system was also incorporated for more accurate modeling. These
simulations showed the mooring system to limit only the platforms large-
scale motions. Studies were made both at and far from the buoy's natural
frequencies in both the linear and nonlinear cases. A pitch instability due
to coupling between the pitch restoring term and the displaced heave
position was also examined. The pitch instability was present only in the
nonlinear simulation with all governing quantities evaluated at the local
wave elevation. The magnitude of this instability was limited, but not
eliminated, by the addition of the mooring system.
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Chapter 1 Introduction

Spar buoy type oil platforms are being considered for many of the

current generation of offshore oilrigs. Spar buoys are of

particular interest for deployment in seas with extreme weather

conditions and depth. Motion on an oil platform is not desirable

from the standpoint of production where its effects can range

from making the crew seasick to breaking risers and other vital

pumping equipment. In shallow waters there are a number of

solutions to this problem. One is the tension leg platform where

the platform is held with high tension mooring lines to anchors

mounted in the bottom; another is the jack-up platform where the

platform is physically raised above the water's surface on rigid

legs extending to the sea floor. These shallow water solutions

are not feasible in water deep water or harsh sea states.

As shallow water oil reserves are being rapidly depleted

the offshore industry is looking to move to water depths up to

10,000m and farther offshore where the weather conditions are

less predictable and more punishing. The spar type platform is a

competitive alternative to classical design for these difficult

environments.

The classic shape of a spar buoy platform is that of a

vertical cylinder. Traditionally they have a constant diameter

of roughly 30m and a draft of approximately 200m. The motivation
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for the use of such an unusual shape with its large volume is to

minimize the buoy's motion response in seas. The large volume to

waterplane area ratio of the spar makes its response to changes

in water elevation (waves) quite slow. In summary it is the

shape of the platform, rather than the mooring system that is

mainly responsible for the platform motions remaining small.

In the depth range for which spars are being considered the

steel risers are extremely flexible, so horizontal (surge) motion

is of little concern. The risers cannot, however, withstand huge

stretching and compressive loads without rupturing or buckling,

so vertical (heave) motions need to be minimized. Rotational

(pitch) motions can also cause problems; small motions are

associated with adverse working conditions, while extreme

rotations could lead to capsizing and equipment breakage and

loss.

The shape of the spar makes its natural frequencies in

heave and pitch extremely low. With low natural frequencies the

threat to spar platforms comes mainly from waves of long

wavelengths. Waves begin to break when their slope is

1
approximately -, so waves of high amplitude also have long

7

wavelengths, a dangerous combination for spar platforms.

This research was aimed at predicting the motions of spar

type oil platforms. This was done in a number of steps of

computer-based simulation. The first simulations were based upon

linear theory. These simulations predict the surge, heave, and

10



pitch responses of a freely floating spar to one wave train of a

specified amplitude and frequency. This was done to study the

responses under specific, known conditions, such as around the

natural frequencies. This simulation included the effects that

one mode of motion may have on another, known as coupling.

Real oil platforms are not freely floating, they are moored

in place, and so the next step was to add the effects of a

mooring system to the linear simulation. Finally, a random wave

generator was added to examine the responses to a wave more

representative of a true ocean wave.

Next a nonlinear simulation was developed. This model

evaluated governing quantities at the local free surface

elevation, thus accounting for a number of effects that are

neglected by linear theory. The same progression of adding a

mooring system and random wave was also carried out.
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Chapter 2 Mathematical Formulation

2.1 Coordinate System

Throughout this discussion a Cartesian coordinate system (x,y,z)

will be used with the origin coinciding with the undisturbed free

surface. It will be located at the centerline of the buoy with

the positive z-axis pointing upwards. The elevation of the free

surface will be defined by 77(x,y,t). Thus gravity (g) acts in the

negative z-direction.

A body freely floating on the surface of a fluid is able to

move in six modes of motion. Three modes, designated surge, sway

and heave, coincide with translation motion parallel to the

x-y-z axes respectively. The other three modes, roll, yaw, and

pitch, represent rotation about those axes. Since a spar is

cylindrical, there are only three fundamentally different modes

that must be studied, surge, heave, and pitch.

2.2 Linearized Free Surface Condition

Assuming an ideal and irrotational fluid, there will exist a

velocity potential 0 such that the fluid velocity is expressed as

the gradient of this velocity potential

12



Equation 2.1

Due to conservation of mass, the divergence of this velocity

potential must be zero,

Equation 2.2

V 20=0

it must also satisfy both a kinematic and dynamic boundary

condition on the free surface.

The kinematic boundary condition requires the velocity of

the free surface to be equal that to that of the fluid particles

of which it is comprised. The kinematic boundary condition is

found by requiring that the substantial derivative of (z-)=Oon

the free surface. The result of which is

Equation 2.3

O=kD(Z - 77 Oa7aOa7a ?

Dt az at ax a ay ay

The last two terms may be neglected because they are of second

order and therefore much smaller than the first two, this results

in the linearized kinematic boundary condition

Equation 2.4

at (-y

The dynamic boundary condition requires that the pressure

acting on the free surface from above be equal to the pressure

13



acting from below. The dynamic boundary condition is found

through the use of Bernoulli's equation,

Equation 2.5

1 a# 1
-(p-p.)=-+-V~eVb+gz=0O
p at 2

Substituting ? for z and linearizing as in the kinematic

boundary condition results in the linearized dynamic boundary

condition

Equation 2.6

1 ao

g at

These two boundary conditions can be combined on the

surface z=0 resulting in one boundary condition for the velocity

potential

Equation 2.7

-+g--0
at2 "y

2.3 Plane Progressive Waves

Plane progressive waves are the simplest waves that satisfy the

free-surface condition, and will be used extensively throughout

this discussion. These waves are two-dimensional and have a

single amplitude (A) and frequency (w) and propagate with a

sinusoidal motion in one direction.
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Equation 2.8

i7(x,t) = Acos(kx -wt+6)

describes a plane progressive wave moving in the positive x-

direction, a phase 6 has been included but will be assumed to be

zero. The value k is known as the wave number and is defined as

Equation 2.9

(t) 27r w 2

VgV, ) g

where V, is the phase velocity (the velocity that a wave peak

travels) and A is the wavelength.

The velocity potential 4 that satisfies both Equation 2.2

and Equation 2.7 and through the use of Equation 2.6 will result

in

15



Equation 2.8 is given by

Equation 2.10

=gA e' sin(kx -t)
0)

In the ocean, waves are not two-dimensional, are not purely

sinusoidal, and their amplitude and frequency cannot be described

by single parameters. However, plane progressive waves are

extremely useful for examining both simplified problems, and it

will be discussed later how "real" ocean waves can be modeled as

a superposition of many plane progressive waves each with

differing amplitudes and frequencies.

2.4 Body Response in Plane Progressive Waves

As mentioned, a body freely floating on the surface of a fluid is

free to move in all six modes of motion. This section will

explore the response of a body in the three modes that have been

identified as being of particular interest to the problem of a

spar oil platform, namely surge, heave and pitch. First the

equations of motion will be presented, followed by an examination

of each of the terms contained within them including discussion

of the coupling effects between surge and pitch. In these

surface

equations integrals will be carried out over the interval j'dz
-draft

the actual z value represented by the term 'surface' will be

discussed later.

The equation of motion given by

16



Equation 2.11

[-w 2(Mij + aj )+imbj + c ]{j = AX
j=1,3,5

where the indices ij are the modes of motion 1, 3 or 5 that

corresponds with surge, heave, and pitch. When the indices i A j,

potential coupling effects between modes of motion are

represented. Some of the coupling terms represented in Equation

2.11 are equal to zero, indicating that even though coupling is

possible, it does not actually occur. Non-zero coupling terms

will be further addressed later. j terms are the body

displacement in complex form.

In Equation 2.11 the M, terms are the components of the

inertial force upon the body. M 1 and M 33 ' are simply the body

mass, while M 55 is the moment of inertia defined by

Equation 2.12

M55 =1 22 = 'fJpYdV
V

where pb is the density of the body, and V is the body volume.

There are no other non-zero mass terms associated with this

problem.

2.4.1 Added Mass

The afterms in Equation 2.11 are known as the added mass terms,

since they are proportional to the body acceleration. Since this

is the case, they are obviously dependent on the frequency of the

17



motion. Through a method of images, added mass terms can be

found analytically for a given geometry; however, due to the

complexity of this method a combination of empirical values and

strip theory were employed to estimate the added mass at low

frequencies.

Empirical formulas exist determining the added mass of many

common geometric shapes. Of importance to this discussion are

those for a circle moving in a two dimensional fluid.

Equation 2.13

" 2D _ ,,2a11 =7p..(a

a 22D = rpr2..........(b)

where a1 represents movement within the plane, and a2 2 is

movement in and out of the plane. The added mass of a

cylindrical spar buoy in heave is due to the flat bottom rising

and falling; thus, Equation 2.13 (b) can be used directly to find

the added mass of the buoy in heave.

Equation 2.13 (a) was used to find both the added mass in

surge, pitch, and the coupling between the two. Strip theory

allows a three-dimensional value to be found by integration of

two-dimension values over a body, provided that the change in the

two-dimensional values is small. The following illustrates how

this was employed to find the surge added mass

Equation 2.14

surface

=i f ,(z)dz
-draft
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In this discussion the buoys were assumed to be of constant

2Ddiameter removing the dependence of a, on z, thus simplifying

the problem further. The following two equations show how this

method was used for determining the added mass in pitch, and the

coupled added mass term between pitch and surge

Equation 2.15

surfiace

-d f zrafd
-draft
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Equation 2.16

surface
3D a3D r2Dd

a51 =a15 = za dz
-draft

There are no other non-zero added mass terms in this problem.

2.4.2 Damping Forces

The b. terms in Equation 2.11 are called the damping terms and
ii

are proportional to the velocity of the body. These forces are

present do to the waves that are generated by the body that

radiate outwards from the body dissipating energy. In the

derivation of the damping terms 0 is broken into eight

components O, , with 1, 2. .6 representing the potential for each of

the six modes of motion. 07 is called the diffraction potential

and represents the body-generated waves. #0 is the incident wave

potential. These waves must satisfy the free surface boundary

condition Equation 2.7. From this fact can be derived the

Haskind relations'

Equation 2.17

X,=-pJJ# PijS

where SB is the body surface and n is the normal vector of the

body surface. The Haskind relations are used to derive

expressions for the damping terms, which are related to the

exciting force. It will be shown in 2.4.4 that the exciting

20



forces are related to the frequency of the exciting wave;

therefore, the damping terms are dependant on the wave frequency.

At this point in the simulation a simplification was made

in determining damping coefficients. The general-purpose program

SML was used to determine an appropriate constant value for

damping coefficients.

2.4.3 Restoring Forces

The C. terms in Equation 2.11 are the restoring terms, which are
ii

responsible for trying to return the body back to it's original

state. When examining the freely floating body these are all due

to hydrostatics.

The restoring force in heave is the difference between the

original displaced volume and the heaved displaced volume

multiplied by the density of the fluid and the force of gravity

Equation 2.18

C33 = pgA

This term is multiplied by the heaved position to give the

resultant force.

The pitch restoring term is comprised of two parts, the

first is due to the redistribution of submerged volume that

creates a moment. Another moment is created by pitch motion

because the center of gravity (ZG) and center buoyancy (ZB) are no

longer located within the same vertical plane. The center of

gravity is located below the center of buoyancy (provided the

body was initially stable), and the force acting at the center of

21



gravity acts down while the force on the center of buoyancy acts

upwards, since these two forces must be equal in magnitude but

are now different distances from the origin they create another

restoring moment proportional to the distance between the two.

Figure 1 illustrates how these two terms are physically produced.

t V V

Redistribution of
submerged volume

ZG f ZB

W

Center of gravity and
buoyancy term

Figure 1 Illustration of the two pitch restoring force terms

These two terms can be seen in the following equation for C55

Equation 2.19

_pgnrd
4

C55  + pgV(YB G
64

22
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where d is the buoy diameter, V is the buoy volume, and ZB and

ZG are the centers of buoyancy and gravity respectively. There

are no other non-zero restoring forces.

2.4.4 Exciting Forces

Exciting forces for this problem were found using strip theory

and G. I. Taylor's formula for the force of a two dimensional

section

Equation 2.20

dX, =(V+-)--(p-)
p ax, at

where xi is the Cartesian axis [(1,2,3) corresponds with (x,y,z)]

parallel to the desired exciting force. Again strip theory was

employed to integrate these slices over the entire buoy as

follows for surge, heave, and pitch

Equation 2.21

suoface a, ao
X1 = (V+a (P )dzx_,

-draft Pax t Y=

Equation 2.22

X3 =(V+_a3) a_(Pa) =XY=p az a3t IYO
Z=-draft

Equation 2.23

surface a a )d

-draft P ax at
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2.4.5 Natural Frequency

If there exist no coupling and damping or external forces

Equation 2.11 reduces to

Equation 2.24

-O 2 (M i+a i)X+cii =0

The solution of this equation produces what is known as the

natural frequency for the t' mode of motion

Equation 2.25

ii+ a,

Since negative frequencies are physically impossible we are only

concerned with the positive value of Equation 2.25. The response

of a body excited at a frequency that is extremely close to or

exactly equal to its natural frequency will be extreme.

Therefore, it is important that a physical structure not be

excited at one of these frequencies.
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Chapter 3 Linear Simulation

3.1 Linear Simulation of a Freely Floating Buoy

A time domain linear simulation of a freely floating spar buoy

was created. This simulation was based upon the linear theory

that has been presented. The spar buoy that will be used for all

these simulations has a draft of 200m, with 30m freeboard, a

diameter of 30m, and a center of gravity located 104m below the

undisturbed free surface. With the exception of random waves the

wave amplitude will always be 10m.

A3 0

200

830

Measurements
in meters

Figure 2 Spar buoy
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Sample output from the simulation is presented in Figure 3

Linear Simulation with amplitude = 10.00 m frequency = 0.11 hz

40 60 80

40 60 80

100 120 140 160 180 200

100 120 140 160

0 20 40 60 80 100 120 140
Time - sec

160

180 2

180 2

00

00

Figure 3 Linear simulation output

Figure 3 shows the sinusoidal motions of the buoy in heave,

surge, and pitch. This simulation can also be used to examine

the response near the buoy's natural frequencies. The natural

frequency of the buoy in heave is w =0.2209Hz, Figure 4 shows the

responses at wo=0.22Hz. The magnitude of the heave motion is

over 400m from a 10m wave, illustrating the effect of exciting

the buoy near its natural frequency.
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Linear Simulation with amplitude = 10.00 m frequency = 0.22 hz
500

E

0-

-5001
0 20 40 60 80 100 120 140 160 180 200

50

E

50
2)

0 20 40 60 80 100 120 140 160 180 200

00

0 20 40 60 80 100 120 140 160 180 200
Time - sec

Figure 4 Responses near heave natural frequency

In Figure 4 the heave motion is so great that the buoy

completely leaves the water. The effect of this event occurring

is not included in this simulation. Although this behavior is

indicative of the response to excitation near the natural

frequency, it will be seen in 3.2 that the presence of a mooring

system prevents this occurrence.

The natural frequency of the buoy in pitch is ow=0.0491Hz,

Figure 5 shows the responses at (O=0.05Hz. The magnitude of the

pitch response is extremely small. In this case the coupling

between surge and pitch has overcome the effects natural

frequency excitation as illustrated by Equation 3.1, which is the
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expanded form of Equation 2.11 for pitch including coupling

effects

Equation 3.1

- 02(M + a55 ) - ( 2(MIJ + al,)+ (ib 5 * + (ib1 1 + c554 + c& = AX5

Linear Simulation with amplitude = 10.00 m frequency = 0.05 hz

40

40

60

60

80

800 10-320
5.

100 120 140 160 180 200

100 120 140 160 180 200

-5
0 20 40 60 80 100 120 140 160 180 200

Time - sec

Figure 5 Responses near pitch natural frequency

3.2 Linear Simulation Coupled To Mooring System

Oil platforms are not freely floating bodies, they are held in

place with mooring systems. Spar buoys are typically moored by

ten to twenty mooring lines, spaced around the diameter of the

buoy. These lines typically consist of three segments, the lower

most that connects to the anchor is made of chain, the middle
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section is made of steel or synthetic rope, and the top section

is also made of chain. As mentioned previously the purpose of

the mooring system is to prevent large-scale motions, it would be

unfeasible to hold the platform completely stationary. For this

simulation the restoring effects of a 12-line mooring system were

added. These effects were found through simulation using the

LinesT' portion of SML.

The buoy was moored in 830m of water by twelve equally

spaced lines that were each 1850m in length. The lowest section

was a 150m length of chain, followed by 1500m of polyester rope,

followed by 150m of chain. The point at which the lines are

moored to the buoy is defined as the fairlead; this point was

varied from % the draft of the buoy to the bottom to examine the

effects of fairlead location of platform motions.

Table 1 Mooring system restoring forces

Fairlead
location below C11 - C33 - C55 - C51 - C15 -

free surface (m) kg/s^2 k /s^2 kg.m/sA2 ks^2 kg/s^2
100 5.21 E+05 1.96E+05 6.42E+09 -4.77E+07 -4.85E+07
110 3.59E+05 1.32E+05 5.75E+09 -4.44E+07 -3.75E+07
120 2.65E+05 9.60E+04 5.39E+09 -2.97E+07 -3.1OE+07
130 2.27E+05 8.26E+04 5.32E+09 -2.77E+07 -2.78E+07
140 1.88E+05 6.76E+04 5.26E+09 -2.48E+07 -2.51 E+07
150 1.54E+05 5.47E+04 5.13E+09 -2.19E+07 -2.23E+07
160 1.26E+05 4.43E+04 5.OOE+09 -1.93E+07 -1.97E+07
170 1.05E+05 3.61 E+04 4.88E+09 -1.71 E+07 -1.75E+07
180 8.81 E+04 2.97E+04 4.78E+09 -1.52E+07 -1.56E+07
190 7.50E+04 2.47E+04 4.71 E+09 -1.37E+07 -1.40E+07
200 6.46E+04 2.08E+04 4.66E+09 -1.25E+07 -1.28E+07
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free surface - m

,I:
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26 7

100 120 140 160 180 200

Fairlead location below undisturbed free
surface - m

100 120 140 160 180 200

Fairlead location below undisturbed free
surface - m

Figure 6 Comparison of maximum responses with and without mooring

systems with excitation of w=0.15 Hz

Figure 6 shows the responses of the spar buoy to a wave of

amplitude 10m and frequency w=0.15Hz both with and without the

30
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twelve line mooring system in place. w=0.15Hz was selected

because this frequency is spaced between the two natural

frequencies, yet not close to either, so that the results would

be in a realistic domain and natural frequency effects would be

minimized. For all three modes of motion the maximum responses

are diminished by the presence of the mooring system. Figure 6

also shows the effect that the fairlead location has upon these

motions.

In heave as the fairlead location approaches the bottom of

the buoy the motion approaches that of the unmoored buoy. Lines"'

does take into account the elasticity, as well as the curvature,

of the mooring lines, so as the lines are connected lower the

heave restoring force they provide is lowered, as shown in Figure

6.

The results for surge and pitch do not show much dependence

upon the fairlead location. In both cases this is due to the

small relative magnitude of the motions. In surge the freely

floating buoy moves only 26.84m, while the anchors for the

mooring lines were positioned in a ring 1700m from the platform.

As mentioned, a large amount of surge motion is acceptable, by

positioning the anchors far away the mooring will prevent very

large surge motion but allow motions on the order seen.

The effect of the mooring system in all three modes of

motion is extremely small, as can be seen in Figure 7. In the

heave plot the motions with the mooring line are just

distinguishably lower than that of the unmoored buoy. In the
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surge and pitch plots the two motions are indistinguishable from

one another.

Linear Simulation with amplitude = 10.00 frequency = 0.1500

5 - --

E

0X -

5 10 15 20 25 30 35

20-
E
a) 0-

CO -20-

x 10-3  5 10 15 20 25 30 35

5-

'0

0 5 10 15 20 25 30 35
Time - sec

Figure 7 Responses with and without mooring system and a fairlead

location of % the draft

3.3 Linear Simulation With A Random Excitation Wave

and a Mooring System

True ocean waves cannot be described by a single amplitude and

frequency. This is due mainly to the dispersion relationship,

which was presented in Equation 2.9. The dispersion relationship

states that waves of different frequencies travel at different

velocities, as does the energy associated with them. Not only

are ocean waves dispersive, they are random. These random waves
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can be modeled as a superposition of many plane progressive

waves, each randomly selected amplitude, frequency and phase

difference.

A random wave generator was created that randomly selects

amplitude, frequency and phase, each over a range making physical

sense. Frequencies were allowed to range from 0.05-0.45Hz,

amplitudes from 0-Im, and phase from 0-27. Figure 8 shows the

output from the random wave simulation, using the superposition

of 200 waves. The first plot shows the wave elevation and the

following three show the heave, surge, and pitch responses. This

simulation used the same twelve line mooring system employed

before with a fairlead location of % the draft. The heave motion

exhibits responses larger than the wave elevation due to high

amounts of wave energy that happen to be focused around the heave

natural frequency. Note that this response is still far below

that shown in Figure 4 where the buoy was excited at a single

frequency that was very close to the natural frequency.
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Linear Simulation with random wave
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Figure 8 Linear responses to random wave with mooring system
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Chapter 4 Nonlinear Simulation

4.1 Nonlinear Simulation of A Freely Floating Buoy

A nonlinear simulation was developed for more realistic modeling

of the motions of a spar buoy. H. A. Haslum and 0. M. Faltinsen

presented a paper titled Alternative Shapes of Spar Platforms for

Use in Hostile AreaS2 at the 1999 Offshore Technology Conference;

within which an instability due to indirect coupling between

heave and pitch was studied.

The instability was present because the pitch restoring

term contains a term that is dependent on the distance between

the centers of buoyancy and gravity. The center of gravity

remains basically fixed to a point within the buoy; however, the

center of buoyancy moves with the buoy's motion so it is always

in the center of the submerged volume. In cases of large heave

it is possible for the center of gravity to rise above the center

of buoyancy making this part of the pitch restoring force

negative. In extreme cases of heave it is possible for this term

to become so negative as to make the pitch restoring term

negative, making the buoy unstable in pitch.
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Nonlinear Simulation with amplitude = 10.00 frequency =
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Figure 9 Nonlinear responses of freely floating buoy

Figure 9 shows the responses of the freely floating buoy with the

pitch restoring term evaluated at the displaced heave position.

The pitch instability is not evident in the simulated response

even though the heave response is large enough for the pitch

restoring term to become negative, as shown in Figure 10. This

is due to the relative magnitude of the terms in the pitch

equation of motion, each of which is at least one order of

magnitude larger than the pitch restoring term.
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Figure 10 Pitch restoring term

Haslum and Faltinsen gave an equation for the excitation

frequency, involving the natural frequencies in heave and pitch,

which produces the pitch instability; this is given in Equation

4.1. Where T and T refer to the natural periods in pitch
4 1 Wh r TN, p tch N,heave

and heave; these natural frequencies are 0.2209Hz and 0.0491Hz

respectively, resulting in a (critica0.2700Hz .

Equation 4.1

1
Tcritical

TN,pitch TN,heave
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Figure 11 shows the nonlinear responses at co=0.2700Hz as

well as the value of the pitch restoring term. In this case the

motions are small enough

attains a negative value.

that the pitch restoring force never

100 120 140 160 180 200

100 120 140 160 180 200

20 40 60 80 100 120 140 160 180

Time - sec

Figure 11 Nonlinear responses w = 0.2700Hz

Figure 12 shows the responses at o = 0.2200Hz . The heave

response is very large because this value is close to the heave

natural frequency. These large heave motions make the pitch

restoring term (c55) follow the heave motion, reaching large

negative values for nearly 50% of the time. These large negative

restoring terms are still not enough to overcome the effects of

the other terms in the pitch equation of motion.
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Figure 12 Responses with pitch restoring term evaluated at local

wave elevation to excitation at w = 0.2200 Hz

As in the linear model the heave motion is so large that

the buoy leaves the water; again this will be prevented by the

mooring system.

Figure 12 shows that in the coupled simulation the

evaluation of only the pitch restoring term at the displaced

heave position does not produce the pitch instability that Haslum

and Faltinsen studied.

The final nonlinear simulation evaluated all governing

quantities at the local free surface. Again the simulation was

run with a wave excitation at ( = 0.2700Hz and o = 0.2200Hz . These

results are shown in Figure 13 and Figure 14. In Figure 13 the
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nonlinear behavior can be seen in both the surge and pitch

motions; however, the magnitude of these motions is not increased

over that of the linear simulation.

Nonlinear Simulation with frequency w= 0.2700
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0 100 200 300 400 500 600 700 800 900 1000
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Figure 13 Nonlinear responses with all quantities evaluated at

local wave elevation and excitation with w = 0.2700Hz

Figure 14 shows not only a more radical behavior but a

pitch motion magnitude approximately double that of the linear

simulation. The large heave motions are responsible for these

large pitch motions as Haslum and Faltinsen indicated. Through

evaluation of all the governing quantities at the local free

surface a pitch instability was produced.

One item of interest is that the surge and pitch motions

shown in Figure 13 are not symmetric nor are they centered around
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the origin, this is even more noticeable in Figure 14. The reason

for this behavior is unknown and warrants further study of the

nonlinear responses.
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Figure 14 Responses with all quantities evaluated at local free

surface elevation and excitation with w = 0.2200Hz

Nonlinear simulations were run with the twelve line mooring

system also. These results are shown in Figure 15. The mooring

system has greatly diminished the heave magnitude, dropping the

maximum values from nearly 500m in Figure 14 to approximately

100m in Figure 15. The mooring system also limits the surge and

pitch motions as well as smoothing the motion in both.
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Nonlinear Simulation with frequency w= 0.2200
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Figure 15 Nonlinear response to excitation of w=0.2200 Hz with a

mooring system

Even with the mooring system in place to prevent the buoy

fro heaving completely out of the water the pitch stability is

still present. The magnitude of the pitch motion is

approximately 0.0125 radians, compared with approximately 0.0095

radians in the linear model. Like the nonlinear unmoored

simulation results, Figure 15 shows the surge and pitch motions

to be centered around a non-zero position.

The random wave generator was added to the nonlinear

simulation and was run with a wave composed with 200 plane

progressive waves each with amplitudes

frequencies from 0.5-.45Hz and phases from

ranging from 0-1m ,

0-2 . The responses
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with the mooring system in place are shown in Figure 16. In this

trial the pitch instability is not evident. This is because

there is not consistently large heave motion. Also, the surge

and pitch motions do not appear to be biased to either side of

the origin. The heave motion appears to diminish over the trial,

this is just due to the random wave used, this behavior is not

indicative of the behavior to all random waves.
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Figure 16 Nonlinear simulation with random wave excitation
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Chapter 5 Conclusions

Computer based simulation of the motion of spar type oil

platforms has been created to examine the three important modes

of motion, surge, heave, and pitch. Linear simulation has been

carried out with the addition of a realistic mooring system and

the capabilities of examining the response to random waves.

Examples that examine the responses under a variety of

circumstances have been presented for response comparisons,

including response studies near the natural frequencies in heave

and pitch. These examples showed that the heave motion of the

buoy grows extremely large near the natural frequency.

Examples negr the pitch natural frequency show that the

coupling between surge and pitch is responsible for there being

very little pitch motion at these frequencies.

The addition of the mooring system proved to have little

effect on the motion of the buoy, except in extreme cases such as

around the natural frequencies. This result was consistent with

the motivation for using platforms of spar type design. This

motivation being that the shape of the buoy is responsible for

limiting the motions, not the mooring system.

A linear simulation was also created with a random wave,

which is more representative of a true ocean wave. This showed
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the motions to be within ranges that were consistent with the

linear single wave trials.

Additional simulations were carried out taking into account

the effects of heave position on the pitch restoring force.

These simulations showed the effect of this indirect coupling to

be very small, not affecting the overall motions.

Simulations were carried out that evaluated all governing

quantities at the local free surface elevation. In these trials

the magnitude of the pitch motions were approximately doubled

over those of the linear simulation. The addition of the mooring

system to these simulations proved to limit these responses,

resulting in over all motions of the magnitude seen in the linear

trials.

Nonlinear simulations were also made with the mooring

system and a random wave. The pitch instability was not present

in these trials since the heave motion was random and not

extreme. The overall magnitudes of these responses were

consistent with the responses of the nonlinear, moored trials

with sinusoidal excitation.

Future work on this topic should be done in the examination

of platform responses to additional nonlinear effects. These

include second order terms in governing equations.

Another important area for future work would be the

addition of more complex spar buoy geometries. Many buoy designs

have additional structures well below the surface to further
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lower the natural frequencies. These are important to model as

are buoys with non-constant cross section.

Additional mooring system effects, such as drag a vibratory

forces, should also be examined. A thorough study of mooring

system configuration for optimum performance should also be

included in this work.
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