
Augmented tools with transparent displays

Anirudh Sharma

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning
MA SSACHUSETTS MNTMT(E,

in partial fulfillment of the requirements for the degree of OFTECHNOLOGY

Master of Science In Media Arts and Sciences JUL 1 4 2014
at the LIBRARIES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

@ Massachusetts Institute of Technology 2014. All rights reversed.

Signature redacted Author

Anirudh Sharma
Program in Media, Arts and Sciences

Massachusetts Institute of Technology

Certified by
Signature redacted

Pattie Maes

Thesis supervisor
fProessor, Media, Arts and Sciences

Massachusetts Institute of Technology

Signature redacted Accepted by

Pattie Maes

Associate Academic head
Massachusetts Institute of Technology

Augmented tools with transparent displays

by

Anirudh Sharma

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on May 9, 2014 in partial fulfillment of the

requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

Augmented reality (AR) is a live view of a physical, real-world environment whose

elements are augmented (or supplemented) by computer-generated information such as

sound, video, graphics or GPS data. Research in AR has been going on for the last several

decades. However, the most widely used medium for showing AR feedback so far has been

a digital screen or head mounted display (HMD). Present day augmented reality actually

is an augmentation of camera feed which down-samples the real environment limiting a

number of things that can be done with it. In industry transparent displays have been

manufactured for the past five years. Researchers have been awed by their novelty and

magical capability. However, not much has been done with them. In this research, we

propose using transparent displays for augmenting several day-to-day tools. Multiple

scenarios are explored such as augmentation of 2D information (Glassified), fusion of

transparent displays with various optical lenses to overlay information onto 3D objects

(Augmented Magnifier), and using transparent displays for augmented fabrication

(Clearcut).

Thesis Supervisor: Dr. Pattie Maes

Title: Professor, Program in Media Arts and Sciences

2

Reader

Signature redacted_
V. Michael Bove

Principal Research Scientist, MIT Media Lab

,I / / 1.. Reader

Signature redacted

Mark Billinghurst

Professor, Human Interface Technology Lab, New Zealand

Signature redacted

I1 Marco Tempest

Fellow, Media Lab, Massachusetts Institute of Technology

Reader

I

ACKNOWLEDGEMENTS

I am very grateful to be born into a family that gave me a basis of education, and made

me ask questions. I am also thankful to those innumerable people I have met during my

travels who have indirectly given me ideas that I consider important. I would also like to

thank my undergraduate friends Rahul, Sudhanshu, Kunal and everyone at 14/163 with

whom I started my DIY journey and learnt how to make the best use of minimum

resources amid the deserts of Rajasthan.

My readers, thank you for such sustaining support from the start. Your questions and

gentle guidance have made these projects, this thesis, those papers and myself as a better

researcher than they ever could've been without you.

I would like to thank Prof. Pattie Maes for accepting me into Fluid Interfaces Group and

her guidance throughout the course of my Masters research. Big thanks to Marco

Tempest, from whose magic I draw a lot of motivation. I would also like to thank Fluid

Interfaces admin Amna Carreiro, who's been helping always and serving good green tea

when I felt lazy. I would to thank my magically motivated super-UROPs Lirong Liu and

Meghana Bhat who helped with implementation of Glassified, and spent countless

sleepless nights. Other props go to Richard Park and Eric Ruleman, who collaborated

with designing optical and architectural use-cases with bigger transparent displays.

4

Table of Contents

1.

2.

2.4.3.1

2.4.3.2

Augmented Text

Window into the world

Introduction

Augmented Hand-tools

2.1 Glassified: An Augmented Ruler based on a Transparent

Display for Real-time Interactions with Paper

2.1.1 Related work

2.1.2 Augmentation of 2D info using transparent displays

2.1.a Drawing

2.1.b Measurement

2.1.3 Working

2.2 Glassified+

2.2.1 System Input

2.2.2 System Output

2.3 Augmented Magnifier- Combination of optical properties of

transparent displays

2.3.1 Related Work

2.3.2 Interaction

2.3.3 Working

2.4 LittleAR Bookmarks: Augmenting Paper Through Tangible

Bookmarks

2.4.1 Related Work

2.4.2 The Prototype

2.4.3 USE CASES

23

24

24

25

26

26

9

14

14

15

16

16

16

17

18

19

19

glass and

20

21

22

23

5

3 Di

4 Pr

2.5 User comments

2.5.1 Glassified

2.5.2 Augmented magnifier

rect manipulation on fabrication tools

3.1 Implementation

3.2 Related Work

3.3 Advantages of the Clearcut interface

3.4 Interactions

3.4.1 Cloning 2D artifacts

3.4.2 WYSIWYC - What You See Is What You Cut

3.4.3 Hand tools

3.4.4 Glass panel affordance

3.4.5 Limitations and future work

oposed side projects

4.1 Augmented Fish Tank/Collaboration with CityScience lab

4.2 Electronics bench

5 Discussions and lessons learnt

6 References

Appendix

6

LIST OF FIGURES

Figure 1.1: 1870's show of pepper's ghost. Magician fights a virtual ghost

Figure 1.2: Modern transparent display prototypes by Samsung and Polytron

Figure 1.3: Transparent monochrome nanoparticle display

Figure 1.4: A paper printout of Mona Lisa, modified by transparent display

Figure 2.1: Transparent display blended within see-through ruler

Figure 2.2: System Architecture of DigitalDesk

Figure 2.3: a) Free body diagram b) A projectile reacts to strokes on paper

Figure 2.4: Augmenting dimensions of the triangle on the ruler

Figure 2.5: Glassified Working

Figure 2.6: Wacom digitizer tracks the pen strokes on paper

Figure 2.7: System Input

Figure 2.8: System Output

Figure 2.9: a) Optical magnification of a pear

b) Magnification with cell structure overlay and metadata

Figure 2.10: 4D Systems RGB capable transparent OLED used in our experiments

Figure 2.11: LittleAR prototype: Optical mouse sensor and the transparent display

Figure 2.12: The user translates by moving over the character

Figure 2.13: The user moves over a portion of the map to discover country boundaries.

Figure 3.1: A traditional laser cutter setup

Figure 3.2: Indirect manipulation on today's laser-cutters

Figure 3.3: Proposed Clearcut system

Figure 3.4: LLP on laser cutter panel

Figure 3.5: Carpenters using hand fabrication to work on wood piece

7

Figure 3.6: Interaction and actuation layer

Figure 3.7: Using Residual projection to fit a circle between the pre-used

Material

Figure 3.8: a) Drawing on laser cutter and projection on piece

b) Tool path aligns to projection on work piece

Figure 3.9: (a) Physical laser-cut designs

(b) Virtually copied onto workpiece ready for interaction (rescaling etc.)

Figure 3.10 Scanning a physical drawing and extracting it then the projection of extracted raster is

etched

Figure 3.11: a) User hand-drawing schematic

b) Laser cutter tool follows the residual projection on actuation layer

Figure 3.12: Using a Caliper to measure on top of the CAD

Figure 3.13: Collimating lens with projection reducing the light dispersion

Figure 4.1: 1. Aquarium

2. Tracking cameras

3. Transparent Display

Figure 4.2: T.- Transparent display + magnification C.- Circuit

Figure 4.3: Binocular displarity with transparent displays

Figure 4.4: Binocular displarity with transparent displays

Figure App 1: Data Structure and Variables

Figure App 2: Function Dependency for Line Detection

Figure App 3: Conditions for Merging Lines

Figure App 4: Example I for Merging Lines (Simple Quadrilateral)

Figure App 5: Example II for Merging Lines (Complex Quadrilateral)

8

1. Introduction

'Any sufficiently advanced technology is indistinguishable from magic.'

-Arthur C. Clarke

When we were kids we saw magic in nature's every activity, in the line of ants crawling

up the wall, the airplane flying in the sky, the rainbow. That ability to be surprised and

awed slowly fades away as we grow up. Magicians ignite that long lost sense of getting

surprised/awed in kids and adults alike. To create their 'magical surprises' they learn to

exploit technology, optics, and chemistry and disguise it as magic.

Glass is such a magical material - it is rigid but it lets you see through as if it didn't

exist. It has properties of a hard solid, and transparency of air, the perfect medium for

doing digital augmentation since it is least expected there - hence, magic. The basic idea

of this thesis is to augment information on glass.

Figure 1.1: 1870's show of pepper's ghost. Magician fights a virtual ghost

Magicians may have been the first ones to do 'augmented reality' by using a Pepper's

ghost technique in which using plate glass [Figure 1.1], plexiglass or plastic film and

9

special lighting techniques, they can make objects seem to appear or disappear, to become

transparent, or to make one object morph into another. The Pepper's Ghost illusion upon

which the 3D Telepresence Chair is based was first described by Giambattista della Porta,

a 16th Century Neapolitan scientist and natural philosopher. In 1584's Magia Naturalis

(Natural Magic), he describes an illusion entitled "How we may see in a Chamber things

that are not." 3 Nearly 300 years later, in 1862, engineer and inventor Henry Dircks

demonstrated a small-scale version of this illusion at a booth in the Royal Polytechnic

Institute of London. Dircks was the proprietor of a Phantasmagoria, a stage show

featuring fearsome displays of the supernatural created with the optical and special effects

of the day. He may have been introduced to the ghost illusion by traveling Italian stage

magicians familiar with della Porta's version, as these performers likely shared the same

traveling circuit as the Phantasmagoria and Magic Lantern shows. However, Dircks'

version of the effect was so cumbersome that it would have required the theater to be

remodeled or purpose-built to house the effect. After seeing the demonstration, John

Henry Pepper, director and "Professor" of the Royal Polytechnic Institute, developed the

effect into a practical illusion that could be more easily deployed in preexisting theaters.

He has been remembered ever since as the inventor of the effect [21].

There are several types of augmented reality techniques. Firstly, Head-worn displays

(HWD)- Users mount this type of display on their heads, providing imagery in front of

their eyes. Two types of HWDs exist: optical see-through and video see-through (Figure

2). The latter uses video capture from head-worn video cameras as a background for the

AR overlay, shown on an opaque dis- play, whereas the optical see-through method

provides the AR overlay through a transparent display. Secondly, Handheld displays-

Some AR systems use hand- held, flat-panel LCD displays that use an attached cam- era

10

to provide video see-through-based augmentations. The handheld display acts as a window

or a magnifying glass that shows the real objects with an AR overlay. Finally

Augemented Reality with projectors In this approach, the desired virtual

information is projected directly on the physical objects to be augmented- the intention is

for the augmentations to be coplanar with the surface onto which they project and to

project them from a single room-mounted projector, with no need for special eyewear.

A transparent display is an electronic display that allows the user to see what is shown on

the glass screen while still being able to see through it. It is a technology that has been

around for a decade or two, but only this year is it being incorporated by companies such

as Samsung and Planar Systems into consumer products like handheld devices, televisions,

and other technology. These screens can be used for augmented reality, a way of

enhancing your view of the world with digital images overlaid onto real ones. Earliest

exploration with Optical see through displays include work by Kiyokawa et al. [22] who

novel optics design for OST displays (ELMO-1) that can present mutual occlusion of real

and virtual environments.

11

Figure 1.2: Modern transparent display prototypes by Samsung and Polytron

Figure 1.3: Transparent monochrome nanoparticle display at Photonics and Modern Electro-Magnetics Group, MIT

A few research projects [14][15][16][17][18] have utilized transparent displays to augment

visual information on real objects behind them or to manipulate GUIs on screen from the

back side of the screens. These kinds of utilizations have so far relied on the condition

that users face the transparent display from only one side of the display. Heo, Heejeong

et.al [19] propose a double sided interaction using a projected transparent display.

Transparent displays have two primary properties: they are transparent to a certain

degree to allow the transmission of the image of the real environment, and they emit the

light of the rendered graphics [1]. For a designer these properties can be translated as:

they are see-through preserving the natural perspective. The on-screen data is visible from

both the sides. A LCD type transparent display can attain different shades of color and be

opaque if need be since they're subtractive. Figure 1.3b shows an example of LCD based

subtractive nature applied on a print graphic.

12

Figure 1.3b: A paper printout of Mona Lisa, modified by transparent display

OLED/Pepper's ghost type of transparent displays are additive in nature. Both these

types will have different implications and use-cases. However, while augmenting a 3D

scene the user can focus only on one plane at a time, the real object or the display. This

limitation of transparent displays is called binocular parallax i.e. the user has to look at

objects at different distances from them with transparent displays.

In this thesis, I am specifically interested in the use of transparent displays to augment

tools. I will discuss my experiments with three handheld tools - Glassified Ruler and

Augmented Magnifier, a paper bookmark as well as one larger tool, the Clearcut

laser cutter. The first three handheld systems are mixed reality based in which the user

gets feedback based on physical strokes, objects from the real world. Three of these are

passive feedback tools, where the users receives graphical feedback on their handtool

(ruler, bookmark and magnifying glass). The third experiment, the Clearcut lasercutter

system, discusses bringing more directness to interact with fabrication tools using a

transparent display. Unlike the other two, Clearcut is an active interface that deals with

stylus input and two layers of information (interaction and actuation).

13

2. Augmented Hand-tools

2.1 Glassified: An Augmented Ruler based on a Transparent

Display for Real-time Interactions with Paper

Computer-based drafting has become

increasingly important in the work of

architects and designers. However, drawing

by hand is still preferred by many for early-
DIVPLAY

stage drawings and is commonly used in

education and the arts. A ruler is one of the

most basic and useful tools for drawing on

paper, especially for architectural and
Figure 2.3: Transparent display blended within see-through

scientific drawings. ruler

'Traditional ruler + transparent display= Glassified'

Glassified is a modified ruler with a transparent display to supplement physical strokes

made on paper with virtual graphics. Because the display is transparent, both the physical

strokes and the virtual graphics are visible in the same plane. A digitizer captures the pen

strokes in order to update the graphical overlay, fusing the traditional function of a ruler

with the added advantages of a digital, display-based system. We describe use-cases of

Glassified in the areas of math and physics and discuss its advantages over traditional

systems. The design is such that the transparent display is embedded within the see-

through ruler. The Glassified lets the user draw lines, as a traditional ruler would do, after

which the ruler itself augments the strokes on paper, to 'bring the paper to life'.

14

2.1.1 Related work

DigitalDesk[8] uses overhead cameras and projectors whose functions are to read

what is being shown on the desk and to project electronic images onto the desk,

therefore providing characteristics of an electronic workstation. Figure 2.2 shows the

system architecture of DigitalDesk. It is considered a great contribution to Human-

Computer Interaction (HCI) or more specifically, Augmented Reality (AR) since it

proposed the idea to mix the physical world with the digital information world which was

a major achievement at that time. In Wellner's paper, several useful applications were

described such as calculators which are projected on top of the desk and can be used just

like real ones.

However, a system with a camera and a projector overhead is quite bulky and not

portable. Also, using projectors results in a problem of occlusion when something is being

drawn under the projector.

/

Figure 2.2: System Architecture of DigitalDesk (Wellner, YEAR)

15

O=t

2.1 Augmentation of 2D information using transparent displays

A ruler has two fundamental functions: 1) to draw straight lines and 2) to measure

dimensions. Through our Glassified prototype we aimed at extending those capabilities.

Using the Glassified ruler we primarily explored two paper-based scenarios.

2.1.a Drawing

Our goal here is to complement rather than replace a typical ruler. In this usecase, we

seek inspiration from traditional physics lessons about gravity, projectile motion etc. The

student draws a regular free-body-diagram with penstrokes specifying gravity, horizontal

velocity and walls. The interaction is such that overlaying the strokes with the ruler starts

a physics simulation (Figure 2.3)

Figure 2.3:a) Free body diagram b) A projectile reacts to strokes on paper

2.1.b Measurement

Measuring the length of lines is one of the primary functions of a traditional ruler. We try

to extend that fundamental capability by letting the user measure other attributes such as

angles and complex measurements that require computation, such as area of bounded

curves. (Figure 2.4)

16

Figure 2.4: Augmenting dimensions of a triangle on the ruler

2.1.2 Working

A digitizer (Figure 2.6) that is placed below the paper captures the pen strokes. The

strokes are analyzed on the computer, which sends coordinate data for augmentation on

the graphical overlay. We use a 2-inch 4D Systems transparent OLED with 80 percent

transparency connected to the computer via serial communication.

RS 232

Pixel mappitecue

Figure 2.5: Glassified system architecture

17

Figure 2.6: Wacom digitizer tracks the pen strokes on paper

2.2 Glassified+

The evolved version of Glassified tracks using an overhead camera to track pen input. In

this new implementation, a camera digitizer takes the place of the Wacom digitizer, which

results in a more flexible use. Camera digitizers outperform Wacom digitizers in terms of

technology as the Wacom API only provides the most basic functionalities such as

returning the pixelvalue of touchinput, we therefore cannot sense the display position even

when the display is placed on it. On the contrary, using camera based tracking can easily

capture the display position. The data structures used in Glassified+ are explained in the

appendix.

18

2.2.1 System Input

To keep track of Glassified on paper, we use computer vision techniques. In the new

method, a camera digitizer takes the place of the Wacom digitizer. In this system, the

input is a drawing usually done by pen and is limited to straight lines and dots for

simplicity.

(a)Math Measurement (b) Reflection (c) Projectile

Figure 2.7: System Input

As can be seen in Figure 2.7, there are three sample input images. Figure 2.7a shows one

possible input for mathematical measurement use-case, which could be a polygon or lines.

Figure 2.7b is a sample input for reflective animation and is composed of one or more

polygons, a dot representing a ball and an arrow which indicates the initial velocity of

the ball. Figure 2.7c is the input for projectile animation. Similar to the reflective

animation input, it includes a dot and a velocity arrow. Additionally, it has one more

arrow, which is the gravity indicator and a number of lines, a generalization of a polygon.

2.2.2 System Output

The output of this system will not

display position is figured out.

measurement use-case. It can be

overlaying transparent display and

inside the polygon.

be generated until strokes are well recognized and the

Figure 2.8a shows the output for mathematical

seen that the exact polygon is regenerated by the

the result, which is the area of the polygon, is shown

19

(a) Math Measurement (b) Reflection (c) Projectile

Figure 2.8: System Output

Figure 2.8b shows a snapshot of the output of the reflective animation which is not much

different from its input, except for a colored ball produced by the transparent display. In

the actual animation, the ball is actually moving on the display and it bounces whenever

it encounters a line barrier which is specified on the paper underneath the display. It is

important to note that during the animation, even if the display position is changed, line

barriers beneath it can still affect the ball movement as if the ball on the display can

"see" those underlying strokes. Figure 2.8c, similarly to the reflective animation use-case,

is an output snapshot for projected animation. The only difference between these two

kinds of output animation is that the velocity of the ball is affected by more factors

which, besides bouncing effect and initial velocity, include gravity and friction. The

property of being adaptable to the change of display position also applies to this usecase.

2.3 Augmented Magnifier- Combination of optical properties of

glass and transparent displays

'Magnifying glass + transparent display = Augmented magnifying glass'

In this project we explore the fusion of magnifying properties of glass and digital

augmentation of transparent displays - combining two layers of information: digital and

20

optical. The system preserves both the regular functionality of a magnifying glass and

digital capability of transparent displays on the same plane. Metaphorically, we could

extend the magnification through the magnifying glass by digitally showing a 1000x

magnification overlay and other metadata about the subject. This work could be extended

to any lens system- read magnifying glass, telescopes, microscopes to add a layer of digital

information without obstructing the optical abilities of the system.

2.3.1 Related Work

Magic lenses, inspired by Bier et al. [11], let a person move a plane above the tabletop to

see individual, modified views onto the data that are visualized on the table [9] [10].

However, these tools show the augmented information on an opaque, 2-D display, which

breaks the directness of the real world.

Looser et. al.[12], Rekimoto et. al. [13] describe a magnifying glass based AR interface

using a handheld probe. However, both of these again use video-see-through based AR as

opposed to our transparent display, that fuses optical and digital magnification in the

same plane.

21

Figure 2.9: a) Optical magnification of a pear

Figure 2.9 b) Augmented Magnification with cell structure overlay and metadata

2.3.2 Interaction

The user sees the normal magnification through the system. The normal magnification is

by virtue of the optical property of the glass (lens). The magic happens when the system

22

also overlays the scientific name, common name, molecular level magnification in addition

to the regular magnification.

2.3.3 Working

Technically the system works by means of a small front facing RGB camera, which runs

object detection within openCV, detects the fruit and overlays its common name,

scientific name and cell structure magnification onto the optical magnification. A

handheld bugfinder magnifying glass is overlayed with same sized 4D systems transparent

OLED (Figure 2.10) which shows the graphical feedback.

Figure 2.10: 4D Systems RGB capable transparent OLED used in our experiments

2.4 LittleAR Bookmarks
Augmenting Paper Through Tangible Bookmarks

We introduce LittleAR, a transparent-display based bookmark which digitally augments

the text and shapes in a printed book. The system brings the printed text/graphics to life

23

while preserving the visual aesthetics of the printed text. Like a magnifying glass, the user

can easily move the device around and compare real and augmented images. LittleAR was

motivated by the observation of users who have held on to paper, despite powerful

incentives to adopt electronic devices such as Kindle, tablets, etc. LittleAR is a 2-inch

transparent OLED and a mouse sensor combined in a form similar to a paper bookmark.

The design naturally affords translation on paper such that the user can move it along

paper similar to a magnifying glass. The advantage of using a thin OLED display is that

it allows graphical augmentations to be almost in the same plane as the paper, which

creates a seamless fusion of the virtual and real world. This preserves the aesthetics of the

printed books while giving the user an option to see the printed text/image augmented

with dynamic text and graphics.

2.4.1 Related Work

A few systems have been introduced previously for augmenting paper books. System in

[23] requires the user to look at a handheld display to see the book on the screen

augmented with digital graphics. The camera on the device looks for markers on the paper

and augments them with 3D graphics. Projection-based setups such as [24], [25] require

the instrumentation of the environment so as to project graphical augmentations on top of

the paper. In contrast, the LittleAR prototype overcomes these limitations by the virtue

of its size and form-factor. The system is a tangible paper bookmark with embedded

transparent display, requiring no instrumentation of the surroundings.

2.4.2 The Prototype

The LittleAR prototype consists of a transparent OLED display combined with an optical

mouse sensor into a thin form factor that fits in a book. The display is 2 mm thick and

24

overlaps the paper [Figure 2.11], which prevents any binocular parallax issues that are

common with transparent displays. The mouse sensor reports the X, Y coordinates to the

computer, which sends the corresponding graphics to the display. The user places

LittleAR at the top left of the page in order to set the origin for the mouse coordinates.

The system does not perceive the actual contents on the page, but knows which digital

augmentation to show for every location and direction on a page.

Figure 2.11: LittleAR prototype: Optical mouse sensor and the transparent display

2.4.3 USE CASES
There are several practical use cases for the LittleAR bookmark. Some of them are

described below:

25

2.4.3.1 Augmented Text

A first class of use cases relates to the

augmentation of text on a page. As an

example, a user can slide the bookmark

over a piece of text to see the definition

of the word appear on the display. The

user is still able to see the original text

through the 'glass' of the bookmark Figure 2.12: The user translates by moving over the character.

while seeing the graphical augmentation overlaid on top [Figure 2.12]. A similar use case

would show translation of words into another language.

2.4.3.2 Window into the world
A second class of applications involves the use of animation to bring some figures to life.

For example, a printed picture of an internal combustion engine could be animated as the

user moves LittleAR over the printed image, merging both the digital augmentation and

original paper contents.

Figure 2.13: The user moves over a portion of the map to discover country boundaries.

26

2.5 User comments

We invited 2 female and 3 male participants from another department at the institute.

Glassified with pen tracking and augmented magnifier were used. Subjects were given

about 10 minutes to play with the system and they were encouraged to speak out their

comments aloud. Although we did not collect quantitative data, the users' comments and

difficulties were sufficient to illuminate the need/properties of the systems we tested.

Further studies with well-defined user tasks and quantitative measures will be performed

to support these results.

2.5.1 Glassified

The users took a while to get familiar with the system, due to technical complexity in

running the prototype. We asked them to draw certain shapes and asked them to guess

the dimensions of sides, area. Most users guessed approximate answers. Overlaying the

drawn shape with ruler, they resulted in instant joy. Most of them commented that it

would be great if they had it when they were kids. Some users found it awkward to have a

physics engine based learning system embedded into a ruler. One user commented that

she likes fact that the system is camouflaged into the ruler, and visual augmentations

should be on-demand if users want more information about the written strokes. Most

users preferred the math-learning app than physics simulations one.

2.5.2 Augmented magnifier

We showed users a slice of green apple and a plant leaf and asked them to study it with

simple magnifying glass, a common assignment that elementary school children do.

Thereafter, we asked them to study the same with Augmented Magnifier with digitally

overlayed cell structure and scientific name. Users found that digital overlaying is helpful

27

for learning more while looking at the real world physical sample. Some users commented

it would be better to have digital annotations on the object plane ideally. This points to

important directions for future research - we need stereoscopic transparent displays with

eyetracking, which is a technical roadblock for now. Users reported that they would prefer

to have such a little window while dealing with circuits, archaeology samples, as a visual

probe into the real world. Two users reported that they find this functionality similar to

that of video see-through Augmented Reality. Upon further digging he commented it

would make more sense to use a bigger transparent display on a bigger magnifier.

28

3. Direct manipulation on fabrication tools

Clearcut- what you see is what you cut

Figure 3.1: A traditional laser cutter setup

The evolving field of personal fabrication holds much potential for the coming decade and

laser-cutters allow fast and high quality cutting and engraving of a wide range of

materials. However, the method by which users interact with such tools has not evolved

much. The process of drafting a design and executing the cut still contains many

intermediaries and complications.

In this chapter we describe Clearcut, a system for direct manipulation with laser cutters.

The system consists of a semi-transparent display and optical tracking interfaced with the

laser cutter so that users can draw virtual graphics on top of their workpiece. The system

also helps users to make virtual copies of physical artifacts, which can later be cut.

Clearcut offers advantages currently only accessible through hand fabrication such as

letting users adjust designs quickly and iteratively based on the visual feedback by virtue

29

of stylus, and letting users use ruler and protractor as if they were working on the

physical piece directly. A laser-cutter allows fast and high quality cutting and en- graving

of a wide range of materials. This machine directs a high-power laser beam on material to

be cut or engraved, leaving the edge with a high-quality surface finishes. Common

applications include production of artwork or simple utilities for day-to-day use. However,

the interaction method to give input to these tools is disconnected from the work-piece. In

such interfaces Zellweger suggests that a discrepancy exists between a virtual

representation during design and spatial impact in the real world [3]. Changes to any

designs must be made away from the piece that will be cut. Our informal survey with 7

users reveals consequent major issues with the present day laser cutters. The users

frequently made the following comments:

Laser cutter Workstation

Figure 3.2: Indirect manipulation on today's laser-cutters

'I haven't quite figured out where the laser cutter is going to cut on the work piece.'

'It'd be nice if I could use my hand-tools the way I used to carpenter manually.'

'I don't really know if I can re-use that already semi-cut piece of acrylic, I'd rather take a new

one.'

30

The above questions raise important concerns about the interface, affordance and

efficiency of the present laser cutters. First, to work with laser cutters the users must

acquaint themselves with WIMP-based CAD software, a platform with disconnected

perception of the main work-piece [Figure 3.2].

In a usual laser-cutting job, the user creates and manipulates the drawing on one

computer, sends the file to the computer connected to the laser cutter, opens it on the

relevant program, adjusts the settings for the laser cutting, and then finally 'prints' it out

onto the workpiece. Hence, the novice user finds it difficult to imagine how the laser-cut

result will look while working with the CAD software. Present-day laser-cutting systems

are fast and precise, but not as intuitive as hand-tools, which require almost no training.

Moreover, present day laser cutter interfaces make it hard to engrave on real-world

objects because the target position of the engraving is not always corner or center based,

and the resulting size is not easy to imagine and visualize on the CAD tool [7].

Running tests to see how the designs look on the work piece takes up both time and

material. This can be very frustrating and lead to material wastage. In contrast, when we

use hand-tools, we can easily point and locate specific areas on work-piece to engrave/cut

where we want. Thus, users face a choice between precision and accuracy when deciding

whether to use laser cutters or hand tools. Figure 3.7 shows how the accuracy of

placement of engravings is compromised in current laser cutter interfaces.

Our system proposes a technique by which the users can directly manipulate their CAD

drawings on top of the laser cutter and visualize the cut work-piece before committing to

31

printing; it combines projection on top of the laser cutter panel and the stylus/touch in

addition to the 'residual' projection on the work piece. Thus, an interactive user interface

is realized that enables the programmer to edit the processing coordinates for the laser

tool directly on work-piece surfaces. The intermediary of the computer screen is essentially

eliminated as digital handling is overlaid onto the material to be cut. This interface,

therefore, gives just-in-time visual feedback about the tool-path trajectory. A key

motivation is to allow users to get immediate and constant awareness of what they will be

cutting to bypass the need of tedious test cuts [Fig. 3.3]. A traditional laser cutter set-up

only gives that output after the end of the cutting process.

Figure 3.3: Proposed Clearcut system

Personal fabrication tools such as laser-cutters and milling machines have changed the

way people create shapes and precise objects. However, the means to operate a laser

32

Projector+IR camera

Laser cutter bed Projection screen

Infrared Laser (120deg spread)

cutter is very similar to using a 'printer'. The user has to use the computer to sketch a

path for the laser tool on a WIMP based UI on a traditional computer.

The primary idea behind WYSIWYC is to enable direct manipulation on the work piece:

1. The user puts the piece inside the laser cutter and loads his .AI / Vector file which

is projected right onto the piece.

2. The user uses touch/stylus input to manipulate schematics onto the panel

3. The leaked projection from the screen falls onto the work-piece, showing the exact

path where the laser tool would cut.

3.1 Implementation

The laser cutter panel is covered with a transparent diffuser/projection screen from above,

the material retains about 60% of the projected light. The panel is made into an

interactive screen by using a LLP technique (Figure 3.4). The touch points are tracked

and sent to a custom INKScape plugin that maps controls to the laser cutter.

Figure 3.4: LLP on laser cutter panel

33

IR Laser

SCOwerd LJON
MOWnua

3.1.1 Calibration

In our set up, the projection on the actuation layer is -5% bigger than the projection on

the interaction layer. To calibrate we need to manually set the material thickness, the

system then compensates for it and calculates the toolpath, such that the residual

projection and toolpath coincide. These variables depend on the distance of the projector

to the laser cutter and the physical distance between the actuation and interaction layers.

In our setup the projector is 1 meter above the interaction layer of the laser cutter. The

distance between the interaction layer and actuation layer (without workpiece) is .3m.

3.2 Related Work

Clearcut builds upon other research in the area of augmented design tools. The closest

relative to our system is the Visicut project [7], which employs a camera in a laser cutter

for WYSIWYG preview and positioning of graphics on objects. However, in Visicut the

graphical feedback is shown on the computer monitor rather than the workpiece. In a

similar vein, Pictionaire has allowed designers to collaborate and annotate across both

physical and digital objects [5]. However Pictionaire doesn't deal with physical fabrication.

Olwal et. al. [1] have also tried to augment CNC machines, however this is only for

machining not for CAD design and is focused on industrial machines, not machines for

novice users. Another close relative to Clearcut is Constructables proposed by Muller S.

et. al [3]. The system lets users use laser pointers to draw and specify the toolpath.

However, the system doesn't offer graphical feedback that would let users visualize the

result in real time. The CopyCAD System, introduced by [4] allows extracting shapes of

physical objects by scanning a picture, interactive editing of the shapes directly on the

object and reproducing an object with the manipulated shapes on a milling machine.

Interactions in CopyCAD happen on the same layer as the toolpath. Clearcut addresses to

34

the most subtractive fabrication tools such as laser cutters that have a glass panel for

safety purposes.

In a usual laser cutting job, the user creates and manipulates the drawing on one

computer, then sends the file to the computer connected to the laser cutter, opens it using

the relevant application, adjusts the settings for the laser cutting, and then finally 'prints'

it onto the workpiece. Hence, users find it difficult to imagine how the laser-cut result will

look while working with the CAD software. Present-day laser cutting systems are fast and

precise, but not as intuitive as hand tools, which require almost no training.

Figure 3.5: Carpenters using hand fabrication to work on wood piece

Moreover, present day laser cutter interfaces make it hard to engrave on real-world

objects because the target position of the engraving is not always corner or center based,

and the resulting size is not easy to imagine and visualize on the CAD tool [1]. Running

tests to see how the design looks on the work piece take up both time and material. This

35

can be very frustrating and lead to material wastage. In contrast, when we use hand-tools,

we can easily point and locate specific areas on the work piece to engrave/cut where we

want. Thus, users face a choice between precision and legibility when deciding whether to

use laser cutters or hand tools.

3.3 Advantages of the Clearcut interface
Our system proposes a technique by which the users can directly manipulate their CAD

drawings on top of the laser cutter and visualize the tool-path trajectory before

committing to the actual cutting. It combines projection on top of the laser cutter glass

panel and a stylus/touch, in addition to the 'residual' projection on the work piece. The

intermediary of the computer screen is essentially eliminated as digital manipulation is

overlaid onto the material to be cut. A key motivation is to give users constant awareness

of what they will be cutting so as to avoid the need for tedious test cuts [Fig. 3.6]. A

traditional laser cutter setup only gives that same output at the end of the cutting

process.

Figure 3.6: Interaction and actuation laver

36

The interface is divided into two layers: an interaction layer and an actuation layer. The

interaction layer is where the user uses the stylus and gestures to manipulate his

drawings. This layer is the top flat, glass panel of the laser cutter. The second layer is the

actuation layer, where the user sees the graphical overlay of the tool path in the form of

the residual projection leaked onto the workpiece from the top panel (Fig. 2.19). Tasks

such as modifying an already cut shape are extremely time consuming to achieve on a

regular laser cutter interface, but become straightforward on the Clearcut system.

The following example illustrates how Clearcut can help a user achieve a specific design,

which is difficult to accomplish in a traditional setting:

Task: Convert a square piece of wood to rounded corners.

1. Put the square piece of wood on the bed of the cutter to form the actuation

layer,

2. On the interaction layer, draw the rounded corners as desired,
s. Check if the projection onto the actuation layer is as intended i.e. the rounded

corners are projected onto the work piece as desired (Fig 5b)

4. Execute the cut.

Result: The Square is modified to rounded edges

We refer to this interaction as WYSIWYC or What You See Is What You Cut. In

contrast, in a regular setup the user would have to measure the piece of wood to create a

model by measuring dimensions of the square piece of wood, then draw rounded corners,

and then cut it on the machine. The latter is a time consuming process, as the user has to

go from physical workpiece to virtual WIMP based CAD and then back to workpiece.

37

Reuse/material wastage

In addition to its ease of use, a second important advantage of Clearcut is that it prevents

material wastage. In current systems users have no initial idea (or inadequate feedback)

about the relative mapping of their CAD drawing onto the work piece.

Figure 3.7: Using residual projection to fit a circle between the pre-used material

Partially cut wood pieces are often trashed when the user cannot accurately visualize

whether the desired shape will fit in the free space of the wood. For example, Figure 3.7

shows a lot leftover from the cut and it has potential for re-use but placement of the new

cut may be difficult. Clearcut's system, through the residual projection on the work piece,

allows users to make more efficient use of material. By also increasing the ability to

visualize cut placement, it reduces or even eliminates the need for numerous test cuts as

well.

3.4 Interactions

The user draws and aligns the shape to be cut on the top panel and sees the 'result'

through the secondary projection on the base workpiece (wood/acrylic, etc). The ratios of

calibration are set such that the tool path aligns to the secondary projection on the

workpiece.

38

Figure 3.8: a) Drawing on laser cutter and projection on piece b) Toolpath aligns to projection on workpiece

3.4.1 Cloning 2D artifacts

a) Copy physical designs

We propose interactions that will allow users to design

by example by showing the computer an object or shape

they want to borrow from the real world and where to

put it in their current design. By shortening the loop,

users can quickly base designs off of real world objects,

bring in other parts, and edit them. This type of

'remixing' has generally existed for only temporal media

such as video or audio; we seek to expand it to physical
Figure 3.9: (a) Physical laser-cut designs

objects for fabrication. (Figure 3.9) Virtualy copied onto workpece ready
for interaction (reacaling etc.)

b) Etching

The precision of the scan is one of the major concerns in this case, but by using Kalman-

filtering algorithms we can approximate the edges. The copied model is vector based,

hence refined changes could be made to it before cutting. A picture put on top of the

surface can be instantly traced as a raster and used for etching. This significantly reduces

time and effort while 'copying' real world objects for the laser cutter (Figure 3.10).

39

Figure 3.10 Scanning a physical drawing and extracting it. Then projection of the extracted raster is etched

3.4.2WYSIWYC - What You See Is What You Cut

The basic idea of the system is to reduce the gap between the tool-path and the virtual

CAD design. This system fuses the two together so that, in fact, what you see (on the

screen) is what you cut (on the work-piece) (Figure 3.11).

Figure 3.11: a) User hand-drawing adsematic b) Laser cutter tool follows the resdua projection on actuation layer

The goal is achieved through the residual projection (onto the actuation layer) of the

screen onto the work piece, which is calibrated to accurately reflect the path of the laser.

As discussed earlier, this direct visualization results in more efficient use of both time and

material.

40

3.4.3 Hand tools

Hand tools are one of the major differentiators in manual fabrication and laser cutters.

The Clearcut system supports the use of hand tools with the laser cutter so that the user

may access the flexibility and dexterity of these tools while laser-cutting the work-piece.

For example, the user may choose to use the stylus to draw a shape to be cut, or as

shown in Figure 3.12, use measuring tools to correct proportions.

Figure 3.12: Using a Calliper to measure on top of the CAD

3.4.4 Glass panel affordance

Though we initially perceived the laser cutter's glass cover as a design problem, it became

one of the key elements in creating the design of our system. By allowing users to rest

their body weight on the glass, it permits users to get closer to the work-piece without

interfering with the laser cutter. Furthermore, the ability to use hand tools on the glass

while drawing adds substantial stability to the drawing process, making the interaction

more precise.

41

3.4.5 Limitations and future work

P14jector

Spherical section projection screen

Happy dude

SphekiA section irro

Figure 3.13: Collimating lens with projection reducing the light dispersion

One major improvement that we want to make with Clearcut is to have interaction and

actuation layer projections the same size. This is achievable by introducing a Fresnel

optical lens in front of the projector. This would lead to having projections on actuation

and interaction layers of the comparably similar size (Figure 3.13).

Another technical limitation is that projections on interaction layer and actuation layer

will never line up due to parallax. However, this limitation doesn't affect the user-

experience. Our system can be extended to any CNC based fabrication process with slight

modification e.g. Shopbot, PCB milling machines etc. are fabrication machines with a

need for more efficient and direct user interface.

42

4 Proposed side projects

In my side/future work I plan to conduct several experiments exploring other use-cases

across disciplines for transparent displays.

4.1 Augmented Fish Tank/Collaboration with CityScience lab

We're working on designing a fish-tank whose front panel is transparent display rather

than regular glass. Such a system will preserve the normal functioning and aesthetics of

the aquarium and also augment graphics based on the motion of fish.

Figure 4.1: 1. Aquarium 2. Tracking cameras 3. Transparent Display

One camera looks at the flow of the fish in the tank, and other looks at user's head

position [Figure 4.1]. Accordingly the user would see graphical trails on the display,

merging the real world with virtual. The see-through LCD panel will be backlit from a

fluorescent panel that's behind the aquarium body, illuminating the tank and the display

at the same time.

43

4.2 Electronics bench

A traditional electronics bench just magnifies the circuit the user is looking at. What if it

could also serve as just-in-time reference for the person working on a circuit (Figure 4.2).

Live schematics of the parts are augmented in real-time on the magnifying glass, giving a

virtual layer of information about the work-piece, such as circuit/PCB in this case. I

would collaborate with Boardlab team from Responsive Environments group [20] for this

use-case. This could also be used to give live diagnostics - putting oscilloscope traces over

components.

Figure 4.2: T.- Transparent display + magnification C.- Circuit

44

5 Discussion and Lessons learnt

Unlike regular opaque displays, transparent displays allow a better merger of real world

and digital information. Most experiments that we discussed above are ideal for 2-D

interfaces and can be utilized by UX designers. Researchers are steadily moving forward

by proposing new use-case scenarios of spatial augmented reality using transparent

displays, Primary challenge in designing transparent interfaces for augmentation of the

real world is having transparent displays to be able to overcome the problem of binocular

parallax i.e. For transparent screens, the screen itself (and therefore the image) can never

take up exactly the same space within the environment due to parallax. Research needs to

be done able to design active stereoscopic transparent displays that can augmented

information based on the depth of the real object. Figure 4.3 shows a real tree which

needs to be augmented with a virtual human on transparent display. However, human eye

can focus on one plane at one time. In future we would have transparent displays that

have stereo capabilities so that digitally augmented graphics could free themselves from

the bound of transparent screens.

Figure 4.3: Binocular disparity with transparent displays

45

Another major design consideration with transparent displays in a spatial 3D environment

is that they require to be head and eye tracked for correct augmentation on the scene.

This limits present day transparent displays to being single-user interfaces because a

display can augment the scene for one eye position at one time. Solution to this problem

requires full-parallax light field displays utilizing an array of micro projectors, each of

which acts as a single pixel. Full 3D parallax at a resolution of 640x480, however, would

require 300,000 projectors; a resolution of 1920x1080 would require 3 million of them. This

is only possible in complex research settings and will take a while to be industrialized.

With Joel Jurik, Debevec has created a theoretical prototype for such setup.

"k)

Figure 4.4: Binocular displarity with transparent displays

display utilizing an array of micro projectors, each of which acts as a single pixel [Jurik et

al.].

Each of the discussed systems have shown that the addition of a small amount of

computation, and replacing glass with transparent displays in the right area can help us

create richer and less intrusive user interfaces, revealing more about the magical secrets of

the real world around us

46

References

1. Olwal A, Gustafsson J, Lindfors C. Spatial augmented reality on industrial

CNC-machines. In: The Engineer-ing Reality of Virtual Reality 2008. San Jose,

CA, USA.

2. Zhang J, Ong SK, Nee AY. Development of an AR sys- tem achieving in situ

machining simulation on a 3-axis CNC machine. In: CAVW.Vol 21.; 2010:103-115.

A

3. Mueller, S., Lopes, P., and Baudisch, P. Interactive construction: Interactive

fabrication of functional mechanical devices. Proc. UIST 2012. 2012, 599-606.

4. Follmer, Sean, et al. "CopyCAD: remixing physical objects with copy and paste

from the real world." UIST. ACM, 2010.

5. Hartmann, Bj6rn, et al. "Pictionaire: supporting collaborative design work by

integrating physical and digital artifacts." Proceedings of the 2010 ACM conference

on CSCW. ACM, 2010.

6. Capturing and interacting with design history. In Proc. CHI 2002, ACM Press

(2002),

7. Oster, Thomas. "Visicut: An application genre for lasercutting in personal

fabrication." RWTH Aachen Univ (2011).

8. Elliott, Ame, and Marti A. Hearst. "A comparison of the affordances of a digital

desk and tablet for architectural image tasks." International Journal of Human-

Computer Studies 56.2 (2002): 173-197.

9. Spindler, Martin, and Raimund Dachselt. "PaperLens: advanced magic lens

interaction above the tabletop.' Proceedings of the ACM International Conference

on Interactive Tabletops and Surfaces. ACM, 2009.

10. Izadi, S., Hodges, S., Taylor, S., et al.: Going beyond the display: a surface

47

technology with an electronically switchable diffuser. In: Proc. of UIST 2008, pp.

269-278. ACM, New York (2008)

11. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., DeRose, T.D.: Toolglass and magic

lenses: the see-through interface. In: Proc. of SIGGRAPH 1993, pp. 73-80. ACM,

New York (1993)

12. Looser, Julian, Mark Billinghurst, and Andy Cockburn. "Through the looking glass:

the use of lenses as an interface tool for Augmented Reality interfaces."

Proceedings of the 2nd international conference on Computer graphics and

interactive techniques in Australasia and South East Asia. ACM, 2004.

13. Rekimoto, Jun. "A Magnifying Glass Approach to Augmented Reality

Systems." Presence 6.4 (1997): 399-412.

14. Andrew, D.W. TouchLight: an imaging touch screen and display for gesture-based

interaction. Proc.ICM12004, ACM Press (2004), 69-76.

15. Lee, J., Olwal, A., Ishii, H. and Boulanger, C. SpaceTop: Integrating 2D and

Spatial 3D Interactions in a See-through Desktop Environment. Proc.CH12013,

ACM Press(2013),189-192

16. NTT Docomo, Transparent double-sided touchscreen display, Wireless Japan 2012.

17. Samsung, Transparent OLED Display, CES2010

18. Sanden Vending System Corporation, Transparent vending machine.

http://www.sanden.co.jp/

19. Heo, Heejeong, et al. "Transwall: a transparent double-sided touch display

facilitating co-located face-to-face interactions." CHI'14 Extended Abstracts on

Human Factors in Computing Systems. ACM, 2014.

48

20. Goyal, Pragun, et al. "BoardLab: PCB as an interface to EDA

software."Proceedings of the adjunct publication of the 26th annual ACM

symposium on User interface software and technology. ACM, 2013.

21. Novy, Daniel E. (Daniel Edward) Computational immersive displays / by Daniel

E. Novy. c2013. Institute Archives - Noncirculating Collection 3 1 Thesis

MediaA&S 2013 S.M.

22. Kiyokawa, Kiyoshi, Yoshinori Kurata, and Hiroyuki Ohno. "An optical see-through

display for mutual occlusion of real and virtual environments." Augmented Reality,

2000.(ISAR 2000). Proceedings. IEEE and ACM International Symposium on.

IEEE, 2000. APA

23. K. Kiyokawa et al., "Collaborative Immersive Workspace through a Shared

Augmented Environment," Proc. Int'l Soc. for Optical Eng. (SPIE 98).

24. Linder, Natan, and Pattie Maes. "LuminAR: portable robotic augmented reality

interface design and prototype." Adjunct proceedings of the 23nd annual ACM

symposium on User interface software and technology. ACM, 2010.

25. Wellner, Pierre. "Interacting with paper on the DigitalDesk." Communications of

the ACM 36.7 (1993): 87-96.

26. Back, Maribeth, et al. "Listen reader: an electronically augmented paper-based

book." Proceedings of the SIGCHI conference on Human factors in computing

systems. ACM, 2001

49

Appendix

Data Structures and Variables for Glassified+

Before we dig into the code, it is appropriate to introduce the most fundamental elements

for the code, data structures and variables.

Data Structure: LINE The only data structure that should draw the attention is the

structure to store lines. Apart from the starting point and end point of the line, one

more variable, which is lineWeight (initialized to be 1 at the beginning), is kept as is

shown in Figure 10. The reason behind it will be explained in later subsection. Note that

all line variables used in this section are based on LINE structure.

The major variables used include environmentInfo, lineSet, displayPosition,

ballPositionInCam and ballPositionOnDisplay.

environmentInfo It is a collection of parameters related the environment where the

ball is moving. It contains lineBarriers, which can be thought of as what can make the

moving ball bounce back. Users can specify line barriers on their own when drawing

input. ballVelocity is the velocity of the moving ball, which is updated at every

frame. Note that drawing an arrow whose tail is pointing to the ball specifies the initial

velocity. Gravity indicates the gravity vector that can affect the motion of the ball all

through the animation process.

50

lineSet: All three parameters in environmentlnfo are determined by lineSet that

stores all the straight lines in the input image no matter they are arrows (indicators

for initial velocity and gravity) or pure lines. Obtaining the accurate line set is one of the

most crucial part of the whole system.

Variables for Display and Ball Positions The remaining three variables are all

related to positions. displayPosition can be understood as an array of four line

elements which correspond to four sides of the effective displaying area of the transparent

display. It is necessary to take the display position into account in order to keep the

animation aligned with the input. In addition, the ball position is also a primary element

and there are two variables related to it. ballPositionInCam stores the position of the

ball in head camera's view while ballPositionOnDisplay is the corresponding ball

position on the transparent display.

51

Figure App 1: Data Structure and Variables

Overview of the Code for Glassified+

Algorithm 1 reveals the skeleton pseudo code for the system. Without doubt, it is

consistent with the system architecture covered in previous section. Note that by

convention, names starting with capital letters are function names while names that begin

with lowercase letters are variable names.

GetNewFrame This function grabs the data of a new frame in camera. No further

explanation is needed for it because OPENCV library provides various kinds of functions

of do it.

52

Data Structure:

LINE : a struchtu npisenting a. singqe lin

startPoint : starting point of the line

endPoint : endpoint of the line

lineWeight : weight of the line

Variables:

environmentinfo: poramters of the environment where the ball is moving

lineBarriers : set of lines that represent the barriers to the noving ball

baliVelocity : velocity of the ball

gravity : ymvity vector

lineSet : sIt of cl-tracted lines fimn the input inaye

displayPosition : position of the transparent display in the view of the camera

bailPositioninCam : position of the ball in the view of the eaumra

bal PositionOnDisplay : position of the ball on the transparent display

DetectBallPosition At the very beginning of the pseudocode, ball position is detected

right after getting a new frame from the camera. One simple way to achieve ball position

detection is to firstly design a sliding window, for example with size 5 by 5, then center the

window over every pixel on the input image calculating the sum of pixel values inside the

window and finally find the minimum. The window that generates the minimum sum is

likely to have been placed where the ball is located because pixels near the ball position

tend to be darker than others thus giving a smaller sum.

LinesDetection This function extracts lines from the input image with great robust-

ness. However, it is hard to explain in one or two sentence. Thus, it is discussed in later

subsection.

GetlnitialEnvironmentlnfo It is a function that can retrieve the environment

parameters out from lineSet. Given that line set is perfectly produced, it is trivial to gather

environment information. For this reason, this function is not explained in detail in this

report.

GetDisplayPosition What follows next is the animation/rendering stage as shown in

Figure 7, where display and ball positions are updated at each iteration of the loop. Note

that the function GetDisplayPosition is realized by exploiting the features of the

transparent display such as clear display edges and almost perfect rectangular shape.

UpdateBallPosition At every frame of the animation, ballPositionInCam is up- dated

through the function, UpdateBallPosition, which takes ballPositionlnCam itself and

environmentInfo as the arguments.

53

In this function, if the ball does not encounter any line barrier, it just simulates projectile

motion in physics in accord with Newton's Second Law of Motion. On the other hand, when

the ball is about to hit a line barrier, just update the velocity following rules of reflection

with damped energy if specified beforehand.

PixelMapping After the ball position in camera view is obtained, it is also necessary to

map it to the position on the transparent display, i.e. ballPositionOnDisplay. There- fore

PixelMapping is implemented to do the task. It is intuitive that two parameters,

displayPosition and ballPositionInCam, are needed to get ballPositionOnDisplay. Some rules

of perspective are applied to solve this problem and more detail is explained in later

subsection.

SendDataToDisplay Finally, it is ready to send the data needed for displaying graph- ics,

in this case it is ballPositionOnDisplay, to the transparent display via serial

communication. The function, SendDataToDisplay, is an abstraction of triggering the

communication between C++ program and the transparent display.

54

More detail of some key functions is explicated in the following subsections.

begin
lineSet +- null
frame +- GetNewFrame() // Get the new frame of the input image
ballPositioninCam +- DetectBallPosition(frame)

while line detection is not finished do
frame +- GetNewFrame()
lineSet +- LinesDetection(frame, lineSet)

end

environmentinfo +- GetInitialEnviromentInf o(lineSet)

while the animation is on do
displayPosition +- GetDisplayPositionO
ballPositioninCam +- UpdateBallPosition(ballPositionInCam, environmentinfo)
ballPositionOnDisplay +- PixelMapping(displayPosition, ballPositioninCam)
SendDataToDisplay(ballPositionOnDisplay)

end
end

Algorithm 1: ProjectileAnimation()

3.2.3 A more Robust Line Detection Algorithm

In this subsection, a more robust algorithm for detecting lines is dissected. This algorithm

is designed upon already existing functions in OPENCV library.

Function Dependency First of all, there exist function dependency inside the

implementation of this algorithm and it is outlined in Figure 11. All four components are

explicated later in this subsection. It is important to note that component A points to

component B if B is functionally dependent on A.

55

Figure App 2: Function Dependency for Line Detection

56

LinesDetection Algorithm 2 reveals the pseudocode of the outer structure of this

algorithm. It takes a frame of the input image and the current line set as input and outputs

an updated set of detected lines. Note that NaiveGetLines basically gets lines using

OPENCV built-in functions such as CvCanny and CvHoughLines2, which has proven

to be unreliable. But anyway, it does return a set of lines which are collected in

lineCandidates for further refinement. As for the forloop, it takes out every element in

lineCandidates, then passes it to AddNewLine. After the loop, a new line set is

returned.

AddNewLine As is illustrated in Algorithm 3, the input of this function consists of a new

line to be added to the set and the current line set. What it outputs is an updated set of

lines, similar to linesDetection. Roughly speaking, inside this function, the new line is

firstly checked whether it can be merged to any line in currentLineSet. If it can, merge

them. Add it directly to currentLineSet otherwise. Some conditions, which are specified in

following paragraphs, have to be satisfied for merging the new line with some already

existing line in the set.

Note that there is a while loop in the end, whose function is to merge the line pair inside

newLineSet.

57

Input :
frame: new frame from the input images
currentLineSet : current set of lines detected

Output:
newLineSet: updated set of detected lines

begin

newLineSet +- currentLineSet
lineCandidates +- NaiveGetLines(frame)

for every element newLine in lineCandidates do
I newLineSet +- AddNewLine(newLine, newLineSet)

end

return newLineSet
end

Algorithm 2: LinesDetection(frame, currentLineSet)

Input
newLine : a new line to be added to the line set
currentLineSet : current set of lines detected

Output:
newLineSet: updated set of detected lines

begin

newLineSet +- currentLineSet
merge +- false

for every element line in newLineSet do
if ShouldMerge (line, newLine) = true then

line +- LineMerge(line, newLine)
merge +-- true
break

end
end

if merge +- false then
I newLineSet.Add(newLine)

else
while exist two lines that can be merged in newLineSet do
I Merge the two lines

end
end

return newLineSet
end

Algorithm 3: AddNewLine(newLine, currentLineSet)

58

59

ShouldMerge This function checks whether two input lines should merge by examining

whether they meet certain requirements. The first requirement is that the two lines should

be as parallel as possible. Figure 12(a) gives an example of a rejected pair of lines whose

intersection angle p is way too large. The second requirement is that they have to be close

enough. Since it is not trivial to define closeness between two line segments, two aspects of

closeness evaluation are suggested, which are vertical distance and horizontal distance. In

Figure 12(b), the pair on the right side is not acceptable because those two lines are

vertically too far away. Analogously the right pair in Figure 12(c) does not fulfill horizontal

closeness. Due to the tediousness of the implementation, code for checking fulfillment is

abstracted.

/ x d /

d ,

/ x
(a) Angle (b) Vertical Distance (c) Horizontal Distance

Figure App 3: Conditions for Merging Lines

60

Input
lineA : A line to be checked
lineB : The other line to be checked

Output
true if the two lines should be merged and false otherwise

MergeConditions:
1. lineA and lineB are approximately parallel
2. They are close enough

begin

if both conditions in MergeConditions are satisfied then
return true;

else
return false;

end

Algorithm 4: ShouldMerge(lineA, lineB)

LineMerge In this function (Algorithm 5), it is assumed that the pair of lineA and

lineB, which is the input, is qualified to merge. The resultant line merged by them,

i.e. mergedLine, is returned in the end. The key point of the algorithm in this

function is the usage of line weight, which is taken into consideration when merging

two lines. It is in accord with intuition that latter lines detected should be given less

priority than old lines in the line set. However, it is not the time that determined the

significance of particular line in the line set, but the number of lines incorporated

into that line. More specifically, if line a is the result of the merging of line and

linep, then it satisfies the following equation,

line.1ineWeight = linep.ineWeight + line4.IineWeight.

Moreover, line weight also has an influence on the resulting line in terms of length,

angle and position. Algorithm 5 and Figure 13 and 14 help illustrate the

implementation of merging lines. What the first five lines of the pseudo code in

Algorithm 5 do is to form a quadrilateral, which could be simple (not self-

intersecting) or complex (self-intersecting) depending on the context, by extending

61

lineA and lineB and creating two lines extraLnA and extraLnB according the first

three lines of the pseudo code. The two endpoints (or the starting point and

endpoint) of mergedLine lie on the other two sides of the quadrilateral, meaning

the two lines other than lineA and lineB, one on each side. The exact positions of

the two endpoints depend on not only the endpoints of lineA and lineB, but also

their line weights. By referring to the parameters used in Figure 13 and 14, the

following equation holds:

1A1M1|| |IA2M211 lineB.lineWeight

IIBiMiI -IB 2M 211 lineA.lineWeight

62

Since all four points of the quadrilateral can be know, MI and M2 are easy to solve

by using the above equation and it can also be easily proved that there exists only

one solution. A minor clarification of this algorithm is that farPtA and farPtB

are not necessarily lying on different lines since two endpoints of one line (lineA or

lineB) can also possibly be the farthest pair of points among all four endpoints of

lineA and lineB. Figure 14 exemplifies this situation.

Input

lineA : A line to be merged
lineB : The other line to be merged

Output:
mergedLine: A new line resulted from the merging of lineA and lineB

begin

{farPtA, farPtB} +- A pair of farthest points among endpoints in lineA and lineB

extraLnA +- a line passing farPtA, vertical to the line where farPtA lies

extraLnB +- a line passing farPtB, vertical to the line where farPtB lies

Extend lineA, lineB, extraLnA and extraLnB if needed

Form a simple(Figure 14) or complex quadrilateral(Figure 15) from the lines above

mergedLine +- Get the merged line(M1M 2 in Figure 14 and Figure 15)

merged Line.lineWeight +- lineA.ineWeight + lineB.IineWeight

return mergedLine

end

Algorithm 5: LineMerge(lineA, lineB)

63

extraLnAI

farPtA/A 1

farPtB / B2

neB

extraLnB

Figure App 4: Example I for Merging Lines (Simple Quadrilateral)

extraLnA

B2 .2 -

farPtA /A, IineA M2 0

farPtB /A 2M,
ineB

- B

extraLnB

Figure App 5: Example II for Merging Lines (Complex Quadrilateral)

64

M,

I ...I IM 2

-B

Dissection in PixelMapping

In this subsection, the implementation of the function PixelMapping is explained

with the help of the pseudo code(Algorithm 6) and Figure 15, in which the green

area represents the transparent display and the red dot denotes the ball.

PixelMapping takes two arguments as the input, ballPositionInCam(red dot in Fig-

ure 15) and displayPosition, which represent the positions of the transparent

display and the ball respectively in camera view. The output of this function is the

ball position on the transparent display, knowing which makes it possible for the

ball to be shown correctly on the display.

Input
displayPosition : display position on the input image
ballPositioninCam : ball position in camera view

Output :
ballPositionOnDisplay: corresponding ball position on the display

Constants:
W: width of the transparent display
H: height of the transparent display

begin

{lineA, lineB, lineC, lineD} +- displayPosition

crossPtX +- get the crossing point of lineA and lineC

crossPtY +- get the crossing point of lineB and lineD

lineX +- line passing ballPositioninCam and crossPtX

lineY +- line passing ballPositioninCam and crossPtY

X +- get the crossing point of lineX and lineB

Y +- get the crossing point of lineY and lineA

baIlPositionOnDisplay +- {W x B)' , H x 1IIY }

end
Algorithm 6: PixelMapping(displayPosition, ballPositionInCam)

As is shown in the first line of the pseudo code, the parameter displayPosition

consists of four lines lineA, lineB, lineC and lineD, where lineA and lineC are

65

opposite sides and the same goes for lineB and lineD. Note that for simplicity, it

is assumed that the length of the line segment AB or CD in Figure 15 represents

the width of the display. Also, it is taken for granted that neither of the two pairs

of opposite sides are parallel to each other in camera view. It is not hard to realize

that the solution for obtaining the corresponding ball position on the display is

easier if any pair two opposite sides are perfectly parallel. For example referring to

Figure 15, if lineA and lineC are parallel, to figure out the projection of

ballPositionInCam on lineB, the only step needed to take is to create a line L

passing the ball position and parallel to both lineA and lineC. Then the crossing

point of L and lineB is X in Figure 15, the point indicating the x-coordinate of the

ball on the transparent display. The same goes for figuring out Y if lineB and

lineD are parallel to each other. Therefore, the pseudo code in Algorithm 6 is

designed only for solving the general case.

crossPtX

fneB

s l1neC

A #X#X

_In,

'Ie

neY ...-- crosstY

11neA CC
neD

D
lineX

Figure App 6

Although Algorithm 6 omits the situation that opposite sides are parallel, it uses

66

the similar method that is to firstly figure out lineX (indicated in Figure 15)

which is parallel to both lineA and lineC in real 3D world, not the 2D image of

projective projection, and then find out X. As is known to all, the mechanism of

cameras is perspective projection from objects in real 3D world to 2D images.

Therefore it follows rules of perspective, applying which can simplify the task of

finding out the corresponding x and y coordinates of the ball on the display.

According to the rules of perspective, within a specified plane, every vanishing

point on the horizontal line defined by the plane's orientation corresponds to one

set of all parallel(in 3D world) lines on that plane. In Algorithm 6, we can observe

that crossPtX is actually the vanishing point for the set of all lines that are

parallel to both lineA and lineC on the transparent display. Obviously, that set

also includes lineX. Since two points on a certain line can be used to solve for that

line, lineX is found by just solving for the line passing both crossPtX and

ballPositionlnCam. Due to the fact that the transparent display is perfectly

rectangular, X, which is defined by the crossing point of lineB and lineX, is the

projection of ballPositionlnCam on the x-coordinate on the transparent display.

Finally, the exactly x value of the ball's coordinate on the display can be obtained

by multiplying W, the width of the transparent display, by the ratio of AX| to

the length of lineB as is specified in the last step of the pseudo code.

Analogously, the y value of the ball's display coordinate can be figured out

following the similar steps stated in the previous paragraph. lineY can be found by

generating a line passing ballPositionlnCam and crossPtY, the vanishing point

for another set of parallel lines containing lineB, lineD and lineY. Then Y is

known by solving for the crossing point of lineA and lineY. At last, y value is

67

found. A Minor Clarification the usage of PixelMapping is much more general

than just mapping the ball position from camera view to the transparent display.

In use-cases other than projectile animation such as mathematical measurement,

where the overlaid strokes on the paper are "copied" to the display on top, the

display has to be informed of the corresponding strokes/lines positions so as to

show the aligned graphics. Therefore, this function performs general mapping of

pixels from camera view to the transparent display, which also makes the naming

of this function sound more appropriate.

68

