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Abstract

Computational microscopy is an emerging tcchnology which extends the capabilities of
optical microscopy with the help of computation. One of the notable example is super-
resolution fluorescence microscopy which achieves sub-wavelength resolution. This
thesis explores the novel application of computational imaging methods to fluores-
cence microscopy and oblique illumination microscopy. In fluorescence spectroscopy,
we have developed a novel nonlinear matrix unmixing algorithm to separate fluores-
cence spectra distorted by absorption effect. By extending the method to tensor form,
we have also demonstrated the performance of a nonlinear fluorescence tensor unmix-
ing algorithm on spectral fluorescence imaging. In the future, this algorithm may
be applied to fluorescence unmixing in deep tissue imaging. The performance of the
two algorithms were examined on simulation and experiments. In another project,
we applied switchable multiple oblique illuminations to reflected-light microscopy.
While the proposed system is easily implemented compared to existing methods, we
demonstrate that the microscope detects the direction of surface roughness whose
height is as small as illumination wavelength.
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Chapter 1

Introduction

Optical microscopy is a fundamental research tool in engineering and science. Through

its 400-year history, numerous optical systems have been proposed to visualize mi-

crostructures that cannot be seen with naked eyes [1]. Since the introduction of

digital image acquisition and image processing, computers have been more and more

integrated with optical microscopy [2].

As is happening in computational photography and display [3, 4, 5, 6, 7], the com-

bination of optical microscopy and signal processing is creating new capabilities. This

emerging field is called computational microscopy. Most computational microscopy

techniques acquire several images under different illumination condition and computes

a synthesized image. By combining active illumination and signal processing, optical

microscopy can reveal structures which is invisible only with an optical imaging sys-

tem. For example, LC-PolScope and orientation-independent differential interference

microscope (OI-DIC) acquire images under differently-polarized light illumination and

quantitatively compute birefringence and refractive index, respectively [8, 9]. Struc-

tured illumination microscopy (SIM) illuminates a sample with differently-rotated

grid patterns and generate a superresolution image [10]. Single-molecule localization

microscopy, such as STORM and PALM, also reconstructs a superresolution image

from images each of in which a subgroup of fluorescent molecules are stochastically

excited [11, 12].

In this thesis, we explore the potential of fluorescence spectroscopy and oblique
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illumination for the application to computational optical microscopy. Chapter 2 de-

scribes the theory and performance of nonlinear fluorescence unmixing for fluorescence

spectroscopy and microscopy. Chapter 3 reports the development of the switchable

multiple oblique illumination microscopy and its application.
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Chapter 2

Nonlinear Fluorescence Unmixing

for Spectroscopy and Microscopy

2.1 Proposed Method and Related Work

Fluorescence spectroscopy is a widely-used technique in many fields, such as analyti-

cal chemistry, environmental sciences and medicine. Since fluorescence spectra reflect

the state and type of molecules, the analysis of fluorescence spectra nondestructively

provides molecular information of a sample. For example, the analysis of autofluo-

rescence, which is naturally emitted by a sample, has been used for the detection of

cancer, contamination in water and degradation of food [13]. In addition, fluorescence

spectral imaging system, where each pixel has spectral information, has expanded the

capability of microscopy.

In the analysis of fluorescence spectra, the separation of fluorescence is of great

importance. Most analyzed samples for fluorescence spectroscopy, including blood,

water and food, have multiple fluorophores. Furthermore, it is common for fluores-

cence microscopy to label biological samples with multiple fluorophores. The mea-

sured fluorescence spectrum from those samples is a sum of the spectrum of each

fluorophore. If their individual spectra do not significantly overlap, the fluorescence

light can be separated by optical filters. However, severely-overlapping spectra can-

not be separated optically. In those cases, a mathematical technique, called linear
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unmixing (LU), is often used to separate them.

LU is an algorithm which decomposes the total fluorescence into each fluorophore's

contribution [14]. This algorithm works on the assumption that a sample's absorbance

is negligible. On this assumption, the measured signal can be considered to be a

linear combination of each fluorescence spectrum. Therefore, by using premeasured

emission spectrum for each fluorophore, these linear equations can be solved when the

number of channels recorded is larger than the number of fluorescence species. This

method has been successfully applied to fluorescence spectroscopy and multi-channel

fluorescence light microscopy [15, 16].

In addition to LU, under the assumption of negligible absorption, blind unmixing

methods have been developed with mathematical tools, such as nonnegative matrix

factorization (NMF) and parallel factor analysis (PARAFAC), also known as CAN-

DECOMP and CP decomposition [17]. In many cases, to conduct blind unmixing,

excitation and emission matrix (EEM) of a sample is measured. EEM is composed

of a series of emission spectra measured with different excitation wavelengths. In a

single fluorophore case, its EEM can be described as an outer product of its excitation

spectrum and emission spectrum, while its intensity is proportional to its concentra-

tion. Therefore, the EEM of a sample containing several fluorophores has trilinearity.

NMF and PARAFAC exploit this multilinearity of fluorescence.

However, when the sample's absorption is not negligible, the measured fluorescence

spectra are distorted by the wavelength-dependent absorption, which is called inner

filter effect. This nonlinear effect disables the introduced linear unmixing algorithms.

This inner filter effect has been a major problem for fluorescence spectroscopy, and

numerous techniques have been proposed to recover the intrinsic fluorescence spectra

from the distorted measurements [18]. All of the methods have their own advantages

and disadvantages. For example, liquid samples can be diluted to the extent where

absorption is negligible [19, 20]. Even though this procedure can provide accurate

estimation of intrinsic fluorescence spectra, it cannot be applied to solid materials.

On the other hand, Monte Carlo simulations for the inner filter effect correction with

photon migration theory can be performed on solid materials [21, 22]. However, they
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require expensive computation.

In this thesis, we propose a novel nonlinear unmixing method to estimate abun-

dance of fluorophores in a light-absorbing sample for fluorescence spectroscopy and

microscopy. In particular, we make the following contributions:

" We introduce a model of fluorescence spectra from a light-absorbing sample

as a matrix representation. We also model spectral fluorescence imaging of a

light-absorbing sample as a tensor representation.

. Based on the matrix and tensor representations, we introduce a new nonlinear

unmixing method to estimate abundances of fluorophores by using nonnegative

matrix and tensor factorization. This method does not require any additional

measurements and can be applied to both liquid and solid samples.

. We evaluate the performance of the unmixing method on simulated fluorescence

spectra and spectral images.

. We show that the nonlinear unmixing method experimentaly outperforms the

conventional linear unmixing method.

2.2 Theory

In this section, we model the spectra of mixture of fluorophores in a light-absorbing

medium and propose the algorithms to estimate each fluorophore's contributions from

the model. We consider a conventional fluorometer and a fluorescence microscope as

a measurement system.

2.2.1 Model of Fluorescence Spectrophotometer Measurements

There have been many attempts to model fluorescence spectra affected by absorption

effect in fluorometer measurements [18]. Based on the Beer-Lambert law, Luciani

et al. mathematically described the absorption effect in a fluorescence spectroscopy

15



albf a 2b

M = (C1 + C2 n+ M .+CN )

Measured Attenuation Fluorophore I Fluorophore 2 FluorophoreN
EEM EEM EEM EEM

TW [ ai, bi, ciI [a 2 , b 2 , c 2] [aN,bN, CN

Figure 2-1: Noiseless EEM model affected by absorption effect. The top row is the
visualization of Equation 2.2. The bottom row is the visualization of Equation 2.11.

measurement in detail [19]. Following their formulation, the measured fluorescence

intensity F(Aex, Aem) can be described as:

N

F(Aex, Aem) = M11l-(A(Aex)+A(Xem))/2 S Io(Aex)#nCn-n(Aex)^/n(Aem) + e, (2.1)
n=1

where e is the measurement noise, Aex and Aem are the excitation and emission wave-

length, IO(A) is the intensity of the illumination, A(A) is the absorption spectrum of

the solution, M1 is a wavelength-independent constant factor, N is the number of flu-

orophores in the sample, #m, cn, En and 7n are the quantum yield, the concentration,

the molar extinction coefficient and the emission spectrum of the fluorophore n.

Let N columns of the matrix A = [ai, a 2 , ... , aN] and B = [bi, b 2, ... , bN] be de-

fined as the emission and excitation spectrum of fluorophores, where ant() = #nEn(Aj)

and bn(j) = Io(Aj)-n(Aj). The equation (2.1) can be rewritten in discretized matrix

representation as:

F = M 1(wiwT) * ADBT + E, (2.2)

where Fjj = F(A2 , Aj), wi(i) = 1 0 A(A)/27 W2(j) = 1 0 -A(A 3 )/2, D = diag(ci, c 2 , . . . , CN)

and E is a random noise matrix. A * B denotes the Hadamard product (elementwise

product) of A and B. Equation 2.2 is illustrated in Figure 2-1.
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2.2.2 Nonlinear Fluorescence Matrix Unmixing

Here, we describe the way to estimate D from the measurement F in the equation

(2.2). This estimation problem can be described as the following minimization prob-

lem:

min - ||F - (W1 iW) D ABT||F
W1, W2, D

subject to 0 i1, 2 1, O .

I F denotes the Frobenius norm. W, (r = 1, 2) and D = diag(C, 2 ,. . .,2FN) are

the estimations of wp and D, respectively. Since this minimization problem has scale

ambiguities, the estimated values Wr and D are not the absolute concentrations.

However, this does not become a problem, because most chemical analysis demands

only the ratio of components. As in LU, we assume the emission and excitation

spectra of fluorophores can be used separately.

To solve this problem, we derive new update rules by modifying the multiplicative

update rules employed for nonnegative matrix factorization [23]:

((B * W 2 ) O (A * W1)) vec(F)C <- * _- ,- (2.4)
((B * W2) ( (A o 1)((B ( W2) (A ( W1))-C

((ADBT) ® F)W2wi < (2.5)
((ADBT) (ADBT))(W2 @ 2)

((ADBT) ® F)W 1 (
W2 <-(2.6)

((ADBT) * (ADBT))T( 1 W 1

where Wr (r 1, 2) is a N-column matrix whose columns are identical horizontal

copies of the column vector ' r and i = [s1,a 2,..., T. During the updates of 'c

and W'r, D and Wr are updated accordingly. 0 represents the Khatri-Rao product,

defined as

P ® Q=[p1®qi p 2 0q 2 ... PK &qK] (2.7)

for matrices P c RIxK and Q E RJxK. ® represents the Kronecker product operator,

and pi and qj denote the ith and jth columns of P and Q. Here, we name this method

17



nonlinear fluorescence matrix unmixing (NFMU), which decomposes a nonlinearly-

distorted EEM.

2.2.3 Model of Fluorescence Spectra from Tissue in Depth

Recently, mainly in neuroscience, there is a growing need to capture images of neu-

ronal activities through significant depths of the brain. To meet this demand, multi-

photon microscopy is becoming a basic tool to visualize neurons [24, 25]. Furthermore,

in addition to conventional multilabel approach, a stochastic expression of multiple

fluorescence proteins is used to label neurons with approximately 100 colors [26, 27].

However, the model of fluorescence spectra from deep tissues has not been investi-

gated in detail so far.

In fluorescence microscopy, a captured image is the convolution of the point spread

function (PSF) of the imaging system and the distribution of fluorophores in a sample.

The PSF depends on excitation and emission wavelength. Therefore, if the bandwidth

of exploited excitation and emission wavelength are wide, deconvolution should be

performed on the captured images beforehand to analyze spectra [28]. Hereafter, we

base our discussion on deconvolved images and images where the convolution effect

is negligible.

In a p-photon process, the intensity of fluorescence from N types of fluorophores

contributing to the signal of pixel k is proportional to the sum of the product of the

excitation spectrum sn(Aex), the emission spectrum tn(Aem), the abundance un of the

fluorophore n:

N

fk(Aex, Aem) = M 2 Eo(Ae)PZ Sn(Aex)tn(Aem)Uk,n, (2.8)
n=1

where M 2 is a wavelength-independent constant, and EO(Aex) is the intensity of ex-

citation light. When the focal plane of the imaging system is inside the object, the

emitted fluorescence light is attenuated by scattering and absorption of the object.

In those cases, following the photon migration model of fluorescence light from tissue,

18



fk(Aex, Aem) can be described as follows [29, 30]:

N

fk(Aex, Aem) = M 3 Eo(Aex)PVI(Aex)V 2 (Aem) E Sn(Aex)tn(Aem)Un,k, (2.9)

where M 3 is a wavelength-independent factor and v1 (Aex) and V2(Aem) are attenuation

factors of excitation and emission light, respectively. The equation (2.8) can be

considered as the case where vi(Aex) = V2(Aem) = 1.

Considering an image has K pixels, the equation (2.9) can be rewritten in tensor

representation as:

N

-= M 3V * sno tno un + E (2.10)
n=1

= M3V * [S, T, U] + E, (2.11)

where Y is a third-order tensor whose element Tijk = fk(Ai, Aj), vi(i) = vI(Ai), V2(j) =

v 2 (Aj), V is a third-order tensor all of whose third frontal slices Vij: = vl(i)V2(j),

snti) = sn(Ai), S = [Si, s 2 ,. .., SN], tn(j) = tn(Aj), T = [tl, t 2 , ... tN], Un(k) n,k,

U = [Ui, U 2, ... , UN], and E is a random noise tensor. o represents the outer product

operator, and H represents the Kruskal operator, which performs the summation of

the outer products of the columns of matrices [31]. Equation 2.11 is illustrated in

Figure 2-1.

2.2.4 Nonlinear Fluorescence Tensor Unmixing

Similarly to the case for the fluorometer, we formulate the following nonlinear least

squares problem to estimate the abundance matrix U from the fluorescence measure-

ment T in the equation (2.11):

min 11- - V I IS, T, ]|IF
V, T, U (2.12)

subject to 0 < V < 1, T > 0, U > 0.
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V, T and U are the estimated values of V, T and U. As is the case in (2.3), (2.12) also

has scaling ambiguities, which is also not a problem because absolute concentration

is not demanded in fluorescence microscopy [32]. To solve this least-squares problem,

we derive the following update rules by modifying the multiplicative update rules for

the non-negative tensor decomposition [33]:

(V 2 ® T) ( T(2)(U o (V 1  S))
T <- T ( (2.13)

((V 2 ® T)(U ® (V1 ® S)) )(U o (Vj * S))

U *T( 3 )((V 2  T) (Vi S))
U<- U* T , 1 (2.14)

(U((V 2 ® T) 0 (Vi * S)) )((V 2 ® T) o (Vi 1 S))

(T(1) * (V ® [S, I, U)(1))'2
Vi + - "1(2.15)

((V q [S, T, U)(,) ® (V ® [S, T, UI)(1))(V 2 * V 2 )

(-T(2) ® (V ® [S, , U0)( 2))91
V2 <7- 1 (2.16)

((V D [S, T, U)( 2) ® (V * [S, T, U)( 2 ))(V1 * V)(

where vp is the estimate of vr, V, is a N-column matrix whose columns are identical

horizontal copies of V', (r = 1, 2), ir is a column vector which has K vertical copies

of 9',. During the updates of v,, V, and , are updated accordingly. Similarly to

NFMU, we name this method nonlinear fluorescence tensor unmixing (NFTU). This

method decomposes the three-way fluorescence data affected by the nonlinear optical

process.

2.3 Simulation

Simulated datasets are used in this section to demonstrate the performance of our,

nonlinear unmixing algorithm, NFMU and NFTU, in case of fluorescence spectroscopy

and spectral imaging. The limitations are discussed in the aspects of signal-to-noise

ratio (SNR), the number of channels, the number of fluorophores and the degree of

the overlap of the spectra.
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2.3.1 Generation of Spectroscopic Data

Fluorescence EEMs of samples containing several fluorophores in a light-absorbing

medium are generated based on Equation 2.2 in MATLAB. Fluorescence excitation

and emission spectra are simulated as Gaussians with its peak position pA, and vari-

ance o- (n = 1 ... N), .A(po). Since the shape of fluorescence spectra is not

important in our algorithm, all of the variances a are set to be equal. An absorption

spectrum is also simulated as a Gaussian which has more variance than fluorescence

spectra.

As a standard dataset for the performance evaluations, the following parameters

are used for the generation of the spectroscopic data: the ground truth spectra are

simulated with 1 nm resolution, the sampling bandwidth for excitation and emission

spectra measurements is set to be 5 nm, the number of fluorophores N is set to be

2, Apn = Pn - Pn =12 nm for both excitation and emission spectra and a- = 20.

The variance of the absorption spectrum is set to be 1202. The standard dataset is

shown in Figure 2-2.

2.3.2 Performance Analysis

To quantify the error of the estimated contributions from each fluorophore, we define

the normalized mean squared error (NRMSE) for the estimation of the contributions:

2 c2 / 2
NRMSE = .C (2.17)

11'||2 l|C 112 2 lIC 112 2

For each evaluation, the average NRMSE was calculated from thirty trials. The

parameters for generating datasets are changed for the performance evaluations in

the following ways; 1) White Gaussian noise is added to the standard dataset to

generate a range of SNR. 2) Sampling resolution for both excitation and emission

channels is changed from 1 nm to 250 nm. 3) Api is changed from 1 nm to 20 nm.

4) The number of fluorophores is increased from 2 to 10. All Api is set to be equal.

Their spectra are set to be in the range of sampling range.
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Figure 2-2: Simulated fluorescence emission and excitation spectra and an absorption
spectrum (top) and an EEM distorted by the absorption (bottom). Continuous lines
are emission spectra, and dotted lines are excitation spectra. The contribution from
both fluorophores are simulated to be the same.
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Figure 2-3: Performance evaluation of NFMU. Normalized root mean squared error

of the estimated contributions. The robustness of NFMU is evaluated with SNR,

sampling resolution, number of fluorophores and peak wavelength difference.

Figure 2-3 summarizes the performance of our proposed method. As SNR and

sampling rate increases, the proposed method estimates the contribution ratio accu-

rately. Since the standard dataset has 5 nm resolution for excitation and emission

channels, the performance degrades when the peak wavelength difference is less than

5 nm. Remarkably, the number of fluorophores does not affect the estimation error.

2.3.3 Generation of Spectral Imaging Datasets

As in spectroscopy, excitation and emission spectra and an absorption spectrum are

simulated in the same way. In a 32 by 32 pixel image, each fluorophore is simulated

to have different spatial distributions. Their distribution patterns are generated by
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Fluorophore 1 Fluorophore 2
1.0

Figure 2-4: Representative images of simulated fluorophore distributions. The bar
shows each fluorophore's abundance.

using the real part of the two dimensional discrete Fourier component. The represen-

tative examples of the simulated distributions are shown in Figure 2-4. Commonly,

a fluorescence laser scanning microscope is equipped with several excitation lasers

whose wavelength are set to be 40 nm apart. To increase signal to noise ratio, the

emission channel's bandwidth is set to be 10 nm in spectral imaging mode. The

standard dataset for spectral imaging is simulated in such a way.

2.3.4 Performance Analysis

Similarly to the evaluation of the fluorescence spectroscopy, the NRMSE is defined

as follows:

NRMSE= T -T/ . (2.18)

Here, T and T are a row-wise normalized matrix of T and T, respectively. For

each evaluation, the average NRMSE was calculated from ten trials. Similarlly to

the simulation of fluorometer, the parameters for generating datasets are changed

from the standard spectral imaging dataset for the performance evaluations in the

following ways: 1) White Gaussian noise is added to the standard dataset to generate

a range of SNR. 2) Sampling resolution for both excitation and emission channels is

24



0.6

W 0.5

a0.4

0.3
Ca

0.2

0.1
0

CD,

C)

Ca

U)

w

a)
(M
CU
a)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.6

0.5

0.4

0.3

0.2

0.1

n

0

0 10 20
SNR dB

30 40

w

2
z
a:0)
CO

0 0 00000 0

000

0

0.6

0.5

0.4

0.3

0.2

0.1

0
0

20 40
Resolution - Emission channel [nm]

60

- 000 oo000000 O0
V

2 3 4 5 6 7 8 9 10 0 5 10 15 20
Number of fluorophores Peak wavelength difference [nm]

Figure 2-5: Performance evaluation of NFTU. Normalized root mean squared error of
the estimated contributions in various conditions. The robustness of NFTU is eval-
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changed from 1 nm to 50 nm. 3) Api is changed from 1 nm to 20 nm. 4) The number

of fluorophores is increased from 2 to 10. Api is set to be all equal. Their spectra are

set to be in the range of sampling range.

Figure 2-5 summarizes the performance of NTFU in terms of the estimation error

of molecular fractions. As can be seen, NTFU is robust to all of the four parameters.

Even though the spectral resolution of emission wavelength is 10 nm, NTFU can

accurately estimate the fractions of fluorophores whose spectra are highly overlapping.
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2.4 Experimental Results

2.4.1 Fluorometer

Fluorescence solution was prepared by dissolving two fluorophores, disodium fluores-

cein and 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (pyrene

derivative), in ethanol. Green ink in a commercial pen was used as light absorbent.

The EEMs of samples were measured with a conventional fluorescence spectropho-

tometer at room temperature. The reference excitation and emission spectra of each

fluorophore were obtained separately. By using these reference spectra, NFMU and

LU were applied to the EEMs of the mixtures to estimate the molecular fraction.

The proposed NFMU and the linear unmixing algorithm were applied to the mea-

sured fluorescence EEMs. The estimated contribution ratios of the two fluorophores

were compared with the ground truth (Figure 2-6). As is clearly seen, NFMU accu-

rately estimated the contribution ratio, as opposed to linear unmixing.

2.4.2 Fluorescence Microscopy

The FocalCheck fluorescence Microscope Test Slide #2 (Life Technologies), which is

commonly used for testing linear unmixing algorithm, was used as a sample. The

test slide contains microspheres. Their shell and core are stained with different fluo-

rophores whose fluorescence spectra are significantly overlapping. The emission spec-

tra are shown in Figure 2-7. Images were captured by a Zeiss LSM 710 laser scan-

ning confocal microscope with 488 nm and 514 nm excitation lasers. The emission

wavelength bandwidth was set to be 10 nm. A Plan-Apo 63x/1.4 NA oil immersion

objective was used. The size of a pinhole was set to 1 airy unit.

To imitate the environment of deep tissue imaging, hemoglobin from bovine blood

was used as fluorescence attenuator. Lyophilized powder of hemoglobin was dissolved

in distilled water and placed on a coverslip. After evaporation of the solution, the

coverslip was placed on each sample. Then, the image was captured through the

two stacked coverslips. Although the objective is not designed to capture images
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Figure 2-6: Experimental result of fluorometer. (a) Measured emission spectra of
4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran, Disodium Flu-
orescein, and the mixture of the two fluorophores with absorbent and the absorption

spectrum of the absorbent. The fluorescence spectra are measured with the right-

angle geometry. The excitation wavelength is 400 nm. Ethanol is used as a solvent.

(b) Comparison of estimated relative concentrations and reference concentrations of

each type of the fluorophores. The concentrations are estimated by the developed

nonlinear unmixing and the conventional linear unmixing algorithms.

through two coverslips, oil immersion objectives can capture sharp images without

suffering from spherical abberation because immersion oil is designed to have the

same refractive index to glass coverslips. Then, NFTU and LU were applied to the
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Figure 2-7: Emission spectra of the microsphere's fluorophores, measured with con-
focal microscopy.

spectral images.

Fig. 2-8 shows the images of the microspheres unmixed by LU and NFTU. Since

the microspheres are stained with different fluorophores at its core and shell, the

fluorescence light from Fluorophore 2 should dominate at the shell, which is seen in

the LU-unmixed images captured without hemoglobin. However, the LU-unmixed

images captured through hemoglogin do not show the dominance of Fluorophore 2 on

the shell. On the other hand, the NFTU-unmixed images clearly show the dominance

of the Fluorophore 2 on the shell. The signals both at the core and the shell has

contribution from both fluorophores because of out-of-focus light.

2.5 Discussion

2.5.1 Benefits and Limitations

In summary, we have presented new nonlinear fluorescence unmixing algorithms,

NFMU for fluorescence spectroscopy and NFTU for fluorescence microscopy, which
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use multiplicative update rules for nonnegative matrix and tensor factorization. From

a EEM measurement of a sample, NFMU estimates the abundance of fluorophores by

using each fluorophore's EEM. On the other hand, NFTU unmixes spectral images

of a multiply-stained sample acquired with several excitation wavelengths by using

only emission spectra of flurophores. To the best of our knowledge, NFTU is the only

unmixing algorithm which separates fluorescence spectral images affected by absorp-

tion. Although we showed the performance of both NFMU and NFTU on samples

containing two fluorophores in experiments, they can be applied to unmix spectra of

samples containing more than two fluorophores, as we show in the simulation.

NFTU is a natural extension of NFMU. However, in contrast to NFMU, NFTU

exploits the benefit of large number of samples in one image acquisition. By utilizing

this advantage, NFTU is much more robust to noise compared to NFMU.

NFMU and NFTU have several limitations inherent to EEM measurements and

fluorescence spectral imaging. Since both methods require scanning of wavelength

with narrow bandwidth, there is an inevitable trade-off between scanning time, noise

level and sampling resolution. Since this trade-off depends on the properties of flu-

orophores, an optimization framework for finding the best measurement parameters

should be developed. In addition, as is the case with SU and PARAFAC, NFMU and

NFTU cannot be applied when fluorescence spectral properties change due to other

nonlinearities, such as quenching and pH dependence [17].

2.5.2 Future Work

While our algorithms, NFMU and NFTU, require spectral information of fluorophores

as a priori knowledge, we would like to explore a new mathematical technique for blind

unmixing of our fluorescence model 2.2 and 2.11. As is incorporated in several blind

unmixing methods [34, 35], fluorescence lifetime would help to solve the problem. Fur-

thermore, the evaluation of NFMU should be compared with existing inner-filtering

correction methods. While we examined our algorithms on experimentally-controlled

samples, we would like to apply our methods, NFMU and NFTU, to real world prob-

lems, such as the analysis of dissolved organic matter and deep tissue imaging.
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Figure 2-8: Unmixed images of microspheres stained with two fluorophores. The left
and middle column show the unmixed results on the same spectral image datasets
captured through hemoglobin. The right column shows the unmixed results by LU on
the datasets captured without hemoglobin. The top row shows the combined image
of the second and third row. The bottom row shows the contribution from each
fluorophore on the yellow line of the top-row images. Colors are pseudocolor.
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Chapter 3

Switchable Multiple Oblique

Illumination Microscopy

3.1 Proposed Method and Related Work

Surface roughness in microscopic scale is an important characteristic of materials. To

characterize it, various optical methods have been developed, such as confocal mi-

croscopy [36], fringe projection [37] and interferometry [381. There are also more ac-

curate non-optical methods available, including scanning electron microscopy (SEM)

and atomic force microscopy (AFM). Among them, microscopic photometric stereo is

one of the easiest and cheapest methods for 3D measurement of microscopic structure

[39]. With a conventional long-working distance microscope, this method captures

several microscopic images with manually-changed illumination directions and applies

the photometric stereo method to extract surface albedos, surface normals and height

of microstructure. Even though it is easy-to-implement, this method only shows the

structures more than several micrometers due to diffraction of light. However, there

is a need in many fields, such as defect inspection and dermatology, for a method

that can visualize the surface microstructure as small as the illumination wavelength

with an easily-implementable device, instead of accurately measuring the roughness.

We introduce such a method here.

Our technique applies the strategy of oblique illumination and switchable multi-
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ple light sources to a reflected light compound microscope. Oblique illumination is

a traditional technique in transmission light microscopy to enhance image contrast.

It is also applied to endoscopy to obtain phase-gradient images [40]. Although this

microscope, called oblique back-illumination microscopy, configures epi-illumination

geometry, the light collected by an objective lens transmits through tissue like trans-

illumination geometry. As often used in reflected-light stereomicroscopy, oblique

illumination can reveal surface structures much smaller than the illumination wave-

length [36]. In addition, the angle of illumination relative to both a sample and the

optical axis is also of great importance to increase image contrast. However, to the

best of our knowledge, the capability of oblique illumination with reflected-light com-

pound microscopy has not been explored yet. In particular, we make the following

contributions:

. We build the prototype of the switchable multiple oblique illumination com-

pound microscope system in reflection mode.

. We examined its performance by acquiring images of microscopic features as

small as the illumination wavelength.

3.2 Method

This section describes the switchable oblique reflected illumination microscopy which

qualitatively assess the surface roughness.

3.2.1 Hardware Implementation

The hardware is composed of Canon's EOS Rebel T3 digital camera, Olympus's

UPlanSApo 20x NAO.75 objective lens and tube lens, a No.1.5 coverslip, an iris di-

aphragm (00.8 to 020 mm), Arduino Mega with a light-emissing diode (LED) driving

circuit, a XYZ translation stage and 3D printed light blockers and sample stages and

white LEDs (Figure. 3-1). The illumination angle is set to be nearly 900 to the optical
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Figure 3-1: Prototype of the multiple oblique illumination microscope.

axis of the objective lens (Figure. 3-2). To increase the depth of field, the size of the

iris is set to be the smallest size.

Our microscope system is controlled via MATLAB. The LEDs are switchable

through serial communication, and the image acquisition is achieved with the cross-

platform digital camera library, gPhoto2 [41]. Two images are sequentially acquired

with each LED illumination.

3.2.2 Sample Preparation

Intact black hair and bleached and dyed black hair are used as samples. Hair is

covered with cuticle cells which consist of the outermost layers. Each cuticle cell has

about 500 nm thickness. Since bleaching and coloration dissolve the cell membrane

complex that connects cuticles to each other, the cuticles of the bleached and dyed

hair is partly ripped off from the surface [42]. The SEM images of intact and damaged

hair surface is shown in Figure 3-3. For the image acquisition, a single strand of hair

is placed on the custom-designed stage (Figure 3-2).

3.3 Result

Figure 3-5 and 3-6 show the images of the healthy hair and highly-damaged hair

illuminated from tip and root side. In the case of black hair, light penetrating the

surface is absorbed by the melanin pigment, and subsurface scattered light is negligible
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Objective Lens

LED

Sample (Hair)

Figure 3-2: A sample stage for a hair strand and a adapter for a translational stage
(left) and a schematic illustration of illuminating direction (right). The sample holder
is designed to be inserted to the adapter to the translational stage.

Figure 3-3: Scanning electron micrographs of healthy hair (left) and damaged hair
(right), cited from [42].

for the image formation. Therefore, the image-forming light is surface-reflected light.

As is illustrated in Figure 3-4, the edge of cuticles of intact hair has higher scat-

tering and reflection when illuminated from root. Since the effective roughness for

illumination from tip is the thickness of cubicles, incident light from tip strongly scat-

ters at the edge of cuticles. On the other hand, in the case of damaged hair, both

incident illuminations from tip and root side scatter and reflect strongly at the edge

of detached cuticles due to the ripped-off cuticles.

To extract the scattering effect in images, the variance map of the captured images

are calculated and shown in Figure 3-5 and 3-6. As can be clearly seen in Figure 3-6,
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&&

Figure 3-4: Illustration of the interaction between the direction of illumination and
hair surface. The condition of cuticles affects the reflection and scattering of light.

the computation of local variance enhances the contrast of cuticles and suppresses

the undesirable contrast from out-of-focus light. While the healthy hair shows the

shape of cuticles in the variance image with the illumination from tip side but not

with the illumination from root, the shape of cuticles is revealed in the variance map

with both illuminations.

3.4 Discussion

3.4.1 Benefits and Limitations

Taking intact and damaged hair as a representative sample, we show that the switch-

able oblique reflected illumination microscope system extracts the anisotropy of sur-

face roughness whose height is about the same size as illumination wavelength. While

one of the computational photography techniques enhances depth-edge with multiple

flashes in macroscopic scale [43], our microscope extracts depth-edge in microscopic
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Illuminated from tip Illuminated from root

Figure 3-5: Images of healthy black hair captured by the prototype and their processed

images. The top row shows the original microscopic images. The bottom row shows

their local variance map. Illumination from root side enhances the contrast at the

edge of cuticles.
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Illuminated from tip Illuminated from root

Figure 3-6: Images of damaged black hair captured by the prototype and their pro-
cessed images. The top row shows the original microscopic images. The bottom row
shows their local variance map. Illumination from both tip and root side enhances
the contrast at the edge of cuticles.
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scale. Compared to the conventional surface probing technologies, our system is re-

markably low-cost and small. This simple setup will allow surface diagnostics of

materials in resource-limited environment.

Furthermore, our microscopic technique reveals the surface damage of hair. To

the best of our knowledge, the detachment of cuticles has been undetectable with

optical microscopy. Currently, hair researchers utilize SEM to analyze the surface of

hair. However, SEM requires metal-coating for biological specimens, which prevents

the observation of samples in intact state. Therefore, a method to characterize the

surface structure without artificial procedures on samples has been awaited. Our

microscope system has large potential to advance hair research and can be used as a

quick hair diagnostic device for consumer applications.

The prototype has several limitations. While AFM and SEM can quantitatively

measure the roughness and reveal three dimensional surface structure, our system

does not provide quantitative roughness value and elucidate the structure of surface.

In addition, subsurface light transport can contribute to the image formation, which

may deteriorate the analysis. In this case, the removal of subsurface reflection with an

advanced lighting system, such as structured illumination and polarized light, is re-

quired. A detailed analysis of the multiple oblique illumination system in comparison

to the conventional probing technologies is left for future work.

3.4.2 Future Direction

Our current prototype utilizes a personal computer, a high-quality objective lens and

a CCD image sensor of a digital SLR camera. As a next step, we would like to

miniaturize it with the use of a smartphone. Since most smartphones have enough

computation power and a high resolution image sensor, we plan to develop an attach-

ment which modifies a smartphone to a multiple oblique illumination microscope.

Furthermore, we currently compute local variance of images after capture. We would

like to explore the strategy to quantitatively measure roughness by the co-design of

optical system and computation. We believe that the quantitative measurements

further expand the application of the switchable multiple oblique illumination.
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Chapter 4

Conclusion

Computational control of illumination creates large potential in optical imaging [44,

45, 46]. As opposed to photography, optical microscopy has full control of illumina-

tion. This capability has allowed numerous optical designs to acquire different prop-

erties of microscopic samples. Even though spectral imaging was introduced to fluo-

rescence microscopy about ten years ago and oblique illumination was invented more

than three hundred years ago, integration with modern computational approaches

had not been explored. In this thesis, we explored the possibilities of fluorescence

spectroscopy and microscopy and oblique illumination microscopy.

In science and engineering, not limited to microscopy, a large number of advanced

sensing methods have been proposed to measure various material properties. In most

cases, however, computational and mathematical analysis of captured data have not

been conducted enough to extract information as much as possible. We hope that

this thesis inspires others to explore imaging and sensing technologies at the interface

of material analysis and computing.
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