
Learning a semantic database
from unstructured text

by Keshav Dhandhania

Submitted to the Department of Electrical Engineering and
Computer Science

in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer

Science
at the Massachusetts Institute of Technology

May 23, 2014

@ Massachusetts Institute of Technology. All rights reserved.

Signature redacted
A u th o r :

Department of Electrical Engineering and Computer Science
May 23, 2014

Signature redacted
C e rtifie d b y :

Prof. Tommi Jaakkola
Thesis Supervisor

Signature redacted
Accepted by:

Prof. Albert R. Meyer
Chairman, M' ers of Engineering Thesis Committee

tASTiiTE
~LOGY

JUL 15 2014

LIBRARIES

1

Learning a semantic database from unstructured
text

by Keshav Dhandhania

Submitted to the Department of Electrical Engineering and Computer
Science

in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology
May 23, 2014

Abstract

In this paper, we aim to learn a semantic database given a text
corpus. Specifically, we focus on predicting whether or not a pair of
entities are related by the hypernym relation, also known as the 'is-a' or
'type-of' relation. We learn a neural network model for this task. The
model is given as input a description of the words and the context from
the text corpus in which a pair of nouns (entities) occur. In particular,
among other things the description includes pre-trained embeddings
of the words. We show that the model is able to predict hypernym
noun pairs even though the dataset includes many incorrectly labeled
noun pairs. Finally, we suggest ways to improve the dataset and the
method.

2

Acknowledgments

Firstly, I would like to thank my parents for their constant encouragement
and support throughout my life.

Secondly, I would like to thank my thesis supervisor, Tommi Jaakkola, for
his expertise and time. The pointers he provided led me to explore di-
rections I would not have explored otherwise. His input helped me make
decisions with clarity and thoughtfulness, instead of running experiments
for each possible choice and evaluating empirically. Having him examine
the model from different aspects and answering his questions deepened my
understanding of my own work. I also greatly appreciate his high level and
detailed feedback on the thesis write-up. Finally, and most importantly, I
would like to thank him for guiding the scope of the thesis to be within
reach yet challenging.

Finally, I would like to thank MIT, MIT EECS and MIT CSAIL for provid-
ing an environment which makes all of this possible.

3

Contents

1 Introduction

2 Glossary

3 Problem statement

4 Previous work

5 Methodology
5.1 Description of features

5.1.1 Extending the corpus

5.1.2 Evidence
5.2 Description of neural network model

5.2.1 Notation
5.2.2 Neural network architecture .

6 Dataset

7 Experiments

8 Results

9 Discussion
9.1 D ataset errors .
9.2 Baseline model errors .
9.3 Neural network model errors

10 Future work
10.1 D ataset errors .
10.2 Recursive neural network

11 Conclusion

4

5

6

8

9

10
10
11
11
13
14
15

19

23

24

27
27
28
29

32
33
33

35

.

.
.
.
.
.

1 Introduction

Artificial intelligence and machine learning methods are increasingly used

to solve high level applications today. Such applications include Jeopardy

playing IBM Watson [9] and high accuracy automatic speech recognition [12]

and object recognition [13]. In-order to perform and/or assist in higher-level

tasks, our computers need a better understanding of the world we live in.

They need to understand the entities that surround us, and how these enti-

ties are related to each other. In other words, they need to have access to a

comprehensive, semantic database.

There are a number of semantic databases which exist currently and are

available for artificial intelligence and machine learning methods to use.

These include Frecbase [2], WordNet [8], ConceptNet [10] and YAGO [20].

However, the construction of these semantic databases have so far relied on

extensive manual effort. For example, Freebase and WordNet have both

been created manually. Freebase is crowd-sourced, whereas WordNet is

constructed by experts. Even when the construction process is not entirely

manual, it relies on the presence of structured data in some form. YAGO and

ConceptNet fall into this category. YAGO relies on the structured infoboxes

on Wikipedia and ConceptNet compiles many existing semantic databases

into one.

The fact that humans are heavily involved in the process of creating a

semantic database makes the cost of building a comprehensive database

5

prohibitive. Moreover, once built, most semantic databases still require sig-

nificant human intervention for maintenance, and for adapting them to a

particular task. Hence, it would be highly desirable to have automated

mechanisms for constructing or extending semantic databases using only

unstructured information. In this thesis, we take a step towards achieving

this goal.

The rest of this thesis is structured as follows. In section 2 we introduce

some notation that will be used throughout the document. In section 3 we

state our problem more formally. In section 4 we discuss previous work on

tasks similar to ours. In section 5 we describe our approach to the problem.

This section consists of two major parts. In the first half, section 5.1, we

describe formally how features used in our model are extracted from the

text corpus. In the second half, section 5.2, we describe the model itself.

Section 6 and section 7 include a description of the dataset and details of

our experiments. We present the results in section 8 and discuss them in

section 9. In section 10 we propose possible future work to remedy the main

categories of errors made by our model. Finally, we conclude in section 11.

2 Glossary

In this section we introduce some terminology that will be used throughout

the rest of the document.

entity: Entities are the objects between which hypernym relations are de-

6

fined. In general, entities appear in English text as noun phrases. However,

for most of this document, an entity will be equivalent to an English noun

word. As such, we use the words noun and entity interchangeably apart

from when the difference is clear based on context.

hypernym relation: The hypernym relation is also known as the 'is-a', the

'type-of' or the 'kind of' relation. For example, a horse is an animal, and

Albert Einstein is a physicist. Hence, the entity pairs (animal, horse) and

(physicist, Einstein) are hypernyms, or satisfy the hypernym relation. Note

that the order in which the entities occur matters. We will refer to the

broader entity as the parent entity, and the more specific entity as the child

entity. So for example, for the hypernym pair (animal, horse), animal is the

parent entity, and horse is the child entity. Some example of non-hypernym

entity pairs include (horse, animal), (bird, horse) and (vegetable, banana),

i.e. an animal is not (necessarily) a horse, a horse is not a bird, and a banana

is not a vegetable.

embeddings: Embeddings are distributed vector representations of words.

For most of the document, it will help to keep in mind that there is ex-

actly one embedding for each English word. Embeddings are learned on

natural language processing tasks such as part-of-speech tagging, chunking,

named entity recognition, parsing, semantic role labeling and language mod-

cling [1,6,15, 24]. They have been shown to capture syntactic and semantic

information about the words [14].

7

3 Problem statement

The central problem we focus on in this thesis is automatically inferring a

semantic database from an unstructured text corpus. Although a full se-

mantic database would involve a number of different relations, we restrict

our focus to the hypernym relation, also known as the 'is-a' relation or the

'kind of' relation. The hypernym relation is defined in detail in section 2.

The problem setup is as follows. We will be given a text corpus and a

set of labeled entity pairs. Each entity pair consists of the parent noun and

the child noun. And the label is either hypernym or non-hypernym. We are

also given a set of unlabeled entity pairs, for which the model needs to make

predictions. In particular, the model predicts a number between 0 and 1,

where the number represents the confidence that the pair is a hypernym re-

lation. Note that the unlabeled entity pairs include entities for which there

are no labeled entity pairs available. As such, the model must be capable of

handling new or unseen entities at prediction time.

Finally, note that the hypernym relation is transitive. For example, a horse

is an animal, and an animal is an organism together imply that a horse is an

organism. Hence, if a model uses features of the entities themselves (such as

the embeddings of the entity nouns), then splitting strategy for the train and

test dataset should be explicitly designed to avoid the possibility of models

simply memorizing the labeled entity pairs and exploiting the transitivity

property of the hypernym relation.

8

4 Previous work

Previous work on hypernym prediction can be divided into two broad cat-

egories. The first approach focuses on identifying syntactic patterns which

arc good indicators of the hypernym relation. Previous work along this line

does not make use of word embeddings. The second approach only utilizes

the embeddings of the entities in order to make predictions. In particular, it

does not look at a text corpus. Previous work that combines word embed-

dings and the text corpus uses it for semantic tasks different from relation

extraction, such as semantic role labeling. We describe each of these three

lines of work in detail in the following three paragraphs.

The use of syntactic patterns was first made popular by Hearst [11]. She

noted that 'is-a' relationships are indicated in text by a number of syntactic

patterns such as "X is a Y", "Y, such as X" and "X and other Y". Her

work used a fixed set of a dozen such syntactic patterns in-order to predict

hypernym relations. Snow et al. [17] built upon Hearst's work by applying

regression on hundreds of thousands of such syntactic patterns instead of

only a hand-full of them. Each of their syntactic patterns corresponded to a

shortest path linking two single-word noun entities in the dependency parse

tree of a sentence.

Mikolov et. al [14] analyze the information captured by word embeddings

by showing regularities and patterns in the learned word embeddings, such

as women - men ~ queen - king. They use these regularities to answer

9

syntactic analogy questions. They restricted themselves to using methods

based solely on the offsets of word embeddings. Chen et. al [3] train a neu-

ral tensor network for predicting relations between entities. Their method

handles a number of different relations by learning a separate neural tensor

network for each relation. However, since they modify the embeddings of

the entity words during training, their method cannot handle unseen entities

in the test dataset.

Lastly, Collobert et. al [5,6] learned models jointly on a number of different

tasks, including semantic role labeling. For this task, their neural network

model relied on the embeddings of the words and the context. However, as

previously mentioned, they did not attempt semantic tasks such as predict-

ing relations between entities.

5 Methodology

In this section we describe our approach to hypernym prediction. The sec-

tion comprises of two major parts. The first half describes the pre-processing

we do on the text corpus in order to extract relevant information that will be

given as input to our neural network model. In the second half we describe

the neural network model itself.

5.1 Description of features

Our dataset comprises of a set of labeled entity pairs. Each entity pair is

a pair of nouns (p, c), and the label of the entity pair is given by 1 1 if p

10

is a hypernym of c and 1 = 0 otherwise. In order to predict whether or not

the noun pair (p, c) is a hypernym, we will make use of the text corpus and

pre-trained word embeddings. In this subsection, we describe how we get all

the evidence about a noun pair from the text corpus. Each piece of evidence

includes descriptions of the words and the context in which the noun pair

appears. All the evidence is then be used by the neural network for training

and prediction.

5.1.1 Extending the corpus

We begin by running a part-of-speech tagger and a dependency parser on the

entire corpus. The dependency trees of the sentences have labeled arcs and

the trees are augmented by adding conjunction links, i.e. new dependency

arcs connecting the parent of a head conjunct to all the other conjuncts.

The arc-label of the conjunction link is the same as the arc-label of the

dependency between the head conjunct and its parent. Figure 1 shows

the dependency structures of two sentences with conjunction links. From

now on, we will refer to the original dependency parse tree by the phrase

dependency parse tree, and to the dependency parse tree plus conjunction

links by the phrase dependency parse structure.

5.1.2 Evidence

Let S be a sentence in which both p and c appear as nouns, in any order.

Let P denote the path from p to c in the dependency parse tree of S. If

there exists a conjunction link that spans multiple arcs of the path P, then

the path P is shortened by replacing the arcs with the conjunction link. We

11

They

had

sbj dobj

animals

nmod nr

W/
wild

nod

as

dep pnod

such lions

pmod coord

and

conj

\e,
elephants

They had wild animals such as lions and

are

elephants.

sbj prd

animals prd kangaroo
/ I I

nmod nmod coord

Other popular prd zebra

coord

and

conj

elephant

Other popular animals are kangaroo, zebra and elephant.

Figure 1: The dependency parse structures. Conjunction links shown in gray.

only look at paths P with length k < L for some fixed L.

12

Let a satellite link be a link from p or c to their dependents or a spe-

cial NULL word, i.e. if p has n dependents, then there are n + 1 possible

satellite links from p, and similarly for c.

NULL-' nrnod pniod NULL
NULL animal as elephant NULL

nrnod 1 nnod pMod NULL
wild animal as elephant NULL

NULL-' prd NULL
NULL animal are elephant NULL

nrnod shj--1 prd NULL
Other animal are elephant NULL

umod- shj 1 prd NULL
popular animal are elephant NULL

Figure 2: All the evidence corresponding to noun pair (animal, elephant) obtained
from the sentences in figure 1

We are finally ready to define the evidence about a noun pair (p, c). Evidence

E about a noun pair (p, c) consists of a path P from p to c in the dependency

parse structure of sentence S, and one satellite link from p and c. The

satellite links included in evidence E are not to words already included

in the path P. We get new pieces of evidence from different sentences as

well as from different pairs of satellite links appearing in the same sentence

S. Figure 2 illustrates all the evidence we get for the noun pair (animal,

elephant) from the sentences in figure 1.

5.2 Description of neural network model

We learn a neural network for predicting whether or not a noun pair is a

hypernym. The neural network is trained with back-propagation. The cost

13

function is given by

- 13 1i log f (Si) + (1 - 1j) log(1 - f (Si))
iED

where Ii is the label of the ith noun pair, Si is all the evidence associated

with the ith noun pair, and f is the function represented by the neural net-

work.

The neural network has a total of four layers. The first two layers process

each piece of evidence about the noun pair separately from others, whereas

the last two layers combine all the available evidence about the noun pair.

Before describing the architecture of the neural network in detail, we in-

troduce some notation. Thereafter, we describe the layers one by one.

5.2.1 Notation

n is the number of pieces of evidence corresponding to the noun pair (p, c)

and Ej denotes the ith piece. When we say, w C Ei, we are referring to all

the words in the ith piece of evidence Ei, and by a E Ej we are referring

to the arcs in Ej. Each word w in evidence Ej has two other properties, its

part-of-speech tag and its location, denoted by loc(w) and POS(w), respec-

tively. Each arc a in Ej also has the location property, denoted by loc(a).

Note that it is possible for the same English word or arc-label to appear

in different locations across different pieces of evidence or even in the same

Ej. The same holds for the part-of-speech tags of words. Hence loc and

14

POS are functions which depend on the context in which the word or arc

occurs. We denote the length of Ej by len(Ei), where length is defined as

the number of arcs between p and c in Ej.

cmb(w) denotes the pre-trained word embedding of word w and is a vector

of length d. In particular, it is a strict function of the English word w itself,

and does not depend on the context or its part-of-speech tag. emb2 (wi, W2)

denotes a vector of length (2d)2 consisting of all the second-order terms from

the outer product of vector [cmb(wi); enb(w2)] with itself.

5.2.2 Neural network architecture

We are now ready to describe the neural network architecture. It may help

to refer to figure 3 while going through the description. The network has

a total of 4 layers. The first two layers operate on each piece of evidence

independently. After the transformations corresponding to the first two

layers of the network, the hidden units form a matrix of dimension sz 2 x n,

where each evidence Ej results in the ith column of the matrix, a vector of

length sz 2 .

Layer one

The first layer combines input from the words and arcs. It has three

main components. The first component gets as input the word embeddings

emb(w) of the words w in evidence E. The weights which operate on these

embeddings depend on the length of E, the location of w and the part-of-

speech tag of w. The second component looks at the arcs in evidence E.

15

Figure 3: Overall network architecture with n = 4, sz = 3 and sz 2 = 2.
Functions fi, f2, f3 and f4 are defined in section 5.2.2

The weights for a particular are a depend on the length of E, the location

of a and the arc-label itself. The third component gets as input the second

order features from the embeddings of the noun pair (p, c). The weights that

operate on this feature depend only on the length of E. More concretely,

the three components of the first layer, and the first layer itself are given by

16

fi f1 fi fi

f2 f2 f2 f2

x_ QQ

f3

0

f4

the following functions .w, 9A, 9N and fi respectively

9w(E) = Ww(len(E), loc(w), POS(w)) - emb(w)
wEE

9A(E) = E WA(len(E), loc(a), a)
acE

9N(E) =WN(len(E)) -emb 2 (p, c)

fi(E) = sig(bi + gw(E) + gA(E) +.9N(E))

where Ww(-, -, -) is a weight matrix with dimensions szi x d, WA(-,-,-) is a

weight vector of length sz1 , WN(.) is a weight matrix with dimensions sz1 x

(2d) 2 , sig is the sigmoid function and b1 is a bias vector of length szi. Here

we use W(.) as a shorthand for saying that W(z) satisfies the property for

each valid value of parameter z.

Illustration of layer one

The functions qw, 9A and 9N are illustrated below for the second piece of

evidence in figure 2.

9w(E) = Ww(2, 1, adj) emb(wild) + Ww(2, 2, noun) - emb(animal)+

Ww(2, 3, prep) - emb(as) + Ww(2, 4, noun) . emb(clephant)+

Ww(2, 5, NULL) - emb(NULL)

gA (E) = WA(2, 1, nmod 1) + WA(2, 2, nmod) + WA(2, 3, pmod)+

WA(2, 4, NULL)

9N(E) = WN(2) - emb2 (animal, elephant)

17

Layer two

The second layer of the network is a simple sigmoid layer, but is applied

to each evidence separately. It is represented by the function f 2 (x)

sig(b 2 + W 2 x), where b2 is a bias vector of length sz 2 and W 2 is a weight

matrix with dimensions sz 2 x sz 1 .

f 2 (fi(E)) gives a vector of length sz2, but the entire input X into layer

3 is the matrix formed by arranging all the vectors as columns of a matrix,

where each evidence Ej of noun pair (p, c) contributes column i. Hence, the

matrix X has dimension sz 2 x n.

Layer three

The third layer is a max-pooling layer where the max-pooling is happening

across all the evidence, i.e. f 3 (X) - rowMax(X). The result is a vector

with element j being the maximum value of row j of X.

Layer four

Lastly, the fourth layer is also a sigmoid layer, i.e. f4(x) = sig(b4 + W 4 x),

where b4 is a scalar and W 4 is a weight vector of length sz2. Parameter b4 is

not learned, and is rather kept fixed at a large negative value, giving incen-

tive to the elements of W4 to be positive. We do this to capture the intuition

that a noun pair is a non-hypernym by default, and features mostly have

information that provide evidence about the noun pair being a hypernym.

18

Summary

Overall, the entire neural network has parameters Ww (, -,), WA(-, -, -),

WN(-), W2, W4, bi and b2. We use pre-trained word embeddings and do

not modify them during learning. Figure 3 is a diagrammatic representa-

tion of the neural network.

6 Dataset

We use Simple Wikipedia as our text corpus, WordNet [8] to obtain hyper-

nym and non-hypernym noun pairs and SENNA [4, 5] for the pre-trained

word embeddings. These are described in turn.

Text corpus

Our text corpus is Simple Wikipedia, which is a version of Wikipedia where

authors are encouraged to use simpler English, both in terms of grammar

and vocabulary. The Simple Wikipedia dump' has Wikimedia style mark-up

in its content. After extracting a plain text version from the dump 2 we use

the Stanford CoreNLP library3 [22,23] for lemmatization and part-of-speech

tagging, and the Ensemble Malt parser for dependency parsing4 [21]. All

sentences with length greater than 100 tokens are ignored, since these are

suspected to be errors made during extraction of plain text from the Simple

Wikipedia dump.

Iversion dated Sep 2, 2013 available at http://dumps.wikimedia.org/simplewiki/20130902/
2
using extractor available at http://medialab.di.unipi. it/wiki/Wikipedia.Extractor

3
available at http://n1p. stanford.edu/software/coren1p. shtml

4
available at http://www.surdeanu.info/mihai/ensemble/

19

In the version we used, Simple Wikipedia had 96,244 articles with a to-

tal of roughly 892,000 sentences and an average of 17.1 tokens per sentence

(including punctuation).

Hypernyms and non-hypernyms

We obtain our hypernyms and non-hypernyms from the WordNet lexical

database. Although WordNet includes a lot of other information, for our

application we only need synsets and hypernym relations. Synsets in Word-

Net represent cognitive synonyms, and hypernym relations exist between

ordered pairs of synsets (p, c) denoting c 'is a' p. Since the hypernym rela-

tion is transitive, all the hypernym relations together form a directed acyclic

graph. A noun pair (p, c) is given a hypernym label in our dataset if p is

a strict ancestor of c as per the WordNet hypernym directed acyclic graph.

Otherwise the noun pair is labeled a non-hypernym.

Since the text corpus is not connected to WordNet in any way, we need

to identify synset mentions in the text corpus. We allow a noun to appear

in a noun pair if the noun either has exactly one synset associated with it in

WordNet, or if there are more than one synsets associated with it, but ex-

actly one of the synsets has a non-zero frequency count in WordNet. Finally,

a noun can appear in a noun pair only if we have an embedding available

for the noun. How we obtain word embeddings is described at the end of

this section.

20

For a noun pair to be considered as a candidate for being included in the

dataset, each of its nouns must satisfy the criteria specified in the above

paragraph and the noun pair must have at least one evidence (as defined in

section 5.1) associated with it. Any hypernym noun pair that is a candidate

is included in the dataset. A non-hypernym noun pair (p, c) is included in

the dataset only if the noun p appears in some hypernym noun pair (p, x)

and the noun c appears in some hypernym noun pair (x, c).

Finally, the dataset is split into train and test datasets. To do this, a

fraction f of all the nouns that appear in the parent position of the noun

pair are chosen at random to be test-only, and similarly for nouns in the

child position. Any noun pair involving a test-only parent noun at the par-

ent position or a test-only child noun at the child position is put in the test

clataset, and the remaining noun pairs form the train dataset. We use this

niechanisn for splitting the dataset in order to have a large number of noun

pairs in the test dataset with unseen nouns. Our mechanism for splitting

guarantees that for the test noun pair, at least one noun is unseen. Due to

this property, it is also impossible for a model to make predictions solely

based on the transitivity of the hypernym relation and the labels of noun

pairs in the train dataset. Table 1 gives some statistics on the dataset.

21

Dataset type Number of Number of Percent of
noun pairs hypernym hypernym

noun pairs noun pairs
Entire dataset 52242 4439 8.50%
Train dataset 40008 3530 8.82%
Test dataset 12234 909 7.43%
Test dataset with only 5965 342 5.73%
parent noun unseen
Test dataset with only 5425 475 8.76%
child noun unseen
Test dataset with both 844 92 10.90%
nouns unseen

Table 1: Dataset statistics

Word embeddings

We obtain the word embeddings from SENNA 5 . The word embeddings are

learned via joint training on various natural language processing tasks such

as language modeling, chunking, part-of-speech tagging, named entity recog-

nition and semantic role labeling. For the language modeling task, the au-

thors use Wikipedia as the text corpus. The embeddings have dimension

d = 50.

When learning the word embeddings, the authors converted all words to

lowercase and mapped all digits to zero. We do the same normalization

when looking for the embedding of a particular word.

5available at http://mi.nec-labs.com/senna/

22

7 Experiments

In this section, we detail the parameters of our model and also add more

details about training the neural network.

As mentioned in the previous section, the embeddings have dimension d =

50. We restrict the maximum length of the path P to be L = 4. The only

other parameters involved in the architecture of the neural network are szi

and SZ2. These determine the sizes of the hidden layers and dimensions of

the weight and bias parameters being learned. We use sz1 = 50 and sz2 = 50

in all of our experiments.

We initialize all the weights and biases by drawing them uniformly in the

range (-0.05,0.05). The bias of the fourth layer b4 is fixed at -3. We

use a learning rate of 10-3. Training is done using minibatched back-

propagation [16]. We divided the train dataset into 50 minibatches each

with roughly 800 noun pairs out of which approximately 70 were hypernym

noun pairs.

For our update rule, we use the diagonal variant of AdaGrad [7], i.e. we

keep track of the mean squared gradient for each weight and bias parameter,

and divide the gradient by the root mean squared gradient when updating

the parameter. Mathematically, the equations for updating a weight w with

23

mean squared gradient u are given by,

Ui+1 := a - Ui + (a) 1

Di

tvi+1 w= i - E -~'~D
VUI +1

where i is the time step, c is the learning rate, and 0CW) is the partial

derivative of the cost C with respect to w evaluated at wi for the minibatch

Di. We set a = 0.9.

It took about 20 epochs for the network to train before it started over-

fitting. The training time was about half a day for our implementation in

R programming language using 4 cores on a 3.2GHz machine. There is sig-

nificant scope for optimization both within R or by moving to a different

programming language. Our implementation was not optimized.

For our results, we use maximum classification f-score on the test dataset

where the maximization is over all possible thresholds.

8 Results

Table 2 includes the results from our experiments. For comparison, we im-

plemented a baseline model. The baseline model gets as input only the

embeddings of the nouns, and does not use the corpus at all. The baseline

model is a simple logistic regression model. We get two different sets of

baseline results. One when the model only gets as input the embeddings of

24

the noun words and a bias term, i.e. [emb(p); emb(c); 1]. And second when

the model also gets as input the second order features from emb2 (p, c), i.e.

input is [emb2 (p, c); emb(p); emb(c); 1].

f-score on f-score on f-score on f-score on
all noun noun pairs noun pairs noun pairs

pairs with both with parent with child
nouns unseen noun unseen noun unseen

Baseline (only 36.93 43.44 28.35 43.38
first order noun
features)

Baseline (all noun 53.30 54.73 39.05 65.99
features)

Our model (no 41.99 42.04 37.82 45.75
noun features)
Our imodel (only 49.27 49.20 43.11 55.69
first order noun fea-
tures)

Our model (all 58.70 54.35 46.70 68.50
noun features)

Table 2: F-score on the test dataset using the baseline model and the neural
network model.

We run three different variations of our model. In the first version, we do

not use any noun features and the model relies solely on the text corpus.

This changes the equations for gw and gN in the first layer of our neural

network to be

gw(E) (Ww(Ien(E), loc(w), POS(w)) emb(w)
wCE\{p,c}

YN(E) 0

25

In the second version, we use only first order noun features, i.e. 9N(E) = 0

and everything else is unchanged. The third version has all equations as

described in section 5.2.

Table 3: Non-hypernym noun pairs which were given the highest hypernymn score

by the baseline model (left) and by the neural network model (right).

Table 3 lists for both the baseline model and our neural network model

their top 20 false positives, i.e. non-hypernym noun pairs which were given

highest hypernym score by each model. The results arc from the models

that get all noun embeddings features as input including the second-order

features, i.e. second version for the baseline model and third version for the

neural network model.

26

Parent noun Child noun
invertebrate nestling
metropolis euphrates
geographer hipparchus
crocodilian tuatara
invertebrate bullfrog
warship warship
airliner airliner
planetoid perihelion
rifle howitzer
warship speedboat
highwayman highwayman
judaism anti-semitism
invertebrate hawksbill
canoe betelgeuse
utensil jug
organism chert
highway underpass
geographer guyot
artefact burial
coin centavo

Parent noun Child noun
scientist delius
leader himmler
steroid mifepristone
metal satin
novelist sartre
drug nicotine
meat meatball
illness insomnia
explosive nitroglycerin
mathematician bose
measles chickenpox
infection lymphoma
fungus bullfrog
disease adenoma

pup meerkat
airport airfield
district muslin
food bistro
chemical the
human midget

9 Discussion

In table 5 and table 6 we attempt to categorize the errors made by the

baseline model and the neural network model shown in table 3. The cate-

gories of errors for the baseline model are dataset errors, related noun errors,

synonym errors and miscellaneous errors. The categories of errors for the

neural network model are dataset errors, parse errors, entity errors and mis-

cellaneous errors. We describe and discuss each of the categories of errors

in this section, starting with dataset errors, then analyzing the errors made

by the baseline model, and finally analyzing the errors made by the neural

network model. The objective is to highlight the kind of errors made by

the neural network model, how they differ from the baseline model, and to

suggest future work to remedy such errors.

9.1 Dataset errors

In section 6 we describe the process by which we obtain hypernym and non-

hypernym labels for each noun pair. In particular, notice that WordNet

only includes hypernym relations connecting pairs of synsets, and it does

not include any explicit non-hypernym relations. Hence, we assume that

any two synsets which are riot related to each other explicitly by the hyper-

nym relation (direct or inherited) are non-hypernyms.

This assumption fails to hold in quite a number of cases. In table 5 and

table 6 we see that 3 out of the top 20 false positives of the baseline model,

and 9 out of the top 20 false positives of the neural network model are actu-

27

Parent noun Child noun Sentence in Simple Wikipedia
leader himinler Heinrich Himmler (7 October 1900 - 23 May

1945) was the leader of Germany's SS and

Gestapo organisation.

steroid mifepristone Mifepristone is a synthetic steroid that is used

as a drug.

novelist sartre Jean-Paul Charles Aymard Sartre (21 June

1905 - 15 April 1980) was a French existential-

ist philosopher, novelist, playwright, screen-

writer, and critic.

drug nicotine Nicotine is a drug found in tobacco cigarettes,
cigars, pipe tobacco, and chewing tobacco.

illness insomnia It can help with about 81 different illnesses

including cancer, bronchitis, insomnia, edema,

colds, etc..
explosive nitroglycerin Mercury fulminate, picric acid, lead azide, ni-

troglycerine and iodine nitride are examples of

primary explosives.

mathematician bose Professor Satyendra Nath Bose (1 January

1894 - 4 February 1974) was an Indian math-
ematician and physicist.

chemical the The cannabis plant's flowers contain a chemi-

cal or drug known as THC.

human midget Midgets are perfectly proportioned humans
while dwarves have a large head and mis-

shapen limbs and torsos.

Table 4: The noun pairs in table 6 for which the neural network model gets
support from Simple Wikipedia, but WordNet does not include the hypernym

relation.

ally hypernym noun pairs. Table 4 lists the sentences in Simple Wikipedia

which contain evidence about the noun pairs being hypernyms.

9.2 Baseline model errors

Apart from the dataset errors, a lot of the errors made by the baseline model

are of the form where the parent and child nouns are semantically close to

each other, but are not related by the hypernym relation.

28

Table 5: Categorization of the top 20 false positives of the baseline model.

For example, howitzer is a cannon, not a rifle, and hawksbill is a turtle (and

hence a vertebrate), not an invertebrate. tuatara and crocodilian are both

diapsid reptiles, and perihelion and planetoid are both concepts related to

the solar system. The algorithm also makes errors for the special cases where

the parent noun is the same as the child noun.

9.3 Neural network model errors

There are two noticeable patterns of errors made by the neural network

model beyond dataset errors - namely, parse errors and entity errors. We

discuss these one by one.

29

Parent noun Child noun Category
invertebrate nestling related noun error
metropolis euphrates related noun error
geographer hipparchus dataset error
crocodilian tuatara related noun error
invertebrate bullfrog related noun error
warship warship synonym error
airliner airliner synonym error

planetoid perihelion related noun error
rifle howitzer related noun error
warship speedboat related noun error
highwaynan highwayman synonym error
judaism anti-semitism related noun error
invertebrate hawksbill related noun error
canoe betelgeuse misc. error
utensil jug dataset error
organism chert misc. error
highway underpass related noun error
geographer guyot dataset error
artefact burial misc. error
coin centavo related noun error

Table 6: Categorization of the top 20 false positives of the neural network model.

The neural network model gets as input evidence derived from the depen-

dency parse structure of the sentences in the text corpus. However, for 4

out of the top 20 false positives, the dependency parser gives inaccurate out-

put. Given the specific errors in dependency parse structure (see figure 4),

it makes sense that the neural network model predicts the noun pairs to be

hypernyms. Figure 4 shows the correct and incorrect parses of two Simple

Wikipedia sentences which resulted in false positives.

Lastly, we have entity errors caused by the presence of synsets whose men-

tions in the text corpus span multiple words. Because of the way we con-

30

Parent noun Child noun Category
scientist delius entity error
leader himinler dataset error
steroid nifepristone dataset error
metal satin parse error
novelist sartre dataset error

drug nicotine dataset error

meat meatball misc. error

illness insomnia dataset error

explosive nitroglycerin dataset error
mathematician bose dataset error
measles chickenpox parse error
infection lymphoma misc. error
fungus bullfrog misc. error
disease adenoma parse error

pup meerkat entity error
airport airfield entity error

district muslin parse error

food bistro misc. error
chemical the dataset error

human midget dataset error

for

example fabric silk

especially and

t
satin

I
or

t
mretals

for

example

silk or

/tI
especially and metals

t
satin

fabric

... for example, fabric, especially silk and satin, or metals ...

was

was

district famous for Muslin

products

its textile especially

district

the

the

famous

I
for

t
products

its textile Muslin

especially the

... the district was famous for its textile products, especially the Muslin.

Figure 4: Incorrect (left) and correct (right) dependency parse trees (without
conjunction links) for 2 out of the 4 noun pairs listed in table 6 whose sentences

are parsed incorrectly by the dependency parser.

31

t
the

struct each evidence, we handle entity mentions spanning multiple words

particularly badly. The neural network model assumes that the evidence

is about the single word noun entity, but the sentence is actually referring

to an entity spanning multiple words. Table 7 lists sentences from Simple

Wikipedia for which the neural network model makes entity errors. In the

first example, Wikipedia is referring to political scientist Christina Delius,

whereas WordNet resolves Delius to composer Frederick Delius. The second

sentence is about baby meerkats, not meerkats and the third sentence is

about the Los Alamitos Army Airfield, not an airfield.

Parent noun Child noun Sentence in Simple Wikipedia
scientist delius On 9 August 1982 he married the political sci-

entist Christina Delius (born 1956).
pup meerkat Baby ineerkats, called "pups" are sometimes

also eaten by snakes.
airport airfield Los Alamitos Army Airfield is a military air-

port.

Table 7: Noun pairs in table 6 for which the neural network model makes
mistakes due to entity mentions spanning multiple words.

10 Future work

In this section, we list some possible directions for future work based on the

analysis of errors in the previous section. First, we explore possible remedies

for dataset errors. Thereafter, we propose a recursive neural network model

for the task, and give some intuition about how recursive neural network

models might deal with parse errors and entity errors better than the model

32

we implemented.

10.1 Dataset errors

In the previous section, we noted that our method for inferring hypernym

and non-hypernym labels for the noun pairs was not robust. As such, it

is desirable to have a dataset available to us which includes explicit non-

hypernyms. The process of creating this dataset need not be entirely manual

in that predictions made by the model presented in this paper could be used

as a guide in terms of which noun pairs should have their labels verified.

After correcting a significant number of incorrectly labeled noun pairs, the

model could be trained again on the new dataset, and the process could be

repeated.

10.2 Recursive neural network

We will first describe the recursive neural network (RNN) model by Socher

et. al [18,19] used for parsing. Thereafter, we will explain how the RNN

model can be used for hypernym classification, and give intuition about how

it could remedy entity and parse errors.

A RNN model comprises of a neural network which takes as input features

from two embeddings, and gives as output one embedding and a scalar score.

The output embedding has the same dimension as each of the input embed-

dings. While parsing a sentence, the neural network is given as input features

from the embeddings of each adjacent pair of words in the sentence. The

pair of words with the highest output score are combined into a phrase and

33

the embedding output by the neural network is taken to be the embedding

for the phrase. Since the phrase embedding has the same dimension as the

original word embeddings, the above process can be repeated for adjacent

words and phrases to determine which word or phrase should be combined

next. This process is applied recursively until exactly one embedding is left

representing the entire sentence. The order in which the words and phrases

were combined give the parse structure for the sentence.

Now, for the task of hypernym classification, we could use the RNN trained

on parsing to get the embeddings for the two noun phrases occurring in a

sentence and the phrase separating the two noun phrases. We could then use

these three embeddings to predict whether or not the first noun phrase is a

hypernym of the second noun phrase. If there are multiple sentences in which

the same two noun phrases occur, then we could use a max-pooling method

similar to ours to combine information over multiple evidences. Since the

method automatically handles noun phrases, this should reduce entity errors.

Finally, parse errors could be handled by doing joint training of the RNN

on hypernym classification and parsing. We believe that this would reduce

parse errors since it seems that to correct the parse errors such as those

shown in figure 4, the parsing model needs semantic information present in

the embeddings. This semantic information could be learned while jointly

training on the hypernym classification task.

34

11 Conclusion

We started out with the motivation of automatic learning of semantic databases

from unstructured text, and narrowed the problem to that of predicting hy-

pernym relations. We learned a neural network model for predicting, given a

text corpus, whether or not two nouns are related by the hypernym relation.

We analyzed the errors made by the model and saw three patterns, namely

dataset errors, parse errors and entity errors. Specifically, we showed that a

significant fraction of the 'errors' made by the model were actually errors in

the dataset itself. Lastly, we proposed possible future work to remedy each

kind of error.

References

[1] Yoshua Bengio, R6jean Ducharme, Pascal Vincent, and Christian Jan-
vin. A neural probabilistic language model. J. Mach. Learn. Res.,
3:1137-1155, March 2003.

[2] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: a collaboratively created graph database for struc-
turing human knowledge. In SIGMOD '08: Proceedings of the 2008
ACM SIGMOD international conference on Management of data, pages
1247-1250, New York, NY, USA, 2008. ACM.

[3] Danqi Chen, Richard Socher, Christopher D. Manning, and Andrew Y.
Ng. Learning new facts from knowledge bases with neural tensor net-
works and semantic word vectors. CoRR, abs/1301.3618, 2013.

[4] R. Collobert. Deep learning for efficient discriminative parsing. In
AISTATS, 2011.

[5] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural language processing (almost) from scratch. Journal
of Machine Learning Research, 12:2493-2537, 2011.

35

[6] Ronan Collobert and Jason Weston. A unified architecture for natural
language processing: Deep neural networks with multitask learning. In
Proceedings of the 25th International Conference on Machine Learning,
ICML '08, pages 160-167, New York, NY, USA, 2008. ACM.

[7] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. J. Mach.
Learn. Res., 12:2121-2159, July 2011.

[8] Christiane Fellbaum, editor. WordNet: an electronic lexical database.
MIT Press, 1998.

[9] David A. Ferrucci, Eric W. Brown, Jennifer Chu-Carroll, James Fan,
David Gondek, Aditya Kalyanpur, Adam Lally, J. William Murdock,
Eric Nyberg, John M. Prager, Nico Schlaefer, and Christopher A. Welty.
Building watson: An overview of the deepqa project. Al Magazine,
31(3):59-79, 2010.

[10] C. Havasi, R. Speer, and J. Alonso. Conceptnet 3: a flexible, multi-
lingual semantic network for common sense knowledge. In Recent Ad-
vances in Natural Language Processing, Borovets, Bulgaria, September
2007.

[11] Marti A. Hearst. Automatic acquisition of hyponyms from large text
corpora. In Proceedings of the 14th Conference on Computational Lin-
guistics - Volume 2, COLING '92, pages 539-545, Stroudsburg, PA,
USA, 1992. Association for Computational Linguistics.

[12] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mo-
hamed, Navdecp Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Tara Sainath, and Brian Kingsbury. Deep neural networks for
acoustic modeling in speech recognition. Signal Processing Magazine,
2012.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Peter L. Bartlett,
Fernando C. N. Pereira, Christopher J. C. Burges, L6on Bottou, and
Kilian Q. Weinberger, editors, NIPS, pages 1106-1114, 2012.

[14] Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig. Linguistic regular-
ities in continuous space word representations. In HLT-NAA CL, pages
746-751. The Association for Computational Linguistics, 2013.

36

[15] Andriy Mnih and Geoffrey E. Hinton. A scalable hierarchical dis-
tributed language model. In Daphne Koller, Dale Schuurmans, Yoshua
Bengio, and Lon Bottou, editors, NIPS, pages 1081-1088. Curran As-
sociates, Inc., 2008.

[16] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Neu-
rocomputing: Foundations of research. chapter Learning Representa-
tions by Back-propagating Errors, pages 696-699. MIT Press, Cam-
bridge, MA, USA, 1988.

[17] Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. Learning syntactic
patterns for automatic hypernym discovery. In Advances in Neural
Information Processing Systems (NIPS 2004), November 2004. This is
a draft version from the NIPS preproceedings; the final version will be
published by April 2005.

[18] Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y.
Ng. Parsing With Compositional Vector Grammars. In ACL. 2013.

[19] Richard Socher, Christopher D. Manning, and Andrew Y. Ng. Learning
continuous phrase representations and syntactic parsing with recursive
neural networks, 2010.

[20] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A
core of semantic knowledge. In Proceedings of the 16th International
Conference on World Wide Web, WWW '07, pages 697-706, New York,
NY, USA, 2007. ACM.

[21] Mihai Surdeanu and Christopher D. Manning. Ensemble models for
dependency parsing: Cheap and good? In Human Language Technolo-
gies: The 2010 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, HLT '10, pages 649-652,
Stroudsburg, PA, USA, 2010. Association for Computational Linguis-
tics.

[22] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram
Singer. Feature-rich part-of-speech tagging with a cyclic dependency
network. In NAACL '03: Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Lin-
guistics on Human Language Technology, pages 173-180, Morristown,
NJ, USA, 2003. Association for Computational Linguistics.

37

[23] Kristina Toutanova and Christopher D. Manning. Enriching the knowl-
edge sources used in a maximum entropy part-of-speech tagger. In In
Proceedings of the Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora (EMNLP/VLC-
2000), pages 63-70, 2000.

[24] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representa-
tions: A simple and general method for semi-supervised learning. In
Proceedings of the 48th Annual Meeting of the Association for Compu-
tational Linguistics, ACL '10, pages 384-394, Stroudsburg, PA, USA,
2010. Association for Computational Linguistics.

38

