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Abstract

A systematic calibration study was performed on a microscopic traffic simulator-
MITSIM. An optimization based framework was developed for calibration. Car-
Following model parameters were identified for calibration and experimental design

methodology was used to determine the set of sensitive parameters. Calibration was

performed by minimizing the deviation between the simulated and observed values

of speed. Two different objective function forms were formulated for quantifying the

deviation between the simulated and observed values. The search space and the opti-
mum parameter values for the two objective function forms were compared. The effect

of stochasticity in calibrating the parameter values was also studied. Stochasticity
was found to have a significant impact on the optimal parameter values. It was found

that though calibration is an intricate process, the performance of the simulator can

be substantially improved by an appropriate calibration study.
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Chapter 1

Introduction

The enormous growth of road traffic has resulted in heavy congestion in and around

urban areas, leading to increased delays, pollution, and inefficiency. From the supply

side, a solution to this problem would be to expand the road network; but this is not

economically feasible. Moreover, on the demand side, social and individual behavior

characteristics limit the constraints that can be applied to encourage travel by other

modes. Hence efficient management of transportation infrastructure seems to be the

most viable solution for managing congestion.

One proposed approach for traffic management is to use a set technologies called

the Advanced Traffic Management Systems (ATMS), and Advanced Traveler Infor-

mation Systems (ATIS). They form part of a suite of technologies known as the

Intelligent Transportation System (ITS). ATMS and ATIS aim at applying advanced

technologies in the areas of dynamic traffic management, traffic control, information

and communication systems, and traffic modeling to better manage existing trans-

portation infrastructure.

Traffic simulation, especially microscopic traffic simulation, is often used as a

tool to evaluate the various ATMS/ATIS strategies before they are implemented in

practice. The microscopic traffic simulators use several models like the car-following

model, the lane-changing model etc. to simulate traffic. These models use various

parameters, which in turn determine the results of the simulation. The values of

these parameters should be carefully selected so that the simulation model replicates
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real world traffic observations. Hence, parameter calibration is an essential component

of any successful simulator application.

1.1 Literature Review

1.1.1 Traffic Simulation Models

Traffic simulators can be broadly classified into three categories: microscopic, macro-

scopic and mesoscopic. A microscopic simulator models and simulates the trajec-

tories of individual vehicles using various disaggregate models. Some examples of

disaggregate models are car-following model and lane-changing model. Macroscopic

simulators on the other hand simulate vehicle movement using aggregate models. The

traffic flows are approximated as fluid flows and the vehicles are moved based on as-

sumed speed-density relationships. Mesoscopic simulation models are hybrid models

of microscopic and macroscopic models.

1.1.2 Microscopic Simulator

A MIcroscopic Traffic SIMulator-MITSIM has been developed at MIT by Yang

[24, ch. 3] for modeling traffic flow. MITSIM represents networks at the lane level

and simulates movements of vehicles using car-following, lane-changing, and traffic

signal response logic. Various parameters (see Appendix B) determine the output

generated by the simulator. The validity of these parameter values is crucial for

a successful simulation application. Moreover, the parameter values depend on the

traffic conditions and may need to be recalibrated in the future due to changing

traffic conditions. This work focuses on a systematic framework to apply a non-linear

optimization technique to calibrate a microscopic simulator. The simulator used for

this study is MITSIM.

1.1.3 Calibration Studies

Two broad procedures for model calibration [22] are:
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1. Rational techniques involving direct measurements of parameters.

2. Indirect techniques in which parameter values are inferred by comparing model

outputs to real world observations .

The first technique uses estimation techniques, usually econometric models, to

directly estimate the individual parameter values. An example is the work done by

Subramaniam [21] and Ahmed [1] wherein the parameters of the car-following and

lane-changing model in MITSIM are estimated from real world data using a Maximum

Likelihood Estimator. This estimation technique enables the parameter values to be

provided as inputs to the simulation model. The disadvantage of this technique is

the large amount of data required. For instance, the data required for estimating the

parameters for the car-following and lane-changing model include position, speed,

acceleration, and length of the vehicles [1].

The indirect technique uses the simulation model itself to predict the parameter

values. This technique is especially useful when repeated re-calibration needs to

done for changing traffic conditions. Calibration is usually done by minimizing the

deviation between the observed and simulated values by varying the parameter values.

The advantage of this method is that calibration can be done using more readly

available aggregate data. Flow, speed and occupancy values across sensor stations

can be easly measured and used for calibration.

Usually, the number of parameters affecting a simulation model is too large.

Hence, for a feasible calibration study, an appropriate subset of parameters should

be selected. Moreover, a suitable objective function form should be defined for min-

imizing the deviation between the observed and simulated values. Also, to obtain

meaningful parameter estimates, the stochasticity of the simulator should be taken

into account.

There have been various studies involving indirect calibration of simulation mod-

els. Goodspeed [13] outlines the work done in the optimization of a hydrological

catchment model. Various forms of objective functions were considered and also two

different optimization methodologies were compared. But the simulation model for
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hydrological catchment was deterministic and also the number of parameters was less

compared to microscopic traffic simulators.

In the work done by R.L. Cheu et al.[8], a microscopic traffic simulator INTRAS

was calibrated with a 30-sec interval, loop detector data set. The key parameters

thought to influence traffic flow were identified, probably based on previous simulation

experience. The parameters were calibrated sequentially; while the optimum value

of one parameter was determined, the remaining parameters were kept constant.

The simulated volume and occupancy were plotted against actual field volume and

occupancy. The correlation coefficients and the slopes of the fitted straight lines that

pass through the origin were used as performance measures. To take into account the

stochasticity in the simulation model, for each parameter set, an average value from

three simulation runs with different random number seeds was used. This study does

not detail how the parameter set was determined and also does not investigate the

effect of varying the forms of the objective function. Also the procedure adopted to

consider the stochasticity, namely, averaging over three runs is inadequate and the

sequential calibration methodology used may lead to a local optimum solution.

In a related work R.L. Cheu et al.[7] used a Genetic Algorithm to calibrate the mi-

croscopic simulator FRESIM. The free flow speeds and vehicle movement parameters

were selected for calibration. The fitness function (similar to an objective function)

form was based on the natural logarithmic base, raised to the absolute value of the dif-

ference between the observed and simulated values, summed over all time for a set of

selected sensors. This work did not address the stochasticity involved in microscopic

simulation and also did not discuss how the appropriate fitness function was selected.

The advantage of using a Genetic Algorithm for optimization is that, irrespective of

the nature of the search domain there is a higher likelihood of reaching an optimum

point. But the search domain has never been previously explored to justify the use

of robust, though computationally intensive Genetic Algorithm based methods.

From the literature review it is clear that a systematic calibration study is still

lacking. Most of the studies do not address parameter selection, type of responses to

be calibrated, form of objective function for calibration, and the issue of stochasticity
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in the simulation model. The present work is the first step in this direction.

1.2 Calibration Framework

The calibration of a simulation model is an essential part of the larger evaluation

framework consisting of both calibration and validation. If a model is calibrated on

some data it will be expected that the model will be able to reproduce the same data.

A very simple scheme for a successful calibration and validation study is a "dual

sampling scheme." In this procedure two separate data sets are used, one for model

calibration and the other for model validation [22]. This research does not address

the validation of the model.

The components of the calibration framework can be described as follows.

1. Determining the network and data. The first step in a successful calibra-

tion study is the initial values of input parameters. Usually in any complex

simulator the number of parameters is so large that only a subset of them can

be calibrated. Hence the successful application of the simulator depends on

the data collected, regarding the network geometry and vehicle characteristics.

Also the calibration data should have the field observations that the simulator is

trying to match. In the present study a 5.9-mile stretch of 1-880 near Hayward,

California is used (see Chapter 2). The data the simulator is trying to match

are the speed, flow and occupancy observations from 16 detector stations.

2. Estimating the origin-destination matrix for the simulator. Often the

origin-destination (O-D) matrix cannot be determined directly from the field

observations. Many O-D estimation algorithms need travel times as a necessary

input and a preliminary simulation is required to determine them. In this

study the O-D matrices used were estimated using the method of Ashok and

Ben-Akiva [15]. It needs to be noted that the travel times obtained using the

calibrated parameter values may be different from the values used for estimating

the O-D matrices. Hence, subsequent iterations may be required for achieving
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the required consistency.

3. Selecting the set of parameters to calibrate. From among the set of

parameters affecting the performance of the simulator, a subset is often isolated

based on previous experimental observations or intuitive reasoning. Once this

is done a sensitivity study may be useful to identify and document the most

sensitive parameters. Note that such a study makes sense only after a subset of

response functions has been selected.

4. Formulating an appropriate objective function. The most widely used

objective function is the minimization of the sum of squares of the difference

between the observed field data and the simulated data [22]. Other objective

functions noted were maximizing the correlation coefficients, minimizing the

deviation of the slope of a straight line, drawn between observed and estimated

values, from a 45 degree line [8], and also fitness function formulations for

a Genetic Algorithm [7] based optimization study. The optimum parameter

value will depend on the objective function used and it will be interesting to

study the effect of different objective functions on the optimum parameter value

estimates.

5. Calibrating the parameter values. Based on the sensitivity study and the

nature of the objective function over the parameter domain, an appropriate

optimization algorithm needs to be used to obtain the optimal parameter set.

1.3 Thesis Objective

The main objective of this thesis is to propose and implement a systematic calibration

framework for a microscopic simulator. This includes discussions on

e the sensitivity of MITSIM to car-following parameters,

o the selection of a set of sensitive parameters,

o the effect of different objective function forms,
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o the different approaches considered to tackle stochasticity, and

* calibrated parameters and comparison to starting values.

1.4 Thesis Outline

Chapter 2 discusses the car-following model in MITSIM and justifies the selection

of the model parameters for calibration. It then describes the simulation network

in detail and graphs are plotted to compare the initial simulated values to the field

observations. In Chapter 3 experimental design methodology is explained and im-

plemented to select a set of sensitive parameters from the parameters identified in

Chapter 2. Chapter 4 discusses the selection of a simulation output for calibration

and compares two objective function forms. Calibration is then performed and the

results are discussed. Finally in Chapter 5 the conclusions and directions for future

work are discussed.

Appendix A details how the study was performed using the Boss/Quattro analysis

software. Appendix B lists all the parameters in MITSIM.

16



Chapter 2

Simulator, Parameters and Data

This chapter briefly discusses the microscopic traffic simulator-MITSIM. From

among the many models affecting the simulator, the parameters in the car follow-

ing model are chosen for calibration. The range of values over which the parameters

are to be varied for the calibration study are also determined. Finally we discuss the

network and the data for the calibration study.

2.1 MIcroscopic Traffic SlMulator-MITSIM

A MIcroscopic Traffic SIMulator (MITSIM) was developed at MIT by Yang [24,

ch. 3] for modeling traffic flow in networks involving advanced traffic control and

route guidance systems. MITSIM represents networks at the lane level and simulates

movement of vehicles using car-following, lane-changing and traffic signal response

logic. Various parameters determine the output generated by the simulator. The

parameters have been classified into the following groups (See also appendix B).

e Traffic flow Parameters: These parameters are related to the traffic flow

properties like the jam density, the default speed limit, the free speed etc.

o Simulation Parameters: These parameters are related to the simulation step

size, the vehicle loading models etc.
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" Sensor Device Characteristics: The working probability of the sensors is

controlled by these parameters.

" Travel Demand: These parameters are related to the vehicle classes, the fleet

mix and driver groups.

" Vehicle Characteristics: The performance characteristics of the vehicles is

determined by these parameters.

* Vehicle Routing: These parameters influence the routing algorithms.

" Vehicle Movements: Parameters related to

- Acceleration model

* Car following

* Merging

* Event Responding

- Lane changing model

* Gap Acceptance

* Nosing and Yielding

- Startup delays

Vehicle movement in MITSIM is controlled by the acceleration model and lane-

changing model. The acceleration model is composed of the car-following, merging

and event response models. The car-following model computes the acceleration or

deceleration of a vehicle in terms of its relationship with and response to the lead-

ing vehicle. The merging model guides a vehicle as it moves into a merging area.

The event response model captures drivers' responses to events and incidents. The

lane-changing model involves gap-acceptance, nosing and yielding and it controls the

details of lane switching.

The total number of parameters from the models discussed above was found to

be more than 200. Moreover for the network under study, a single simulation run
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takes more than twenty minutes. Hence for a feasible calibration study, a subset of

parameters need to be identified.

2.1.1 Main Simulation Models

The car-following and lane-changing models can be considered to be the main models

influencing the vehicle movements. For the network under study, our aim is to match

the aggregate simulated and observed data. The aggregate data that we trying to

match are the flow, occupancy and speed across all the sensor stations located in the

network over the time period under study (see Figure 2-1). Since we are dealing with

aggregate data it is reasonable to assume that the effect of the lane-changing model

can be ignored.

Gazis et al. [11] have shown that at steady state, several proposed macroscopic

traffic flow theories were equivalent to their microscopic counterparts. In addition,

May and Keller [18] showed that by varying the parameter values in Herman's [10]

car-following model, different macroscopic speed-density relations can be obtained.

Hence it is intuitive to expect that by changing the car-following parameters the

simulated speed-flow-density values could be made to follow different macroscopic

relations and thereby a better fit could be achieved (See Figure 2-4). Hence in this

study we have limited our interest to the car-following model, thereby restricting the

number of parameters under consideration.

2.2 Car-Following Model

The car-following model calculates a vehicle's acceleration rate, taking into account

its relation with the leading vehicle. The car-following model used in MITSIM draws

upon previous research [10]. Depending on the relative magnitude of the current head-

way to the pre-determined headway thresholds h"pPer-the upper headway threshold

and hower -the lower headway threshold, a vehicle is classified into one of the follow-

ing three regimes: free flowing, car following, and emergency decelerating.

Free flowing regime: If the time headway is larger than a pre-determined threshold
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hupper, the vehicle does not interact with the leading vehicle and is said to be in a

free flowing regime. If its current speed is lower than its target speed, it accelerates

at the maximum acceleration rate to achieve its target speed. If the current speed is

higher than the target speed, the vehicle decelerates at the normal deceleration rate

to slow down.

Emergency regime: If a vehicle has a headway smaller than a pre-determined

threshold hiowe', it is in the emergency regime. In this case the vehicle uses an

appropriate deceleration rate to avoid collision and extends its headway.

Car-following regime: If a vehicle has a headway between hiower and hUPPer, it is

in the car-following regime. In this case the acceleration rate is calculated based on

the following Herman's general car-following model [10]:

an = a (vn_1 - Vn) (2.1)
(xn - X-)l

where xn_1 and on_1 are the position and speed of the leading vehicle, and xn and

Vn are the position and speed of the current vehicle, respectively. The distances are

measured from the downstream end. an is the acceleration of the current vehicle.

The model parameters a+, 0+, and y+ are used in acceleration, while a-, 0-, and

-y- are used in deceleration.

2.2.1 Car-Following Parameters

Based on the previous discussion, the following eight parameters were selected for

calibration in the MITSIM car-following model.

cflowerbound: If the time headway is lower than this value then vehicles apply

normal deceleration. Hence with a lower value of cflowerbound, even under relatively

congested conditions a vehicle is more likely to be in the car-following mode.

minresponsedistance: The lower bound for the distance to normal stop for a vehicle

is governed by minresponsedistance. If space headway is greater than the distance to

normal stop, then the vehicle accelerates at the maximum rate and it is in the free

flowing regime. This could mean that the lower the minresponsedistance, the higher
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Parameter Estimate Std. err. t-stat
a+ 9.21 0.141 1.237
#+ -1.667 0.320 5.201
I+ -0.884 0.232 3.818

Table 2.1: Parameter estimates for acceleration, Source[21]

the likelihood that even with closer car spacing a free flow model could be achieved.

Herman's model parameters: Separate parameters (six in all) are used for accel-

erating and deccelerating vehicles. (a+, a-, /+, 3-, 7+, Y-)

Parameter Value Range

Gazis et al. [11] integrated Herman's general car-following model, assuming integer

values of # and -y to obtain a macroscopic flow-density relationship. Based on a

correlation analysis between the flow and density, Gazis et al. reported that the

best correlation corresponds to values of # lying in the range of 1 and 3 and -y lying

between -1 and 2. This estimation work was further extended by May and Keller

[18]. They studied the application of non-integer values for 3 and -y to explain the

macroscopic speed-density relationship. They suggested the following ranges for 3

and -y: -1 < # < 3, -1 < 7 < 4. Subramanian [21] suggested a general framework

for the estimation of the parameters of a car-following model. He estimated car-

following parameters in MITSIM assuming different sensitivities for acceleration and

deceleration. These values are given in Table 2.1 and 2.2. Kazi [1] estimated the

coefficients of an extended car-following model. The signs of the parameter estimates

agree with that of Subramanian's estimates. However, the coefficent estimates were

not used in this work because of the difference in the car-following model.

It is to be noted that for accelerating vehicles the parameters # and 7 are negative.

Hence, according to Equation 2.1, driver's acceleration is inversely proportional to

speed and proportional to headway. For decelerating vehicles, the parameters / and

-y are positive, suggesting that the deceleration applied is proportional to speed and

inversely proportional to headway. Based on these studies we selected ranges of
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Parameter Estimate Std. err. t-stat
a- 15.24 0.140 4.282
#- 1.086 0.278 3.901
7- 1.659 0.183 9.077

Table 2.2: Parameter estimates for deceleration, Source[21]

Parameter Lower Bound Upper Bound
cflowerbound 0.1-sec 1-sec
minresponsedistance 5-feet 30-feet
a+ 1-(MKS units) 30-(MKS units)
a- 1-(MKS units) 30-(MKS units)
#+ -4 -0.1

0.1 3.0
7+ -4 -0.1
7- 0.1 4.0

Table 2.3: Range of values for the parameters

parameter values which are presented in Table 2.3.

2.3 Simulation Network and Data

The data for this study was obtained from the Freeway Service Patrol Project 1.

The network used for the calibration study is the same as that used by Yang [24]

in his validation study; namely a 5.9 mile stretch of 1-880 freeway around Hayward,

California. The network and the sensor locations are shown in Figure 2-1. The data

considered was only for the north bound traffic. The network has 4 on-ramps and

6 off-ramps. The left-most lane is an HOV lane. The data set, consisting of traffic

counts, speed, and occupancy averaged over 5 minute intervals, was acquired from

the 16 sensor locations. Using the observed traffic counts and speeds during a 4-hour

time period for a number of days, time-dependent Origin-Destination matrices were

estimated using the method of Ashok and Ben-Akiva [15]. The data set for the 16

1URL: http://www.path.berkeley.edu/FSP/index.html
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Figure 2-1: 1-880 Network

Table 2.4: Initial Values for the Parameters

sensor stations for the day 2/19/93 was used for the calibration study. The simulation

was done for the period from 6:50 to 9:10 am and the data was collected from 7:00 to

9:00 am. The parameters used for the base case are the same as those used by Yang

[24] for his validation study. These parameter values are presented in Table 2.4.

The scatter plots for the simulated and field observations for the starting param-

eter values are shown in Figure 2-2. The simulated values were averaged over eight

replications. The number of replications necessary was determined using the method

given in Appendix C. The results show that the simulated flow fit the actual field

data reasonably well while speed and occupancy show a poor fit.

The time-dependent nature of the simulated values is depicted in the contour plots

given in Figure 2-3. Note that in this figure the sensor stations have been numbered

consecutively with sensor 15 as 1 and sensor 3 as 15 (See Figure 2-1). The plots are

drawn with time on the X-axis and the sensor numbers on the Y-axis. Each time

unit represents 5 minutes of real time. The contours represent responses of equal

value. For example, plot 2-3(a) shows the contour plot for field (plot on the left) and
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Parameter Initial Value
cflowerbound 0.5
minresponsedistance 15
a+ 2.15
a-- 1.55

-1.67
1.08

1+ -0.89
IT- 1.65



simulated occupancies (plot on the right). By comparing the actual and simulated

contour plots it is clear that in the field congestion builds up around sensor stations

2 and 3 and is then released, but the simulation is not able to replicate this build-up

and release of congestion.

To compare the simulated and observed speed-flow-occupancy values, simulated

values are drawn with a '.' and actual field data with a '+' in Figure 2-4. It was

observed that in the field, the flow values at sensor stations ( 1,4,5,6,7,8,9,10,11) were

on the left side of the maximum flow while congested flow was observed at sensor

stations (2,3,12,13,14,15). However, as is clear from the figure, the simulated values

do not show this behaviour.

From Figure 2-1 the congested flow observations correspond to the sensor lo-

cations in between the Tennyson on/off-ramps and the sensors in between the A

street on-ramp and Hesperian off-ramp. From the speed-occupancy plots shown in

Figure 2-4 it is clear that the simulated and observed speed-occupancy plots show

substantial difference. As discussed in section 2.1.1 May and Keller [18] showed that

by varying the car-following parameter values different speed-occupancy relations

can be obtained. Hence, we would expect that the calibration procedure adopted

namely, calibrating the car-following model parameters would better simulate the

speed-occupancy relationship and the build-up and dissipation of congestion.

2.4 Conclusion

We discussed the microscopic traffic simulator-MITSIM and identified the car-

following model parameters for calibration. The range of values for these parameters

were also determined. The network under study was discussed and the field data

was compared to the simulated data. The next chapter discusses the first step in the

calibration process, namely, selecting a sub-set of parameter from the eight parame-

ters (cflowerbound, minresponsedistance, a+, a-, #+, /-- y+, 7-) that we identified

in this chapter.
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Figure 2-3: Contour plots of simulated and field data.
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Chapter 3

Sensitivity Analysis

It was pointed out in the previous chapter that a single simulation run, of the network

under consideration, takes more than twenty minutes of simulation time. Even after

selecting the car-following model for calibration, we were left with eight parameters. It

would be advantageous to still reduce the number of parameters and calibrate only the

sensitive ones. Experimental design is a common methodology used to determine the

sensitivity with respect to the given parameters with the least number of simulation

runs.

In experimental design, the input parameters are called factors and the output

performance measures are called responses. In our study, the simulation was the ex-

periment, and the input parameters were the factors. Since minimizing the deviation

between the simulated and actual observations was our goal, we considered different

quantitative performance measures (responses) to select the 'best' among them. For

a given response, the most sensitive parameters were determined using experimental

design techniques.

This chapter discusses a few performance measures (responses) used, a common

experimental design technique, and how the set of sensitive parameters were identified

using this technique.
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3.1 Responses

As discussed earlier, we need quantitative performance measures (responses) for con-

ducting a successful experimental design. Since we had three output measures, namely

flow, speed, and occupancy, we used separate performance measures for each of them.

In literature, it is a common methodology to use the sum of squares of the deviations

as a performance measure. Based on this the following performance measures were

suggested.

low (siulatedflow - actualflow)2
allsensors alltime

Ospeed E Z (simulatedspeed - actualspeed)2
allsensors alltime

boccupancy = Z E (simulatedoccupancy - actualoccupancy)2

allsensors alltime

The three responses were selected for their simplicity. Note that each response

corresponds to an output measure of interest. An important question had to be

answered using the three different responses. If the sensitivity study showed that the

sensitive parameters for the three responses were the same, then minimization of one

response measure will affect the others. However, if the sensitive parameters were

different, then each response can be calibrated separately.

The sensitive parameters were determined using experimental design methodology

and the next section discusses the experimental design technique.

3.2 Experimental Design

If a simulation model has only one factor, then experimental design is simple: we

just need to run the simulation at various values, or levels, of the factor and from

the analysis of the responses, a conclusion can be made as to whether the factor is

sensitive or not. However, if there is more than one factor (say k factors), then we

also have to take into account the interactions between the factors, i.e. whether the

effect of one factor depends on the level of other factors. One way to measure the

effect of a particular factor would be to keep the level of all the other k-1 factors
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Table 3.1: Design matrix for a 23 factorial design

fixed and vary the level of the factor of interest and see how the response changes.

The whole process can be repeated for all the other factors. Such a process is not

only inefficient but it also does not allow us to measure the interactions between the

factors. A more efficient strategy is to use factorial experimental design techniques

to decide on a systematic way of performing experiments at different factor levels, so

that sufficient information can be gathered to identify the sensitive factors and their

interactions.

3.2.1 2 k Factorial Design

In a 2k factorial design, we choose two levels for each factor and then simulations are

done for each of the 2 k possible factor-level combinations, which are also called design

points. The form of the simulation experiments can be represented in a compact

tabular form, also known as a design matrix, as shown in Table 3.1, for three factors

(k=3). The '-' sign is associated with one level of a factor and the '+' sign represents

the other. Since there are three factors, we have 23 = 8 possible design points.

The variables Ri for i=1,2,...,8 are the values for the response when running the

simulation with the ith combination of the factor levels.

Typically, we are interested in two kinds of effects: the main and interaction

effects. The main effect measures how each factor individually affects the response

and the interaction effect measures whether the effect of one factor depends on the

30

Design Point Factor-1 Factor-2 Factor-3 Response
1 - - - R1
2 + - -R2

3 + -R3

4 + + - R4
5 + R5
6 + - + R6
7 -+ + R 7
8 + + + R 8



level of other factors. It is easy to calculate the main and interaction effects from the

design matrix.

The main effect of factor j is the average change in the response due to moving

the factor j from its '-' level to its '+' level while holding all the other factors fixed.

This average is taken over all the combinations of the other factor levels in the design.

From Table 3.1 the main effect of factor 1 (e1) is thus

(R2 A- R1) +(R4 - R3)+ (R6 - R5)+(R A- R7)(31ei = (3.1)
4

and for factor 2 is

e R3 - - R1) +(R4 - R2) +(R7 - R5)+ (R8 - R6)(.2= (3.2)

From Table 3.1 and the equations 3.1 and 3.2 a simple formula for the main

effect can be devised. To compute ej we simply apply the signs in the 'Factor-j'

column to the corresponding Ri, add them up, and then divide by 2 -1.

The interactions are measured using interaction effects. For a 3 factor design,

we have two-factor and three-factor interaction effects. Again an expression for in-

teraction effects can be easily determined from the design matrix. To compute eij

(two-factor i-j interaction), for each row, we multiply the sign in the 'Factor-i' col-

umn with the sign in the 'Factor-j' column, with the convention that the product of

like signs is a '+' and the product of opposite signs is a '-'. We apply this sign to

the corresponding Ri and add them up and divide by 2 -1. Using this formula the

interaction effect e13 can be written as follows.

AR - R2)+ (R3 - R4)+ (R6 - R5)+ (R8- R7)
e13 =

A similar formula can also be devised for determining the three-factor interaction

effect e123-

A - R1)+R3 -R4)+(R5- R6)+ (R8- R7)
e123=4
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Note that the effects are symmetric; for example e12 = e21, e13 = e31 , etc. and also

-123 = e-231 = e3 12 , etc.

3.2.2 Fractional Factorial Designs

In the previous section, an experimental design with three factors was examined. In

more involved designs, a large number of factors would be present and the number of

design points would become quite large; a design with 8 factors will involve 28 = 256

design points. Hence, when the number of factors are large, a full factorial design is

not practical. However, there are a few procedures that can be used to screen out

unimportant factors.

Fractional factorial design provides a way to get good estimates of the main effects

and two-way interactions at a fraction of the computational effort required by a full

2 k factorial design. In a fractional factorial design, we choose a subset (of size 2k-p

where 0 < p < k) from the 2k design points and run simulations for only these chosen

points. If p is large, the number of runs is less, but we would get less information

from the design. The information loss is understood in terms of confounding in 2 k-p

designs. Since we are reducing the number of design points, it could happen that the

formulas for two effects are the same. In this case the effects are said to be confounded

with each other.

Resolution is the term used to quantify the effect of confounding in 2 k-p factorial

designs. In a fractional factorial design, it is guaranteed that two effects are not con-

founded with each other if the sum of their 'ways' is less than the designs resolution;

for this purpose the main effects are regarded as 'one-way' effects. For instance in

a resolution IV (resolution four) design the main effects are not confounded with

two-way interactions ( 1 + 2 < 4 ), but the two-way interactions are confounded with

each other (2 + 2 = 4). Thus, resolution IV design allows us to obtain main effects

but cannot provide reliable two-way effects. A resolution V design on the other hand

allows us to obtain main and two-way effects, but three-way effects will be confounded

with two-way effects.

Once we have determined the factors k and the desired resolution, a subset of
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design points (i.e p in 2 k-P) has to be determined. The design matrix, for a given

number of factors and desired resolution, can be obtained from experimental design

literature [17].

3.2.3 Response Functions

A simulation model can be considered as a function with the responses depending on

the input parameters. The form of the function is unknown, and response function

methodology is a method used to approximate this function. Depending on the res-

olution of the experimental design technique, different functional forms can be fitted

to the responses 3.3. The coefficents of the response funtion are usually estimated

using least-square regression. Fatorial designs, are actually based on regression meta-

models and the regression least-square estimates are related to the effects estimates

in experimental design. Note that if we are considering a two factorial design, since a

variables has only two levels, the response function as given in 3.3 can be equivalently

represented and estimated using a dummy variable for each parameter.

The methodology we followed, to find the sensitive parameters, was to first fit a

polynomial function, with single order and all the two-factor interaction terms, to the

response. Then the influence of each term on the response variation was analyzed,

and less significant ones were dropped in the final model. Thus, the final model had

only the most significant parameters.

3.2.4 Stochasticity

Since we were dealing with a stochastic simulator, we had to replicate the simulation

at each design point. The simulation was replicated five times at each design point

(See Appendix C), and the response function was fitted to the average values of the

responses over the five replications.
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3.3 Results

A fractional factorial design of resolution five: 2y was conducted for the eight pa-

rameters identified in Chapter 2. The design matrix is given in Table 3.2. For each

design point, the three responses as given in Section 3.1 were evaluated. The plot of

the responses versus the iterations is shown in Figure 3-1. From this figure it is not

evident whether the three responses are sensitive to the same set of parameters.

To determine this, each response was initially represented by a polynomial func-

tion, with all the one-way and two-way interaction effects. The form of the response

function is given in 3.3

8 8 8

R = ip + E#ixi + E > #ijzixj (3.3)
i=1 i=1,i<j j=1

where p is the constant and R is the response.

x1 represents the variable minrespdistance, x2 is cflowerbound, x 3 is a+, x 4 is /#+,

X5 is 'Y+, x 6 is C, x7 is #_, and x8 is ..

The # are the coefficients to be determined from the analysis.

Finally the influence of each term on the response was analyzed and less significant

ones were dropped in the final model

As an example consider the response function given by

$O = S E (simulated pow - actualf po )2
allsensors alltime

The response is approximated as shown in Equation 3.3. The first step in determining

the sensitive variables is to screen out the less sensitive variables. For this, an analysis

of variance is conducted and the influence of each term on the response variation is

analyzed. The result of such an analysis using the BOSS/Quatro software program

(See Appendix A) is given in Table 3.3

Each row in Table 3.3 represents a term in Equation 3.3. The SOURCES column

represents the variables. As shown in Equation 3.3 we have eight variables, they are

represented by the rows from 1 to 8. The next set of rows represent the two-way
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Design Point minrespdistance

1 5 0.1 1 -4 -4 1 3 4
2 30 0.1 1 -4 -4 1 0.1 0.1
3 5 1 1 -4 -4 1 0.1 0.1
4 30 1 1 -4 -4 1 3 4
5 5 0.1 30 -4 -4 1 0.1 4
6 30 0.1 30 -4 -4 1 3 0.1
7 5 1 30 -4 -4 1 3 0.1
8 30 1 30 -4 -4 1 0.1 4
9 5 0.1 1 -0.1 -4 1 0.1 4
10 30 0.1 1 -0.1 -4 1 3 0.1
11 5 1 1 -0.1 -4 1 3 0.1
12 30 1 1 -0.1 -4 1 0.1 4
13 5 0.1 30 -0.1 -4 1 3 4
14 30 0.1 30 -0.1 -4 1 0.1 0.1
15 5 1 30 -0.1 -4 1 0.1 0.1
16 30 1 30 -0.1 -4 1 3 4
17 5 0.1 1 -4 -0.1 1 3 0.1
18 30 0.1 1 -4 -0.1 1 0.1 4
19 5 1 1 -4 -0.1 1 0.1 4
20 30 1 1 -4 -0.1 1 3 0.1
21 5 0.1 30 -4 -0.1 1 0.1 0.1
22 30 0.1 30 -4 -0.1 1 3 4
23 5 1 30 -4 -0.1 1 3 4
24 30 1 30 -4 -0.1 1 0.1 0.1
25 5 0.1 1 -0.1 -0.1 1 0.1 0.1
26 30 0.1 1 -0.1 -0.1 1 3 4
27 5 1 1 -0.1 -0.1 1 3 4
28 30 1 1 -0.1 -0.1 1 0.1 0.1
29 5 0.1 30 -0.1 -0.1 1 3 0.1
30 30 0.1 30 -0.1 -0.1 1 0.1 4
31 5 1 30 -0.1 -0.1 1 0.1 4
32 30 1 30 -0.1 -0.1 1 3 0.1
33 5 0.1 1 -4 -4 30 3 0.1
34 30 0.1 1 -4 -4 30 0.1 4
35 5 1 1 -4 -4 30 0.1 4
36 30 1 1 -4 -4 30 3 0.1
37 5 0.1 30 -4 -4 30 0.1 0.1
38 30 0.1 30 -4 -4 30 3 4
39 5 1 30 -4 -4 30 3 4
40 30 1 30 -4 -4 30 0.1 0.1
41 5 0.1 1 -0.1 -4 30 0.1 0.1
42 30 0.1 1 -0.1 -4 30 3 4
43 5 1 1 -0.1 -4 30 3 4
44 30 1 1 -0.1 -4 30 0.1 0.1
45 5 0.1 30 -0.1 -4 30 3 0.1
46 30 0.1 30 -0.1 -4 30 0.1 4
47 5 1 30 -0.1 -4 30 0.1 4
48 30 1 30 -0.1 -4 30 3 0.1
49 5 0.1 1 -4 -0.1 30 3 4
50 30 0.1 1 -4 -0.1 30 0.1 0.1
51 5 1 1 -4 -0.1 30 0.1 0.1
52 30 1 1 -4 -0.1 30 3 4
53 5 0.1 30 -4 -0.1 30 0.1 4
54 30 0.1 30 -4 -0.1 30 3 0.1
55 5 1 30 -4 -0.1 30 3 0.1
56 30 1 30 -4 -0.1 30 0.1 4
57 5 0.1 1 -0.1 -0.1 30 0.1 4
58 30 0.1 1 -0.1 -0.1 30 3 0.1
59 5 1 1 -0.1 -0.1 30 3 0.1
60 30 1 1 -0.1 -0.1 30 0.1 4
61 5 0.1 30 -0.1 -0.1 30 3 4
62 30 0.1 30 -0.1 -0.1 30 0.1 0.1
63 5 1 30 -0.1 -0.1 30 0.1 0.1
64 30 1 30 -0.1 -0.1 30 3 4

Table 3.2: Design matrix for a 2 8 factorial design
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Figure 3-1: Plot of the responses versus the design points
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interaction effects. For example, the ninth row with numbers 1 2 under the sources

column represent the two-way interaction between the variables x1 and x 2. Since we

have eight variables we have a total of 8C2 = 28 two-way interaction effects. The

SUM OF SQUARES column gives the variation due to each variable. The residual

variation is given in the second to last row, and the total variation is given in the

last row. DF denotes the degree of freedom. MEAN SQUARED is an estimate of

the variance. The residual mean squared is also given in the second to last row. The

column F-LEVEL gives the result of the F-test: for each variable the ratio of its mean

squared to the residual mean squared. Based on the F-test a conclusion is made as

to a variable's significance.

We can see that the main effect of only a few parameters are significant. Also note

that the interaction effects are significant only for those parameters with significant

main effects. So, in the next step, the response function is modified to include only

the significant terms, and the analysis is done again. The result is shown in Table

3.4. The same procedure is applied to the response 4 speed and /occupancy. The results

for the final model are shown in Tables 3.5 and 3.6.

3.4 Conclusion

We can see that the four parameters (cflowerbound, a-, /-, -y) (see Chapter 2) were

found to be sensitive for the three responses. Moreover, these four parameters affect

the deceleration characteristics of a vehicle. It appears that the parameters affecting

the deceleration characteristics are more sensitive to the current data set. Also note

that since the sensitive parameters were found to be the same for the three responses,

the minimization of one response will definitely affect others.

The results obtained depends on the range and levels of the parameters. The range

of the paramater values should be correctly determined . As discussed in section 2.2.1

the values we used were based on previous estimation studies. Moreover, when we

use a 2 k factorial design, we are assuming that the parameter effects vary linearly

between the '+' and '-' values. This could be improved by using a 3k factorial design,
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though with increased computational costs.

The next chapter discusses the calibration of these parameters over the range of

values determined in Chapter 2.

ANALYSIS OF VARIANCE

SOURCES SUM OF SQUARES DF. MEAN SQUARED F-LEVEL CONCLUSION

0.1677211E+14
0.6921709E+16
0.1128680E+14
0.1963264E+15
0.1371702E+15
0.1382006E+17
0.4448516E+17
0.1105315E+18
0.3015633E+14
0.7470733E+13
0.1449746E+13
0.9150158E+14
0.2347503E+11
0.1427141E+14
0.1352122E+14
0.4943016E+12
0.2385160E+14
0.2293346E+14
0.3730828E+15
0.4156797E+16
0.1148690E+14
0.1171587E+14
0.2205883E+13
0.4250261E+13
0.1626635E+13
0.1626996E+14
0.1655424E+15
0.3419700E+13
0.3463867E+10
0.3454109E+13
0.9820832E+13
0.1073757E+14
0.1830763E+12
0.9438494E+16
0.1109459E+17
0.1358164E+17

0.1400204E+17
0.229213E+18

27
63

0.167721E+14
0.692171E+16
0.112868E+14
0.196326E+15
0.137170E+15
0.138201E+17
0.444852E+17
0.110531E+18
0.301563E+14
0.747073E+13
0.144975E+13
0.915016E+14
0.234750E+11
0.142714E+14
0.135212E+14
0.494302E+12
0.238516E+14
0.229335E+14
0.373083E+15
0.415680E+16
0.114869E+14
0.117159E+14
0.220588E+13
0.425026E+13
0.162663E+13
0.162700E+14
0.165542E+15
0.341970E+13
0.346387E+10
0.345411E+13
0.982083E+13
0.107376E+14
0.183076E+12
0.943849E+16
0.110946E+17
0.135816E+17

0.518594E+15

0.323415E-01
0.133471E+02
0.217642E-01

0.378574E+00
0.264504E+00
0.266491E+02
0.857803E+02
0.213137E+03
0.581502E-01
0.144057E-01
0.279553E-02

0.176442E+00
0.452667E-04
0.275194E-01
0.260729E-01
0.953157E-03
0.459928E-01
0.442224E-01

0.719412E+00
0.801551E+01
0.221501E-01
0.225916E-01
0.425359E-02
0.819574E-02
0.313663E-02
0.313732E-01

0.319214E+00
0.659418E-02
0.667934E-05
0.666053E-02
0.189374E-01
0.207052E-01
0.353024E-03

0.182002E+02
0.213936E+02
0.261894E+02

NO SIGNIFICANT
HIGH. SIGNIFICANT

NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT

HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT

NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT

HIGH. SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT
NO SIGNIFICANT

HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT

Table 3.3: Screening for o4f,,
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Residual
Total



ANALYSIS OF VARIANCE

SOURCES SUM OF SQUARES DF. MEAN SQUARED

0.1382006E+17
0.9438494E+16
0.1109459E+17
0.1358164E+17
0.1105315E+18
0.1358164E+17
0.1109459E+17
0.9438494E+16

0.3663201E+17
0.229213E+18

1
1
1
1
1
1
1
1

0.138201E+17
0.943849E+16
0.110946E+17
0.135816E+17
0.110531E+18
0.135816E+17
0.110946E+17
0.943849E+16

F-LEVEL

0.207497E+02
0.141711E+02
0.166576E+02
0.203917E+02
0. 165954E+03
0.203917E+02
0.166576E+02
0.141711E+02

CONCLUSION

HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT

55 0.666037E+15
63

ALLOCATION OF VARIATION

% VARIATION EQUALS

explained by 2 6.03%
explained by 6 4.12%
explained by 7 4.84%
explained by 8 5.93%
explained by 2 7 48.22%
explained by 6 7 5.93%
explained by 6 8 4.84%
explained by 7 8 4.12%
unexplained 15.98%

SOURCE OF
VARIATION

REGRESSION
RESIDUAL

TOTAL

SUM OF
SQUARES

0.21403D+18
0.15183D+17
0.22921D+18

DF MEAN SQUARE F-LEVEL

8 0.26754D+17 0.969D+02
55 0.27606D+15
63

CONCLUSION

HIGH. SIGNIFICANT

Maximum deviation
Minimum R-squared

1136.02 %
0.93376

Table 3.4: Result for the final model for Of o.
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2
6
7
8
2
6
6
7

7
7
8
8

Residual
Total

R-SQUARED

0.93376



SOURCES SUM OF SQUARES

ANALYSIS OF VARIANCE

DF. MEAN SQUARED F-LEVEL CONCLUSION

0.1831540E+12
0.1139058E+12
0.1193230E+12
0.2362965E+12
0.1620284E+13
0.2362965E+12
0.1193230E+12
0.1139058E+12

Residual 0.8140719E+11
Total 0.282390E+13

1
1
1
1
1
1
1
1

0.183154E+12
0.113906E+12
0.119323E+12
0.236297E+12
0.162028E+13
0.236297E+12
0.119323E+12
0.113906E+12

0.123742E+03
0.769565E+02
0.806165E+02
0.159646E+03
0.109469E+04
0.159646E+03
0.806165E+02
0.769565E+02

HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT

55 0.148013E+10
63

ALLOCATION OF VARIATION

% VARIATION

explained by 2
explained by 6
explained by 7
explained by 8
explained by 2
explained by 6
explained by 6
explained by 7
unexplained

EQUALS

6.49%
4.03%
4.23%
8.37%

7 57.38%
7 8.37%
8 4.23%
8 4.03%

2.88%

SOURCE OF
VARIATION

REGRESSION
RESIDUAL

TOTAL

SUM OF
SQUARES

0.26134D+13
0.21054D+12
0.28239D+13

DF MEAN SQUARE F-LEVEL

8 0.32667D+12
55 0.38281D+10
63

0.853D+02

CONCLUSION

HIGH. SIGNIFICANT

Maximum deviation
Minimum R-squared

285.01 %
0.92544

Table 3.5: Result for final model for Ospeed
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6
7
8
2
6
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7

7
7
8
8

R-SQUARED

0.92544



SOURCES SUM OF SQUARES

ANALYSIS OF VARIANCE

DF. MEAN SQUARED F-LEVEL CONCLUSION

0.1660677E+11
0.3959231E+11
0.2288750E+11
0.8045689E+11
0.3602031E+12
0.8045689E+11
0.2288750E+11
0.3959231E+11

0.9135994E+10
0.671819E+12

1
1
1
1
1
1
1
1

0.166068E+11
0.395923E+11
0.228875E+11
0.804569E+11
0.360203E+12
0.804569E+11
0.228875E+11
0.395923E+11

0.999751E+02
0.238351E+03
0.137786E+03
0.484362E+03
0.216847E+04
0.484362E+03
0.137786E+03
0.238351E+03

HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT
HIGH. SIGNIFICANT

55 0.166109E+09
63

ALLOCATION OF VARIATION

% VARIATION EQUALS

explained by 2 2.47%
explained by 6 5.89%
explained by 7 3.41%
explained by 8 11.98%
explained by 2 7 53.62%
explained by 6 7 11.98%
explained by 6 8 3.41%
explained by 7 8 5.89%
unexplained 1.36

SOURCE OF
VARIATION

REGRESSION
RESIDUAL

TOTAL

SUM OF
SQUARES

0.61533D+12
0.56491D+11
0.67182D+12

DF MEAN SQUARE F-LEVEL

8 0.76916D+11 0.749D+02
55 0.10271D+10
63

CONCLUSION

HIGH. SIGNIFICANT

Maximum deviation
Minimum R-squared:

1044.84 %
0.91591

Table 3.6: Result for final model for @occupany
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2
6
7
8
2
6
6
7

7
7
8
8

Residual
Total

R-SQUARED

0.91591



Chapter 4

Calibration

In the previous chapter we identified (cflowerbound, a-, #-, -) as the set of sensitive

parameters. The next step was to calibrate these parameters. In this thesis, calibra-

tion is done by optimizing an objective function criteria. However, some important

issues had to be addressed. The first task was to identify the particular response to

calibrate from among flow, speed and occupancy. Furthermore, there were different

ways in which the sensor data across space and time could be combined to form a

suitable objective function. Moreover, due to the stochasticity of the simulator, the

calibrated parameter values were also stochastic. Hence, we had to address this is-

sue while calibrating the parameter values. Lastly, the nature of the search space

determined the effectiveness of the optimization methodology.

The following issues are discussed in this chapter before presenting the results

" the selection of a response for calibration,

" the effect of two different objective function forms in calibrating the parameters,

" the effect of stochasticity in calibrating the parameters, and

" the optimization methodology adopted.

Finally, simulation is done with calibrated parameter values and the simulation output

is compared to the observed actual data.
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4.1 Response Selection

When calibrating a simulator, our goal is to minimize the deviation between the

observed and simulated values of flow, speed, and occupancy. In this thesis, we have

adopted a simpler approach and have focused our attention on minimizing only the

deviation in speed. This helps us focus on other aspects of the problem, namely

the effect of using different objective function forms, stochasticity, and the nature of

the search domain. Moreover, once we have a procedure to minimize the deviation in

speed, the next step could be to study the effect of minimizing a weighted combination

of all the three responses.

In determining the O-D matrices by the method of Ashok and Ben-Akiva [15], the

simulated and observed flow values were already matched. Hence, we narrowed our

investigation to minimizing the deviation in speed or occupancy. In a later section

(see Section 4.5.2), it is shown that the correlation between the deviation in flow and

speed, was higher than that between flow and occpuancy. This justified our approach

of minimizing the deviation in speed.

4.2 Objective Function Forms

Once a response was selected for calibration, the next step was to explore different

objective function forms. We had sensor data from different locations and time peri-

ods. If we assume, that the parameters of the car-following model do not change with

respect to geometry and traffic conditions, more efficient estimates could be obtained

by pooling the sensor data.

Often an objective function as shown in Equation 4.1 is used for minimizing the

deviation between the simulated and observed speed.

4
speed = Z I (simulatedspeed - actualspeed)2 (4.1)

alisensors alltime

However, pooling of data adds new dimensions of difficulty. The observations may

be correlated along both time and space. This is very significant in the case of a traffic
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simulation model, where the speed values across sections are correlated because of

the propagation of flow and shock waves. The build up and release of congestion

will produce the correlation along time. In addition, there is also the problem of

heteroscedasticity, wherein, the error associated with the estimated speed values will

depend on its value.

When we formulate an objective function to minimize the deviation in the simu-

lated speed, all the above factors have to be considered. It is difficult to account for

the effect of correlation in devising an appropriate objective function form. Moreover,

if correlations across both space and time are present then there could be situations

in which pooling of data could lead to these effects canceling each other. However,

if we suspect that the error associated with the speed depends on the value of speed

then we can account for this by dividing each term in 4.1 by the speed value. Such

an objective function is shown below.

Ospeed - E E (simulatedpeed- actual ) (4.2)
allsensors alltime actualpeed

Different objective function forms can be formulated based on the assumptions

regarding the error terms. In our work, we confine our attention to the two objective

function forms. If our assumption about the error term is correct we would expect

more efficient optimal parameter estimates when using the second objective function

form.

4.3 Stochasticity

A common procedure to take into account stochasticity is to run several replications

of the simulation, at each parameter value, and to take the mean value of the outputs.

But even with the small network under consideration a single replication took twenty

minutes of simulation time. Since multiple replication approach is expensive, we

attempt to account for stochasticity by fixing the random number seed. But the

validity of the parameter estimates obtained by such a technique is questionable. To

understand the effect of stochasticity, we calibrate separately for each random number
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seed. The parameter value obtained for a given random number seed is a particular

realization of its actual value. Hence to obtain a better estimate we determine the

sampling distribution of the cailbrated parameters. The whole process is illustrated

in the example given below.

Assume that we have two objective function forms given by x and w

N

x = Z(Zsimulated(pl, p2 ) - Zobserved) 2

= Nzsimulated (pip2 ) - Zobserved) 2

i=1 Zobserved

where z is the response we are focusing our attention on, and N is the number of data

points. Also assume that we have two parameter values to calibrate, namely pl and

p2. When we calibrate the values of (pl, p2) we are essentially trying to determine

that combination of (p1,p2) which will minimize the respective objective function.

Consider Figure 4-1 (a) 1. It shows the objective function x over the domain for a

fixed random number seed. Note that when we fix the random number seed, for a

given value of (pl, p2) the response is always the same. Now the optimal calibrated

parameter will be that value which minimizes the objective function.

Since we are dealing with a stochastic simulator; for a given value of (p1, p2) the

responses form a distribution. Hence if we run the simulator with different random

number seeds we will get different surfaces and the family of such surfaces represent

the true response function. This is indicated in Figure 4-1(b) where we have plotted

the objective function for three different random number seeds. Note that the optimal

values of the parameters could be different for each seed. The optimal parameters

are thus stochastic and are distributed around a mean value, which we are trying

to estimate. Now from a limited number of runs we can calculate the sampling

distribution of these parameters.

In Figure 4-1(c) we have the objective function w. Note that for this objective

function, the distribution of the optimal parameters is different from our first one.

'Note that these figures are not for the problem at hand; they are only for illustration.

45



-.. .-. or a Xed seed

-0.5 -

-5 -5

p2 .1

0.5 - Xfr a set of diffrent seeds.

0

5

-5 -5

P2  p1

0.- -f-or a set of d erent-seeds.

0
3-

-0.5

di stribtion of optia rrieter* valI5 5

-5 -5

p2 p1

Figure 4-1: Illustrating the effect of stochasticity in calibrating parameter values
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Using a different objective function form is equivalent to using a different estimator.

Moreover, in simulation it is difficult to determine the properties of these estimators

and we assume that both the estimators are consistent.

In the case of Linear Least Squares estimation it can be shown that the variance of

the parameter estimates depends on the variance of the error term. Hence we would

also expect that in our case (non-linear) the variance of our parameter estimates

would depend on the error term variance. Since the objective function forms we have

is actually a sum of the estimated errors, we would expect that a better objective

function formulation i.e., the one accounting for heteroscedasticity, would give us

better estimates of errors. If we have better error estimates we would also expect

that the variation of the objective function would be smaller. Hence it would be

interesting to see whether the objective function which we corrected for an assumed

heteroscedasticity would have better properties than a simple sum of squares form.

4.4 Optimization

The calibration of a simulator by minimizing an objective function form is essentially

a nonlinear estimation problem. Hence as discussed in [20] we could use direct search,

or an optimization based methodology. In direct search the simulation needs to be

done at all possible combinations of the parameter values. This is a very expensive

process especially in traffic simulation. In an optimization-based methodology we

start with an initial guess of parameter values, and based on a chosen direction of

descent, the parameter values are successively altered until we get an optimal value.

In an optimization-based method there is no guarantee that the search process

will converge, and even if does converge we cannot determine whether it is a local

optimum or a global optimum. But this is a very generic problem in any optimization

process and appropriate robust optimization methodology need to be used depending

on the nature of the search domain. But in our case we first need to determine

whether we have local optima in our search space. If this can be determined, then in

future work it makes sense to use robust heuristic methods like Genetic Algorithms
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for parameter calibration [7].

4.4.1 Optimization Methodology

The optimization problem that we are trying to solve is non-explicit and non-linear

with respect to the parameter space. Hence we used an approximation to the objec-

tive function based on function evaluations (simulation runs). Once an approximation

of the function is obtained, the optimal parameter values can be determined. How-

ever the actual function computed at this new point may not correspond to the value

computed using the approximation. Hence an iterative process of evaluation, approx-

imation and optimization is done until convergence is obtained. Note that we are

trying to minimize a non-differentiable function using gradient-based methods. This

may lead to troubles in the convergence of the optimization process. Moreover due to

local optima we also need to explore the search space from different starting points.

For our optimization, we used the methodology provided by the Boss/Quattro

analysis program (See Appendix A). We used the Method of Diagonal Quadratic

approximation (MDQA), a second order algorithm, meaning it uses values from pre-

vious analyses for computing the diagonal terms of the hessian matrix (second order

terms). To verify that the optimal points obtained are local optima we also ran a

first order Convex Linearization based algorithm at each optimal point.

We first fixed the random number seed for the simulation and optimized the

parameter values for different starting values. We then selected the best of these

values obtained and repeated the whole process for different random number seed

values. From the selected values of the optimal parameters, we finally determined the

sampling distribution of the parameter estimates. We also compared the distribution

obtained with the two different objective function forms.

4.5 Results

The variation of the two objective function forms were first compared. Then, the

convergence property of the objective function forms, for a fixed seed, was studied.
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The correlation of the objective function forms to the deviations in occupancy and

flow was also determined. Optimal parameter values were then estimated for a fixed

random number seed. The results obtained using these optimal parameters were

compared to the one from the initial parameter value. Finally a sampling distribution

of the optimal parameter values were determined and the results were compared to

the starting value.

4.5.1 Comparison of the Spread of the Objective Functions

As discussed before, we had two different objective function forms under considera-

tion (equations 4.1 and 4.2). Since the objective function forms we have are the sum

of the estimated errors, we would expect that the function form corrected for het-

eroscedasticity will have lower variance. Hence it would be interesting to compare the

variation of the two objective function forms. If the second form has lower variation

then it shows that correction applied for heteroscedasticity was appropriate.

The variance of the estimated parameter values depend on the error term variance.

The objective function variation also depends on the error term variance. Hence, an

objective function with a lower variation would be expected to give more efficient

parameter estimates.

We compare the variation of the two objective functions using the coefficient of

variation, defined by

C,= /

where a is the standard deviation, y is the mean and C, is the coefficient of variation.

The two objective functions were evaluated at different points in the parameter space.

For each of these points the variance of the objective function was estimated by

replicating the simulation run twenty times. The properties for the objective function

estimated at four different parameter points are given in Table 4.1 for illustration.

It was found that the variation depends on the point in the parameter space.

Moreover it was found that, as expected, the variation of the objective function

corrected for heteroscedasticity was at best lower or at worst equal to that of the sum
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Point
(cflower, a.,#_, -y-) Objective function Mean St. Deviation CV
(0.34,3.75,0.89,2.71) 34805 15800 0.4540

28.93 3.34 0.1154
(0.1,1,0.1,0.1) 44864 23883 0.5323

30.21 6.04 0.1999
(0.1,12.4,0.1,4) 30067 1276 0.0424

# 24.53 1.30 0.0530
(0.1,1.55,1.08,1.65) 101808 2766 0.0272

44.56 1.07 0.0240

Table 4.1: Comparing the variation for the two objective function forms

of squares form. Hence, we could expect more efficient parameter estimates using the

second form of the objective function.

4.5.2 Results for a Fixed Random Number Seed

This section summarizes the result obtained for a fixed random number seed.2

Convergence

The convergence of the algorithm was found to depend on the starting value. The

convergence for four different starting points while optimizing for the function ?$ is

given in Figure 4-2. The variation in the function # while optimizing for b is also

plotted. The convergence for optimizing the function 4 is given in Figure 4-3 3.

This process was repeated for other values of random number seed. Another set

of plots is given in Figures 4-4 and 4-5 4.

The convergence of the objective function was found to depend on the starting

parameter values. Moreover, the converged parameter values were also dependent on

the starting values. This indicates that the search domain is highly non-linear even

for a fixed random number seed. In addition, changing the random seed significantly

changes the convergence. This is because we are using a gradient based optimization

2In MITSIM random number seed is specified by using the -R xxxxxxxx option where each x is
any number from 0 to 9

3 using x=2 for all x's
4 using x=5 for all x's
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Point Function Values
(cflower, a-, _,17-) 1p <_

(0.1,1.56,2.77,3.95) 35075 29.23
(0.1,1.15,0.1,3.99) 31373 24.33
(0.1,2.11,2.42,3.8) 33167 30.62

(0.1,1,0.10.1) 30791 28.21
(0.1,1,3,4) 28297 28.19

(0.1,28.1,0.1,4) 27900 20.91

Table 4.2: Local optimum values

algorithm and the response function with a different random number seed could have

a diferent gradient. This indicates a significant impact of stochasticity on calibration.

Moreover, there does not seem to be any significant difference between the con-

vergence of the two forms of objective functions. This is intuitive because the sum of

squares of the deviations and sum of squares of the percentage deviations are of the

same degree. To obtain the function 4 we are dividing each term of / by a constant.

This will have an effect on scale but the degree of the function is preserved.

It was also observed that there were cases when the optimization algorithm failed

to converge for around twenty iterations, and also where it started oscillating between

particular values. Also note that the values converged to need not necessarily have

the minimum objective function values.

From Figure 4-5 we can see that local optima exist. To explore whether local

optima with comparable objective function values were present, points in the param-

eter space were selected with low objective function values, but different parameter

values 5 (Table 4.2) and a first order search was conducted in the neighborhood of

these points. This verified that what we have is a local optima problem and not an

identification problem. Local optima were also found to be present for both forms of

the objective functions.

The previous discussion shows that even for a fixed random seed we have a highly

irregular search space with many local optima. This was found to be true for both

forms of the objective functions.
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Sum of Squared of deviation in
Flow Speed(V) Occupancy Speed(#)

Flow 1.0000 0.8357 0.7521 0.8479
Speed(o) 0.8357 1.0000 0.9571 0.9983

Occupancy 0.7521 0.9571 1.0000 0.9561
Speed(#) 0.8479 0.9983 0.9561 1.0000

Table 4.3: Correlation coefficient
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Figure 4-6: Correlation plots

Correlation

To find out whether we would be making any systematic errors by choosing one

objective function form over the other, we determined the correlation of the two

objective function values for different points in the search space 6. To understand the

effect of minimizing the deviation in speed, on the deviation in occupancy and flow,

we determined their correlation with the two objective function values. The result

is given in Table 4.3. But because the correlation measure only linear dependencies,

the plots are given in Figure 4-6.

Table 4.3 shows that the deviation in speed has a high correlation to that of flow

and occupancy. This justifies our approach to minimize the deviation in speed. It

6as many as 150 different points and for different random seeds

54

I

/
/

S2.5

c2

0
c5 1.5

16

CD 0.5
E

Cn

-'V

. . '0 5



Sum of Squared of deviation in
Flow Speed(V)) Occupancy Speed(#)

Flow 1.0000 0.2601 -0.2311 0.3333
Speed(?) 0.2601 1.0000 0.5648 0.4801

Occupancy -0.2311 0.5648 1.0000 0.3381
Speed(#) 0.3333 0.4801 0.3381 1.0000

Table 4.4: Correlation Coefficient

also shows that the values of the two objective functions under consideration are

highly correlated. However, if we consider the values near the optimum (i.e. in the

range (20-35) for #), we can observe that the two different functions are not highly

correlated. To substantiate this, the data was segmented based on the proximity

to the optimal solution and the new correlation coefficients determined are given in

Table 4.4.

This table shows that around the optimal parameter value, the two objective

functions are not highly correlated and so the form of the function would influence

the optimal parameter values. Hence, we need to have additional criteria to select the

optimal parameter estimates. An appropriate criteria would be to see which of the

optimal parameter estimates gives a low deviation for flow and occupancy. This also

indicates that objective function forms wieghted over the different ouput measures,

may give better parameter estimates.

Optimal parameter values for fixed random number seeds

The calibration was done by fixing the random number seed, and was repeated for

different starting parameter values. The best parameter values (which gave the lowest

objective function values) were saved. The whole process was repeated for different

random number seeds. Finally the parameter values obtained by minimizing the two

different objective function forms were compared. However, for an effective compari-

son to be made, the average objective function values at these parameter values had

to be determined. Table 4.5 compares the two best solutions obtained by optimizing

the function @ and Table 4.6 compares the two best solutions obtained by optmizing

the function 4.
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Parameter Values Fixed random number seed Average over many seeds
(cflowerbound,a-_,3,--) VP

Mean Std. Dev Mean Std. Dev
(0.1,1,3,4) 28927 28.19 34376 3511.1 29.95 1.55

(0.1,10.71,0.1,4) 27075 18.66 43346 24736 27.48 6.63

Table 4.5: Parameter values obtained for optimizing @

Parameter Values Fixed random number seed Average over many seeds
(cflowerbound,a-,#-_,'y-) V0

Mean Std. Dev Mean Std. Dev
(0.1,28.1,0.1,4) 27900 20.91 28880 1333 23.87 1.62
(0.1,5.65,3,4) 30506 23.07 36264 5415.7 24.96 1.38

Table 4.6: Parameter values obtained for optimizing #

By comparing the values of @ (in the second column) in the two tables, we observe

that the optimal values of 0 obtained are comparable irrespective of the form of the

objective function we are optimizing. This also holds true for # (compare the third

column). However, note that a low value of V' does not necessarily mean a low value

of 4 and vice versa. This is evident when we compare the first row of Table 4.5 and

the second row of Table 4.6. This corroborates what we had discussed in the section

on correlation (see 4.5.2), that near the optimal parameter values the correlation

between 4' and # is very low.

We are actually interested in the average value of 4' abd # over many random

number seeds. The mean values and their standard deviations are given in the last

four columns of the two tables. It can be noted that a low value of the objective

function for a fixed seed need not guarantee a low mean value. However, as noted

earlier the coefficient of variation of the function # is lower than that for 4. Hence we

would expect that the quality of the solution obtained by fixing the random number

seeds is better for the function 4. This can also be observed by comparing the

solutions in Table 4.6 and 4.5.

Due to the nature of the search domain we are not able to conclusively recommend

one objective function over the other. However, we are able to observe a high cor-

relation between the two objective functions, suggesting that their bias is the same.
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Parameter Values P
(cflowerbound,a-,#-,--) Mean Std. Dev Mean Std. Dev

(0.1,1.55,1.08,1.65) 101808 2766 44.56 1.07

Table 4.7: Objective function values for initial parameter value

Moreover, we observed that the coefficient of variation of one of them is lower. The

function with the low coefficient of variation gave better parameter estimates for fixed

random number seeds.

Comparison to initial parameter values

The starting parameter values and the average objective function values are given in

Table 4.7. By comparing these values to the values in Table 4.5 and 4.6 we can see

that there is a significant improvement in the objective function values. To graphically

compare the solutions obtained above, for each parameter set, we plot the three figures

as in Chapter 2. These are given from Figure 4-7 to 4-18.

Consider the scatter plots in Figures 4-7 to 4-9. Note that even though the

objective function values are very close to each other the plots are very different.

Moreover it can be seen that the plots for speed are very similar but the ones for

occupancy and flow are substantially different. This is because we optimized only for

the response-speed. Moreover, note that Figure 4-9 matches best the flow, speed,

and occupancy. In addition, we can also observe from the contourplots that the one

for the Parameter Set 3 (0.1,28.1,0.1,4) is able to simulate the build-up and release

of congestion. This is also clear from the flow-speed-occupancy plots.

We can conclude that calibration is able to provide better parameter estimates,

but based on our study we would expect that a better objective function definition-

possibly using weights to combine responses-would be able to give better results.

4.5.3 Sampling Distribution of Optimal Parameter Values

The previous section discussed the perils involved in optimizing with a fixed random

number seed. We could also account for stochasticity by obtaining the sample from
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Figure 4-7: Comparison of simulated and observed data for parameter set 1
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Figure 4-10: Comparison of simulated and observed data for parameter set 4
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Figure 4-11: Contour plots for simulated and field data for parameter set 1
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Figure 4-12: Contour plots for simulated and field data for parameter set 2
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Figure 4-13: Contour plots for simulated and field data for parameter set 3
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Figure 4-14: Contour plots for simulated and field data for parameter set 4
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Table 4.8: Optimal parameter value by optimizing objective function form V)

Parameter Mean Std. Deviation
cflowerbound 0.1078 0.0233

a- 14.6967 13.857
#_ 1.7067 1.2881
'y. 3.9478 0.0733

Table 4.9: Optimal parameter value by optimizing objective function form <5

the best parameter values; the best parameter values for each seed were saved, and

the sampling distribution was determined by averaging over these saved values. The

sampling distribution was determined separately for the two objective functions and

the result is given in Tables 4.8 and 4.9.

The high standard deviations associated with the parameter estimates suggest

that the estimates are not very reliable. This could be due to the nature of the search

domain. Finally, the parameter values obtained by minimizing the two different

objective function forms were compared by plotting the same set of figures as before.

These are give in Figures 4-19 to 4-24.
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Figure 4-19: Comparison of simulated and observed data for parameter set obtained
by optimizing 0
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Parameter Mean Std. Deviation
eflowerbound 0.1000 0.0000

a_ 9.1533 11.5443
0- 1.2167 1.2496
__ _ 3.7803 0.2758
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4.6 Conclusion

This chapter investigated the problems involved in calibrating a stochastic simulator.

The results can be summarized as follows.

" Minimization of the deviation in speed was our objective function criteria. How-

ever by comparing the Figures 4-7 to 4-10 we can see that though the distri-

bution of the speed values are roughly the same, the variation in flow and

occupancy could be substantial. This suggests that objective function forms

with weighted responses would give better results.

" The search domain was found to be highly non-linear. As a result finding a

global optimum solution is likely to be intractable. The convergence and the

solutions obtained were found to depend on the starting parameter values. This

means that the optimization method discussed in Section 4.4 was able to find

only local optimal solutions

" The parameter values obtained by ignoring the stochastic nature of the simu-

lation could turn out to be an outlier as shown in Table 4.5 and 4.6. Hence
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we need to evaluate the optimal parameter values for several random seeds and

select the best from among them.

" The two objective function forms considered were highly correlated indicating

that the bias is the same. The two function forms had different coefficients of

variation. However it was not possible to make a final recommendation due to

the nature of the search domain.

" The quality of the solution obtained by fixing the random number seed was

found to be better for the objective function with lower coefficient of variation.

" Obtaining the sampling distribution of the parameters was not found to be a

good strategy due to the presence of local optima.

* By comparing the objective function value at the optimal point to the starting

parameter values, it was found that calibration has significantly improved the

objective function values. Figure 4-25 compares the optimal values obtained

with the starting value. The X-axis lists the four optimal parameter points

obtained in the order listed in Tables 4.5 and 4.6. The Y-axis represents the

objective function value. The straight line represents the starting value for the

objective function.
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Chapter 5

Summary, Conclusions and

Research directions

5.1 Summary and Conclusion

Based on our literature survey, a systematic study on calibrating microscopic traffic

simulation models was found to be absent. In this work we developed the framework

for the calibration of a stochastic microscopic traffic simulator. An optimization based

framework was developed for calibration. The various issues affecting a calibration

study, namely the selection of a response from among the different simulation outputs,

the formulation of an appropriate objective function, the systematic identification of

sensitive parameters, and the effect of stochasticity in calibrating the parameter values

were discussed. All these issues were also quantified with respect to the simulator-

MITSIM.

Car-following parameters were first selected for calibration and were found to be

sensitive. Experimental design methodology was used to determine the set of sensitive

parameters from among the car-following model parameters. This technique was able

to substantially reduce the number of sensitive parameters. Car-following parameters

related to the deceleration characteristics were found to be the most sensitive.

Two different objective function forms were considered for calibration. One func-

tion was found to have a lower coefficient of variation, implying that the correction
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applied for heteroscedasticity was appropriate. The search space was explored and

local optima were found to be present. The convergence property and the optimal

parameter values were found to depend on the starting values of the parameters. This

indicates that robust optimization based techniques, for example Genetic Algorithms,

should be investigated for future studies.

The response speed was selected for calibration. The correlation between the

deviation in speed and occupancy and between speed and flow was found to be high.

However, different optimal solutions, with about the same deviation in speed but

substantial difference in the deviation of flow and occupancy, were found . This

indicates that other forms of objective functions-weighted over different responses

could give better parameter estimates.

Stochasticity was found to have a very significant impact on the optimal param-

eter values. Due to the nature of the search domain, sampling distribution of the

optimal parameter values could not give reliable parameter estimates. Different pa-

rameter values were obtained by optimizing the simulator for a fixed random number

seed and with different starting values. The parameter values obtained by fixing the

random number seed for the simulation were sometimes found to be outliers. The

best parameter values were found by comparing the average value of the objective

functions over many replications.

It was found that though calibration is an intricate process, the performance of the

simulator could still be substantially improved by an appropriate calibration study.

5.2 Research Directions

* A better objective function formulation: A better objective function form

can be formulated by considering some or all the points discussed below. In our

study we did not consider weighted objective functions over all the responses. It

was found that minimizing the deviation in speed need not necessarily improve

the deviation in flow. Moreover the correlation in the responses, both in space

and time, if accounted for may lead to better objective function forms.
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" Sensitive Parameters: We used some empirical observations followed by de-

sign of experiments to come up with the sensitive set of parameters. Currently

there are several other tools available for design of experiments study, that can

accommodate more variables. If more sensitive variables can be determined

then the calibration process could be that much more efficient.

" A more robust search process: We have determined that we have a local

optima problem. In such cases it may be computationally more efficient to use

heuristic optimization algorithms like genetic algorithms for calibration study.

This can be investigated.

" Stochasticity: This study has shown that stochasticity does affect the opti-

mal parameter estimates. Moreover the approach we took in optimizing was to

fix the random number seed, optimize, and then determine the sampling dis-

tribution of the parameter values. A conventional approach is to replicate the

simulation many times at each point in the parameter space. An interesting

study would be to compare the results of these two approaches to calibration.

" Response function methodology: We used the design of experiments study

to determine the set of sensitive parameters. The response functions obtained

from this study can be optimized for the parameters. These parameter values

can be used to determine the range of parameter values for a subsequent design

of experiments study. Again the response function obtained can be optimized.

This iteration between the design of experiments and optimization can be con-

tinued until converegnce is obtained. The parameter values obtained by such a

study can be compared to the values we have determined using gradient based

optimization methods.
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Appendix A

Boss/Quattro

A.1 Introduction

Boss/Quattro is a software environment that manages external applications. Using

Boss/Quattro it is easy to analyze and optimize the influence of parameters on the

responses yielded by external software applications. Boss/Quattro uses a model to

get information about the parameters affecting an application output. Using a driver

system, Boss/Quattro changes the values of these parameters and reads the results

from the application run. New results can be defined, by combining the parameters,

and the results directly read from the application run, using mathematical operators

and functions. Boss/Quattro also provides built-in 'engines' for Parametric Study,

Monte-Carlo Study, Design of Experiments and Optimization. These engines can be

mixed, allowing wider scope studies, and dependencies can be defined to match logical

relationships between problem components. In addition a user can incorporate new

optimization or analysis algorithms by writing specialized engines.

A.2 Structure

Applications are programs external to Boss/Quattro and a typical application run

involves reading an input file, running an analysis, and finally processing the out-

put from a set of result files. Applications that follow this input-analysis-output
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Application Environment

BOSSIOUATTRo Environment

Figure A-1: Boss/Quattro's interactions

paradigm can be managed by Boss/Quattro. The interaction of Boss/Quattro with

the application environment is represented in Figure A-1.

Quantities in the input can be symbolically represented using parameters. An

input file is said to parameterized when it is defined using these parameters instead

of the values they represent. A parameterized input file is known as a model. The

result of the application run, usually a set of output files is called the result or the

analysis response, and the application run itself is the analysis. The model, the

analysis and the response together form the application environment.

As shown in the Figure A-1 Boss/Quattro controls the application environment

using drivers and scripts. Drivers achieve the data exchange between Boss/Quattro

and the application environment. Model and response files vary with the application
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and a separate driver needs to be written for each file format. However there is a class

of drivers called the neutral drivers which can be made independent of the external

application input/output formats. If the model and response files can be modified to

comply with the neutral format then neutral drivers can be used.

Boss/Quattro scripts contain commands that are specific to a local operating

system ( Bourne, C, or Korne shells for UNIX systems) and are used for running

applications or other external programs. A model file (mandatory) and a result file

are associated with a script file.

Boss/Quattro engines modify the parameter values in model files, run a sequence

of analyses and collect the respective responses. The different engines differ in the way

they generate or modify the parameter values. Some relevant engines in Boss/Quattro

are

Parametric: Parametric engine helps to document the effect of variation in param-

eter values on the application output. Parameters come from the model files and can

be chosen by the user. For each parameter the number of values can be specified and

also the manner in which different parameter values are to be varied, whether serially

or in parallel, can also be specified. Responses are read from the output files and new

responses can also be defined.

Experiments: The experiments engine lets the user do a design of experiments

study. The type of design can be chosen and aliases can be defined for fractional

designs. The functions that need to be monitored can also be specified. Moreover

response functions can be defined and a selection can be made from first order, mixed,

second order or user defined functional forms. After the experiment run the response

function model can be screened for less significant variables or a stepwise regression

can be run to select the most significant ones.

Optimization: The optimization engine lets us optimize a response in a space deter-

mined by the set of parameters. Constraints can be also be incorporated. Selection

can be made from among different optimization algorithms and convergence criteria

can also be specified. Finally sensitivity computation can also be made at a specified

point in the domain space.
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Updating The updating engine allows to fit a function generated by a parameterized

model to another target function. It uses an optimization algorithm to minimize the

sum of squared differences between the computed and target function values. This

can be used to minimize the deviation between a vector of computed application

output values and some specified values.

A.3 Using Boss/Quattro with MITSIM

A.3.1 Environment Setup

As we had discussed previously, any application that fits in with the input-analysis-

output paradigm can be managed using Boss/Quattro. MITSIM reads a set of input

files, performs the simulation, and writes the sensor readings to a file. However,

before undertaking any study, the application environment of MITSIM needs to be

integrated with Boss/Quattro. The interaction of Boss/Quattro with the MITSIM

application environment in represented in Figure A-2

As shown in the figure MITSIM takes as input three files namely, paralib.dat, net-

work.dat and master.mitsim. We decided to use the neutral driver for exchanging data

between Boss/Quattro and the MITSIM application environment. The input files

were parameterized in the format required by the neutral driver. The parameterized

input files (model files) were named paralib.in, network.in and master.in respectively.

Since MITSIM could not directly read the model files, they had to be converted to

their native form. Boss/Quattro provides scripts, called NeturalCPP, for converting

the neutral format model files to their original form. However, these scripts had to

be explicity invoked by the user. Hence, we wrapped these in scripts files named

USERparalib, USERnetwork and USERmitsim for the model files paralib.in, network.in

and master.in respectively.

To successfully use Boss/Quattro we also had to facilitate data exchange between

the application output and the neutral driver. The output file that we are interested

in is sensor.out, which contains the simulated sensor readings. We could have either
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Figure A-2: Boss/Quattro's interactions with MITSIM
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modified MITSIM to write the output in the format specified for the neutral driver,

or we could have written a conversion program for converting the MITSIM output to

the required format. We choose the second option, and wrote a simple C program.

This executable program also had to be explicitly invoked by the user. The script

file USERmitsim was hence modified to include the functionality of executing the

application (running MITSIM) and then calling the conversion program.

The separate script files written and their respective tasks are explained below.

1. USERparalib: It takes the model file paralib.in, uses the NeutraLCPP script and

produces the file paralib.dat . The file is then copied to the input directory of

MITSIM.

2. USERnetwork: It takes the model file network.in, uses the NeutraLCPP script

and produces the file network.dat. The file is also copied to the input directory

of MITSIM.

3. USERmitsim: This takes the file master.in as the model file. Generates the file

master.mitsim using the NuetraLCPP script, and copies the file to the input

directory of MITSIM. It then launches MITSIM, in the batch mode with the

necessary command line parameters, and waits for the simulation run to termi-

nate. Once the MITSIM run is complete it launches the conversion program to

convert the file sensor.out to the format specified for the nuetral driver. Finally

the neutral format file is copied to the file master.res (the response file). The

neutral driver reads the results from the file master.res.

Once MITSIM has been fully integrated with Boss/Quattro the various studies

could be undertaken. The next two sections describe the sensitivity and optimization

study performed on MITSIM.

A.3.2 Studies

To calibrate MITSIM, first a set of sensitive parameters needs to be identified (sensi-

tivity study). To do this, in chapter 3 we proposed the use of design of experiments

77



methodology. As discussed in section A.2 design of experiments can be performed

using the Experiments engine. Once a set of sensitive parameters has been deter-

mined an optimization study can be performed to do the calibration. The next two

sections describe these two studies in detail.

A.3.3 Sensitivity Study

A sensitivity study using design of experiments involves the following

* Determining the design points

" Specifying the responses to monitor

" Running the simulator and calculating the response values at each point.

" Fitting a specified response function model to the observed response values.

" Screening for less sensitive variables.

Moreover, since we were dealing with a stochastic simulator we had to replicate the

simulation run at each design point. The response value at each point was averaged

over these runs.

The sensitivity study performed is shown in Figure A-3. Each rectangular item

represents a task and the tasks involved in the study appear at the right pane of

the window between the Start and End tasks. The Experiments task represents the

experiments engine in Boss/Quattro and it manages the execution of all the tasks

defined under it. The design type and aliases for fractional studies can de specified in

this task. The design points are automatically generated once the above specifications

have been made.

The responses that need to be monitored can also be defined in the experiments

task. Since our objective was to fit the simulated data to observed data, the response

function forms involve both the observed and simulated data. However, after each

MITSIM run, we obtain only the simulated sensor data. Hence, to make the observed

field data available for result definitions, three separate dummy scripts (one each for
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Figure A-3: An example of a design of experiments run

flow, speed and occupancy) were defined. These scripts have no executable code and

are associated with empty model files. However, each one of them is associated with

a result file. The result files contain the observed field data and were in the format

required by the neutral driver.

The three tasks USERparalib, USERnetwork and USERmitsim executed one after

the other constitute a single run of the simulator. Note that the task USERmitsim

involves running the simulator. Hence, this task should be run only after the other

two tasks are complete. This dependency in runs was accomplished by defining the

three tasks one after the other as shown in Figure A-3.

Finally, in the experiments task the response function model can be specified and

a selection can be made between screening for sensitive variables or running a stepwise

regression.

Since MITSIM is a stochastic simulator, as discussed earlier we had to replicate

the simulation run at each design point. This was accomplished by placing the Para-
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metric task below the Experiments task. The Parametric task represents the parametric

engine. A dummy variable was defined and the parametric engine was run for vari-

ous values of the dummy variable. The parametric engine provides the functionality

to average out observations over several runs. The response functions, defined in the

experiments engine, used these averaged values. Thus the design of experiments with

replication could be easily accomplished using Boss/Quattro.

A.3.4 Optimization study

The optimization study was conducted on the set of variables identified by the sensi-

tivity study. The optimization study involved the following tasks.

" Defining the objective function

* Defining the variables and their ranges

" Choosing the optimization algorithm

* Identifying convergence criteria.

As for the sensitivity study a set of tasks are again defined for the optimization

study. The optimization engine replaces the experiments engine as the top level task.

The objective function definition and the range of the variables are specified in the

optimization engine. The search algorithm type is chosen and convergence criteria

are also specified. Thus the only set of tasks coming under the optimization engine

will be the three tasks required for the MITSIM run. Note that we had performed

the optimization after fixing the random number seed. Hence, we did not make use

of the Parametric engine to simulate the replications necessary at each design point.

A.4 Conclusion

Boss/Quattro is a very versatile tool and by integrating Boss/Quattro with MIT-

SIM many tasks that would otherwise take enormous amount of bookkeeping and
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code writing can be easily accomplished. For a calibration study, the number of

variables, the number of replications, the type of experimental design, the form of ob-

jective function and types of optimization algorithms etc. can be easily varied. Thus,

Boss/Quattro integrated with MITSIM is a very powerful tool for any calibration

study.
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Appendix B

MIT SIM- Parameters

The parameters have been classified into the following

" Traffic Flow Parameters

1. DefaultSpeedLimit

2. FreeSpeed

3. LaneSpeedRatio

4. JamDensity

5. MinimumSpeed

* Simulation Parameters

1. StepSize

2. UpdateStepSize-related to driver reaction time

3. Constant State Time

4. Loading Model

- headway

- coefficient for queue

- speed at capacity.

" Sensor Devices Characteristics

1. DetectedMinimumSpeed

" Travel Demand

1. Vehicle classes and fleet mix (Table)

2. Distribution of driver groups (Table)

3. Distribution factor (default of zero-poisson interarrival times)

" Vehicle Characteristics

1. Maximum acceleration rate (Table)

2. Maximum deceleration rate (Table)

3. Normal deceleration rate (Table)

4. Limiting speed by class and grade (Table)
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* Vehicle Routing

1.

2.

3.

4.

Path alpha

Route Choice fraction

Beta

Commonality factor

5. Freeway Bias

6. Diversion Penality

7. Valid Path factor

* Vehicle Movements (Driver Behaviour)

- Car following

1. Minimumresponsedistance

2. CFLowerbound

3. CFparameters (a+, a_,#+,#-7+,7-)

- Merging Model

1. Length of Upstream area.

2. length of Downstream area.

3. Capacity of merging region in number of vehicles.

4. Probability of aggressive merge from ramp.

- Event Responding

* TrafficSignals and signs

1. Complaince rates

2. Visibility Scaler

* Yielding

1. Mandatory lane changing yielding model

2. Lane changing yielding model.

- Lane Changing

- LC Entry lane check rightness probability

- Mandatory Lane Change (MLC)

1. Distance Lower bound(xo)

2. delta(ao)

3. coef. for number of lanes(ai)

4. coef. for congestion level(a2)
5. Minimum time in lane

- Discretionary Lane Change (DLC)

1. Step size for updating lane speed

2. Prob of DLC given not DLC in last step

3. Prob of DLC given DLC in last step

4. Impatient lowerbound

5. Impatient upperbound

6. Slower lead threshold

7. Speed threshold

8. Acceleration threshold

9. Speed shead looking distance

10. Minimum time in lane(same direction)

11. Minimum time in lane(different direction)
12. Maximum speed difference between neighbouring lanes

- Gap Acceptance

* Discretionary
- Lead gap
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1. Scale

2. Gamma

3. Alpha

4. Betal

5. Beta2

- Lag gap

- same as in Lead gap

* Mandatory

. Lead gap

- Lag gap

- Nosing and Yielding model

1. Time horizon

2. Constant (#1)
3. Coefficient for number of lanes.

4. Coefficient for time in minutes since tagged

5. Maximum probability for on ramp lane drop, incident.

6. Maximum probability in connection to next link.

7. Maximum yielding time.

8. Maximum stuck time.

9. Maximum distance for nosing.

10. Minimum distance for nosing.

- Start Up Delays

1. Maximum delay

2. Poisiton in queue

* Others

1. Familiarity to the network

2. Visibility Scaler

3. Complaince Rates

4. Headway variance

The Table B.1 gives a brief description of some of the parameter listed above and

also provides the associated input file.

From this the total number of parameters identified are more than 200 and it

would be computationally too expensive to do a full optimization over the whole set

of parameters. In order to do a feasible computational study we need to select the

subset of parameters from the above list.
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Parameter File Description
DefaultSpeedLimit network.dat segment specific speed limit
FreeSpeed network.dat segment specific free speed limit
LaneSpeedRatio paralib.dat The variation of speed across lanes

as a ratio of design speed.
JamDensity paralib.dat
MinimumSpeed paralib.dat
StepSize master.mitsim step size of simulation
UpdateStepSize paralib.dat specific for accelerating, decelerating

and stopped vehicle
Constant state time paralib.dat
Loading model paralib.dat
Detected MinSpeed paralib.dat for calculating harmonic mean speed by sensor

to avoid division by zero
Vehicle classes and fleet mix paralib.dat vehicle mix/ HOV probablilty (Table)
Distribution of driver groups paralib.dat
Distribution factor paralib.dat for the interarrival time

Two classes of drivers with constant interarrival
time or poisson interarrival time

Path alpha paralib.dat for combining historical and new travel times
RouteChoicefraction paralib.dat percentage of guided/unguided vehicles
Beta paralib.dat parameter in logit model
Commonality factor paralib.dat logit model
Freeway bias paralib.dat logit model bias (In route choice model)
Diversion penality paralib.dat route switching penality(In route switching model)
Valid path factor paralib.dat compares to shortest path (In route switching model)
Start up delays paralib.dat Based on poisiton in queue
Familiarity to network paralib.dat A constant based on the users familiarity to the network.
Visibility scaler paralib.dat A constant for the visibility
Complaince rates paraib.dat For various types of traffic controls
Headway variance paralib.dat two constants upper and lower bounds

Table B.1: Description of some of the parameters in MITSIM
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Appendix C

Calculation of the Number of

Replications

Since MITSIM is a stochastic simulator, the simulation output varies from one run to

another. Each output represents a sample and a number of replications are required

to get output values with a desired accuracy level.

Let y' be an output from the r-th run of the simulator. Therefore, y' is a real-

ization of the random variable y'. An unbiased estimatior of y' is the mean of the

N observations of y' from N different simulation runs. A 'different' simulation run is

obtained by using a different random number seed. Mathematically,

1 N

Nr=1

where,

DS is an estimate of yS,

N is the number of replications.

If we assume that, the N different realizations of the random variable yS are

distributed iid normal with an unknown variance. Then the number of replications

required to obtain a certain accuracy at a certain level of significance is given by:

Nreqd = sk1 )2  (C.1)
yse )
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where,

s is an estimate of the standard deviation of ys,

e is the allowable error as a fraction,

a is the desired level of significance,

ta/ 2 is the critical value of the t-distribution at a level of significance a.

The output from the simulation includes speeds, flows and occupancies that have

spatial as well as temporal dimensions. For each of these output for each time-space

point, the required number of replications needs to be calculated. Then, the desired

number of replications would be the most conservative value - in other words, the

maximum of the number of replications required by each of the output elements.

Note that the number thus obtained could vary from one point to another in

the parameter space. Hence, the required number of runs was determined at several

points in the parameter space and the maximum over all the points was taken as the

required number of replications.

For section 2.3 at that particular point in the parameter space with a = 0.1 the

fractional error after eight replcations was found to be less than 0.2

For section 3.2.4 we determined the required number of runs as five using the

equation C.1 with a = 0.1 and e = 0.4. A higher value of fractional error was used

due to the expensive computational requirements.
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