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ABSTRACT

Summary: Most current stable isotope-based methodologies are

targeted and focus only on the well-described aspects of metabolic

networks. Here, we present NTFD (non-targeted tracer fate detection),

a software for the non-targeted analysis of all detectable compounds

derived from a stable isotope-labeled tracer present in a GC/MS data-

set. In contrast to traditional metabolic flux analysis approaches,

NTFD does not depend on any a priori knowledge or library informa-

tion. To obtain dynamic information on metabolic pathway activity,

NTFD determines mass isotopomer distributions for all detected and

labeled compounds. These data provide information on relative fluxes

in a metabolic network. The graphical user interface allows users to

import GC/MS data in netCDF format and export all information into a

tab-separated format.

Availability: NTFD is Cþþ- and Qt4-based, and it is freely available

under an open-source license. Pre-compiled packages for the instal-

lation on Debian- and Redhat-based Linux distributions, as well as

Windows operating systems, along with example data, are provided

for download at http://ntfd.mit.edu/.
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1 INTRODUCTION

With the advent of systems biology, scientists now have the

ability to probe and quantify the transcriptome, proteome and

metabolome of virtually any organism (Fiehn et al., 2000;

Malmström et al., 2007; Schena et al., 1995). In the case of meta-

bolic characterizations, gas chromatography (GC) coupled to

mass spectrometry (MS) provides an excellent means of measur-

ing and cataloging small molecule metabolites obtained from a

variety of systems (Hiller et al., 2009). Techniques such as GC/

MS generate extremely rich datasets; however, these methods

are somewhat limited in that they (i) require a priori knowledge

of a given metabolite for identification; (ii) contain significant

amounts of data not relevant to a given experiment; and (iii) pro-

vide a static view of metabolism. Indeed, such methodologies

are often incapable of discovering new phenomena that have

yet to be described in detail. Furthermore, quantification of
metabolites can be of limited use when characterizing dynamic

processes like metabolism. Metabolic fluxes provide the ultim-

ate readout of in vivo enzyme activity (Stephanopoulos, 1999).
To this end, researchers use metabolic flux analysis (MFA),

which uses stable isotopes to generate information on the

dynamics of metabolic processes (Sauer, 2006). As isotope-
labeled substrates are metabolized and incorporated into down-

stream metabolites in an organism, the information contained

in mass isotopomer distributions (MIDs) provides a readout

on the relative fluxes in a metabolic network (Wiechert, 2001).
Unfortunately, MFA requires comprehensive knowledge on

the topography of metabolic networks in any organism

under study. Therefore, as new organisms are identified and
disease mechanisms are increasingly linked to aberrant meta-

bolic processes, the need for discovery-based tools to detect

and elucidate the dynamics of cellular metabolism is becoming

apparent.
Here, we present a software, non-targeted tracer fate detection

(NTFD), which detects all observable metabolites labeled by a
stable isotope tracer within a GC/MS dataset (Hiller et al., 2010).

In addition, NTFD calculates MIDs for all ions derived from

labeled compounds that are corrected for natural isotope
abundance. As changes in intracellular reaction rates are directly

reflected in the MIDs of metabolic intermediates, these data

are crucial for the study of metabolic fluxes and enzyme activ-

ities. In contrast to MFA, NTFD requires no a priori informa-
tion on the biological system (e.g. compound libraries or

fragment formulas). Thus, NTFD provides a straightforward

framework for combining the systems-level capabilities of
traditional metabolomics approaches with the kinetic informa-

tion that can only be ascertained through the use of isotopic

tracers.

2 EXPERIMENTAL REQUIREMENTS

To generate tracer-specific isotopic enrichment patterns of
metabolic intermediates, stable isotope-labeling experiments

have to be performed using the tracer of interest (Fig. 1).
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including uniformly or singly labeled carbon, nitrogen, or sulfur

tracers. In the case of deuterium, care must be taken, as the
deuterium effect may cause labeled and unlabeled compounds
to elute at different retention times from the GC (Turowski

et al., 2003). To reduce experimental noise, both experiments
should be performed simultaneously and in replicates, which
also enables NTFD to provide confidence intervals for each

mass isotopomer. NTFD accepts mass spectrometric data in
the common netCDF format, which is supported by nearly all

current GC/MS instruments as an export function.

3 RESULTS AND FEATURES

The NTFD software performs all the following steps automat-
ically to detect isotopically enriched compounds in GC/MS

datasets:

� Ion chromatographic deconvolution and compound

detection

� Compound pairing

� MID calculation by solving linear equation systems

NTFD applies an ion chromatographic deconvolution algo-
rithm that we developed previously for the

MetaboliteDetector software (Hiller et al., 2009). Having de-
tected all compounds present in the recorded mass spectromet-
ric data, NTFD automatically pairs every compound detected

in the labeled chromatogram to its counterpart in the unlabeled

chromatogram based on retention time and mass spectral iden-

tity. This is the most critical step, because isotopic enrichment

significantly changes the mass spectrum of a compound. As a

typical GC/MS chromatograms contains mass spectra of4400

compounds, such a pairing cannot be done by manual inspec-

tion. To detect isotopically enriched metabolites, NTFD calcu-

lates the integrated difference spectrum for each compound pair

(Hiller et al., 2010). Every labeled ion fragment is characterized

by a peak in the integrated difference spectrum, which is de-

tected and evaluated by our software. Finally, the software cal-

culates the MID for every detected and labeled fragment ion.

Typically, the sum formula of the fragment ion is applied to

calculate a correction matrix, which is needed to solve the linear

equation system for accurate MID calculation (Lee et al., 1991).

Because of the non-targeted character of the NTFD analysis,

such formulas are not available, and the software applies the

mass spectrum of the paired unlabeled compound to set-up the

correction matrix. For compounds with prevalent naturally

occurring isotopes, such as carbon, a further correction needs

to be applied. We have implemented an algorithm similar to the

one proposed by Jennings and Matthews (2005). If replicates

are provided, NTFD additionally calculates 95% confidence

intervals and coefficients of determination to facilitate statistical

evaluation of results. A full NTFD analysis can be performed

on a standard computer in several minutes.

4 CONCLUSION

In conclusion, the NTFD software enables the detection of all

stable isotope-labeled compounds derived from the applied

tracer with a non-targeted approach. The Cþþ- and Qt4-based

software provides an easy-to-use graphical user interface and

imports mass spectrometric data in the common netCDF

format. Having detected all labeled compounds, MIDs for all

compound ions are determined. If a reference spectrum library

is provided, NTFD identifies as many compounds as possible.

Finally, the results can be exported to a tab-separated file (tsv),

which can be further processed with spreadsheet or statistics

applications.
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