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Abstract

Background: Cells respond to a variety of external stimuli regulated by the environment conditions. Mechanical,
chemical and biological factors are of great interest and have been deeply studied. Furthermore, mathematical and
computational models have been rapidly growing over the past few years, permitting researches to run complex
scenarios saving time and resources. Usually these models focus on specific features of cell migration, making them
only suitable to study restricted phenomena.

Methods: Here we present a versatile finite element (FE) cell-scale 3D migration model based on probabilities
depending in turn on ECM mechanical properties, chemical, fluid and boundary conditions.

Results: With this approach we are able to capture important outcomes of cell migration such as: velocities,
trajectories, cell shape and aspect ratio, cell stress or ECM displacements.

Conclusions: The modular form of the model will allow us to constantly update and redefine it as advancements
are made in clarifying how cellular events take place.

Keywords: Cell migration; Modeling; Voxel; Finite elements; Mechanosensing; Microfluidic device
Background
Cell motility has gained increasing prominence due to its
major role in several physiological and pathological pro-
cesses, e.g., morphogenesis, the inflammatory response,
wound healing and tumor metastasis [1]. The way cells
migrate and respond to their 3D micro-environment is a
multiscale process that results from the integrated effect
of the properties of the tissue extracellular matrix (ECM)
and the sub-cellular constituents of the cell, mediated by
the cytoskeleton (CSK). This integration process depends
on multiple mechanical, chemical and biological factors
[2-4]. For instance, the influence of ECM stiffness and
topography (Durotaxis) has been widely investigated [5-8],
showing that cells prefer to migrate toward stiffer zones of
the ECM, where the focal adhesions are more stable
allowing to exert higher forces [9,5,10]. Cells also respond
to spatial chemical gradients (Chemotaxis) in the sur-
rounding fluid or tissue [11,12], moving towards or away
from the source of chemical variation. Variations of poten-
tial gradients (Galvanotaxis), fluid conditions and ligand
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adhesion gradients (Haptotaxis) are additional clues for
cell migration guidance currently under study [13-17].
In fact, over the past few years, immense progress has

been made in understanding cell migration, largely thanks
to the active interaction between experiments, mathemat-
ical and computational modeling [18]. Due to cell mo-
tility complexity, models are taking a leading role in
future developments, permitting researches to run
complex biophysical and biochemical scenarios without
the difficulties, time and resource consumption inher-
ent to in vitro investigations. Many of these studies
have usually focused on 2D migration, not only for sim-
plicity but due to the lack of high quality data of cell
movement in 3D. This deficiency is, however, becoming
increasingly overridden especially by recent advances in
microfluidic technologies which allow high resolution
imaging and provide enormous flexibility in controlling
the critical biochemical and biomechanical factors that
influence cell behavior [19,20].
Hence, the number of 3D migration models has been

gradually increasing, although focused on different as-
pects of cell motility. Some of them predict individual
cell migration [21-23], while others simulate collective
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Figure 1 Scheme of the iterative loop. At each temporal step the
fluid chemical and mechanical conditions determine the probability
of adding/deleting voxels to/from the cell. At the end of the step,
the cell shape is updated. Note that to save computational time,
chemistry and flow conditions are considered constant through the
simulation, performing the corresponding FE analysis only once at
the beginning and not at each time step.
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behavior [24,25]. In addition, different levels of detail are
described, with time and length-scales varying signifi-
cantly. Rangarajan and Zaman [18] reviewed some type
of models according to their main assumptions and
grouped them in: (i) Force based dynamics models, (ii)
Stochastics, (iii) Multi-Cell Spheroid migration, (iv)
Monte Carlo studies. In the former ones, migration dy-
namics are accounted for by the traction forces at both
the front and rear end of the cell and forces due to viscous
drag and cell protrusion into the ECM [21]. Imbalances of
these forces produce cell migration. The drawback of
these models is that they only predict migration of single
cells, not taking into account changes in cell shape or
ECM properties due to degradation. On the other hand,
stochastic models of persistent random walks are able to
predict population behavior [26,22]; however, they don’t
include dynamic effects such as traction or drag, nor in-
corporate the ECM properties. Multi-cell spheroid migra-
tion models are mainly based on pressure gradients
produced by proliferation and death of cells [27]. Combin-
ing random walks, pressure and chemotactic activity of
cell aggregates make these models suitable to study tu-
mours, but fail to take into account mechanical cues such
as ECM density, porosity or stiffness. Finally, Monte Carlo
models using square lattices and a set of simple rules
allow faster simulations thus providing long-term migra-
tion patterns [28,29]. The main handicap is the qualitative
nature of the studied parameters such as cell-matrix inter-
face, cell polarization or ECM mechanical effects.
In this work we develop a probabilistic FE 3D migration

model for individual cells, presenting features from several
of the previous mentioned types. With this model we are
able to study the influence of multiple external stimuli
(namely ECM stiffness, chemistry, flow and boundary con-
ditions) estimating important features of cell migration
such as: velocities, trajectories, cell shape and aspect ratio,
cell stress, ECM displacements etc. Finally, we qualita-
tively and quantitatively compare our results with recent
experiments, finding a good agreement and showing the
consistency and the adaptability of the model to simulate
different conditions.
Therefore, the final goal of this work is to provide a versa-

tile and modular tool capable of predicting migration phe-
nomena under different environmental stimuli, reducing
the number and helping in the design of new experiments.

Methods
The macroscale conditions evaluated at the cell surface
influence its behavior, changing its morphology and thus
determining the migration. With this in mind, several
approaches could have been valid to model cell motility
in 3D or other related phenomena, such as the classical
FEM [30] or the more specific surface finite element
method (SFEM) [31]. However, for simplicity and due to
the advantages of lattice-based models, a FE approxima-
tion using voxels was chosen for the simulations as de-
scribed below.

Numerical implementation
This work describes a probabilistic voxel-FE model for 3D
migration at the cell-scale level, influenced by chemical
and flow conditions coming from a microfluidics simula-
tion and the mechanical conditions of the environment.
For this purpose, the ECM as well as the embedded cell
are discretized with voxels, each of them corresponding
with the component of a three-dimensional mathematical
matrix of data (M) which contains relevant information
for the simulation. For instance, M stores the centroid of
each voxel and whether a specific component corre-
sponds to ECM or cell, therefore determining its mechan-
ical properties. Also, this matrix M includes the flow and
chemical conditions interpolated from the microfluidic
simulation, therefore containing all the necessary input
factors used in the probability/cell-dynamics functions.
At this point it is useful to present the iterative scheme

(Figure 1) which can be described as follows: (i) mechan-
ical, chemical and flow conditions are collected from the
corresponding FE analysis. These data serve as input for
(ii) the cell-dynamics functions which determine the
probability of whether an ECM-type voxel becomes a
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cell-type voxel or vice versa. (iii) A random-number gener-
ator checks the probability corresponding to each voxel so
the cell shape is updated. Note that only ECM voxels in
contact with the cell may become cell, and that only voxels
of the cell surface may become ECM. It is also important to
clarify, that the cell-voxel distribution (cell shape) is essential
for the mechanical analysis since the cell forces are the only
ones taken into account. Hence, the mechanical problem is
computed at each step, whereas the fluid chemical analysis
is computed only once at the beginning. This choice saves
computational time and it is justified by the fact that
the cell volume is much smaller than the problem do-
main (collagen). Therefore, assuming steady state at the
microdevice, it is considered that the cell shape does
not affect the fluid-chemical analysis carried out in the
first step. Nevertheless, to test this simplification, a spe-
cific fluid-chemical simulation with a random cell shape
embedded in a porous matrix was performed. The re-
sults confirmed that its effects on the stationary solu-
tion are negligible (Additional file 1). Hence, the fluid-
chemical conditions are considered constant through
the simulation.
Mathematical modeling
So far the general iteration scheme has been described,
but not how the fluid chemical and mechanical prob-
lems are solved. As explained below, these problems are
computed separately although interacting via changes in
cell shape and position which depend, through the prob-
ability functions, on several environmental input factors
as described in next section.
Figure 2 Geometry of the microfluidic device and details of domain a
gel (cyan). Pressure and chemical gradients are established between inlet (
taken from the central part of the gel to simulate the mechanical analysis a
some of them considered cell-voxels and forming an initially spherical shap
mechanical and migration simulation.
Modeling chemotaxis and flow through a porous medium
A complete 3D microfluidic device is simulated, the
geometry and boundary conditions of which are taken
from a recent experiment [13]. This device consists of two
channels separated by a region containing single cells sus-
pended in collagen I gel (Figure 2). Applying a hydrostatic
pressure gradient across the gel region a consistent flow
field is generated. In addition, different chemical concen-
trations are established up and downstream, generating a
linear chemical gradient, which, although difficult to
obtain experimentally, is useful in the simulations to
test the model. Note that this gradient is different from
the gradient in the experiments [13], which is autocrine
and arises from cells secreting chemoattractant. Finite
element software (COMSOL Multiphysics) is used to
compute the flow through collagen and the transport of
diluted species:

∂c
∂t

þ ∇ uc−D∇c½ � ¼ R ð1Þ

where c is the concentration of the diluted species, D is
the diffusion coefficient, R is a production or consump-
tion rate expression (for simplicity, 0 in the simulations)
and u is the solvent velocity field.
The flow in porous media is governed by a combin-

ation of the continuity equation and momentum balance
equation, which together form the Brinkman equations:

∂
∂t

epρ
� �þ ∇⋅ ρuð Þ ¼ Qbr ð2Þ
nd cell mesh. Left: two channels (gray) are separated by collagen I
purple) and outlet (orange) boundaries. A box-like domain (right) is
nd the cell migration. This domain is discretized with voxels of 3 μm,
e of about 30 μm of diameter embedded in the ECM to perform the
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κ

� �
uþ F

ð3Þ

In these equations, μ denotes the dynamic viscosity of the
fluid, u is the velocity vector, ρ is the density of the fluid, P
is the pressure, ep is the porosity, κ is the permeability of
the porous medium, and Qbr is a mass source or mass sink
(which has been considered 0 in all the simulations). Influ-
ence of gravity and other volume forces can be accounted
for via the force term F, although they are neglected, as
well as the inertial term ((u ⋅ ∇)u/ep), in the current simu-
lations. With all this, and assuming incompressible flow
(∇u = 0), equations 1,2 and 3 are drastically simplified.
Values of these main parameters are listed in Table 1.
Since the purpose of this work is to study the migration of

a single cell, which volume is negligible in comparison with
the whole microdevice domain, the steady state simulation is
performed only once, not considering the embedded cell
body. Then the results from a central box-like region are ex-
tracted to compute the mechanical analysis and the cell mi-
gration (Figure 2, right). Note that no chemical species
secreted by the cell are considered here for simplicity. Hence,
the chemical concentration and flow direction at each point
of the box-like domain remain unalterable regardless cell
position in the subsequent steps of the migration simulation.
As pointed before, the effect of a 3D body embedded in the
centre of the gel is analysed to support this assumption, find-
ing that its influence was practically null except at points
very close to the body surface (Additional file 1).

Modeling mechanotaxis
The steady-state solution from small box-like domain the
fluid simulation is extracted and interpolated into an
Table 1 Parameters for the fluid-chemical and mechanical an

Symbol Variable

ΔP Pressure gradient at the microdevice

D Diffusivity constant

κ Gel permeability

μ Fluid viscosity

ρ Fluid density

ΔC Chemical gradient

Kpas Passive resistance of cell cytoskeleton

Kact Actin stiffness

εmax, εmin Maximum/minimum cell strain

σcortmax Maximum stress of the acto-myosin (

σcytomax Maximum stress of the acto-myosin (
a[13], b[22].
organized mesh and stored in M. Specifically the domain
is discretized with voxels of 3 μm, some of them assigned
to model cell behavior (from now called cell-voxels) and
forming an initially spherical-like shape embedded in the
ECM (Figure 2, right). This size is adequate to roughly
mimic cell-like morphologies without increasing too much
the computational cost. Smaller sizes, that would improve
the accuracy of the cell surface, would produce an exces-
sively refined mesh of the domain which would lead in
turn to heavier and slower simulations. For simplicity, the
ECM is considered linear elastic, whereas cell-voxels have
their own mechanical properties.
In similar fashion to previous works [22], the mechano-

sensing behavior of each cell-voxel is simplified to two
springs representing the actin stiffness (Kact) and the pas-
sive components (Kpas) of the cytoskeleton, and an ac-
tive actuator representing the myosin machinery (AM),
each of them assumed to independently act in the x,y,z di-
rections (Figure 3). The stress exerted by this actuator de-
pends upon the sliding between actin filaments and
myosin arms (εc), which is limited by a maximum contrac-
tion parameter (εmin). This sliding depends in turn on the
cell strain (εcell) and therefore on the ECM stiffness.
Hence, cell stress transmitted to the matrix by each voxel
in each direction “i” can be expressed as a function of cell
strain:

σ i
cell

¼

Kpasεicell εicell < εmin
K actσmax

K actεmin−σmax
εmin−εicell
� �þ Kpasε

i
cell εmin < εicell < σmax=K actð Þ

K actσmax

K actεmax−σmax
εmax−εicell
� �þ Kpasε

i
cell σmax=K actð Þ < εicell < εmax

Kpasεicell εmax < εicell

8>>>>><
>>>>>:

ð4Þ

The main difference with respect to the approach used
in [22], is that the polarization term is not explicitly in-
cluded in the stress tensor (which is now isotropic),
alysis

Value

40 [Pa]

10-9 [m2/s]a

10-13 [m2]a

103 [Pa.s]a

103 [kg/m3]a

1 [mol/m3]

1 [kPa]b

10 [kPa]b

-0.4,0.4b

AM) system at the cortex zone 2.5 [kPa]b

AM) system at the cytoplasm 1.5 [kPa]



Figure 3 Mechanosensing scheme for 3D and different cell parts. Cell material is modeled using two springs in parallel representing the actin
stiffness (Kact) and the passive components (Kpas) of the cytoskeleton, in series with an active actuator representing the myosin machinery (AM) Left
plot shows the stress exerted by the AM as a function of the sliding between actin filaments and myosin arms (εc). Cell-voxels (right) are divided in
three zones: cortex (light gray), cytoplasm (medium gray) and nucleus (dark gray). The nucleus plays only a passive role and is modeled as an elastic
material. The cortex and cytoplasm, however, present a contractile behavior depending on ECM stiffness, following the mechanosensing model.
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since the polarization direction emerges from the cell
morphology. Also note that in the probability functions
(explained in next section) only one value of stress is
used, in particular the volumetric stress of each voxel
(σv ¼ σx

cell þ σycell þ σz
cell

� �
=3). In the present model, three

different zones of the cell body are considered: cortex,
cytoplasm and nucleus (Figure 3, right). In a first ap-
proach, the only difference between the cortex zone and
the cytoplasm is the exertion of higher stress, therefore
assigning higher σmax to the cortex-voxels (2.5 kPa com-
pared with 1.5 kPa at the cytoplasm). This is a first ap-
proximation to reflect the higher forces exerted by the
cells at their perimeter, mainly due to the increased pres-
ence of focal adhesions [32-36]. On the other hand, the
nucleus presents no contractile behavior, so only its pas-
sive resistance (Kpas) is considered (acto-myosin actuator
and actin branch are therefore disabled in the corre-
sponding voxels). All of these parameters are listed in
Table 1.
The mechanical problem is computed at each step, taking

into account the redistribution of voxels belonging to each
zone of the cell or to the ECM. To solve that, a user-
subroutine of the software ABAQUS together with a
MATLAB script are employed. Once the FE subroutine
computes the mechanical equilibrium at each step, the
script comes into action to compute the probabilities of
voxel addition/removal according with the mechanical, flow
and chemical conditions. In this process, the cell shape is
updated as well as all the necessary variables of M. These
data act as an input for the FE subroutine in the next step,
repeating the process until the end of the simulation. Note
that the mechanical analysis only corresponds to the cell-
matrix interactions, and not to the flow-ECM or flow-cell
interactions which are not considered in this first approach.
Probability functions: external stimuli and cell dynamics
determine cell migration
In this model, four different factors are considered to ac-
count for the mechanical, chemical and flow conditions
surrounding the cell and driving cell migration. Namely
these factors are: cell stress magnitude, maximum stress
direction, chemical concentration at the ECM and flow
direction. The volumetric cell stress (σv) due to cell con-
traction is computed at each voxel following the previ-
ous mechanosensing model [22]. Here, the maximum
stress direction (dΔσ) is defined as the direction in the
cell body where the cell is exerting maximum stress. In
other words, it is the direction joining the cell centroid
(computed geometrically) with the element of maximum
stress (Figure 4). The chemical concentration (Cc) is a
scalar field coming from the fluid chemical analysis, hav-
ing each voxel an associated value. Similarly, df stores the
flow direction corresponding to each voxel of the ECM.
To define the addition/removal of voxels depending on
the stimuli, these factors are introduced into the cell-
dynamics or probability functions following the classical
cumulative distribution [37]:

p� ¼ p0� þ pmax
� 1−e−k

0
� λσ�F

σ
�þλΔσ� FΔσ

� þλC� F
CþλF�F

F
�ð Þdt� �

ð5Þ

where * represents addition (+) or removal (-) of voxels.
p0 and pmax are the minimum/maximum values bound-
ing the probability. k0 is a temporal rate affecting all the
factors and dt is the time step. In addition λ’s are sensi-
tivity constants permitting to control the weight of each
factor (F). All these parameters are adjusted to obtain
cell speeds within a biological range. In addition, the
values of these parameters are held constant during
the simulation. Their values are listed in Table 2. On the



Figure 4 Schematic example of voxel addition process. Voxel addition example taking only the stress direction and magnitude into account.
When checking a specific voxel (current element), the volumetric stress that it bears (σv) and the angle (θ) that its neighbours form with the
direction of maximum stress (dΔσ, red arrow) determine the probability of appearance (p+). In the illustration, the top voxel (currently part of the
ECM) would have a higher probability than the right one of becoming cell since θ1 is lower than 90 degrees whereas θ2 is higher. Note that this
is a simplified 2D scheme. In 3D, 6-connectivity is used to compute the voxel addition.
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other hand, F’s are variable parameters describing the
environment conditions, different for each voxel and de-
pending on the aforementioned stimuli. Each F ranges
from 0 to 1 and they are described in the subsequent
sections. A sensitivity analysis of the cell-dynamics func-
tions was performed to study the global influence of
each separate factor (Additional file 1).
The parameter representing the cell stress magnitude

(Fσ) measures the stress born in a specific voxel compared
with the maximum possible cell stress (σmax) (eq.6), which
value comes intrinsically from the mechanosensing model.
The probabilities of adding/removing voxels, increase with
the stress to reflect that cells embedded in stiffer substrates
Table 2 Constant parameters of the probability functions

Symbol Variable

p0þ; p
0
− Minimum probabilities of voxel addition/r

pmax
þ ; pmax

− Maximum probabilities of voxel addition/

k0þ; k
0
− Addition/removal rate

λ+σ , λ−σ Sensitivity constants of addition/removal

λΔσþ ; λΔσ− Sensitivity constants of addition/removal

λ+
C, λ−

C Sensitivity constants of addition/removal

λ+
F , λ−

F Sensitivity constants of addition/removal

dt Time step
exert higher forces and move at faster speeds [2,5,8,38],
This parameter also takes into account the voxel orienta-
tion. When adding a voxel, θ represents the angle between
the direction of the possible new voxel (relative to the
current voxel) and the direction of the voxel with max-
imum cell stress (Figure 4). In contrast, when removing a
voxel, θ stands for the angle between the direction of max-
imum stress and the direction connecting the current voxel
centroid with the cell centroid. Using this criterion, the
probabilities of adding/removing voxels in the direction
where the cell exerts maximum stress are higher/lower so
the cell body tends to polarize, as suggested in experiments
[10]. The alignment with stress is included in addition and
Value

emoval 0.1, 0.1

removal 0.8, 0.4

0.4, 0.4 [min-1]

regarding cell stress magnitude 0.0035, 0.0035

regarding cell stress gradient 0.004, 0.004

regarding chemical concentration 0.3, 0.3

regarding flow direction 0.004, 0.004

5 [min]
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separately with the parameter FΔσ in order to independ-
ently control the weights of the stress magnitude and stress
gradient factors (eq.6):

Fσ
þ ¼

( σv
σmax

cosθ θ <
π

2
0

π

2
≤θ

Fσ
− ¼

(
0 θ <

π

2
σv
σmax

sinθj j π

2
≤θ

FΔσ
þ ¼

cosθ θ <
π

2
0

π

2
≤θ

FΔσ
− ¼

0 θ <
π

2
sinθj j π

2
≤θ

8<
:

8<
:

ð6Þ
To further clarify this point, a simple 2D representation
of the voxel addition process is shown in Figure 4. When
checking a specific voxel of the cell surface (current),
the corresponding value of stress and the position of its
neighbours (possible new cell-voxels) are used to com-
pute p+. In the illustration, the top voxel (which is cur-
rently part of the ECM) may become cell because θ1 is
lower than 90° so Fσ

þ and FΔσ
þ take a positive value de-

pending on the stress and the alignment. On the other
hand, the voxel on the right will not likely appear since
θ2 is higher than 90° so Fσ

þ and FΔσ
þ are 0 and hence pþ

¼ p0þ . Taking all this into account, the cell tends to mi-
grate to stiffer zones of the ECM (higher cell stress) and
in the direction of maximum stress.
It is well known that cells sense the ECM interstitial flow

and respond to the concentration of a wide variety of
chemical species [11-13,39]. To reflect this, both factors
are included into the probability functions. The necessary
inputs come from the fluid chemical analysis previously
described. The parameter representing the chemical con-
centration (FC) compares the chemical gradient between
adjacent voxels (ΔC) and it is normalized by the maximum
value of concentration of a particular species (Cmax).

FC
þ ¼

ΔC
Cmax

ΔC > 0

0 ΔC < 0
FC
− ¼

ΔCj j
Cmax

ΔC < 0

0 ΔC > 0

8<
:

8<
:

ð7Þ
With this definition, the voxels tend to be added in the

direction of maximum chemical concentration, appearing
at a faster rate the more pronounced the gradient is. Simi-
larly, the voxels tend to be removed more readily at the
positions of lower concentration. In sum, the cell body ad-
vances in the direction of the chemical gradient. Obvi-
ously, in case of repellent species, FC could be easily
reversed to account for opposite effects.
The dependence of cell migration on flow conditions

have been recently investigated [13]. It was found that
small populations of cells tend to migrate downstream
and parallel to the flow direction. Actually, very high
flow velocities acting on isolated cells or blocking of
some specific receptors may reverse this response, al-
though these effects are not considered here for simpli-
city. The flow parameter FF is then defined as:

FF
þ ¼

cosφ φ <
π

2
0

π

2
≤φ

FF
− ¼

0 φ <
π

2
sinφj j π

2
≤φ

8<
:

8<
:

ð8Þ

where φ establishes the alignment of the voxel with the
flow direction array at a specific position. Therefore, φ
is also calculated following the procedure shown in
Figure 4, but using dF instead of dΔσ.

Results and discussion
It has been shown that multiple combined factors drive cell
migration through 3D ECMs, the properties of which influ-
ence the cell-matrix interactions and determine cell move-
ments and orientation. This model focuses on three of
these factors: fluid flow, chemistry and mechanical condi-
tions. First, flow and chemical conditions of a real 3D
microfluidic device [13] are simulated obtaining pressure
distribution, chemical gradients and stream lines through a
collagen ECM (porous matrix). Then, since the distance
magnitudes that a single cell is able to migrate in a few
hours (simulated time) are much shorter than the
microdevice size, a central region of the gel is selected
to compute the mechanical analysis.
Hence, this section is divided in three main parts. The

first one summarizes the results from the microfluidic
system simulation, showing the flow velocity field, the
streamlines and the pressure gradient across the gel. The
second part shows the effect of the ECM stiffness on
the cell stress distribution and cell morphology. Finally,
the results focus on cell migration, describing trajectories,
speeds and directionality for different situations. Specif-
ically, input factors (mechanics, flow or chemistry) are
activated or deactivated in different combinations, thus
altering the probability functions, and boundary condi-
tions such as gradient directions are varied.

Microfluidic simulation
A full 3D microfluidic device is simulated with the condi-
tions described in the FE analysis Methods section. The
fluid passes by two input channels and flows through a
porous medium (collagen gel) transporting a certain di-
luted specie, and achieving its peak speed (2.96 μm/s) at
the central zone of the gel, between the micropilars, where
the cross section is smaller (Figure 5A). The velocity field
matches quantitatively the results obtained both computa-
tional and experimentally by Polacheck et al. [13], which
found a maximum speed of about 3 μm/s. The pressure
drop presents a linear decrease through the gel and
constant values at the inlet (40 Pa) and outlet (0 Pa)



Figure 5 Fluid chemical analysis in a 3D microdevice. A) The velocity field present higher values in the gel zone between micropilars, reaching a
maximum of 2.96 μm/s. The streamlines in the central part are mostly parallel to the horizontal direction. B) The pressure drop across the microdevice
shows a linear decrease through the gel and constant values at the inlet and outlet (40 and 0 Pa respectively). This analysis is computed (using COMSOL)
once at the beginning of the simulation and its results are interpolated to a box-like voxelized mesh, where the mechanical analysis is performed and
the cell migration is studied.
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(Figure 5B). Similarly, the chemical concentration at
the gel decreases linearly from a normalized value of
1 mol/m3 at the inlet, to 0 mol/m3 at the outlet (not
shown). which allows testing the migration model using
this additional factor. Future development of the model
could incorporate the transport of different species or
autocrine gradients produced by the cell, although they
were not considered in the present simulation.

Effects of ECM stiffness
To test the direct effects of ECM stiffness on cell morph-
ology and stress distribution, a box-like domain (300 ×
300 × 120 μm) with constrained displacements at the
boundaries (far enough from the cell to avoid influencing
the mechanosensing process described in the methods sec-
tion) and different ECM stiffness conditions was used. Up
to 10 simulations were performed for each set of condi-
tions with mechanical stimulus acting alone (flow and
Figure 6 Cell response for homogeneous ECMs. Volumetric cell stress
speeds (right) for a case with homogeneous stiffness (50 kPa). Left plo
(red cell-voxels) along the cell surface and slightly decreases in the cytoplasm
cell elements and not the stress transmitted to the ECM or the nucleus. The n
displacements are distributed homogeneously, pointing radially to the cell ce
trajectory. Having no guidance, cell moves randomly, which is reflected in the
chemical inputs deactivated). These simulations presented
some differences due to the stochastic nature of the
model, but overall all the results were consistent. For clar-
ity, only one simulation of each set of conditions is pre-
sented. For all the cases shown here, the cell was assumed
to have an initially spherical shape of ~30 μm of diameter
and started the simulation in the domain centre (Figure 2).
Time simulated was 500 min (100 steps) which is in the
usual range of cell migration experiments [8,13]. Model
parameters were adjusted to predict speeds similar to mi-
grating fibroblasts observed in experiments [5,8,38,40,41].
First, the cell is embedded in a homogeneous ECM with

constant elastic modulus of 50 kPa. This value is larger
than the modulus corresponding with the 2 mg/ml colla-
gen gel used in the simulated microdevice [13]. Neverthe-
less, we used this higher value to show the effects of stress
saturation with stiffness, as we explain later. With no stiff-
ness anisotropy, the ECM displacements are homogeneously
, ECM displacement (left), 3D trajectory (middle) and migration
t shows a cut of the cell body. Cell stress is distributed homogeneously
zone. Note that the plot only represents the active stress exerted by the
ucleus is considered a passive material, thus appearing in blue. ECM
ntroid (left legend and white arrows). Middle plot shows cell migration
low effective speed.



Figure 7 ECM stiffness gradients and theoretical cell stress. A) Two different cases are simulated. The ECM stiffness varies linearly with
x-coordinate in the first case and exponentially in the second one. The cell starts the simulations at the same location but surrounded by different
compliant ECM depending on the gradient type. B) Cell stress depending on ECM stiffness. Note that this curve corresponds with the theoretical
solution of the mechano-sensing model in one direction, that is, the stress of one single voxel completely surrounded by an elastic ECM of a
specific stiffness.
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distributed, pointing radially to the cell centroid. Similarly,
the cell stress is mostly homogeneous, with higher values
at the cortex zone (~1.2 kPa) and slightly lower ones in
the cytoplasm (Figure 6, left). These values are in the order
of magnitude of cell stresses found in experiments
[32-35]. In addition, considering the surface of each voxel
face (9 μm2), the magnitude of cell forces would be in the
correct range (up to few hundreds of nN) of experimental
data [42-44]. Note how the nucleus (assumed passive), is
being stretched by the surrounding contracting elements.
With such homogeneity, the chance of adding/removing
elements at the cell surface is similar in all directions (see
methods) and consequently, the cell migrates in a random
fashion (Figure 6, middle). Also note that the migration
speed depends on the ECM stiffness through the probabil-
ity functions since higher stiffness lead to higher cell stress
(until saturation) and thus to higher migration speeds. In
this case, results show ~0.4 μm/min of mean speed and
~0.024 μm/min of effective speed (Figure 6, right). Mean
Figure 8 Migration trajectories and computed speeds. A) 3D and x-y p
stiffness gradient. Initial position is the same for both cases. Light blue circle and
2 respectively. B) Cell migration speeds at different times of simulation. L
speed is calculated as the average cell speed at each step, whereas the e
at a certain time.
speed is calculated as the average cell speed at each step,
whereas the effective speed takes into account only the
initial and final cell location at a certain time. Low effect-
ive speed reflects high randomness.
Secondly, two cases with different stiffness conditions

are simulated. In case 1, the elastic modulus of the ECM
increases linearly with x-coordinate, whereas in case 2,
the increase is exponential (Figure 7A). The cell centroid
at each step is tracked and the 3D and x-y projected tra-
jectories are shown in Figure 8A. Overall, in both cases,
cell migration pathways were random with a higher net
advance in the direction of the gradient stiffness (x-dir-
ection). However, cell response was different, moving
slightly faster but much more directed in case 2, espe-
cially during the first steps. In this case, the stiffness
variation (and thus, cell stress) between the front and
the back part was very pronounced. According with the
probability functions, this corresponds with much higher
probability of voxel appearance in + x-direction and of
rojected trajectories for: case 1 - linear stiffness gradient, case 2 - exponential
orange triangle show the final location of the cell centroid for cases 1 and
egend in A is used to represent the cases in the x-axis of B. Mean
ffective speed takes into account only the initial and final cell location



Figure 9 Cell stress and ECM displacements. Cell stress (coloured voxels) and ECM displacements (black arrows and cut plane) at t = 80 min
for case 1 (linear stiffness gradient in x-direction) and case 2 (exponential stiffness gradient in x-direction).
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voxel removal in –x-direction, resulting in fast forward ad-
vance. This was reflected on the mean and effective speeds
of cell migration (Figure 8B). For short times, the mean
speeds were similar in both cases (~0.3 μm/min), but the
effective speed was much higher in case 2 (0.25 μm/min
compared with 0.04 μm/min in case 1), as expected from
the trajectory analysis.
However, for long-term, both case 1 and 2 presented

similar mean (~0.42 μm/min) and effective (~0.06 μm/
min) speeds, and the trajectories were mostly random.
This is due to cell stress dependence on ECM stiffness.
According to the mechanosensing model, cell stress in-
creases with ECM stiffness, swiftly for compliant sub-
strates but saturating for higher rigidities (Figure 7B). As
stated before, pronounced differences between front and
rear stress would cause fast and straight movements,
whereas small differences would lead to random-like mi-
gration. In case 1, cell moved between stiffness of 45–65
kPa, always close to the saturation zone, which explains its
non-directional motion. On the other hand, in case 2 the
cell started in a compliant zone (1 kPa), but quickly found
Figure 10 Cell shape factor and spread area. A) Cell aspect ratio and sp
2 (exponential stiffness gradient in x-direction) B).
much stiffer surroundings (100 kPa) which highly in-
creased cell stress, decreasing back and rear differences
and thus producing stochastic migration. Figure 9 shows
the stress distribution for both cases at t = 80 min which is
approximately the time at which the cell arrived to a very
stiffer zone, reaching force saturation and thus migrating
more randomly. In case 1, cell stress is homogeneously
distributed, although the voxels with higher stress corre-
sponded with surface (cortex) elements preferentially ori-
ented in + x-direction. Cell shape is mainly regular but
generally polarized with the gradient direction, and the
ECM displacements point radially to the cell centroid. In
case 2, however, there exist a clear gradient of cell stress
following the ECM stiffness. The cell shown in Figure 9
presents a shape which is broader at the front, exerting
higher stress, and very thin at the rear. Nevertheless, due
to the pronounced stiffness gradient, displacements are
much higher at the rear and the ECM is mainly stretched
in the x-direction.
Overall, cell aspect ratio or shape factor (major axis di-

vided by minor axis) (Figure 10A) was similar for both
read area B) for case 1 (linear stiffness gradient in x-direction) and case
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cases, as well as the spreading area (Figure 10B), present-
ing case 2 slightly higher values. This likely happens for
the same reasons explained above. The probability func-
tions tend to saturate at high stresses and hence the voxel
appearing/disappearing probability is high in all directions.
Therefore the aspect ratio is noisy and relatively low, from
roundish-like shapes to somewhat elongated (2:1) cells.
ECM degradation
The matrix metalloproteinases (MMPs) are a family of
ECM degrading enzymes which play a major role on cell
behaviors such as migration, differentiation or angiogen-
esis. In fact, localized matrix degradation is thought to
contribute to cellular invasiveness in physiological and
pathological situations [45]. This degradation modifies the
morphology and mechanical properties of the ECM,
therefore affecting the cell behavior. Computational mod-
eling of such a complex phenomenon requires specific
and focused research [29]. Nevertheless, the possibility of
ECM degradation was added into the codes for possible
future development.
As a first approximation, a very simple rule was in-

corporated: whenever an ECM-voxel (i) is in contact
with the cell perimeter it becomes degraded, losing a
certain percentage (d) of its original Young’s modulus
Ei
ECM ¼ E0 1−dð Þ� �

. To test the effect of such simplifica-
tion, case 1 (linear stiffness gradient in x-direction) was
computed again activating ECM degradation (using d =
0.01). Results after 80 minutes of simulated time show
that both the effective and mean speeds increase when
the ECM is degraded (Figure 11 left). The reason is that
the degradation of the ECM mechanical properties (lower
E) decreases the probabilities of adding cell elements at
the trailing edge. Thus, the cell tends to migrate faster
leaving a degraded path on its way (Figure 11 right).
Further development of a degradation model might be

interesting in the future, although the degradation
Figure 11 Cell speeds and ECM degradation. A) Cell speeds and matrix
t = 80 minutes. Cell speed slightly increases while the cell leaves a degrade
coloured background shows the percentage of ECM degradation.
option was deactivated in the main simulations for sim-
plicity, to isolate the effects of the rest of phenomena.

Migration
To study the resulting patterns depending on input envir-
onmental factors by activating/deactivating mechanics,
flow or chemistry, and using different combinations of gra-
dient directions, 500 min (100 steps) of cell migration were
simulated. Five specific cases were distinguished (Figure 12):
(A) only mechanical inputs activated, applying a linear stiff-
ness gradient (same as case 1 in previous section) on the x-
direction, (B) migration is only driven by fluid flow in
x-direction, (C) flow and a chemical gradient are both
applied in x-direction, (D) flow is applied in x-direction
whereas there is a stiffness gradient in y-direction, (E)
flow and a chemical gradient are applied in x-direction
and a stiffness gradient acts in y-direction.
Down panel of Figure 12 shows the 3D trajectories

and the x-y projection. Mean and effective velocities at
the end of simulation are plotted for each condition. Al-
though the mean or averaged speed (Vm) was similar for
all the cases (~0.4 μm/min), the effective speed (Veff )
was strongly influenced by the boundary conditions. For
each case, the directionality of the migration as the angle
of each turn in the track relative to the x-direction was
determined. Results reflect the sensitivity of the model
when applying single or combined factors. Stiffness or
flow gradients acting alone (cases A,B), produced more
random migration with ~40% of backward movements,
which is reflected on effective speeds under 0.1 μm/min.
Introducing a second factor on the x-direction (case C),
even when another gradient was acting in the y-direction
(case E), substantially decreased the randomness. In these
cases, only ~10% of the turns went away from the “cor-
rect” path, overall achieving effective speeds of ~0.25 μm/
min. Interestingly in case D, where the gradients are ap-
plied in x and y-directions, the effective speed (~0.16 μm/
min) was greater than in cases A or B, probably due to the
degradation B) for case 1 (linear stiffness gradient in x-direction) at
d path at the trailing edge. Red voxels represent the cell, whereas



Figure 12 Cell migration under different environmental conditions. Mechanical, flow and chemical inputs are activated/deactivated in different
combinations and gradient directions. Case A: only the mechanical input is activated, applying a linear stiffness gradient (same as case 1 in previous
section) on the x-direction. Case B: flow acts in x-direction. Case C: flow and a chemical gradient are both applied in x-direction. Case D: flow is applied
in x-direction and a stiffness gradient in y-direction. Case E: flow and a chemical gradient are applied in x-direction and a stiffness gradient in y-direction.
Green box represents the gel and coloured arrows the gradient directions. Migration directionality was determined as the angle of each turn in the track
relative to the x-direction. Coloured numbers represent the count of turns at each simulation.
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fact that random deviations were combined with either
the direction of the stiffness or the flow gradient.

Modeling a porous ECM
So far, all the simulations have considered a continuum
matrix through which the cell is able to migrate, com-
pletely neglecting morphology or geometrical effects of
the ECM. In this section, a porous mesh is simulated to
compute cell migration through the matrix pores.
The domain size is the same as used in previous simula-
tions (300 × 300 × 120 μm with voxels of 3 μm) but the
mesh is performed randomnly obtaining a porosity of ~0.9
and average pore size ~20 μm (Figure 13A). This pore size
is large, especially for physiologic matrices, however, since
we are not introducing hindrance or other phenomena re-
lated with the cell advance through little pores, a bigger
pore size is more adequate to study morphological changes
of the cell body. The cell is initially placed at the domain



Figure 13 Example of a porous ECM voxel-mesh. A) Mesh of porosity ~0.9 and average pore size ~20 μm. B). Domain cut using horizontal
and diagonal planes showing cell’s initial position.
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center (note that cell’s volume is taken into account when
building the mesh) (Figure 13B). The ECM is still consid-
ered as linear elastic for simplicity with homogeneous
Young’s modulus of 5 kPa, and the cell behavior follows
the mechanosensing model. In addition, the flow field in
x-direction is interpolated from the microfluidic simula-
tion. The observed cell behavior was similar to that found
in previous simulations using continuum ECM’s, present-
ing, however, some peculiarities. Developed stress was
similar to previous cases (~1–1.3 kPa) although ECM
Figure 14 Cell stress and displacements in a porous ECM. Top panel s
those in a continuum ECM). Bottom left panel shows cell stress and the ce
Cell body contracts toward the pore surface (bottom right panel), with hig
displacements were significantly higher (up to 0.9 μm) due
to the pores (Figure 14). Interestingly, the cell tends to ad-
here to the pore surface, where the stiffness (and therefore
the stress) is higher (Figure 14 bottom left). Moreover, the
cell contracts its body toward that surface, presenting high
displacements at the non-adhered voxels (Figure 14,
bottom right).
Mean and effective speeds were similar and high (above

0.35 μm/min), indicating a directional migration. In fact,
both the trajectory and the angle distribution confirm that
hows cell stress and ECM displacements (significantly higher than
ll body adhered to the pore surface (where it develops higher stress).
h displacements at the free side.
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the cell moved mainly in x-direction, adhering to the pore
surfaces but following the flow lines (Figure 15, right
plots). Cell shape factor and spreading area present noisy
behaviors due to the irregular ECM geometry, although
the values are similar to those obtained in a continuum
domain.

Discussion
In this work, a phenomenological probabilistic voxel FE
model for single cell migration in 3D has been described.
Through a set of probability functions and combining dif-
ferent software, the model is able to compute cell migra-
tion taking into account different environmental factors
evaluated at the cell surface such as mechanical properties
of the ECM, chemical gradients, flow and boundary condi-
tions, capturing important migration-related features such
as cell speed, cell stress, ECM-displacements, spread area,
cell aspect ratio etc. To study the fluid-chemical environ-
ment, a full 3D microfluidic device whose geometry and
conditions were taken from a recent experiment [13] is
simulated, in which the fluid passes by the input channels
and flows through a porous medium. On the other hand,
to analyze the mechanical environment, the mechanical
equilibrium is solved by using a specific mechanosensing
model. The macroscopic behavior of the cell emerges nat-
urally from the definition of probabilities at each voxel
(based on the conditions at the macro-scale), allowing the
study at the micro and cell scales.
Figure 15 Cell response in a porous ECM. Left plots show the cell shape
geometry. Mean and effective speeds are similar, suggesting a directional m
with respect to x-direction (right plots).
Overall, the model predicts cell migration toward stiffer
zones of the ECM [5-8], downstream and parallel to the flow
[13,39] and oriented with chemical gradients [11,12]. The
parameters of the dynamic functions were adjusted to obtain
migration speeds in the range 0–1 μm/min [5,8,38,40,41]
and cell stresses of the order of few kPa as reported experi-
mentally [32-35]. In addition, the effects of combined factors
were investigated, confirming that the model responds ac-
cordingly in random but controlled fashion.
This approach joins together features from different

kind of existing migration models. For instance, similarly
to the force-based dynamic approaches, the mechanical
equilibrium is locally established taking into account the
cell contraction depending on ECM conditions following
a mechanosensing model [22]. Note that although this
approximation is sensitive to external loads (e.g. hydrostatic
pressure or ECM pre-strains), only stress and strain caused
by cell contraction are taken into account. Additionally,
a 3D lattice is used, like in Monte Carlo studies, which usu-
ally permits faster simulations at the expense of quantitative
results. Nevertheless, since the cell body is discretized with
voxels, this handicap is skipped and the model is able to
qualitatively and quantitatively study different aspects of
cell migration. Obviously, this simplification implies other
disadvantages such as the accuracy loss at the cell surface.
In fact, it is important to remark the commitment between
voxel and cell sizes. The number of voxel elements must be
large enough to represent the cell perimeter but small
factor and spreading area. Noise is caused by the irregular ECM
igration, as confirmed by the trajectory and the angle distribution
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enough to maintain a reasonable computational cost. The
expected cell speed should also be taken into account. For
instance, to simulate the migration of a slow cell, you the
global size of the ECM could be decreased, and smaller ele-
ments can be used to increase the accuracy. Hence, in
terms of computational cost, the best case would be a large
and slow cell, and the worst a fast small cell (e.g. a bacter-
ium). Unfortunately, a mathematical law to define the opti-
mal voxel-size does not exist, although we found that one
tenth of the global cell size was overall a good choice.
Finally this approach is based on probabilities. How-

ever, unlike purely stochastic models, ECM properties or
cell stress can be included to drive migration. In fact,
this first approach focuses on fluid direction, chemical
gradients and mechanical cues as the main inputs driv-
ing cell migration through the probability functions. It is
worth mentioning that the initial cell shape (assumed
spherical at t = 0), would only affect the first migration
steps. For instance, an initially elongated or polarized
cell would steadily reorient according to the external in-
puts due to the probability functions, and therefore the
general trend would be maintained. These tunable func-
tions allow controling the relative weight of each input
parameter (by varying the corresponding λ’s), as well as
including new factors that affect cell migration. For in-
stance, some experiments [13,39] suggest that cells
polarize with the interstitial flow direction and migrate
downstream due to a flow-induced gradient of an auto-
crine chemotactic signal that is detected by specific che-
mokine receptors. When those receptors are blocked or
when the cell population grows (thus disrupting the sig-
nalling processes), the migration trend is reversed. This
effect could be easily introduced in the model by simply
switching the values of FF or including a signalling func-
tion regulating that specific parameter. Also, the model
predicts increasing speed migration (higher probabilities)
with ECM stiffness, not considering hindrance or drag
effects that may appear in dense ECMs. To account for
the biphasic behavior of cell speed versus ECM stiffness,
as found in experiments and used in previous models
[21,22,40,46,47], Fσ could be modified so that the prob-
ability of adding/removing voxels decreased as a func-
tion of drag (σv/(σmaxf(drag))), or a specific Fdrag with
negative values could be defined.
Adding new input factors or enhancing current assump-

tions is thus possible and easy, although increasing com-
plexity may complicate the interpretation of the results.
Nevertheless, with the activation/deactivation of input fac-
tors, the model serves as a suitable platform for investigat-
ing a wide variety of migration-related phenomena. In
fact, in a future development, it will be possible to deep
further into some important aspects which are now over-
simplified. For instance, ECM degradation could be easily
included in the model to study differences between
proteolytic and non-proteolytic migration. Additionaly,
the ECM architecture could be further explored, studying
the effects of porosity and pore size, including features of
contact guidance or even reconstructing the geometry
from real images. Furthermore, in this kind of environ-
ments, blebbing migration usually plays an important role
as an alternative mode of migration [48]. Although the
current model is based on the mechanosensing assumption
(which implies cell-matrix adhesions) and internal pres-
sure driving independent cell protrusions could be also in-
corporated. Another simplification is the assumption of
a constant difference of maximum stress between the
cortex and the cytoplasm. However, the complex reality
could be better represented by making the maximum
stress magnitude dependent on myosin activation or pro-
tein concentration along the different cell parts. Similarly,
the stiffness of active cell components (Kact) could rely on
actin polymerization and cytoskeletal reorganization.
These and other phenomena could be incorporated to
better reflect the dynamics of cell migration.
Nevertheless, it is important to bear in mind the main

handicap when working at different scales (microdevice vs.
gel vs. cell), which is the computational cost. To solve this,
different FE software (COMSOL Multiphysics) including a
specific microfluidics module is used, and the steady-state
solution of the fluid-chemical problem is computed. Then,
this solution is interpolated into a finer mesh of the central
part of the porous gel, where the mechanical analysis and
cell migration are computed. Since the model simulates
single cell motility, the cell volume does not affect the
macro-scale results of the fluid-chemical simulation, and
thus it can be neglected permitting considering the stream
lines and chemical gradient constant during simulation. In
spite of this assumption, the scripts require up to 30 GB of
RAM memory, too high for a common personal computer.
Furthermore, in case of extending the model to compute
collective cell migration, the mentioned simplification
would not be valid, making thus necessary a new approach
and considerably increasing the computational cost. With
all this, another limitation of the current model is the ex-
tended use of commercial software (ABAQUS, MATLAB,
COMSOL) which restricts the sharing possibilities, al-
though it is intended to remove this dependence in the
near future by creating specific hand-coded routines.

Conclusions
In sum, this work establishes a methodology for testing
and designing new experiments; being in particular useful
for simulating ongoing microfluidic systems and the study
of several basic biological functions such as cell migration,
angiogenesis, or organ formation. With all this, it has been
developed not just a migration model but a workbench to
investigate cell response to a wide variety of external stim-
uli. Furthermore, with its modular form, the model can be
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constantly updated and redefined as advancements are
made in clarifying how cellular events take place.

Additional file

Additional file 1: Fluid-chemical simulation with cell body
embedded in a porous ECM.
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