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SUMMARY

Lung adenocarcinoma, the most common subtype
of non-small cell lung cancer, is responsible for
more than 500,000 deaths per year worldwide.
Here, we report exome and genome sequences of
183 lung adenocarcinoma tumor/normal DNA pairs.
These analyses revealed a mean exonic somatic
mutation rate of 12.0 events/megabase and identi-
fied the majority of genes previously reported as
significantly mutated in lung adenocarcinoma. In
addition, we identified statistically recurrent somatic
mutations in the splicing factor gene U2AF1 and
truncating mutations affecting RBM10 and ARID1A.
Analysis of nucleotide context-specific mutation
signatures grouped the sample set into dis-
tinct clusters that correlated with smoking history
C

and alterations of reported lung adenocarcinoma
genes. Whole-genome sequence analysis revealed
frequent structural rearrangements, including in-
frame exonic alterations within EGFR and SIK2
kinases. The candidate genes identified in this
study are attractive targets for biological charac-
terization and therapeutic targeting of lung adeno-
carcinoma.
INTRODUCTION

Lung cancer is a leading cause of death worldwide, resulting in

more than 1.3 million deaths per year, of which more than 40%

are lung adenocarcinomas (World Health Organization, 2012;

Travis, 2002). Most often, tumors are discovered as locally

advanced or metastatic disease, and despite improvements in

molecular diagnosis and targeted therapies, the average 5 year
ell 150, 1107–1120, September 14, 2012 ª2012 Elsevier Inc. 1107
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Table 1. Summary of Clinical Features

Age at Surgery (Median; Range) 66 (36–87)

Gender

male 95

female 88

Smoking Status (AJCC 7th Edition)

never-smoker 27

smoker >10 years 118

smoker %10 years 17

n/a 21

pack years (median; range) 30 (0–128)

Survival

follow-up available 135

follow-up unavailable 48

PFS in months (median; range) 9 (0–63)

Tumor Stage

I 90

II 36

III 22

IV 10

n/a 25

Distribution of selected clinical variables from 183 lung adenocarcinoma

cases.
survival rate for lung adenocarcinoma is �15% (Minna and

Schiller, 2008).

Molecular genotyping is now routinely used to guide clinical

care of lung adenocarcinoma patients, largely due to clinical

trials that demonstrated superior efficacy of targeted kinase

inhibitors as compared to standard chemotherapy for patients

with EGFR mutations or ALK fusions (Kwak et al., 2010; Pao

and Chmielecki, 2010). In addition to EGFR and ALK alterations

found in �15% of U.S. cases, lung adenocarcinomas frequently

harbor activating mutations in KRAS, BRAF, ERBB2, and

PIK3CA or translocations in RET and ROS1 (Pao and Hutchin-

son, 2012), all of which are being pursued as targets in ongoing

clinical trials (http://clinicaltrials.gov/). Lung adenocarcinomas

also often harbor loss-of-function mutations and deletions in

tumor suppressor genes TP53, STK11, RB1, NF1, CDKN2A,

SMARCA4, and KEAP1 (Ding et al., 2008; Kan et al., 2010; San-

chez-Cespedes et al., 2002). Unfortunately, such alterations are

difficult to exploit therapeutically. Therefore, knowledge of addi-

tional genes altered in lung adenocarcinoma is needed to further

guide diagnosis and treatment.

Previous efforts in lung adenocarcinoma genome character-

ization include array-based profiling of copy number changes

(Tanaka et al., 2007; Weir et al., 2007), targeted sequencing of

candidate protein-coding genes (Ding et al., 2008; Kan et al.,

2010), and whole-genome sequencing of a single tumor/normal

pair (Ju et al., 2012; Lee et al., 2010). These studies identified

somatic focal amplifications of NKX2-1, substitutions and copy

number alterations in known oncogenes and tumor suppressor

genes, and recurrent in-frame fusions of KIF5B and RET. These

studies have also nominated several putative cancer genes with

somatic mutations (EPHA family, NTRK family, TLR4, LPHN3,

GRM1, and GLI), but the functional consequence of many alter-

ations is unknown. A recent study describing whole-exome

sequencing of 16 lung adenocarcinomas (Liu et al., 2012)

enumerated several mutated genes but did not identify genes

undergoing positive selection for mutation in the studied tumors.

In this study, we used next-generation sequencing to se-

quence the exomes and/or genomes of DNA from 183 lung

adenocarcinomas and matched normal adjacent tissue pairs.

In addition to verifying genes with frequent somatic alteration

in previous studies of lung adenocarcinoma, we identified novel

mutated genes with statistical evidence of selection and that

likely contribute to pathogenesis. Together, these data represent

a significant advance toward a comprehensive annotation of

somatic alterations in lung adenocarcinoma.

RESULTS

Patient Cohort Description
We sequenced DNA from 183 lung adenocarcinomas and

matched normal tissues by using paired-end massively parallel

sequencing technology (Bentley et al., 2008). The cohort in-

cluded 27 never-smokers, 17 light smokers (defined by less

than ten pack years of tobacco use), 118 heavy smokers (more

than ten pack years), and 21 patients of unknown smoking status

(Table 1). The cohort included 90 stage I, 36 stage II, 22 stage III,

and 10 stage IV lung adenocarcinoma cases, as well as 25

patients with unknown stage. All tumors were chemotherapy-
1108 Cell 150, 1107–1120, September 14, 2012 ª2012 Elsevier Inc.
naive, primary resection specimens except for one case with

whole-genome sequence data (LU-A08-43) that was a postche-

motherapy metastatic tumor from a never-smoker. Sample

acquisition details are provided in Extended Experimental

Procedures. Additional clinical descriptors of the cohort are

provided in Table 1. Comprehensive clinical and histopatholog-

ical annotations, sequence characteristics, and major variants

for each patient in the study are provided in Table S1 (available

online).

Mutation Detection and Validation
Weexamined 183 lung adenocarcinoma tumor/normal pairs with

a combination of whole-exome sequencing (WES) or whole-

genome sequencing (WGS): 159 WES, 23 WES and WGS, and

1WGS only. Exomeswere sequenced to amedian fold coverage

of 92 (range: 51–201) on 36.6 Mb of target sequence (Fisher

et al., 2011). Genomes were sequenced to a median coverage

of 69 (range: 25–103) in the tumor and 36 (range: 28–55) in the

normal, with the higher tumor coverage to adjust for stromal

contamination. Complementary SNP array analysis of 183 pairs

was used to detect genome-wide somatic copy number alter-

ations. See Table 2 and Extended Experimental Procedures for

more details.

We identified somatic substitutions and small insertions

and deletions (indels) through statistical comparison of paired

tumor/normal sequence data by using algorithms calibrated

for stromally contaminated cancer tissues (Banerji et al., 2012;

Stransky et al., 2011) (www.broadinstitute.org/cancer/cga; Ex-

tended Experimental Procedures). Exonic regions of the 183

cases contained 77,736 somatic variants corresponding to

http://clinicaltrials.gov/
http://www.broadinstitute.org/cancer/cga


Table 2. Whole-Genome and Whole-Exome Sequencing

Statistics

Statistic

Whole-Exome

Capture Whole Genome

Tumor/normal

pairs sequenced

159 24

Total tumor Gb

sequenced

1,031.6 4,946.0

Median fold tumor

target coverage (range)

91 (51–201) 69 (25–103)

Median normal fold

target coverage (range)

92 (62–141) 36 (28–55)

Median somatic mutation rate

per Mb in target territory (range)

6.8 (0.3–94.7) 13.3 (4.5–55.3)

Median number of coding

mutations per patient (range)

216 (1–3,512) 323 (63–2,279)

Median number of

nonsynonymous mutations

per patient (range)

167 (1–2,721) 248 (53–1,770)

Median number of transcribed

noncoding mutations per

patient (range)

187 (13–2,559) 18,314

(4,632–100,707)

Total number of

structural rearrangements

n/a 2,349

Total number of

frame-preserving

genic rearrangements

n/a 71

Total number of frame-

abolishing genic

rearrangements

235

Median number of genes

powered at 20% exonic

territory (range)

15,647

(15,046–16,019)

16,905

(10,136–16,952)

Median number of genes

powered at 50% exonic

territory (range)

6,788

(6,078–7,402)

8,771

(2,634–8,863)

Selected sequencing statistics for 183 WES and WGS cases. ‘‘Tumor

Target Territory’’ refers to the exonic territory targeted by the exome

capture bait set reported by (Fisher et al., 2011) and used in this study.

The ‘‘Whole-Exome Capture’’ column does not include data on 23 cases

analyzed by both WES and WGS.
a median of 8.1 mutations/Mb and a mean of 11.9 mutations/

Mb (range: 0.04–117.4). These comprised 43,813 missense,

14,801 silent, 3,504 nonsense, 1,460 splice-site, 2,310 dele-

tions, 839 insertions, and 11,009 other mutations (predomi-

nantly residing in 50 and 30 untranslated regions [UTRs]). Of

the 3,149 indels, 182 were in-frame, 1,785 were predicted to

cause a frame shift, 68 occurred at a splice site, and 1,114

were otherwise classified.

Mutation calls were validated by cross-comparison of coding

mutations detected by WES and WGS from 24 cases with both

data types. We validated 84% of 380 indels and 97% of 9,354

substitutions identified by WGS at sufficiently powered sites in

the corresponding WES tumor sample. In the converse analysis,

we validated 86% of 338 indels and 98% of 8,912 substitutions

from WES at sufficiently powered sites in the corresponding
C

WGS tumor sample (Figure S1, Table S2A, and Extended Exper-

imental Procedures). To validate mutations from cases with only

WES data, we randomly selected 69 candidate mutations for

ultradeep (>1,000-fold) targeted resequencing. Somatic status

was confirmed for 30 of 33 (91%) indel events and 33 of 36

(92%) substitution events (Table S2B). These validation rates

generally meet or exceed those reported in similar sequencing

studies (Banerji et al., 2012; Berger et al., 2012; Gerlinger

et al., 2012; Nikolaev et al., 2012; Stransky et al., 2011; Cancer

Genome Atlas Research Network, 2011; Totoki et al., 2011;

Zang et al., 2012).

Somatic Genetic Signatures of Mutagen Exposure in
Lung Adenocarcinoma
Consistent with previous studies (Ding et al., 2008; Kan et al.,

2010; Zang et al., 2012), we observed significantly higher exonic

mutation rates in tumors from smokers (median: 9.8/Mb;

mean: 12.9/Mb; range: 0.04–117.4/Mb) compared to never-

smokers (median: 1.7/Mb; mean: 2.9/Mb; range: 0.07–22.1/Mb;

p = 3.0 3 10�9, Wilcoxon rank sum test). Lung adenocarcinoma

mutation rates in our cohort exceeded those reported for other

epithelial tumor types, except melanoma and squamous cell

lung cancer (Hodis et al., 2012; Nikolaev et al., 2012; Cancer

Genome Atlas Research Network, 2012; Wei et al., 2011).

To characterize the mutation spectrum of lung adenocarci-

noma, we analyzed somatic substitutions and covered bases

within their trinucleotide sequence context (Figure 1A). The

most frequent mutation signatures were C/T transitions in the

setting of CpG dinucleotides (CpG/T) and C/A transversions.

The least frequent mutation type was A/C. Unbiased hierar-

chical clustering of context-specific mutation rates across 182

WES cases yielded five mutation spectrum clusters. These clus-

ters represented grades of increasing mutational complexity:

cluster 1 was enriched for CpG/T mutations and was marked

by an overall low mutation rate; cluster 2 was characterized

by CpG/T transitions and CpG/A transversions; cluster 3

showed additional C/A transversions outside of the CpG

context; cluster 4 showed additional C/T transitions outside

of the CpG context and TpC transversions that mutated to either

a T or a G; and cluster 5 comprised hypermutated tumors con-

taining a broad mutational spectrum that included rare mutation

signatures, such as A/T transversions. Mutation spectrum

clusters in tumors correlated with clinical features of patients.

Cluster 1 was significantly enriched in never- and light smokers

(p = 1.9 3 10�9, Fisher’s exact test), whereas cluster 4 was

significantly enriched in patients with advanced (IIIB or IV) stage

(p = 0.0063, Fisher’s exact test).

Differentiation of smokers and never-smokers was evident

from comparison of mutation counts from the most frequent

mutational signatures, CpG/T and C/A (Figure 1B). These

results were consistent with previous reports of signatures of

DNA damage by tobacco (Hainaut and Pfeifer, 2001). Applying

thresholds to a log-adjusted ratio of CpG/T and C/A muta-

tions (see Experimental Procedures), we imputed smoking

status for 21 patients who lacked reported smoking history

and accurately recapitulated reported smoking status for more

than 75% of the remaining cases (Figure 1B). Exonic and intronic

mutation rates, context-specific mutation counts, imputed
ell 150, 1107–1120, September 14, 2012 ª2012 Elsevier Inc. 1109
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Figure 1. Mutation Spectrum Analysis of 183 Lung Adenocarcinomas

(A) Hierarchical clustering of 183 lung adenocarcinomas according to their nucleotide context-specific exonic mutation rates. Each column represents a case,

and each row represents one of 96 strand-collapsed trinucleotide context mutation signatures. Top bar, patient-cluster membership; left bar, simplified single-

nucleotide context mutational signature; bottom bars, reported tumor stage, age, and smoking status for each patient; right gradient, mutation rate scale.

(B) Stratification of reported versus imputed smoking status by the log transform of the adjusted ratio of C/A tranversion rates and CpG/T transition rates. The

color of each inner solid point represents the reported smoking status for that particular patient. The color of each outer circle indicates that patient’s imputed

smoking status as predicted by the classifier. Additional analytic details are provided in the Extended Experimental Procedures.

See also Figure S1 and Tables S2 and S3.
smoking status, and mutation spectrum cluster assignments for

each patient are provided in Table S1.

Calibration of a Statistical Approach to the Analysis of
High Mutation Rate Tumors
The high mutation rates in lung adenocarcinoma and other

tumors (Hodis et al., 2012; Cancer Genome Atlas Research

Network, 2012) present a challenge for unbiased discovery of

mutated genes undergoing positive somatic selection. More

than 13,000 of 18,616 genes with adequate sequence coverage

had nonsynonymous somatic mutations in at least one tumor,

andmore than 3,000weremutated in at least five patients. These

genes included those with very large genomic footprints (e.g.,

TTN), genes with low basal expression in lung adenocarcinomas

(e.g., CSMD3), and genes accumulating high numbers of silent

substitutions (e.g., LRP1B).

Application of a standard binomial background mutation

model assuming a constant mutation rate in each patient and

nucleotide context stratum (Berger et al., 2011) yielded profound

test statistic inflation (Figure S2A) and identified more than 1,300
1110 Cell 150, 1107–1120, September 14, 2012 ª2012 Elsevier Inc.
significantly mutated genes. Genes with significant p values in

this analysis had low basal expression in lung adenocarcinoma

cell lines (Barretina et al., 2012) (Figure S2B), harbored high frac-

tions of synonymous mutations, and were enriched in gene

classes previously unassociated with cancer (e.g., olfactory

receptors and solute transporters). Recalibration of this model

by limiting to genes with evidence of expression improved, but

did not completely correct, this statistical inflation (Figure S2C).

These results suggested a high degree of variation in neutral

somatic mutation rates among genes, including expression-

dependent variation. This observation is consistent with reports

of regional mutation rates correlated with density of H3K9 chro-

matin marks across cancers (Schuster-Böckler and Lehner,

2012) and with gene expression in multiple myeloma (Chapman

et al., 2011).

To more adequately model variation of neutral somatic muta-

tion rates among genes, we applied the InVEx algorithm (Hodis

et al., 2012) to exploit the abundant noncoding mutations de-

tected by both WES andWGS. InVEx permutes coding, untrans-

lated, and intronic mutations within covered territories of each



gene, patient, and nucleotide context to generate within-gene

null distributions of ‘‘functional impact’’ across a sample set

(see Experimental Procedures).

Our primary InVEx analysis employed a PolyPhen-2 (PPH2)-

based metric (Adzhubei et al., 2010) to assess the functional

impact of observed and permuted mutations. Applying this anal-

ysis to 12,907 mutated genes with at least one PPH2-scored

event yielded a well-distributed test statistic with minimal infla-

tion (Figure S2D) and without gene expression bias in lung

adenocarcinoma cell lines (Figure S2B). To increase specificity

and power, we restricted our analysis to 7,260 genes demon-

strating expression (median Robust Multiarray Average [RMA]

valueR5) in a panel of 40 lung adenocarcinoma cell lines (Barre-

tina et al., 2012), which resulted in a similarly well-calibrated test

statistic (Figure S2E).

Next, we tested for enrichment of loss-of-function (LOF) muta-

tions by considering only truncating mutations as functional and

all remaining mutation types as neutral. We applied this method

to 2,266 genes with evidence of expression in lung adenocarci-

noma cell lines and at least one truncating mutational event.

Finally, we applied both PPH2 and LOF InVEx analyses to a

focused set of Cancer Gene Census (CGC) genes expressed in

lung adenocarcinoma and mutated or amplified in one or more

tumor types.

Statistical Driver Analysis Yields Previously Reported
and Novel Lung Adenocarcinoma Genes
The primary PPH2 InVEx analysis yielded 13 genes with statis-

tical evidence of positive selection (q < 0.25) (Table S3A). These

included lung adenocarcinoma genes with nonsynonymous

mutation frequencies that were consistent with previous reports:

TP53 (50%), KRAS (27%), EGFR (17%), STK11 (15%), KEAP1

(12%), NF1 (11%), BRAF (8%), and SMAD4 (3%). This analysis

also uncovered five novel candidates, including CHEK2, a

gene driven by an apparent recurrent mapping artifact in three

tumors and removed from all subsequent analyses (see Ex-

tended Experimental Procedures). The remaining candidates

were mutated at frequencies lower than most previously re-

ported genes, demonstrating the increased power of our large

sample set. The LOF InVEx yielded six significantly mutated

genes (q < 0.25), including BRD3, which is an additional gene

not contained in the PPH2 analysis (Table S3B). The CGC-only

PPH2 and LOF analyses yielded 15 and 10 genes, respectively,

including CTNNB1, FGFR3, ATM, CBL, PIK3CA, PTEN, FBXW7,

ARID1A, and SETD2 (Tables S3C and S3D). In total, the union of

these four analyses nominated 25 genes as significantly mutated

in our cohort (Figure 2A). Somatic coding mutations in signifi-

cantly mutated genes and known lung adenocarcinoma genes

are provided in Table S1. The entire list of somatic coding muta-

tions for all covered genes is provided in Table S4.

To compare our results with previous reports, we reviewed the

CGC and lung adenocarcinoma literature to identify genes with

previous evidence for functional somaticmutation in lung adeno-

carcinoma (see Extended Experimental Procedures for criteria

and references). Of the 19 genes with reported functional muta-

tions, 13 were significantly mutated genes nominated by our

analysis (KRAS, TP53, EGFR, STK11, SMARCA4, NF1, RB1,

BRAF, KEAP1, SMAD4, CTNNB1, PIK3CA, and ATM). The alter-
C

ations driving the statistical enrichment of these genes included

previously reported and novel mutations (Figures S3A–S3C). The

remaining six reported lung adenocarcinoma genes (CDKN2A,

ERBB2, AKT1, NRAS, HRAS, and APC) were not significant

in our mutation analysis (Table S3E), although we did identify

canonical driver mutations in these genes (e.g., AKT1 p.E17K,

NRAS p.Q61L) and although CDKN2A is significantly deleted

(see Figure 2) and rearranged (see below). This may reflect a

power limitation of our cohort or analytic methods we applied,

particularly when identifying infrequently mutated genes such

as AKT1, NRAS, and HRAS. Also missing among our signifi-

cantly mutated genes were 22 genes nominated by two previous

large-scale targeted lung adenocarcinoma sequencing studies

of similar or smaller size (Ding et al., 2008; Kan et al., 2010)

(see Extended Experimental Procedures for the complete list).

Most of these genes (20 of 22) did not pass our gene expression

filter and thus were not included in our global analysis. Targeted

analysis of these genes identified four with nominal evidence for

positive selection via PPH2 InVEx (EPHA3, LPHN3, GRM1, and

TLR4), the most significant of these being EPHA3 (p = 0.0027,

PPH2 InVEx).

Correlations among Alterations in Significantly Mutated
Genes and Clinicopathologic and Genomic Features
We correlated mutation status of the 25 significantly mutated

genes with clinical features (smoking, age, and stage), genomic

variables (mutation rate, mutation spectrum cluster, and imputed

smoking status), and presence of driver alterations in 25 genes

frequently or functionally altered in lung adenocarcinoma. These

alterations included genes with reported high frequency of

somatic mutation (e.g., KRAS) or focal amplification (e.g.,

NKX2-1) or deletion (e.g., TP53). High-frequency somatic copy

number alterations used for this analysis were curated from

published surveys of lung adenocarcinoma (Tanaka et al.,

2007; Weir et al., 2007). See Hallmarks Analysis in the Experi-

mental Procedures for the strict definition of driver alterations.

In our cohort, we observed gains of TERT (42% of cases, 15%

focal), MYC (31%), EGFR (22%), and NKX2-1 (18%, 10% focal).

Frequent losses were seen in TP53 (18%) and CDKN2A (24%,

10% homozygous), as well as in other significantly mutated

genes, including SMAD4, KEAP1, and SMARCA4.

EGFR mutations were significantly anticorrelated with KRAS

mutations (p = 3.3 3 10�4), and somatic mutation rate (p =

5.9 3 10�4) EGFR mutations significantly correlated with

never-/light smoker status (p = 2.03 10�6), imputed never-/light

smoker status (1.53 10�4), andmembership in spectrum cluster

1 (p = 0.0015). KRAS, STK11, SMARCA4, and KEAP1mutations

were significantly anticorrelated with both spectrum cluster 1

and imputed never-/light smoking status (p < 0.005). These find-

ings are consistent with reported associations (Koivunen et al.,

2008; Pao et al., 2004, 2005; Slebos et al., 1991). In addition,

NF1 mutations were significantly depleted in spectrum cluster

1 (p = 4 3 10�3) and co-occurred with U2AF1 mutations (p =

0.0011). KRAS driver alterations (including both mutations and

copy number alterations) significantly associated with spectrum

cluster 3 (p = 0.00071). STK11 driver alterations were signifi-

cantly enriched in spectrum cluster 2 (p = 0.0026). Correlation

results are graphically summarized in Figure S3D.
ell 150, 1107–1120, September 14, 2012 ª2012 Elsevier Inc. 1111



Figure 2. Somatic Mutations and Copy Number Changes in 183 Lung Adenocarcinomas

Top panel shows a summary of exonic somatic mutations in 25 significantly mutated genes (see text and Table S3 for details). Tumors are arranged from left to

right by the number of nonsilent mutations per sample, shown in the top track. Significantly mutated genes are listed vertically in decreasing order of nonsilent

mutation prevalence in the sequenced cohort. Colored rectangles indicate mutation category observed in a given gene and tumor. Bar chart (right) indicates

prevalence of each mutation category in each gene. Asterisks indicate genes significantly enriched in truncating (nonsense, frameshift) mutations. Middle bars

indicate smoking status and mutation spectrum cluster for each patient. White boxes indicate unknown status. Bottom panel shows a summary of somatic copy

number alterations derived from SNP array data. Colored rectangles indicate the copy number change seen for a given gene and tumor. See also Figure S2.
Finally, we screened the 25 significantly mutated genes for as-

sociationwithprogression-free survival (PFS) across135patients

with PFSdata.U2AF1 (p = 0.00011, log rank test) andTP53muta-

tions (p = 0.0014, log rank test) were associated with significantly

reduced survival (Figure S3E). The latter finding was consistent

with previous reports (Kosaka et al., 2009; Mitsudomi et al.,

1993). No other significant associations with PFS were seen.

Nomination of Candidate Lung Adenocarcinoma Genes
One of the most significantly mutated genes in this lung adeno-

carcinoma cohort was U2AF1 (p = 2.0 3 10�6, PPH2 InVEx),

which had nonsynonymousmutations in 3%of cases (Figure 3A).

Identical c.101C > T, p.S34F mutations were seen in four of five

U2AF1 mutant cases (Figure 3A); this is the exact mutation re-
1112 Cell 150, 1107–1120, September 14, 2012 ª2012 Elsevier Inc.
ported in myelodysplastic syndrome (MDS) (Graubert et al.,

2012; Yoshida et al., 2011). To our knowledge, this study is the

first report of U2AF1 mutations in an epithelial tumor. One of

four p.S34F mutations occurred with an activating event in

KRAS (p.Q61H), suggesting that U2AF1 mutations may confer

tumorigenic capability independent of known proliferation-

sustaining driver genes. As mentioned above, four patients with

U2AF1 mutations and survival data had significantly reduced

PFS (Figure S3E). Nonsynonymousmutations in genes encoding

other members of the spliceosome complex (including SF3B1,

U2AF2, and PRPF40B) were found in 14 additional cases (Yosh-

ida et al., 2011).

RBM10 was frequently mutated (12/183 cases; 7%) and sub-

ject to recurrent nonsense, frameshift, or splice-site mutations,
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A Figure 3. Somatic Mutations of Lung

Adenocarcinoma Candidate Genes U2AF1,

RBM10, and ARID1A

(A) Schematic representation of identified somatic

mutations in U2AF1 shown in the context of the

known domain structure of the protein. Numbers

refer to amino acid residues. Each rectangle

corresponds to an independent, mutated tumor

sample. Silent mutations are not shown. Missense

mutations are shown in black.

(B) Schematic of somatic RBM10 mutations.

Splice-site mutations are shown in purple; trun-

cating mutations are shown in red. Other notations

as in (A).

(C) Schematic of somatic ARID1A mutations.

Notations as in (A) and (B).

See also Figure S3.
which were present in 7 of 12 mutated cases (4% of overall

cohort) (Figure 3B). This resulted in significant enrichment in

the global PPH2 InVEx analysis (p = 0.00042) (Table S3). Like

U2AF1, RBM10 is an RNA-binding protein that is highly ex-

pressed in lung adenocarcinoma cell lines (data not shown),

and its mutations co-occurred with those in known lung adeno-

carcinoma oncogenes (KRAS, EGFR, and PIK3CA). ARID1A,

encoding a key protein in the SWI/SNF chromatin-remodeling

complex, was mutated in 8% of cases (Figure 3C) and showed

significant accumulation of nonsense substitutions and frame-

shift indels (p = 0.027, CGC LOF InVEx).

Whole-Genome Rearrangement Analysis Reveals Novel
and Recurrent Structural Variants
We used paired-end and split-read mapping of whole-genome

data (Banerji et al., 2012; Bass et al., 2011; Medvedev et al.,

2009) to detect and map the breakpoints of 2,349 somatic rear-

rangements across 24WGScases. Themajority of thesewere in-

trachromosomal rearrangements (1,818 events) but included 531

interchromosomal events. Among these were 1,443 (61.4%)

genic rearrangements (i.e., in which one breakpoint was con-

tained within the promoter, UTR, intron, or exon of a gene) and

906 (38.6%) purely intergenic events. Lung adenocarcinomas

harbored a wide range of total rearrangements (median: 98;

range: 18–246), genic rearrangements (median: 50; range: 12–

173) (Figure 4A), and overall genome complexity (Figure S4).

The variability of rearrangement counts between cases did not
Cell 150, 1107–1120, Sep
correlate with clinical variables (Figure S4

andTableS1) ormutation spectrum.Rear-

rangement coordinates and interpreta-

tions are provided as Table S5.

The reading frame of affected genes

was preserved by 3% of detected rear-

rangements (71 of 2,349). These included

34 protein fusions, 13 duplications, and

24 deletions. We found 44 rearrange-

ments that fused UTRs of two genes

without affecting the protein-coding se-

quence of either gene. All 25 genic fusions

we tested were confirmed by PCR and
Illumina sequencing (see Extended Experimental Procedures)

(Table S5).

The gene with the highest rate of rearrangements for its size

was CDKN2A (4.3 rearrangements/sequenced Mb). Two cases

had out-of-frame, antisense fusions (with MTAP and C9orf53),

and a third harbored an in-frame deletion (Figure 4B). As shown

in lung squamous cell carcinomas, rearrangements represent an

additional mechanism of CDKN2A inactivation, in addition to re-

portedmutation, homozygous deletion, andmethylation (Cancer

Genome Atlas Research Network, 2012). Additional lung adeno-

carcinoma tumor suppressors affected by predicted null or

truncating rearrangements included STK11 (2.5 kb deletion

removing the translational start site) and APC (midexon rear-

rangement) (Figure 4B).

We next focused on potentially activating in-frame rearrange-

ments of kinase genes. This analysis uncovered a two-exon

deletion inEGFR, whichwas previously identified in glioblastoma

multiforme but is novel in lung adenocarcinoma, ablating a

portion of the C terminus of EGFR encoded by exons 25 and

26 (Figures 4B, 5A, and S5), including residues associated

with interaction with PIK3C2B (Wheeler and Domin, 2001) and

CBL (Grøvdal et al., 2004). Similar C-terminal deletion variants

(EGFR vIVb) have been previously identified in glioblastoma

(Ekstrand et al., 1992) and have been shown to be oncogenic

in cellular and animal models (Cho et al., 2011; Pines et al.,

2010). This tumor contained a second somatic alteration in

EGFR, a p.G719S mutation, suggesting possible synergy of
tember 14, 2012 ª2012 Elsevier Inc. 1113
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(B) Representative Circos (Krzywinski et al., 2009) plots of whole-genome sequence data with rearrangements targeting known lung adenocarcinoma genes

CDKN2A, STK11, and EGFR and novel genesMAST2, SIK2, and ROCK1. Chromosomes are arranged circularly end to end with each chromosome’s cytobands
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See also Figure S4 and Table S5.
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(B) Soft agar colony forming assay of NIH 3T3 cells expressing exon 25- and 26-deleted EGFR (Ex25&26 del) or wild-type EGFR in the presence or absence of

ligand stimulation. The bar graph shows the number of colonies formed by indicated cells with or without EGF in soft agar. Data shown are mean +SD of three

replicates of a single experiment. The results are representative of three independent experiments.

(C) Ex25&26 del EGFR is constitutively active in the absence of EGF. The same NIH 3T3 cells used for the assay in (B) were subjected to immunoblotting with anti-
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(D) Cell growth induced by the oncogenic EGFR deletion mutant is suppressed by erlotinib treatment. Ba/F3 cells transformed by either L858R or Ex25&26 del
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replicates of a single experiment. The results are representative of three independent experiments.

See also Figure S5.
activating EGFR mutations or presence of independent, subclo-

nal activating mutations.

To assess oncogenicity of this novel EGFR variant, we ectop-

ically expressed an EGFR transgene lacking exons 25 and 26 in

NIH 3T3 cells. As has been previously observed for oncogenic

EGFR mutations, cells stably expressing this transgene demon-

strated colony formation in soft agar (Figure 5B) and increased

EGFR and AKT phosphorylation in the absence of EGF (Fig-

ure 5C). In contrast, cells expressing wild-type EGFR formed

colonies only in the presence of EGF (Figure 5B). Overexpression
C

of the EGFR transgene in Ba/F3 cells led to interleukin-3 inde-

pendent proliferation that was blocked by treatment with an

EGFR tyrosine kinase inhibitor, erlotinib (Figure 5D), at concen-

trations previously shown to be sufficient for inhibition of acti-

vated variants of EGFR (Yuza et al., 2007).

Kinases with in-frame rearrangements in tumorswithoutmuta-

tions in lung adenocarcinoma oncogenes included SIK2 and

ROCK1 (Figure 4B). An in-frame kinase domain duplication in

SIK2 (salt-inducible kinase 2) was identified and validated by

quantitative PCR (qPCR). The duplication occurred 15 amino
ell 150, 1107–1120, September 14, 2012 ª2012 Elsevier Inc. 1115



acids upstream of Thr-175, where a related kinase, SIK1, is acti-

vated by STK11 (Hashimoto et al., 2008). A 19 exon duplication

was uncovered in ROCK1, which is a serine/threonine kinase

that acts as an effector of Rho signaling (Pearce et al., 2010).

Notably, we did not identify any in-frame rearrangements

involving kinase fusion targets in lung adenocarcinoma ALK,

RET1, and ROS1. Given their reported 2%–7% frequency in

lung adenocarcinoma (Bergethon et al., 2012; Takeuchi et al.,

2012), our study of 24 tumor/normal pairs may not be large

enough to detect these rearrangements. Interestingly, an out-

of-frame ROS1-CD74 translocation was identified in a single

patient without evidence for the previously characterized recip-

rocal activating event. In-frame fusions and indels are annotated

for each WGS case in Table S1.

DISCUSSION

Charting the Next-Generation Hallmarks of Lung
Adenocarcinoma
The ‘‘hallmarks of cancer,’’ as defined byHanahan andWeinberg

(2000, 2011), comprise a set of cellular traits thought to be

necessary for tumorigenesis. They also represent a powerful

framework to evaluate our understanding of genetic alterations

driving lung adenocarcinoma. With this aim, we mapped each

of 25 experimentally validated lung adenocarcinoma genes to

one or more cancer hallmarks from Hanahan and Weinberg

(2000, 2011) (Table S6 and Experimental Procedures). These

25 genes include the 19 previously reported genes discussed

above, in addition to six genes subject to frequent copy num-

ber alteration in lung adenocarcinoma (NKX2-1, TERT, PTEN,

MDM2, CCND1, and MYC). Next, we integrated this gene hall-

mark mapping with our somatic mutation and copy number

data to estimate the prevalence of cancer hallmark alterations

in lung adenocarcinoma (Figure 6 and Table S1).

Formany cases in our cohort, we could attribute only aminority

of the ten cancer hallmarks to a distinct genetic lesion (Figure S6).

Only 6% of tumors had alterations assigned to all six classic hall-

marks, and none had alterations impacting all ten emerging and

classic hallmarks. In contrast, 15% of our cohort did not have

a single hallmark alteration, and 38% had three or fewer. This

finding is likely explained in part by alteration of cancer genes

by mechanisms not assayed in our study and also suggests

that many lung adenocarcinoma genes have not been identi-

fied. This may be especially relevant for the hallmarks of avoid-

ing immune destruction and tumor-promoting inflammation, to

which none of the recurrently mutated genes identified in our

study or previous studies could be linked. One of the most

important and therapeutically targetable cancer hallmarks is

sustaining proliferative signaling (Figures 6 and S6). Less than

half (47%) of our cohort harbored a mutation in a known driver

gene for this hallmark, and only slightly more (55%) did so

when including high-level amplification in one or more prolifera-

tive signaling genes (e.g., EGFR, ERBB2, and MYC).

Our mapping of somatic alterations to cancer hallmarks

illuminates specific gaps in the understanding of the somatic

genetic underpinnings of lung adenocarcinoma. Around half of

the sequenced cohort lacked a mutation supporting sustained

proliferative signaling, and a majority lacked a genetic alteration
1116 Cell 150, 1107–1120, September 14, 2012 ª2012 Elsevier Inc.
explaining the phenotypes of invasion and metastasis or

angiogenesis. This phenotypic gap may be explained by novel

capabilities not yet attributed to alterations in known lung adeno-

carcinoma genes or through novel alterations in genes previ-

ously unassociated with this disease that will emerge through

additional unbiased analyses.

While annotating the 25 known lung adenocarcinoma genes,

we noted that SMARCA4, an epigenetic regulator and tumor

suppressor, could not be clearly mapped to any cancer hallmark.

Given the frequent somatic mutations in epigenetic and splicing

regulators found by recent cancer genome scans (Elsässer et al.,

2011) and our study (U2AF1, ARID1A, RBM10, SETD2, and

BRD3), we speculated that these alterations may represent

a novel hallmark of epigenetic and RNA deregulation. Together,

these genes implicate the proposed eleventh hallmark in a con-

siderable proportion of cases (10% including only SMARCA4,

22% including nominated genes).

Efficiency and Power in Somatic Genetic Studies of
Lung Adenocarcinoma
This study represents the largest sequencing analysis of lung

adenocarcinoma to date. Our analysis reveals the genomic

complexity of lung adenocarcinoma at the base-pair and struc-

tural levels, exceeding that observed in genome characterization

studies of most other tumor types. We have applied a recently

published statistical method (Hodis et al., 2012) for identifying

somatically mutated genes displaying evidence of positive

selection in cancer. This permutation approach exploits the

abundant supply of intronic and flanking mutation events de-

tected in both WES and WGS to adequately model the gene-

specific variation in neutral mutation rates (Hodis et al., 2012).

We believe that such a calibrated approach is required to identify

signals of positive somatic selection in large unbiased cancer

genome scans. This concern is particularly relevant to tumor

types harboring high rates of somatic mutation, such as lung

adenocarcinoma or melanoma.

This study has led to discovery of significant mutation of 25

genes in lung adenocarcinoma. Notably, our study did not iden-

tify a mutated oncogene in every tumor sample. Furthermore, we

were unable to statistically nominate several important, but

rarely mutated, lung adenocarcinoma genes (AKT1, ERBB2,

NRAS, andHRAS, eachwith%3 events in our cohort). Therefore,

future studies of larger cohorts by The Cancer Genome Atlas

and other consortia that combine analysis of data from RNA

sequencing (RNA-seq), methylation profiling, and other omic

platforms will likely yield an even more complete annotation of

genes significant to lung adenocarcinoma.

Conclusion
This study represents a significant advance toward complete

characterization of the genomic alterations of lung adenocarci-

noma. These results are a testament to the power of unbiased,

large-scale next-generation sequencing technology to expand

our understanding of tumor biology. The novel mutated genes

identified in this study warrant further investigation to determine

their biologic, prognostic, and/or therapeutic significance in lung

adenocarcinoma, potentially leading to clinical translation and

improved outcomes for patients with this deadly disease.



Figure 6. Next-Generation Hallmarks of Lung Adenocarcinoma

Left, the prevalence of mutation or SCNA of Sanger Cancer Gene Census (Futreal et al., 2004) genes mapping to cancer hallmarks defined by Hanahan and

Weinberg (2011). Suspected passenger mutations were filtered out of the analysis, as described in Experimental Procedures. Top right, genes comprising the

mutated genes in the hallmark of sustaining proliferative signaling are shown. Bottom right, a proposed eleventh hallmark of epigenetic and RNA deregulation is

shown, depicted as above. Genes shown in gray are candidate lung adenocarcinoma genes identified in this study that may additionally contribute to the

hallmark.

See also Figure S6 and Table S6.
EXPERIMENTAL PROCEDURES

Details of sample preparation and analysis are described in the Extended

Experimental Procedures.

Patient and Sample Characteristics

We obtained DNA from tumor and matched normal adjacent tissue from six

source sites. DNA was obtained from frozen tissue primary lung cancer resec-

tion specimens for all samples, with the exception of one patient (LU-A08-14),

for whom a liver metastasis was obtained at autopsy. The 183 lung adenocar-

cinoma diagnoses were either certified by a clinical surgical pathology report

provided by the external tissue bank or collaborator or was verified through in-

house review by an anatomical pathologist at the Broad Institute of MIT and

Harvard. A second round of pathology review was conducted by an expert

committee led by W.D.T. Informed consent (Institutional Review Board) was
C

obtained for each sample by using protocols approved by the Broad Institute

of Harvard and MIT and each originating tissue source site.

Massively Parallel Sequencing

Exome capture was performed by using Agilent SureSelect Human All Exon 50

Mb according the manufacturer’s instructions. All WES and WGS was per-

formed on the Illumina HiSeq platform. Basic alignment and sequence quality

control were done by using the Picard and Firehose pipelines at the Broad

Institute. Mapped genomes were processed by the Broad Firehose pipeline

to perform additional quality control, variant calling, and mutational signifi-

cance analysis.

External Data

Gene expression data for 40 lung adenocarcinoma cell lines were obtained

from the Cancer Cell Line Encyclopedia (CCLE) (http://www.broadinstitute.
ell 150, 1107–1120, September 14, 2012 ª2012 Elsevier Inc. 1117
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org/ccle/home) as RMA normalized tab-delimited text data (Barretina et al.,

2012).

Statistical Analyses

We evaluated statistical evidence for somatic selection within the longest tran-

script of each gene by using InVEx (Hodis et al., 2012) with PolyPhen-2-based

(Adzhubei et al., 2010) and LOF-based scoring schemes. The method was im-

plemented in Python (http://www.python.org) and is available for download

(http://www.broadinstitute.org/software/invex/). Gene ranking according to

a stratified binomial model was performed by using the MutSig method from

Berger et al. (2011) and was implemented in MATLAB. Correlations between

genotype status, mutation/rearrangement spectrum data, and clinical vari-

ables were performed by Fisher’s exact test for dichotomous variables and

by Wilcoxon rank sum test for dichotomous variables versus numeric data

(e.g., mutation status versus total mutation rate). All remaining statistical

computing, including cluster analysis and visualization, was performed by

using standard packages in R (http://www.r-project.org).

Hallmarks Analysis

We manually assigned 25 genes—implicated by previous studies to be

frequently or functionally altered in lung adenocarcinoma—to one or more

cancer hallmarks as defined by Hanahan and Weinberg (2000, 2011) (see

Extended Experimental Procedures). We determined whether alterations in

gene i could be implicated as a ‘‘driver’’ of one or more cancer hallmarks in

case j by applying the following criteria: we inferred the activation status of

genes annotated by the Sanger Gene Census as ‘‘dominant’’ cancer genes

(e.g., KRAS) in each patient by evaluating every nonsynonymous variant in

the gene for its presence within a COSMIC hot spot (Forbes et al., 2011). Muta-

tions that were present in the COSMIC database (http://www.sanger.ac.uk/

genetics/CGP/cosmic/) at least ten times were considered oncogenic muta-

tions. We considered a dominant gene activated if it harbored such a variant

or a high-level, focal amplification. We considered recessive cancer genes

(e.g., TP53) to be inactivated if the gene had (1) a truncating mutation, (2)

compound missense mutations, (3) a hemizygous missense mutation, or (4)

homozygous copy number loss. We mapped each patient j to hallmark k if

the sample contained at least one activating or inactivating event in a dominant

or recessive cancer gene, respectively, that mapped to hallmark k.
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