The C-Terminal Domain of Eukaryotic Initiation Factor 5 Promotes Start Codon Recognition by Its Dynamic Interplay with eIF1 and eIF2β

Rafael E. Luna,1,8 Haribabu Arthanari,1,8 Hiroyuki Hiraishi,2 Jagpreet Nanda,3 Pilar Martín-Marcos,4 Michelle A. Markus,1,9 Barak Akabayov,1 Alexander G. Milbradt,1 Lunet E. Luna,1,5,10 Hee-Chan Seo,6 Sven G. Hyberts,1 Amr Fahmy,1 Mikhail Reibarkh,1,11 David Miles,2 Patrick R. Hagner,1 Elizabeth M. O’Day,1 Tingfang Yi,1 Assen Marintchev,7 Alan G. Hinnebusch,1 Jon R. Lorsch,3 Katsura Asano,2 and Gerhard Wagner1,*

1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
2Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
3Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
4Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
5Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
6Department of Molecular Biology, University of Bergen, Bergen 5020, Norway
7Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
8These authors contributed equally to this work
9Present address: R&D Division, Bruker BioSpin Corporation, Billerica, MA 01821, USA
10Present address: Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
11Present address: Merck & Co. Inc., Rahway, NJ 07065, USA
*Correspondence: gerhard_wagner@hms.harvard.edu
DOI 10.1016/j.celrep.2012.04.007

SUMMARY

Recognition of the proper start codon on mRNAs is essential for protein synthesis, which requires scanning and involves eukaryotic initiation factors (eIFs) eIF1, eIF1A, eIF2, and eIF5. The carboxyl terminal domain (CTD) of eIF5 stimulates 43S preinitiation complex (PIC) assembly; however, its precise role in scanning and start codon selection has remained unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we identified the binding sites of eIF1 and eIF2β on eIF5-CTD and found that they partially overlapped. Mutating select eIF5 residues in the common interface specifically disrupts interaction with both factors. Genetic and biochemical evidence indicates that these eIF5-CTD mutations impair start codon recognition and impede eIF1 release from the PIC by abrogating eIF5-CTD binding to eIF2β. This study provides mechanistic insight into the role of eIF5-CTD’s dynamic interplay with eIF1 and eIF2β in switching PICs from an open to a closed state at start codons.

INTRODUCTION

To achieve accurate selection of the AUG start codon, the scanning preinitiation complex (PIC) is thought to exist in equilibrium between two conformations, mediated by initiation factors: open, scanning competent, and closed, scanning incompetent (Pestova and Kolupaeva, 2002). Recently, a crystal structure of the Tetrahymena thermophila 40S subunit along with eukaryotic initiation factor (eIF) 1 was determined, which is strategically located near the P-site (Rabl et al., 2011) consistent with previous hydroxyl-radical footprinting studies (Lomakin et al., 2003). In this crystal structure, the head of the 40S in different space groups has been found in different conformations relative to the body. This may indeed be related to the two inferred states; however, the detailed mechanism of start codon recognition caused by the dynamic interplay of initiation factors with the mRNA and the ribosome will require additional investigations with a wide range of biophysical/biochemical methods along with validation in both in vitro and in vivo assays. Here, we seek to elucidate the mechanisms of start codon recognition.

Studies on yeast factors have suggested a model for initiation factor-mediated conformational changes of the ribosome during the process of scanning and start codon recognition (Asano and Sachs, 2007; Hinnenbusch, 2011).

(1) eIF1 and eIF1A stabilize the open complex with Met-tRNAMet loaded on the P-site. Here, the globular part of eIF1 occupies the A-site, whereas its C-terminal tail (CTT) extends into the P-site (Yu et al., 2009), and eIF1 binds on the 40S next to the Met-tRNAMet (Lomakin et al., 2003).

(2) eIF5 induces the hydrolysis of GTP bound to eIF2 as a GTPase-activating protein (GAP) upon or subsequent to mRNA binding to the PIC; however, the resulting GDP and P\textsubscript{i} are thought to remain bound to eIF2 in the scanning PIC. P\textsubscript{i} release is the rate-limiting step of the PIC in response to AUG selection.
promote translation initiation at the expense of lower fidelity, the closed PIC and allows initiation at a faulty UUG codon would stabilize interactions among eIF1, eIF2, and eIF3 in the closed state, whereas Ssu suppressor of
mutations favor the open state, individual mutations altering fidelity of translation initiation, a s phenotype, whereas a mutation that favors the open complex and blocks faulty initiation at a UUG codon would increase the fidelity of translation initiation, a suppressor of Sui phenotype. Thus, Sui mutations stabilize the closed state, whereas Ssu mutations favor the open state of the PIC (summarized in Table S1 available online).

eIF5 is necessary for 60S ribosomal subunit joining, which is ultimately mediated by eIF5B and occurs only after start codon recognition and the cessation of scanning (Pestova et al., 2000). The best-characterized function of eIF5 is to serve, through its NTD (eIF5-NDT: residues 1–170), as the GAP for the eIF2-TC (Conte et al., 2006), which is critical for start codon recognition. The CTD of eIF5 plays a role in assembly of the PIC by stabilizing interactions among eIF1, eIF2, and eIF3 in the multienzyme complex (MFC) (Asano et al., 2000; Sokabe et al., 2012). However, the interactions of eIF5-CTD with these other factors have not been fully characterized biophysically, and it was unknown whether the eIF5-CTD functions in scanning or AUG selection.

In order to elucidate critical initiation factor interactions required to promote start codon recognition and grasp a better understanding of the mechanism leading to the cessation of the scanning process, we employ an interdisciplinary approach to examine the dynamic function of the eIF5-CTD in conjunction with release of eIF1 from PICs, which signifies the first committed step in translation initiation. We identify overlapping surfaces on eIF5-CTD that bind to eIF1 and an N-terminal lysine-rich region of eIF2β. Using nuclear magnetic resonance (NMR) spectroscopy, small-angle X-ray scattering (SAXS), and isothermal titration calorimetry (ITC), we characterize these interactions and obtain a model for the eIF1:eIF5-CTD complex, which is congruent with the eIF1:40S structure. We unveil a common interface on eIF5-CTD that is important for start codon recognition and show that mutating these surface residues disrupts its binding to eIF1 and eIF2β. Surprisingly, our biochemical and genetic studies in yeast show that the CTD of eIF5 ends scanning by stabilizing the closed, scanning-arrested state of the PIC at start codons. We suggest that the NTD (GAP) and CTD (HEAT) of eIF5 serve a dual role in promoting the shift to the closed conformation in response to start codon selection. The eIF5-CTD interaction with eIF2β facilitates the subsequent release of eIF1 and ends the scanning process, while priming the PIC for eventual translation initiation.

RESULTS

Unveiling the Surface of eIF5-CTD that Binds to eIF1 and Characterization of This Interface

In order to map the surface of human eIF5-CTD that interacts with human eIF1, the chemical shift perturbation (CSP) assay was performed using uniformly 15N-labeled human eIF5-CTD and unlabeled eIF1 (Figures S1A and S1B). We performed backbone resonance assignments of eIF5-CTD at 200 mM NaCl. Of the eIF5-CTD backbone resonance signals, 95% were assigned using the program IBIS, along with standard triple-resonance experiments (Hyberts and Wagner, 2003; Marintchev et al., 2007). eIF1-induced CSPs of eIF5-CTD backbone amide signals were mapped onto the surface of eIF5-CTD (Figures 1A–1D). We also used the NMR backbone resonance assignments of human eIF1 and the CSP assay (Fletcher et al., 1999) to map the human eIF5-CTD-binding surface on human eIF1 (Figures 1E, 1F, S1C, and S1D). The binding surface on eIF1’s body includes a glycine (G101), along with both charged and hydrophobic residues (D53 and F63) (Figures 1E, 1F, and S1D).

We employed paramagnetic relaxation enhancement (PRE) measurements to generate distance restraints between eIF1 and eIF5-CTD. MTSL spin labels were attached to single-cysteine mutations of eIF1 (Figure S2A), and distance-dependent broadening of eIF5-CTD amide backbone resonances in complex with eIF1 was measured in 15N-1H TROSY HSQC spectra yielding distance restraints within a 20 Å radius (Figure S2B, green spectra). Addition of ascorbic acid reduces the MTSL nitroxide label restoring the intensity of the resonances previously broadened by the MTSL (Figure S2B, purple spectra). In Figures S2C–S2G, histograms show the intensity ratios of peaks in eIF5-CTD spectra in the presence (Figure S2B, green spectra) and absence of paramagnetic broadening (Figure S2B, purple spectra). This NMR PRE approach accomplishes two goals: (1) it provides distance restraints (<20 Å) between five positions on eIF1 and the multiple eIF5-CTD residues; and (2) it confirms that the surface on eIF5-CTD affected by eIF1 binding is at/near the binding interface. Distance restraints derived from the PRE experiments (Battiste and Wagner, 2000), along with the CSP data, were used in the HADDOCK software (Domínguez et al., 2003) to generate a model of the eIF1:eIF5-CTD complex (Figure 1G).

In order to validate the eIF1:eIF5-CTD model, we employed a site-directed mutagenesis approach. We examined whether changing the residues on the predicted eIF5-CTD surface would abrogate binding between eIF1 and eIF5. Based on our model (Figure 1G), we created a quadruple-mutant eIF5-CTD (eIF5-CTD-Quad; H305D/N306D/E347K/E348K), which remained folded upon incorporation of the four point mutations (Figure S1B, right panel). The eIF5-CTD-Quad mutant disrupts the binding of eIF5-CTD to wild-type (WT) eIF1, as shown by NMR CSP (Figures S1B and S1D, right panels). A panel of eIF5-CTD double mutants (H305A/N306A, H305D/N306D, E347A/E348A, and E347K/E348K) also maintained its folded state as assessed by
NMR (Figure S3A). We examined whether double mutations on the surface of eIF5-CTD affect eIF1 binding; however, we were not able to completely abrogate binding between human eIF1 and eIF5-CTD using any of these double mutations as detected by NMR (Figure S3B). These mutagenesis results are congruent with the model in Figure 1G.

The Unstructured N-Terminal Lysine-Rich Tail of eIF2β Binds eIF5-CTD at an Epitope Overlapped with the eIF1-Binding Site

eIF2β-NTD contains three stretches of lysines, named K1, K2, and K3 boxes (Figure 1A). A previous study employing a panel of human eIF2β mutant constructs clearly shows that the NTD of eIF2β is responsible for binding to 32P-labeled rat eIF5 used as a probe, wherein the K2 box of eIF2β was identified as the primary region for binding eIF5 (Das et al., 1997). Based on this finding, which we confirmed by NMR (Figures S4A–S4E), we produced a smaller eIF2β-NTD construct and named eIF2β-K2K3 (eIF2β residues 53–135; which contains the K2 and K3 boxes), and we mapped its binding surface on heIF5-CTD (Figures 1A, 2A, and 2B). Unlabeled eIF2β-K2K3 caused CSP and peak broadening of 15N-labeled eIF5-CTD residues (Figures 2C and 2D). We noticed that the region of eIF5-CTD affected by eIF2β-K2K3 binding overlaps the region affected by eIF1 (compare Figures 1B and 2A). The eIF5-CTD-Quad mutant exhibited a drastically reduced ability to bind eIF2β-K2K3, as evidenced by significantly smaller CSPs and less broadening than observed with eIF5-CTD-WT (compare Figures 2D and 2E).

Using ITC, we measured an equilibrium dissociation constant (Kd) for the eIF5-CTD:eIF2β-NTD interaction of ~17 μM.
The K_D for the eIF5-CTD interaction with the shorter eIF2b-K2K3 construct was measured as $\frac{1}{24} \text{M}$ (Figure 3A). The similar eIF2b-K2K3-binding affinities with eIF2b-NTD and eIF2b-K2K3 confirm the findings in a previous eIF2b:eIF5 interaction study by Das et al. (1997) and validate our decision to utilize the eIF2b-K2K3 construct for mapping its interaction with eIF5-CTD. A noticeable baseline deviation after saturation (Figures 3A and 3B) does not contribute significantly to the qualitative comparisons among differing eIF5-CTD complexes. We found that the eIF5-CTD-DD mutant:eIF2b-K2K3 interaction exhibits a similar affinity, also in the low micromolar range, with a K_D of $\frac{1}{8} \text{M}$ (Figure 3B). In contrast the binding affinity of eIF2b-K2K3 with either eIF5-CTD-KK or eIF5-CTD-Quad was abolished and could not be determined by ITC (data not shown), hence validating our NMR-chemical shift mapping data and substantiating the identification of a critical linkage between eIF5 and eIF2b.

SAXS Reconstitution Assay Shows that eIF5-CTD Does Not Simultaneously Bind eIF2b and eIF1

Because the eIF1:eIF5-CTD interaction could not be quantified by ITC measurements (data not shown), we employed SAXS (small-angle X-ray scattering). In this SAXS reconstitution assay, increasing amounts of eIF1 were titrated into a fixed concentration of eIF5-CTD, and the mixture at each point was subjected to X-ray analysis. The radius of gyration (R_g), being analogous to the...
moment of inertia in mechanics, reflects the conformational/binding state of the proteins in solution, free or in complex with each other. Increasing the eIF1:eIF5-CTD ratio results in a steady increase in the R_g, consistent with complex formation between eIF1 and eIF5-CTD (Figure 3C, black spheres, and Figure S5A). However, there is no saturation of the R_g value, indicative of a weak-binding interaction between eIF1 and eIF5-CTD.

Because eIF1 and eIF2β-NTD bind to overlapping surfaces on eIF5-CTD, we used the SAXS reconstitution assay to monitor whether these three proteins bind simultaneously to form a higher-order complex in solution. Upon the titration of eIF1 to a preformed eIF5-CTD:eIF2β-NTD complex, these three proteins do not form a higher-order complex under these conditions, as evidenced by the lack of an increase in the R_g (Figure 3C, gray circles).

Figure 3. ITC and SAXS Narrow Down the eIF2β-Binding Site and Suggest Competitive Binding with eIF1

(A) ITC analysis of the eIF5-CTD:eIF2β-K2K3 interaction. A solution of eIF2β-K2K3 injected with eIF5-CTD WT.

(B) ITC analysis of the eIF5-CTD-DD mutant:eIF2β-K2K3 interaction. A solution of eIF2β-K2K3 injected with eIF5-CTD-DD. Interestingly, the KK and/or Quad (DDKK) mutations of eIF5-CTD abrogate binding to eIF2β.

(C and D) SAXS reconstitution assay used to monitor complex formations. Linear relation of the low-angle portion of the data corresponds to well-behaved proteins devoid of aggregation, even in samples with high concentration. (C) SAXS results plotting the R_g versus eIF1:eIF5-CTD (black) and eIF1:(eIF5-CTD+eIF2β-NTD) (gray) protein ratios. The data indicate that eIF1 binds eIF5-CTD but does not displace eIF2β-NTD or form a heterotrimeric complex. (D) Scattering intensities, $I(0)$, shown as a function of concentration dependence; same protein samples as in (C). Plotting the scattering intensity (y axis) versus eIF1:(eIF5-CTD+eIF2β-NTD) molar ratios (x axis; gray lines) shows a concentration dependence. The same was done for eIF1:eIF5-CTD ratios (black lines). Data were collected for eIF5-CTD (90 μM) titrated with increasing amounts of eIF1 (90, 180, 360, 540, 720, 900, 1,350, and 1,800 μM). Gray circles represent eIF5-CTD:eIF2β-NTD FPLC-purified complex (90 μM) titrated with increasing amounts of eIF1 (90, 180, 360, 540, 720, 900, 1,350, and 1,800 μM). See also Figure S5.
spheres, and Figure S5B). The protein ratios in Figure 3D are the same as in Figure 3C, where in the increase in the number of scatterers (amount of proteins) is related to the linear increase in the SAXS intensity: I(0) (Figure 3D, black and gray spheres).

The Interaction between eIF1 and eIF5-CTD Is Evolutionarily Conserved

Upon deletion of the flexible NTT of eIF1, the body of eIF1 still makes contact with eIF5-CTD near residues H305 and N306; other residues showing effects include D344, E348 (in the turn between helices 6 and 7), Y362 (in the turn between helices 7 and 8), and E386 (in the long loop between helices 8 and 9) (Figures S5C and S5D). Thus, the NTT of human eIF1 plays an ancillary role in binding to eIF5. As previously mentioned, the eIF1-binding surface on eIF5-CTD maps to an overlapping surface wherein eIF2α also binds (Figure S5E), and the mutated Quad residues directly impact this overlapping region (Figure S5F). We proceeded to examine heterologous interactions by NMR spectroscopy and found that human eIF5-CTD is able to bind to yeast eIF1, whereas the Quad mutation in human eIF5-CTD abolishes binding to yeast eIF1 (Figures S6A and S6B, middle and right panels). Importantly, the mapped contact surface on human eIF1 overlaps the previously mapped binding surface on yeast eIF1 for yeast eIF5-CTD (Figures S6C and S6D) (Reibarkh et al., 2008), involving three conserved human eIF1 residues: F13, A14, and G101 (corresponding to yeast F12, A13, and G97) (Figure S6C versus S6D). Figure S6E shows the sequences of human and yeast eIF1 with residues experiencing CSP upon interacting with human and yeast eIF5-CTD, respectively. Interestingly, the yeast sui1-93–97 mutant exhibits a Sui++ phenotype with a well-defined mechanism, involving accelerated eIF1 release from PICs (Cheung et al., 2007).

The Quad Mutation Impairs eIF5’s Ability to Recruit eIF2-T to PICs In Vitro

Previously, we identified eIF5’s antagonistic interplay with eIF1 and eIF2-T within PICs (Nanda et al., 2009). The binding of eIF1 and eIF1A to the 40S subunit promotes its open conformation, favorable for direct tRNAMet and mRNA binding to the decoding site (Passmore et al., 2007). In the presence of WT eIF1A, the yeast eIF1-G107K mutant protein diminished stable eIF2-T loading on 40S subunits in vitro (without destabilizing mutant eIF1-G107K binding to the 40S) (Nanda et al., 2009). In this experimental situation (without mRNA), eIF2-T loading on the 40S is contingent upon a shift to the closed conformation of the PIC, stabilizing tRNAMet bound to the P-site. eIF1 antagonizes this shift, and the eIF1-G107K mutant exhibits a stronger antagonistic ability due to its tighter binding to the 40S ribosomal subunit. Interestingly, this effect was overcome by the addition of yeast eIF5 (Nanda et al., 2009). Thus, eIF5 enhances eIF2-T loading by promoting eIF1 release, which is consistent with our identification of conserved overlapping surfaces for eIF2β-K boxes and eIF1 in eIF5-CTD, along with our data establishing that human eIF5-CTD does not bind simultaneously to eIF1 and eIF2β-NTD in solution.

In this in vitro yeast system, we interpret the ability of the WT yeast eIF5 to enhance eIF2-T binding to the PIC as a measure of its ability to promote eIF1 release. The Quad mutation introduced into the corresponding homologous eIF1/eIF2β-binding surface of yeast eIF5 reduces this eIF5-dependent rescue of eIF2-T loading in reactions containing eIF1-G107K (Figure 4A). The yeast eIF5-Quad mutant exhibits significantly reduced ability to promote stable eIF2-T recruitment relative to the WT factor, as evidenced by a 5-fold increase in the concentration of eIF5-Quad mutant required to achieve half-maximal eIF2-T binding (Figure 4A, black curve, eIF5-Quad \(K_D = 0.55 \pm 0.1 \mu M\) as compared to the red curve, eIF5-WT \(K_D = 0.10 \pm 0.05 \mu M\)). Thus, the diminished ability of eIF5-Quad to enhance observable eIF2-T loading in vitro is likely due to its impaired ability to promote the release of the eIF1-G107K mutant, which is bound tighter than eIF1-WT to 40S ribosomes.

The eIF5-Quad Mutant Destabilizes the Closed State of the PIC In Vitro

We proceeded to examine whether the Quad residues of eIF5 regulate the conformational change in the PIC response to AUG selection. Previous studies indicated that eIF1A dissociates more slowly from the PIC at AUG versus non-AUG codon (e.g., UUG) (Fekete et al., 2007; Maag et al., 2006). The in vitro eIF1A dissociation assay serves as a proxy for monitoring the opening/closing of the PIC upon start codon recognition. Stabilization of eIF1A binding upon start codon recognition is thought to indicate a closed state of the PIC, characterized by a reduced rate of eIF1A dissociation from the PIC in vitro, although the physiologically relevant dissociation of eIF1A takes place at the end of the initiation cycle, after subunit joining (Acker et al., 2006). 43S-mRNA(AUG) or 43S-mRNA(UUG) complexes were assembled with eIF1A that was labeled at its C terminus with fluorescein, in the presence of either eIF5-WT or eIF5-Quad mutant. These labeled complexes were then chased with excess unlabeled eIF1A, and dissociation of eIF1A (fluorescently labeled) was measured over time as a decrease in fluorescence anisotropy. Using eIF5-WT, eIF1A dissociates with biphasic kinetics, with rate constants for the fast and slow phases designated \(k_1\) and \(k_2\), respectively (Fekete et al., 2007; Maag et al., 2006). Previous studies indicated that the slow phase corresponds to eIF1A dissociation from PICs in the closed state, whereas the fast phase represents dissociation from complexes in the open state. \(K_{\text{amp}}\) is the ratio of the amplitudes of the slow to fast kinetic phases (an apparent equilibrium constant between the two states); hence, values of \(K_{\text{amp}} > 1\) indicate that the closed complex predominates in this system.

It was shown previously that the enhancement of eIF1A binding to PICs upon start codon recognition does not happen in the absence of eIF5 (Maag et al., 2006). Consistent with previous studies by Fekete et al. (2007) and Maag et al. (2006), the kinetics of eIF1A dissociation from AUG complexes in the presence of eIF5-WT is dominated by the slow phase (\(K_{\text{amp}} = 6.1 \pm 1.5\); Table 1, AUG, row 5) (Figure 4B, red line), whereas replacing AUG with UUG in the model mRNA reduces \(K_{\text{amp}}\) several fold (to 2.5 ± 0.5), indicating a stabilization of the open state relative to the closed state (Figure 4B, black line). This indicates that eIF5 promotes the shift to the closed state preferentially in response to AUG versus UUG. Dissociation of eIF1A from AUG complexes containing the eIF5-Quad mutant showed a 4-fold reduction in \(K_{\text{amp}}\) (Table 1, AUG, \(K_{\text{amp}} = 1.5 \pm 0.5\), such that
Figure 4. Biochemical Evidence that eIF5-CTD Functions to Promote eIF1 Release and the Closed Complex

These experiments used purified yeast eIFs and ribosomes, as summarized schematically on the right.

(A) eIF5-Quad mutant reduces eIF2-TC recruitment to 43S complex (~AUG) in vitro. eIF5-Quad mutant is unable to efficiently suppress the eIF2-TC recruitment defect conferred by the G107K eIF1 mutant (corresponds to human eIF1-G112) to the same extent obtained by WT eIF5. In this experiment using yeast eIF1-G107K mutant and WT eIF1, eIF2-TC binding to 40S is severely compromised, but this effect is rescued by adding high amounts of WT eIF5 (red curve). A yeast eIF5-Quad mutant (V316D, T317D, S357K, E358K) is not able to rescue the eIF2-TC recruitment defect imposed by eIF1-G107K (black curve). In the case of WT eIF1, eIF5 is not needed for efficient eIF2-TC recruitment under these experimental conditions (data not shown).

(B) Effect of the eIF5-Quad mutant on eIF1A dissociation from 43S (AUG)/(UUG) complexes. The eIF5-Quad mutant destabilizes 43S (AUG)/(UUG) complexes, which leads to eIF1A dissociation from PICs. The kinetic constants of eIF1A dissociation from 43S AUG or UUG complexes are shown in Table 1.

(C) Effect of the eIF5-Quad mutant on GTP hydrolysis from 43S.AUG complexes. The eIF5-Quad mutant has no significant effect on GTP hydrolysis (black squares) because the eIF5-Quad exhibits similar levels of hydrolysis when compared to WT eIF5 (red circles).

See also Figure S6.
5-fluoro-orotic acid (5FOA) to select against URA3 tif5 harboring the DD substitutions (heIF5-DD-FLAG) complemented shuffling. The plasmid encoding FLAG-tagged human eIF5 two gels). The plasmids were then tested for the ability to replace yeast the cloned coding sequences for either human eIF5-WT and mutant forms by western analysis (Figure 5A, bottom single-copy plasmid, and confirmed equal expression of eIF5 WT and mutant eIF5-CTD exhibit a phenotype consistent with our biochemical and biophysical data. We employed an in vivo assay that exploits the capability to functionally substitute for yeast eIF5 (Tif5). It was shown previously that mammalian eIF5 manifests the capability to functionally substitute for yeast eIF5 (Tif5). We proceeded to evaluate the effects of introducing the DD, KK, or Quad mutations into yeast TIF5 gene on the accuracy of start codon selection in vivo. To this end, we constructed these TIF5 mutants in the tif5Δ strain harboring the his4-306 allele of the HIS4 gene in which the AUG start codon is altered, and translation begins on a downstream UUG codon. The strain containing WT TIF5-FL cannot grow on medium devoid of histidine (Figure 5B, row 1, –His medium) because the start codon mutation in his4-306 abolishes expression of this histidine biosynthetic enzyme. A strain containing TIF5-G58S altering the eIF5-NDT can grow on –His medium (His+ phenotype) because an in-frame UUG triplet at the third codon of his4-306 can be used as the initiation codon in cells harboring this eIF5 Sui+ mutation (Singh et al., 2005) (Figure 5B, row 2). The strain harboring TIF5-Quad did not display a slow-growth (Sui+) phenotype on +His medium (Figure 5B, row 3, +His), or a His+/Sui− phenotype on –His medium (Figure 5B, row 3, –His). The absence of a Sui− phenotype (Sui−) for the TIF5-Quad mutant is consistent with our in vitro analysis of eIF1A dissociation kinetics, which revealed a predominantly open state of 43S.UUG complexes harboring the yeast eIF5-Quad mutant (Figure 4B; Table 1).

As noted above, the analysis of eIF1A dissociation kinetics led us to predict that the TIF5-Quad mutant would display an Ssu− phenotype, suppressing the relaxed stringency of start codon recognition conferred by a Sui+ mutation. To test this prediction, we asked whether the TIF5-Quad mutant can suppress the dominant His−/Sui− phenotype conferred by the SUI3-2 mutation in eIF2β (S264Y substitution), which appears to result from elevated eIF5-independent GTPase activity by the eIF2-TC and a weakened interaction between Met-tRNAMet and eIF2-GTP (Huang et al., 1997). As expected, introducing plasmid-borne SUI3-2, but not WT SUI3, into the his4-306 strain harboring WT TIF5 confers growth on the –His medium (Figure 5C, rows 1 and 2, –His). Furthermore, the dominant His−/Sui− phenotype of SUI3-2 is partially suppressed in the strain harboring a known Ssu− allele of TIF5, tif5-G62S (Asano et al., 2001), because only weak growth occurred on –His medium even after 5 days of incubation (Figure 5C, compare row 9 to row 1, –His). In agreement with our prediction, the TIF5-Quad allele confers an Ssu− phenotype nearly as strong as that of tif5-G62S (Figure 5C, compare rows 1, 7, and 9, –His). Importantly, the tif5-KK allele also confers a marked Ssu− phenotype, only slightly less than that of tif5-Quad, whereas the tif5-DD allele displays little or no Ssu− phenotype (Figure 5C, rows 3, 5, and 7; –His). The fact that the TIF5-KK mutation confers an obvious Ssu− phenotype

Table 1. Kinetic Constants of eIF1A Dissociation from 43S AUG/UUG Complexes

<table>
<thead>
<tr>
<th>eIF5 Allele</th>
<th>AUG</th>
<th>UUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>$k_1 = 9.0 \pm 3.0$; $a_1 = 0.14 \pm 0.06$</td>
<td>$k_1 = 7.0 \pm 3.0$; $a_1 = 0.33 \pm 0.1$</td>
</tr>
<tr>
<td>Quad</td>
<td>$k_1 = 30 \pm 7.0$; $a_1 = 0.49 \pm 0.05$</td>
<td>$k_1 = 60 \pm 10$; $a_1 = 0.44 \pm 0.1$</td>
</tr>
<tr>
<td></td>
<td>$k_2 = 2.5 \pm 0.5$; $a_2 = 0.51 \pm 0.1$</td>
<td>$k_2 = 7.2 \pm 1.0$; $a_2 = 0.56 \pm 0.05$</td>
</tr>
<tr>
<td></td>
<td>$K_{\text{a}} = 1.2 \pm 0.2$</td>
<td>$K_{\text{a}} = 2.5 \pm 0.5$</td>
</tr>
</tbody>
</table>

All rates are 10^{-3} s⁻¹. k_1, fast-phase rate constant; a_1, fast-phase amplitude; k_2, slow-phase rate constant; a_2, slow-phase amplitude; K_{a}, a_2/a_1 (closed/open). Fast-phase signifies open state. Slow-phase signifies closed state. K_{a} is the ratio of closed to open state.

The rapid phase is increased in this reaction (Figure 4B, dark-blue line). For the corresponding UUG complexes, K_{a} remains low, and k_1 and k_2 both are strongly increased by the Quad substitution (Table 1, Quad mutant; UUG $K_{\text{a}} = 1.2 \pm 0.2$) (Figure 4B, light-blue line), indicating that the Quad mutation should not confer the ability to initiate from the UUG codon. The Quad mutant’s role as a GAP remains intact as evidenced by the ability to induce GTP hydrolysis similar to eIF5-WT (Figure 4C). Therefore, we conclude that the eIF5-Quad mutant destabilizes the closed state of the PIC relative to the open state, without affecting the GAP function. These findings led us to predict that the eIF5-Quad mutation will reduce the ability to access the closed conformation inappropriately at UUG codons in Sui− mutants, thereby conferring an Ssu− phenotype in yeast. This turns out to be the case, as described below.

eIF2β:eIF5-CTD Interaction Is Critical for Human eIF5 to Complement Yeast eIF5 Deletion In Vivo

We turned our attention to the in vivo function of the eIF5-CTD interaction network and assessed whether the mutations in the CTD exhibit a phenotype consistent with our biochemical and biophysical data. We employed an in vivo assay that exploits the ability of human eIF5 to provide the essential function of yeast eIF5 (Tif5). It was shown previously that mammalian eIF5 manifests the capability to functionally substitute for yeast eIF5 in a yeast strain deleted for the chromosomal gene encoding eIF5 (tif5Δ) (Maiti and Maitra, 1997). Here, we introduced into yeast the cloned coding sequences for either human eIF5-WT or the -DD, -KK, or -Quad mutants, tagged with the FLAG epitope and placed under the native TIF5 promoter on a LEU2 single-copy plasmid, and confirmed equal expression of eIF5-WT and mutant forms by western analysis (Figure 5A, bottom two gels). The plasmids were then tested for the ability to replace a single-copy URA3 TIF5 plasmid in a tif5Δ strain using the drug 5-fluoro-orotic acid (5FOA) to select against URA3 (plasmid shuffling). The plasmid encoding FLAG-tagged human eIF5 harboring the DD substitutions (heIF5-DD-FLAG) complemented tif5Δ similar to those encoding human eIF5-WT untagged or FLAG tagged (Figure 5A, rows 1–3). By contrast the constructs encoding the KK or Quad variants of FLAG-tagged heIF5 did not complement tif5Δ (Figure 5A, rows 4 and 5). Thus, the KK or Quad substitutions, but not the DD substitutions, abolish the ability of human eIF5 to provide the essential function of eIF5 in yeast cells. Because the Quad mutation is required to disrupt binding of human eIF5-CTD to eIF1 (Figures S1B, S1D, S3A, and S3B), whereas both the KK and Quad mutations abolish eIF5-CTD binding to eIF2β-NDT; hence, we conclude that the essential partner of human eIF5-CTD in yeast cells is likely to be eIF2β-NDT.
suggests that the weakened binding of eIF5-CTD to eIF2β produced by the KK substitution is responsible for this phenotype. These findings provide strong support for the conclusion that disrupting the interaction of eIF5-CTD with eIF2β destabilizes the closed conformation of the PIC, increasing the stringency of start codon recognition and thus decreasing initiation at near-cognate UUG codons in vivo.

In Vivo Evidence that the KK and Quad Substitutions in eIF5-CTD Confer Sui− Phenotypes by Decreasing eIF1 Release from the PIC

Our biochemical analysis of the eIF5-Quad mutant showed a reduction in eIF2-TC recruitment to PICs, which is indicative of a defect in promoting eIF1 dissociation upon AUG recognition. The previously described G107R and G107K eIF1 mutants exhibit the same defect in eIF2-TC recruitment. The G107R/K substitutions increase the UUG:AUG ratio (Sui− phenotype) primarily by decreasing initiation at AUG rather than elevating UUG initiation (Nanda et al., 2009). By contrast, other eIF1 mutations, notably the 93–97 substitution in helix x2 (Cheung et al., 2007), appear to increase the UUG:AUG ratio by provoking more rapid dissociation at UUG codons owing to weaker eIF1 binding to the PIC. Accelerated eIF1 release likely also explains the Sui− phenotype of sui1-K60E (Martin-Marcos et al., 2011) because Lys-60 contacts 18S rRNA in the eIF1:40S crystal structure (Rabl et al., 2011), and overexpression of sui1-K60E suppresses its Sui− phenotype in the manner observed previously for sui1-93–97 (data not shown). Because the Quad substitution impairs eIF1 dissociation, we reasoned that it should not suppress the elevated UUG:AUG ratio conferred by the G107R/K substitutions because they also impede eIF1 dissociation but that it should suppress the Sui− phenotypes of the 93–97 and K60E substitutions by mitigating the accelerated eIF1 dissociation they engender.

We tested these predictions by examining a set of sui1Δ his4-301 yeast strains (with a different start codon mutation at 1. YCpL-heIF5; 2. YCpL-heIF5-FLAG; 3. YCpL-heIF5-DDKK-FLAG; 4. YCpL-heIF5-KK-FLAG; 5. YCpL-heIF5-DDKK-FLAG; and 6. YCpL-TIF5-Quad111. Left panel shows that patches of transformants of KAY24 (tifsJ p [TIF5 URA3]) carrying the indicated plasmids were replica plated onto SC-leu agar plates and SC agar plates containing 5-FOA and uracil, which was used to evict the residing TIF5 URA3 plasmid. Cells were allowed to grow on these plates for a few days. The schematic of FOA-negative selection is shown on the right. A total of 20 and 40 μg (odd and even numbered lanes, respectively) of cell extracts from the KAY24 transformants carrying YCpL-TIF5-Quad111 (vec) or the indicated YCpL-heIF5-FLAG derivatives (Table S4) was subjected for immunoblotting with antibodies indicated to the right. Upper panel shows westerns using anti-Flag antibody to detect the relative expression levels of FLAG-tagged human eIF5 proteins (top bands; bottom bands are cross-reactivity, also showing equal loading). Lower panel illustrates western blotting results showing comparable expression levels of a housekeeping protein, tubulin.

Figure 5. Genetic Evidence that the KK and Quad Substitutions Disrupt a Critical Linkage with eIF2β and Impair the Function of eIF5-CTD in Promoting the Closed Complex

(A) Complementation of tifsJ by single-copy human eIF5 plasmids in yeast: 1., YCpL-heIF5; 2., YCpL-heIF5-FLAG; 3., YCpL-heIF5-DDKK-FLAG; 4., YCpL-heIF5-KK-FLAG; 5., YCpL-heIF5-DDKK-FLAG; and 6., YCpL-TIF5-Quad111. Left panel shows that patches of transformants of KAY24 (tifsJ p [TIF5 URA3]) carrying the indicated plasmids were replica plated onto SC-leu agar plates and SC agar plates containing 5-FOA and uracil, which was used to evict the residing TIF5 URA3 plasmid. Cells were allowed to grow on these plates for a few days. The schematic of FOA-negative selection is shown on the right. A total of 20 and 40 μg (odd and even numbered lanes, respectively) of cell extracts from the KAY24 transformants carrying YCpL-TIF5-Quad111 (vec) or the indicated YCpL-heIF5-FLAG derivatives (Table S4) was subjected for immunoblotting with antibodies indicated to the right. Upper panel shows westerns using anti-Flag antibody to detect the relative expression levels of FLAG-tagged human eIF5 proteins (top bands; bottom bands are cross-reactivity, also showing equal loading). Lower panel illustrates western blotting results showing comparable expression levels of a housekeeping protein, tubulin.

(B) Test of Sui− phenotypes. TIF5 alleles correlate to eIF5 alleles in yeast. A lack of Sui− phenotype is represented by +. Cultures (A600 = 0.15) of KAY976 (his4-301 yeast strains (with a different start codon mutation at 1. YCpL-heIF5; 2. YCpL-heIF5-FLAG; 3. YCpL-heIF5-DDKK-FLAG; and 6. YCpL-TIF5-Quad111. Left panel shows that patches of transformants of KAY24 (tifsJ p [TIF5 URA3]) carrying the indicated plasmids were replica plated onto SC-leu agar plates and SC agar plates containing 5-FOA and uracil, which was used to evict the residing TIF5 URA3 plasmid. Cells were allowed to grow on these plates for a few days. The schematic of FOA-negative selection is shown on the right. A total of 20 and 40 μg (odd and even numbered lanes, respectively) of cell extracts from the KAY24 transformants carrying YCpL-TIF5-Quad111 (vec) or the indicated YCpL-heIF5-FLAG derivatives (Table S4) was subjected for immunoblotting with antibodies indicated to the right. Upper panel shows westerns using anti-Flag antibody to detect the relative expression levels of FLAG-tagged human eIF5 proteins (top bands; bottom bands are cross-reactivity, also showing equal loading). Lower panel illustrates western blotting results showing comparable expression levels of a housekeeping protein, tubulin.

(B) Test of Sui− phenotypes. TIF5 alleles correlate to eIF5 alleles in yeast. A lack of Sui− phenotype is represented by +. Cultures (A600 = 0.15) of KAY976 (his4-301 yeast strains (with a different start codon mutation at 1. YCpL-heIF5; 2. YCpL-heIF5-FLAG; 3. YCpL-heIF5-DDKK-FLAG; and 6. YCpL-TIF5-Quad111. Left panel shows that patches of transformants of KAY24 (tifsJ p [TIF5 URA3]) carrying the indicated plasmids were replica plated onto SC-leu agar plates and SC agar plates containing 5-FOA and uracil, which was used to evict the residing TIF5 URA3 plasmid. Cells were allowed to grow on these plates for a few days. The schematic of FOA-negative selection is shown on the right. A total of 20 and 40 μg (odd and even numbered lanes, respectively) of cell extracts from the KAY24 transformants carrying YCpL-TIF5-Quad111 (vec) or the indicated YCpL-heIF5-FLAG derivatives (Table S4) was subjected for immunoblotting with antibodies indicated to the right. Upper panel shows westerns using anti-Flag antibody to detect the relative expression levels of FLAG-tagged human eIF5 proteins (top bands; bottom bands are cross-reactivity, also showing equal loading). Lower panel illustrates western blotting results showing comparable expression levels of a housekeeping protein, tubulin.

(C) Test of Ssu− phenotypes against SUJ3-2 (eIF2β-S264Y). A lack of Ssu− phenotype is represented by +. Cultures (A600 = 0.15) of KAY976 (his4-301 yeast strains (with a different start codon mutation at 1. YCpL-heIF5; 2. YCpL-heIF5-FLAG; 3. YCpL-heIF5-DDKK-FLAG; and 6. YCpL-TIF5-Quad111. Left panel shows that patches of transformants of KAY24 (tifsJ p [TIF5 URA3]) carrying the indicated plasmids were replica plated onto SC-leu agar plates and SC agar plates containing 5-FOA and uracil, which was used to evict the residing TIF5 URA3 plasmid. Cells were allowed to grow on these plates for a few days. The schematic of FOA-negative selection is shown on the right. A total of 20 and 40 μg (odd and even numbered lanes, respectively) of cell extracts from the KAY24 transformants carrying YCpL-TIF5-Quad111 (vec) or the indicated YCpL-heIF5-FLAG derivatives (Table S4) was subjected for immunoblotting with antibodies indicated to the right. Upper panel shows westerns using anti-Flag antibody to detect the relative expression levels of FLAG-tagged human eIF5 proteins (top bands; bottom bands are cross-reactivity, also showing equal loading). Lower panel illustrates western blotting results showing comparable expression levels of a housekeeping protein, tubulin.

See also Tables S1, S2, and S3.
HIS4) containing plasmid-borne TIF5 and SUI1 alleles encoding the eIF5 and eIF1 mutants of interest and the chromosomal TIF5 allele placed under the GAL1 promoter to enable its repression on glucose medium. As expected, the WT TIF5 strain expressing eIF1-93–97 has a Slg− phenotype at 37°C on +His (glucose) medium but can grow on media containing no histidine, indicating the Sui− phenotype (Cheung et al., 2007). Interestingly, the TIF5-KK and TIF5-Quad alleles improve the growth of suil-93–97 cells on +His medium but diminish their growth on −His medium, whereas the TIF5-DD allele only reduces growth on −His (Figure 6A). These results suggest that the KK and Quad mutations suppress the Sui− phenotype of suil-93–97 cells more effectively than does TIF5-DD. Supporting this, the KK and Quad mutations exceed DD in decreasing the UUG:AUG initiation ratio in suil-93–97 cells measured using HIS4-lacZ fusions with an AUG or UUG start codon. Thus, the KK and Quad mutations reduce the UUG:AUG ratio by ~40%, similar in magnitude to reductions observed for Ssu− substitutions in eIF1A (Saini et al., 2010), whereas the DD mutation produces only a ~20% reduction in the ratio. Importantly, the KK and Quad mutations also exceed the DD mutation in reducing the His−/Sui− phenotype and elevated UUG:AUG ratio in suil-K60E cells (Figures S7A and S7B).

The G107R substitution in eIF1 increases the UUG:AUG ratio to the same extent as does the 93–97 substitution (compare Figures 6B and 6D). Importantly, however, none of the CTD mutations of eIF5 produces a significant reduction in this ratio (Figure 6D). In addition the KK and Quad mutations exacerbate the Slg− phenotype of suil-G107R cells (Figure 6C), opposite the effect displayed in suil-93–97 cells, and similar findings were observed for the mechanistically
related G107K mutation (Figures S7C and S7D). These findings support our prediction that the KK and Quad substitutions would not suppress the elevated UUG:AUG initiation ratio and would intensify the defect in elf1 release on AUG recognition, conferred by elf1-G107R/K. These results provide in vivo evidence that the KK and Quad substitutions impair the elf5-CTD function in releasing elf1 from the closed complex upon start codon recognition. Our molecular interpretations of the Ssu− and Sgl− phenotypes of the various mutants harboring the elf5-CTD mutations are shown in Tables S2 and S3, respectively.

DISSCUSSION

eIF1 binds in the vicinity of the P-site on the 40S subunit and contacts Met-tRNA^{Met} (Lomakin et al., 2003; Rabl et al., 2011). Therefore, we sought to use the elf1:elf5-CTD model to infer the position of elf5-CTD in the PIC, by superimposing the elf1:elf5-CTD complex onto the elf1:40S structure (Rabl et al., 2011) by aligning the common component: elf1 (Figures 7A and 7B). The resulting model places elf5-CTD in the vicinity of the Met-tRNA^{Met}, consistent with the elf5-NTD binding to elf2−γ near the 3′ end of the tRNA (Alone and Dever, 2006; Conte et al., 2006).

The conclusion that the CTD of elf5 promotes elf1 dissociation is supported by our findings that the Quad substitution impairs the ability of elf5, when added in excess, to reverse the antagonistic effect of elf1-G107K on elf2-TC binding in the reconstituted system. The mechanism wherein overlapping surfaces on the CTD of elf5 are utilized to promote elf1 dissociation was not known. We provide biochemical evidence that the CTD of elf5 plays a previously unknown role in the promotion of elf1 dissociation upon AUG recognition via its dynamic interaction with elf1 and elf2β, which is based on the following two findings: (1) the Quad substitution impairs elf5’s ability to promote stable recruitment of elf2-TC to PICs containing elf1-G107K (which binds with greater affinity to 40S ribosomes) without mRNA in vitro; and (2) the Quad substitution destabilizes closed PIC conformation with mRNAs upon start codon recognition. It is important to note that the role of elf5-NTD in promoting elf1 release is independent of the elf5 GAP function catalyzed by the NTD.

A key question is whether the newly identified function of the CTD of elf5 in promoting elf1 release involves both of its interactions with elf1 and elf2β. We show here that the KK substitution on the CTD of elf5 is sufficient to drastically reduce its binding to elf2β, but not to elf1. Thus, it can be deduced that disrupting the interaction of elf5-CTD with elf2β is likely to be responsible for destabilizing the closed PIC conformation and conferring the Ssu− phenotypes displayed by the elf5-KK and elf5-Quad mutations. In fact it was shown previously that elimination of K boxes 1 and 2 from elf2β also confers an Ssu− phenotype (Laurino et al., 1999). Hence, it seems likely that the Ssu− phenotypes produced by these newly identified substitutions in the CTD of elf5 (along with the previously identified elf2β-NTD Ssu− phenotype) directly impact the linkage of elf2β with elf5 within the PIC.

It is plausible that the elf1:elf5-CTD complex is stabilized by the mutual interaction of these factors with elf3c, which was demonstrated in vitro for the cognate yeast proteins (Asano et al., 2000). We propose that the elf1:elf5-CTD interaction is redundant with other interactions that stabilize elf1 binding to the 40S leading to an open PIC conformation; hence, eliminating this interaction is probably not sufficient to accelerate elf1 dissociation at UUG codons in vivo. Our conclusion that elf5-CTD stabilizes the closed conformation of PICs upon start codon recognition via its interaction with elf1 and elf2β was based on the cumulative breadth of data ranging from NMR spectroscopy, ITC, SAXS, and in vitro yeast-reconstituted system. The in vitro assays employed in this study, which include elf1, elf1A, elf2-TC, elf5, and 40S ribosomes (with and without mRNA), utilize the basic components for start codon recognition and have been consistently implemented as useful tools to decipher biochemical events surrounding start codon recognition (Maag et al., 2006; Nanda et al., 2009). Based on our in vitro assays, we propose that elf5 interactions, particularly with its CTD, are sufficient to promote elf1 release by stabilizing the closed complex via its interaction with elf2β. Our hypothesis was further examined in vivo experiments, wherein we dissect the cause of Ssu− phenotypes produced by mutations in the CTD of elf5. We show that the KK and Quad mutants exhibit strong Ssu− phenotypes, which further substantiates the role of elf5-CTD in facilitating the stabilization of the closed state of PICs upon start codon recognition via its dynamic interplay with elf1 and elf2β.

The common interface on elf5-CTD that contacts elf2β also interacts with elf1, in a manner disrupted by the Quad substitution. elf1 and elf2β do not form a higher-order complex with elf5-CTD in our SAXS reconstitution assay; hence, an intriguing model would be that elf5-CTD first interacts with elf1 in the open, scanning conformation of the PIC and then switches partners to interact with elf2β in the closed conformation upon AUG recognition (Figure 7C). In this view the interaction network (including elf5-CTD) positions elf1 in the decoding site and mediates scanning. We propose the following possible model of events surrounding start codon recognition. elf5-CTD binds to elf2β, which in turn favors the release of elf1 from the PIC and essentially puts an end to the ribosomal scanning mechanism. This would also impede elf1’s reassociation with the 40S and drive the conformational rearrangement of the PIC to the closed state.

The hypothesis that the disruption of the elf1:elf5-CTD interaction by elf2β triggers the critical shift from the open state (scanning competent) to the closed state (scanning incompetent) led us to conclude that the CTD of elf5 stabilizes the closed state of the PIC in which elf1 is no longer bound (Figure 7C). This model is fully consistent with our biophysical, biochemical, and genetic data wherein we strategically disrupt the elf5-CTD:elf2β interaction that destabilizes the closed state of the complex and prevents elf5-CTD from promoting elf1 release. We do note that in vivo other initiation factors, e.g., possibly elf1A, elf3, or elf4G, could also play contributing roles in the observed Ssu− phenotype caused by mutations in the CTD of elf5. This study opens an avenue for further investigation to continue deciphering the effect of elf5-CTD’s interaction with its cognate partners and its crucial role in mediating the closure of PICs upon start codon recognition.
Figure 7. Modeling the eIF1:eIF5-CTD Complex in the Context of the eIF1:40S Structure and Schematic Showing the role of eIF5-CTD in Promoting Start Codon Recognition

(A) The eIF1:eIF5-CTD complex derived from the HADDOCK software was superimposed on the position of human eIF1 on the small ribosomal subunit (Lomakin et al., 2003; Rabl et al., 2011), shown as a magenta ribbon. The modeled position of the human eIF5-CTD (yellow) was obtained by aligning eIF1 from the eIF1:eIF5-CTD complex (Figure 1G) to ribosome-bound eIF1. eIF1A (green), mRNA (blue), and P-site tRNA (orange) are also shown for reference. The P-site tRNA is shown in a P/P orientation. Note that the actual orientation of the AUG on the 40S subunit cannot be exactly in a P/P orientation because it would clash with eIF1 (Rabl et al., 2011) and is likely to change over the course of translation initiation. In the right panel the modeled eIF1A:eIF1/eIF5-CTD:40S ribosomal complex was rotated 90° along the y axis and magnified.

(B) In the left panel the eIF1A:eIF1/eIF5-CTD:40S ribosomal complex is in the same orientation as the left panel of (A) but magnified. In the right panel the modeled eIF1A:eIF1/eIF5-CTD:40S ribosomal complex was rotated 90° along the x axis from the left panel.

(C) Schematic diagram of eIF5-CTD gating the release of eIF1 after start codon selection, followed by subsequent stabilization of the PIC by eIF5. (i.) The open 43S conformation allows for mRNA recruitment and relatively unstable eIF2-TC binding. During the assembly stage of the PIC, eIF5-CTD (HEAT) interacts with eIF1. (ii.) The 43S PIC scans the mRNA in an open conformation until start codon recognition. During this scanning stage the eIF5-NTD induces eIF2β to cleave GTP. Start codon recognition sets the stage for large conformational rearrangements on the subunit interface ensuring the closed state of the PIC. eIF2β exhibits a stronger affinity for the overlapping binding surface of the eIF5-CTD than eIF1; hence, the disruption of the eIF1:eIF5-CTD interaction by eIF2β allows for an indirect mechanism to dislodge eIF1 from the 43S PIC. Upon release of eIF1 the free phosphate is subsequently released. (iii.) eIF5-CTD stabilizes the closed ribosomal conformation of PICs upon start codon selection.
Biophysical Experiments and Analyses

NMR experiments were performed as described previously by Marintchev et al. (2007) and are written in more detail in the Extended Experimental Procedures. We recorded a set of triple resonance experiments needed for backbone assignments of human eIF5-CTD. Assignments were completed for 95% of the residues in the human eIF5-CTD, using standard techniques and IBIS (Hyberts and Wagner, 2003). Chemical shift mapping was done as previously described by Marintchev et al. (2007). A paramagnetic spin-label strategy was used to obtain intermolecular distance restraints between human eIF1 and eIF5-CTD (Battiste and Wagner, 2000).

SAXS and ITC experiments are also described in more detail in the Extended Experimental Procedures. SAXS of eIF5, eIF1:eIF5-CTD, and eIF1:(eIF5-CTD+eIF2) was measured in 20 mM Tris-HCl (pH 7.4), 200 mM NaCl, 0.5 mM TCEP, and eIF5-CTD at a final concentration of 90 µM, whereas eIF1 concentrations were in the range from 90 to 1,800 µM. Protein samples for ITC experiments were prepared in 20 mM Tris-HCl (pH 7.2), 200 mM NaCl, 0.5 mM TCEP, 0.5 mM EDTA. A MicroCal iTC200 calorimeter was run at an equilibrium temperature of 25 °C. The concentration of the protein in the well was roughly ten times the estimated Kd, and the concentration of the protein in the syringe was seven times the one in the well.

Yeast Biochemistry and Genetics Experiments

Yeast biochemistry experiments were performed as described previously by Maag et al. (2009) and Nanda et al. (2008). eIF2-TC recruitment to 43S PICs experiments was carried out with a native gel assay as previously described by Acker et al. (2007). Unlabeled eIF1A was added to preassembled 43S mRNA complexes (containing eIF1A:FL; fluorescently labeled), and anisotropy values were plotted as a function of time (Maag et al., 2006). GTP hydrolysis experiments were performed as described previously by Algire et al. (2005). Yeast genetics experiments were carried out with a native gel assay as previously described by Nanda et al. (2009), Reibarkh et al. (2008), and Yamamoto et al. (2005). These experiments are written in more detail in the Extended Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, five tables, Extended Experimental Procedures, Extended Results, and an Extended Discussion and can be found with this article online at doi:10.1016/j.cellrep.2012.04.007.

ACKNOWLEDGMENTS

This work was supported by NIH Grants CA68262 and GM47467 to G.W., NRSA-GM79970 to R.E.L., NIDDK-K01-DKO85198 to H.A., G.W.’s GM47467 for L.E.L., GM64781 to K.A., NHBI-T32HL07623-25 for P.R.H., and by the Intramural Research Program of the NIH (to P.M.-M. and A.G.H.). We thank T. Pestova for generously providing us with eIF1A mutant constructs. We would like to also thank L. Yang and M. Allier (Beamline X-9 NSLS, BNL) at Brookhaven National Laboratory, Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We thank E. Bedoya for purifying proteins and V. D’Souza and M. Durney for help with ITC data.

Received: October 17, 2011
Revised: February 16, 2012
Accepted: April 19, 2012
Published online: May 24, 2012

REFERENCES

