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Abstract

Recent research has found that in some cases travel time variance is more important
than mean travel time in travel mode choice. This implies shared infrastructure trans-
portation modes prone to service unreliability stand at a disadvantage even if they are on
average faster than automobile travel. Real-time status and historical availability statistics
gleaned from vehicle instrumentation provide a natural complement to such systems, reduc-
ing travel uncertainty without the infrastructural investment normally required to increase
reliability. I present two projects that explore the idea that a web-work of data-producing
shared infrastructure joined by user-facing traveler information systems comprise an aggre-
gate transportation mode competitive with automobile transit. The first, WideWorld, is a
multimodal trip planner incorporating real time bicycle share availability. The second, Bus
Buzzard draws on millions of bus GPS fixes to generate probabilistic bus schedules in some
cases more reliable than printed schedules.
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Chapter 1

Introduction and Motivation

This document presents two prototype transit applications: BusBuzzard and WideWorld.

BusBuzzard uses a large body of recorded vehicle locations to generate probabilistic transit

schedules. BusBuzzard compiled over 250 million bus locations from the San Francisco

Municipal Railway (MUNI) real time vehicle location API over a period of one year, enabling

the calculation of the probability that a vehicle serving a given route will arrive within a

given amount of time. Along similar lines, BusBuzzard can estimate the length of time one

would have to wait to experience a given probability of arrival. For example, one might

query BusBuzzard how long one would have to wait to be guaranteed an arrival 19 times

out of 20. Conveying uncertainty to a broad audience is a challenge, for which I propose a

simple solution.

WideWorld is a multimodal trip planner, providing directions using any combination of

walking, public transit, and bikeshare in Boston, New York City, Minneapolis-St. Paul, the

San Francisco Bay Area, Washington, DC, and Chicago. WideWorld provides smartphone

and web interfaces through which one can send trip plan requests for specific terminus

points, and receive detailed directions including, if bikeshare is selected, the current avail-

ability of bicycles at the origin station and open docks at the destination station of any

bikeshare legs. WideWorld uses current bikeshare availability to plan trips, and will never

recommend a route featuring a leg without an origin bicycle or destination dock.
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1.1 Motivation

Each project was motivated by the same three things: practical usefulness, value as a

research tool, and value as demonstrations of open data.

1.1.1 Practical Usefulness

Both BusBuzzard and WideWorld were intended to address the personal problem of trans-

portation in a sustainable way. In particular, both projects aim to increase the viability of

public transportation by reducing research time, travel time, and the discomfort and delays

associated with unreliability and uncertainty. WideWorld is focused on reducing research

time by quickly delivering detailed transit directions and times. WideWorld can also reduce

travel time by recommending routes featuring bikeshare, which can be difficult to incorpo-

rate without real-time information. BusBuzzard can reduce the discomfort of uncertainty

associated with waiting for a bus. There is evidence to suggest that real-time information

reduces perceived and actual wait time [92], but it remains a question whether unreliability

statistics of the type provided by BusBuzzard can do the same.

WideWorld is also envisioned as a tool for system maintainers. If widely used, it would

provide real-time data on routes in high demand, potentially before travelers actually start

their journeys. This information could be used to preemptively prepare bikeshare stations

for sudden demand for bicycles or docks. WideWorld could also compile a large body of

rider intents for use in planning future service.

More broadly, these projects are strongly informed by sustainability in both the natural and

built environment. Private automobile ownership as the dominant mobility system in the

United States encourages sprawling car-centered design, which is associated with increased

incidence of obesity[3], low social capital [4], and depression [5]. In the natural environment,

automobiles contribute to habitat loss through a number of mechanisms, including urban

sprawl, pollution from emissions, global warming, and energy extraction operations [10].

The projects presented aim to combat these problems by facilitating use of other mobility
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systems.

1.1.2 Research Platform

WideWorld and BusBuzzard are imagined as research platforms in two ways. First, they

serve as a tool to investigate the effect of unreliability and uncertainty on mode choice.

Second, as a way to collect information on multimodal travel planning and behavior.

Uncertainty The role of uncertainty in travel planning is interesting, because if uncer-

tainty and unreliability are a large factors in mode choice it would be possible to design

interventions based on increasing information, which would be relatively cheap, instead of

expanding infrastructure, which is very expensive. There is evidence to suggest that travel

time variance is an important factor in travel planning and mode choice [1]. Moreover it

has been shown that perceived wait times are reduced in the presence of real time vehicle

location and arrival time information [92]. No research so far has been conducted on either

the role of statistical reliability information in travel planning, or concern about bikeshare

availability when planning multimodal trips.

Traveler Probe WideWorld is envisioned as a tool for “reality mining” [6], whereby

mobile phones collect a very large body of anonymized data from the general populace for

post-hoc analysis. Whereas transit and bikeshare systems may collect data on system usage

that actually occurs, WideWorld can collect information on system information that users

wish to happen. Reality mining travel intent would allow the study of ways in which cities

persistently fail to meet traveler needs.

1.1.3 Demonstration of Open Data

Both WideWorld and BusBuzzard rely on open data. That is, quantitative information

about system state given away in real time by system maintainers in a machine-readable

13



format. WideWorld relies on schedule data in the open GTFS format and real-time JSON

and XML APIs to access bikeshare availability. BusBuzzard collects vehicle locations from

a real-time XML API maintained by the SFMUNI. The last four years have seen a blossom-

ing of imaginative applications of open government data, resulting in new periodicals [7],

academic [8] and government [9] conferences, and hundreds of smartphone apps [74]. These

applications are presented in the hope that they will support the system of publishing and

applying open government data. For those interested in open transportation data and the

growth of the open transportation a history is presented in Appendix A.
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Chapter 2

Previous Work

This thesis draws on previous work in a number of fields, including civic data, open data,

multimodal and multi-criteria short path planning, web-based and smartphone-based mul-

timodal and real-time trip planning, third party participation, transportation data ecosys-

tems, effectiveness of traveler information systems, decision-making under uncertainty es-

pecially as it applies to path planning and mode choice, and studies of generational shifts

in the use of computing and transportation infrastructure and how they’re related.

2.1 Communities of transparency

The exploration of communities of third parties developing systems atop government-

produced data is explored by Rojas as “Communities of Transparency” [74]. This concept

fits loosely as a special case the concepts of Benkler’s “Commons-based Peer Production”

[77] describing the GNU/Linux community, and Jeff Howe’s “Crowdsourcing” [78] describ-

ing collective web efforts like iStockPhoto and Wikipedia. The distinction between these

efforts and public-private transit information partnership is that the “commons” used by

GNU/Linux or Wikipedia is a platform for producing a shared artifact and the efforts are

typically noncommercial, whereas the “commons” for transit apps is the data produced by

public agencies, often applied to commercial projects. In 2009 Robinson et al. outlined in
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the Yale Law Review article “Government Data and the Invisible Hand” the now standard

maxim of information-mediate public-private partnerships that “Rather than struggling, as

it currently does, to design sites that meet each end-user need, it should focus on creating

a simple, reliable and publicly accessible infrastructure that exposes the underlying data.”

[66].

2.2 Transit developers

Regarding communities of transparency in the realm of transportation: the last few years

have seen the introduction of hundreds of third party traveler information systems combin-

ing real-time information and multimodal path planning. Rojas reported in 2012 that five

US metropolitan areas alone have 187 apps among them. As of October 2013 a search for

“transit” on the iTunes app store returns about 950 responses. The search term “MBTA”

alone returns 19 iPhone apps and 71 Android apps. Despite the explosion of traveler-facing

information resources and a wealth of study on advanced traveler information systems

(“ATIS”) during its early years there’s a surprising lack of serious study on the impact of

smartphone-based ATIS implementations.

2.3 Transit app implementation

The literature on multi-criteria and multi-modal trip planning is fairly rich. The OpenTrip-

Planner routing bibliography has a good survey of the current state of the art [108]. Note

in particular the contributions of Delling and Sanders to path search speedup techniques in

dynamic and static graphs [79, 80]. Engineers at Google published a speedup technique for

path planning on large public transit networks [81].
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2.4 Traveler information and uncertainty

The study of decision-making under uncertainty is dominated by the theory of expected

utility, introduced by Bernoulli in 1738 [82], expanded and rationalized by von Neumann

and Morgenstern in 1947 [83], and popularized among economists by Friedman and Savage

in 1952 [84]. Recently, transportation researchers have checked the applicability of the

utility hypothesis theory against observed traveler behavior [85, 86] with mixed results,

some finding general agreement [87], and some finding a failure by classical expected utility

theory to capture actual behavior [88]. Findings about the value of amelioration of travel

uncertainty with real-time information fall into two broad camps. On the one hand, real-

time information has been shown to increase feelings of safety [89] and reduce both perceived

and actual wait times[90, 91, 92]. On the other hand, several studies show that route and

mode choice are very sticky; that once a traveler made up their mind, additional information

is not very affective at shifting route or mode choice [93, 94, 95, 96, 97, 98, 89]. Regarding the

value of real-time systems to transportation agencies, Tang et al. show that introduction of

real-time traveler information on some routes is weakly associated with increases in ridership

[99].

2.5 Generational shifts

Sivak et al. released a paper in 2011 synthesizing surveys and census information from

a number of sources indicating that automobile use per capita among young people has

dropped sharply, resulting in a historically unprecedented reduction in driving per capita

beginning in about 2004 [100]. A series of reports by U.S. PIRG enumerate a number

of causes, namely the rising cost of driving, graduated driver’s license laws, increasing

urbanization, telecommunication technology, and (most saliently for this thesis) facilitated

use of alternative transportation through technology [101, 102]. Journalists have attributed

the end of the driving boom to a shift from asset-orientation to service-orientation among

people born after 1980 (so-called “millennials”) [103] and shift in consumer spending away

from automotive technology towards consumer electronics, which both displaces spending
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and functionally replaces the car with telecommuting and online social networking [100].

Transportation apps have been shown to be a direct contributor to the reduction in driving

[104], with a survey by Zipcar showing that 25% of respondents ages 18-34 drive less because

of transportation apps [105].
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Chapter 3

Implementation

3.1 WideWorld

WideWorld is a multimodal route planning app available as a web site and an app for An-

droid handsets. WideWorld provides detailed address-to-address route directions for intra-

city travel, using a user-specified combination of bikeshare, public transit, and pedestrian

modes. WideWorld is available in six cities:

Chicago Divvy bikeshare and CTA transit

Boston Hubway bikeshare and MBTA transit

New York Citibike bikeshare and MTA subway

Washington DC Capital Bikeshare and WMATA transit

The San Francisco Bay Area Bay Area Bikeshare and BART, Caltrain, and Muni tran-

sit

Minneapolis-Saint Paul Nice Ride Minnesota bikeshare with Metro transit

In each city WideWorld uses real-time bikeshare availability and up-to-date (but not real-

time) schedules published by transit agencies in GTFS format. In particular, if an itinerary

delivered to a user includes a bikeshare leg, then the latest information indicates that there
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is at least one bicycle available at the start of the leg and one dock available at the end of

the leg. Transit legs use scheduled times, not headway, real-time, or statistically average

times.

WideWorld aims to stitch several different modes into a single cohesive mobility system by

providing a sort of limited omnipotence to the traveler by filling in travel uncertainty with

information. As such, the user interface philosophy of WideWorld is to be as unobtrusive

as possible - always collecting information about the user’s needs with as little interaction

as possible and delivering the right advice as smoothly and quickly as possible. That is,

WideWorld should be informative and invisible. The ways in which these goals inform

implementation choices are explained in the next section.

The WideWorld implementation is divided into web and smartphone frontends, which com-

municate with the same web service backend.

3.1.1 Backend

Backend operations are divided into two components. First, a transportation database

called the “transpile” is prepared from various data sources. Second, a server script is

run which keeps the transpile updated with real-time information and receives, fulfils, and

returns routing requests.

Routing algorithm

The transpile data structure and routing libraries implement a variant of Dijkstra’s shortest

path algorithm, where each vertex u is associated with an agent state S(u) in addition to

a weight w(v), and the agent state S(v) and weight w(v) of each vertex v via edge uv

is a function of the edge ~uv’s transfer function and S(u). Dijkstra’s algorithm proceeds

by keeping a “frontier” priority queue of reachable but unvisited vertices, and a “shortest

path tree” data structure holding the shortest paths to all points already visited. At each

iteration of Dijkstra’s algorithm, the lowest-weight vertex is popped from the frontier queue.
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If a comparable vertex is not already attached to the shortest path tree, it is added to the

tree, its adjacent vertices are calculated and added to the frontier queue, and the process

repeats until some satisfactory vertex has been reached or the frontier queue is empty. This

is a so-called “time-dependent” transport graph1.

The disadvantage of this approach is that it precludes or complicates the most powerful

speedup techniques (namely “contraction hierarchies” for purely static graphs and “transfer

patterns” for time-dependent edges with timetables). The advantage is the tremendous

expressiveness necessary to model complicated travel modes. The graph must be capable

of modeling, for instance, that someone can board a train only at certain times; that they

can board from the street, but not if they have a rented bicycle; that if they have a rented

bicycle they can travel at 10 miles per hour but if they do not they must travel at 2 miles

per hour; that one can only get a bicycle from a stocked station, and only drop one off at

a station with an open dock.

To envision how to apply this technique imagine a simple multimodal transportation system

composed of two intersections, A and B, one mile apart. Each intersection has a bikeshare

station. A bus leaves A at 12:10pm to arrive at B at 12:20pm (Figure 3-1).

To start the algorithm, we initialize the shortest path tree with a root vertex representing

the starting agent state. For example, “standing on the street at A at 12:00pm”, with

a cumulative path weight of 0. Since there is a bikeshare station at intersection A, one

adjacent vertex has the state “at A with a bicycle, at 12:03pm”, with a path weight of 3.

Another is to board the bus, with an adjacent vertex with state “aboard the bus at A, at

12:10pm”, path weight 10. Finally, the traveler could walk one mile to B, corresponding to

an adjacent vertex with state “standing on the street at B, at 12:20pm”, with a path weight

of 20. All these adjacent states go into the frontier priority queue (Figure 3-2a).

Next we pop the smallest-weight vertex from the frontier, “at A with a bicycle, at 12:03pm”,

and add it to the shortest path tree. We consider that it has one unvisited adjacent vertex

1This is a slight misnomer. The graph is not time-dependent, it is state-dependent but in early imple-
mentations the only component of the state vector was time, so time- and state-dependence were the same
thing.
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(a) A simple transportation system.

(b) Graph representation.

Figure 3-1: A simple transportation system, and its graph representation.

“at B with bicycle, at 12:09pm” with weight of 9. We add this to the frontier queue and

iterate (Figure 3-2b). Next we pop “at B with bicycle, at 12:09pm” and add the adjacent

vertex with state “at B without bicycle, at 12:10pm” and weight 10 to the frontier queue

(Figure 3-2c). Next we pop the frontier queue vertex “aboard the bus at A, at 12:10pm”

and add its adjacent vertex “aboard the bus at B, at 12:20pm” (weight: 20) to the frontier

(Figure 3-2d). Next we pop “at B without bicycle, at 12:10pm” from the queue and add

it to the tree. Since the intersection B is the destination, we could stop our breadth first

search now (Figure 3-2e). If we were interested in emptying out the frontier queue to build

the shortest path tree to its maximum extent, we could do so by popping out the at-B-

on-bus edge and the walk-to-B edge and discarding them because a vertex equivalent to

their destinations (that is, a pedestrian state at intersection B) is already in the shortest

path tree. Figure 3-3 shows a shortest path tree resulting from this algorithm applied to a

nontrivial transportation graph.

This is the approach implemented by open source multimodal route planning libraries

Graphserver and OpenTripPlanner [108]. WideWorld uses a proprietary multimodal rout-
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(a)

(b)

(c)

(d)

(e)

Figure 3-2: Dijkstra algorithm on simple transportation system.
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Figure 3-3: A shortest path tree across a graph of street and public transit infrastructure
in Seattle. Black lines represent transit links. Red lines represent pedestrian links.
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ing library “libgazelle” on special academic license from Embark Inc. because libgazelle’s

flexibility and C-based implementation made interoperation with the WideWorld python-

based server script very straightforward in a way that would have been time-consuming and

complicated given OpenTripPlanner’s deeply abstracted interface-based design and compli-

cated build procedures. Additionally, libgazelle is architected in such a way that writing

modal extensions is very straightforward, which enables it to be quickly modified in order

to recommend multimodal trips with bikeshare components.

Transportation graph

The transportation graph powering route searches is persisted in a format optimized to

minimize lookup times during the routing queries. As such, the process of building it from

component sources is somewhat complicated. The following process is executed separately

for each of the six metropolitan areas supported to build six different transpiles.

First, recent metropolitan extracts from the OpenStreetMap database in protocol buffer

format (PBF) are imported to the libgazelle transpile. At this point a python script “deis-

land.py” looks for disjoint subgraphs in the OpenStreetMap road network and deletes all

but the largest subgraph. This eliminates the possibility that the trip planner will be called

upon to route between vertices in two different disjoint graphs.

Next, the schedules of one or more transit agencies in GTFS format are imported to the

pile, followed by a linking stage where bus stops and stations are associated with nearby

street intersections. Note that because a GTFS feed goes stale on a particular date specified

in the feed, the transpile has to be recompiled with the latest feeds on a regular basis.

Finally, a list of bikeshare locations, along with unique identifiers which can be used later

to fetch the station state, are fetched from the relevant API and linked to adjacent inter-

sections. Each of the six supported bikeshare systems has a separate API instance, but

the APIs fall into two easily parceable formats. New York’s Citibike, Chicago’s Divvy, and

San Francisco’s Bay Area Bikeshare system all use a second-generation JSON-based API.
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Boston’s Hubway, Washington DC’s Capital Bikeshare, and Minneapolis-St. Paul’s Nice

Ride all use a first-generation XML API.

Real-time graph state

The main python script executes a continuously running thread for each of the six metropoli-

tan areas that polls the area’s bikeshare API for system state and updates the bikeshare

entries in the transpile with the current number of available bicycle and docks. At present,

this is the only process linking the transpile with real-time world state, though a similar

process could update transit schedules with real-time delays.

HTTP API

The main python script uses the Tornado web framework to listen for and respond to route

requests. Route requests are bodyless HTTP requests with a URL in the form:

http://wideworld.media.mit.edu/INSTANCE/plan?

lat1=LAT1&lon1=LON1&lat2=LAT2&lon2=LON2&bspeed=BSPEED&

transit=TRANSIT&bikeshare=BIKESHARE

Details on the request parameters follow:

name description type optional default

INSTANCE code of metro area one of (bos,nyc,wdc,chi,msp) no

LON1 longitude of origin WGS84 decimal degrees no

LAT1 latitude of origin WGS84 decimal degrees no

LON2 longitude of destination WGS84 decimal degrees no

LAT2 latitude of destination WGS84 decimal degrees no

BSPEED bicycle speed decimal meters per second yes 2.5

TRANSIT include transit in route? one of (t,f) yes t

BIKESHARE include bikeshare in route? one of (t,f) yes t
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API responses are carried in the HTTP response body, JSON-encoded in the following form:

RESPONSE := {plan :LEGARRAY, s t a t s :{ planner t ime :FLOAT, bike update

:FLOAT}}

LEGARRAY := [LEG, . . . ]

LEG := WALKLEG | TRANSITLEG

WALKLEG := { d i s t anc e :FLOAT, l o c s :WALKLOCARRAY, mode :WALKMODE,

TYPE: ” walk ”}

TRANSITLEG := { l o c s :TRANSITLOCARRAY, route long name :STRING,

route short name :STRING, t r i p i d :STRING, type=”t r a n s i t ”}

WALKLOCARRAY := [WALKLOC, . . . ]

WALKMODE := ”walk” | ” b ike share ”

WALKLOC := { b ike share ? :BSTATION, b i k e s h a r e i d ? :INTEGER, l a t :FLOAT

, lon :FLOAT, s t r e e t 1 :STRING | nul l , s t r e e t 2 :STRING | nul l , time :

INTEGER, type=”walk ”}

BSTATION := {docks :INTEGER, b ike s :INTEGER, name :STRING}

TRANSLOCARRAY := [TRANSLOC, . . . ]

TRANSLOC := [ heads ign :STRING | nul l , l a t :FLOAT, lon :FLOAT, s t o p i d :

STRING, stop name :STRING | nul l , time :INTEGER, type : ” t r a n s i t ” ]

The API response contains all information to produce on the front end both the textual

narrative and map overlay components of the travel itinerary.

Other roles for the server

The Tornado framework also serves static files for the WideWorld web frontend. Image

resources for the scrollable maps on both the web and Android apps were originally served

through the Tornado framework from the main python script, but are now served by a

dedicated Tilestream-based map server from the same machine on a different port.
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Server hardware

All backend server operations - routing, static web resources, and map resources - for all

six supported metropolitan areas are run off of a single virtual machine running Ubuntu,

which is maintained by The Media Lab’s NecSys department.

3.1.2 Web frontend

The web frontend is a minimal debugging and demonstration platform. As such it doesn’t

have all the features of the Android app, and isn’t very easy to use from a mobile web

browser. It is, however, fairly simple, useful for inspecting the state of the backend server

without having to log into the server itself, and accessible when an Android smartphone

isn’t available.

The front page of the web site, available at http://wideworld.media.mit.edu, lists links

to all available metropolitan areas (Figure 3-4). Clicking on any metro area will send you

to a map page for that metro area.

The main page has two panes. The left pane has a brief description of how to use the

website on the top, and directions appear on the bottom. The right pane is a slideable map

with two icons. The icons can be clicked and dragged. Whenever they are finished dragging,

a new route request is sent to the server. When the route request is received, a textual

narrative appears on the lower-left and a map overlay appears on the map (Figure 3-5).

When the page initially loads the map icons are placed in default locations that are selected

for each city based on the likelihood that they will produce a demonstrative multimodal

route.

I’d like to note several small user interface touches. The red destination icon is filled black

to make it distinguishable from the green origin icon in cases in which the user is red-

green colorblind. The map is not a Google map; it is a low-saturation base map displaying

OpenStreetMap data, bikeshare stations, and GTFS-based train track alignments, which is

rendered using MapBox’s free TileMill software and served with MapBox’s Tilestream map
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Figure 3-4: WideWorld web frontend front page
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Figure 3-5: WideWorld web frontend main page

tile server. In each city, the bikeshare icons are colored according to the brand colors of

that city’s bikeshare system (e.g. blue in New York City, green in Boston). The dropdown

box “bike speed” features three speeds, “slower”, “average”, and “faster”, that correspond

respectively to a request speed of 2.0 m/s, 3.1 m/s, and 4.5 m/s. These speeds were selected

after consulting the distribution of bikeshare trip speeds, which were compiled from over

400,000 trips in Boston’s Hubway bikeshare system (Figure 3-6). Most trips have an average

speed faster than 2.0 m/s; about half are faster than 3.1 m/s; few trips are faster than 4.5

m/s.

3.1.3 Android frontend

With additional care paid to ease of use at the point of decision, the Android app is intended

to be the primary frontend to the WideWorld trip planner. Like the web frontend, the

Android app is also very simple, with one navigation pane and one map pane. The two

panes are toggled via a tabbed interface, with a few auxiliary functions accessed through a

settings menu.
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Figure 3-6: Distribution of trip speeds within the Hubway system.

The navigation tab (Figure 3-7) has two sections: directions input and directions narrative.

There are two identical terminus UI widgets - one for the origin, and one for the destina-

tion. There are three ways to specify a terminus: textual description, current location as

determined by device, or point on a map.

To enter a terminus by textual description, the user presses on the text box component of

the terminus widget and starts typing into the phone. With each keystroke following a delay

of a fraction of a second, a request is made to Android’s built-in geocoding API to obtain

a list of candidate points within the target metro area matching the textual description.

Once the candidate list is obtained it appears as a drop-down box under the text (Figure

3-8a ). Because the geocoding API is so effective at geocoding half-completed placenames,

sending a new geocoding request with each keystroke often means the correct candidate

point is presented before the user is done typing (Figure 3-8b).

To specify the terminus should be the current location, the user selects the GPS-icon button

to the right of the text box.
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Figure 3-7: The WideWorld Android app “Nav” tab.

(a) Geocoder dropdown (b) Predictive geocoding

Figure 3-8: Geocoder dropdown
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To specify the terminus using the map, the user navigates to the map tab, long-presses a

point on the map, and selects from a menu whether they want the point to serve as the

origin or destination.

Once a terminus is specified, the relevant widget contains a blue rectangle “terminus

lozenge” with a description of the terminus. This is a quick visual indication to the user that

the origin or destination terminus is understood. If the user wants to cancel the terminus

point, they can hit the “x” built into the terminus lozenge.

The user can also select their bicycle speed (using the same set of speeds as the web fron-

tend), and whether they want to use bikeshare or transit. Once they’ve input the terminus

points and selected their travel options, they can hit the “Get route” button. This sends

an HTTP request to the backend, and upon receipt of the JSON response, parses it and

builds a textual narrative and a map overlay.

The textual narrative consists of a vertically scrollable stack of rectangles corresponding

to each leg of the narrative. The upper-left of each rectangle shows the mode - typically

“WALK”, “TRANSIT”, or “BIKESHARE”. The lower-left shows the number of minutes

to be spent on that leg. The right-hand section of the rectangle shows the origin and

destination of that leg, with a textual representation of the origin on top, and the destination

on bottom. If appropriate, additional information will be associated with the terminus

points of each leg. For example, the terminus descriptions associated with transit legs show

the scheduled arrival times for the vehicle. The terminus descriptions for bikeshare legs

show the number of bicycles or docks currently available (Figure 3-9a). Each leg also shows

up as a polyline overlay on the map color-coded by mode. Walk legs are blue, transit legs

are red, and bikeshare legs are green (Figure 3-9b).

Two additional UI panes - the consent form and the city-picker - are accessible through

a menu at the top of the screen. The consent form is an opt-in form that explains the

research goals of WideWorld and gives the user the opportunity to participate by consenting

to have their trip requests recorded by the server. The city-picker presents a list of available

metropolitan areas along with a button to check the WideWorld server for new metro areas.
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(a) Textual directions. (b) Map directions.

Figure 3-9: WideWorld app directions screens.

This way, WideWorld can add cities without having to update the Android app on the users’

devices. If the user selects a new city, the map is recentered and the geocoder is restricted

to a bounding box around the selected city (Figure 3-10).

3.2 BusBuzzard

BusBuzzard is a project designed to generate probabilistic schedules from historical transit

vehicle position data. This serves multiple goals. Most immediately, the schedules could be

used directly by travelers, though the presentation of probabilistic timetable information

presents an interesting design challenge that I’ll address shortly. Eventually the state-

dependent path planner underlying WideWorld could use probabilistic states instead of

deterministic states, with edge functions generating destination states with awareness of the

probabilities involved. For example, if the official timetable guarantees a particular transfer

but the empirical timetables indicate that the transfer is not likely, the path planner would

not direct the traveler to attempt the transfer.
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Figure 3-10: City picker option screen.

In principle, a simple timetable should suffice. In practice, reliable trip planning is more

complicated. Schedule variance is not constant; typically larger during morning and evening

commute hours. Schedule variance is often larger than vehicle headway; that is, a vehicle

can be later for its scheduled stop than the time between two scheduled arrivals, in which

case the rule of thumb is that the waiting time is the headway period. Sometimes scheduled

stops are simply miscalibrated or aspirational. BusBuzzard provides a schedule backed with

evidence, as opposed to a trust relationship with the publishing agency.

3.2.1 Data Collection

A script written in Node.js polled the SFMTA NextBus API every two seconds between Sat,

22 Sep 2012 20:42:44 GMT and Thu, 15 Aug 2013 21:19:25 GMT, compiling 253,338,045

vehicle locations at a rate of about ten vehicle locations per second. This includes every

motor coach, trolley car, light rail train, and cable car in the San Francisco MTA system.

Each vehicle position tuple fits the form: (vehicle id, route id, direction id, timestamp,

latitude, longitude). The points were inserted into a Mongodb database as they arrived
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from the remote API. Mongodb was selected for its support for MapReduce operations,

which could potentially form the foundation for postprocessing steps on the daunting 250-

million point dataset. In practice, it was easiest to use Mongodb’s export functions to

produce CSVs for processing by Python scripts.

3.2.2 Data Processing

For the purpose of building probabilistic schedules, we’re more interested in arrival events -

data points about when vehicle arrived at what transit stops - than vehicle positions. The

conversion of vehicle positions into arrival events is a three step process: point chaining,

trip assignment, and passby interpolation.

Point chaining is the process of grouping vehicle positions into a single trip. A trip is infor-

mally defined as a single vehicle proceeding from the beginning to the end of a pre-defined

route in a single direction. The reality is far more complicated, with vehicle entering or

exiting service in the middle of a route, going off route, or proceeding in a loop. Formally

a trip is a consecutive series of vehicle locations with the same vehicle id, route id, direc-

tion id, and where the time interval between vehicle locations is always under a certain

threshold. The threshold value should be long enough that if it has elapsed we can assume

a new trip has begun; fifteen minutes works well. Once a trip chain is constructed it is

assigned a unique id.

Trip assignment is the process of matching a point chain with a trip defined by the GTFS

feed valid during the trip. Point chains integrate a number of sources of noise, making

an exact match between a point chain and a GTFS-specified trip impossible. Due to the

computational challenges of matching a very large number of trips, a heuristic approach

was adopted. In this approach all GTFS trips that share the same route id, direction id,

and service id are collected into an “affinity group”. Each point chain is compared to each

affinity group to see if it matches the route id, if it runs on a date served by the service id,

and if it runs in the same direction. If the point chain matches the affinity group, the

point chain is matched with the trip with the closest scheduled midpoint time, where the
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midpoint time is the average of the time since midnight of the first and last point on the

trip.

The last step is the interpolation of passby times. The Python library “Shapely” was used

to project all vehicle locations onto the shape corresponding to the trip id to which they

were matched. Next, all stops served by that trip were also linearly referenced against the

trip’s geometry. For each consecutive pair of vehicle points, if a stop falls between them,

then the time at which the vehicle would have passed it is interpolated, assuming constant

speed between the two vehicle locations flanking the stop.

The simplest visual expression of the calculated passby data is a timeline. For example,

Figure 3-11 shows all interpolated passbys on route “5” at stop with stop id “5406” in

direction “0” on service period with service id “1” between about 60000 and 90000 seconds

since midnight (that is, the 5 inbound at Mcallister St & Webster St during late afternoon

and nighttime). A timeline of scheduled arrivals is shown on top; interpolated observed

arrivals are on bottom. Even this simple format tells a story: schedule adherence is relatively

low compared to the tight headway during late afternoon, meaning that the official schedule

bears little relation to when a traveler should aim to show up at the stop. Likewise during

the evening hours the schedule adherence is relatively high compared to the headway, at

which point it behooves the traveler to check the schedule before heading to the stop.

The next step is to build a probabilistic schedule. To generate a probabilistic schedule for

any given time of day, we can use the historical arrival times to find the amount of time that

a person in the past had to wait for the bus starting at that time of day for a number of

days on which we have data. From that set of wait times, we can interpolate the 25th, 50th,

75th, and 95th percentile of arrival times. Doing this for each successive minute throughout

a day we can develop a probabilistic schedule for an entire service day.

Figure 3-12 shows just such a schedule, for the same route, direction, time range, service

day, and date range as Figure 3-11. The horizontal axis is expressed in minutes since

midnight. The lines show the 25th, 50th, 75th, and 95th percentile time to arrivals during

the observed period. For example, at 1100 minutes since midnight (6:20pm), the 5 inbound
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Figure 3-11: Timeline of observed passby events for the SFMTA 5 inbound at McAllister
St & Webster St during fall/winter 2012.
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arrived within 60 seconds 25 percent of the time, within 144 seconds half the time, within

325 seconds 75 percent of the time, and 5 percent of the time, it didn’t arrive for more than

767 seconds.

Figure 3-12: Probabilistic schedule of wait times for the for the SFTMA 5 inbound at
McAllister St & Webster St. Horizontal axis represents seconds since midnight. Vertical
axis represents wait time.

This is potentially tremendously useful both directly to travelers and as a component of an

automated path planning algorithm. Most usefully this diagram doesn’t force risk-averse

travelers to supply their own potentially inaccurate worst-case estimations. If one is inclined

to believe in induction as a valid strategy for predicting the future, one can conclude that

at 6:20 one will almost certainly catch the 5 inbound at Mcallister St & Webster St within

13 minutes, and more than likely within 2.5 minutes.

Illustrating a probabilistic schedule to the public presents a tremendous information design

challenge. Predictions are rarely conveyed to the public as a range even when it is appro-

priate to do so (as in, for example, economic forecasts). To turn a range prediction back

into a point prediction we could ask the traveler for some indication of their risk aversion.
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(a) High certainty. (b) Medium certainty.

Figure 3-13: Proposed interface for displaying predicted wait times.

For example you could ask if punctuality is very important, such as with a job interview in

which case the 95th arrival wait percentile will be selected, or less important, such as with

grocery shopping, which will select the 50th arrival wait percentile (Figure 3-13).

3.3 Results

WideWorld received 574 requests during the period from Fri, 16 Aug 2013 21:50:21 GMT

to Sun, 06 Oct 2013 01:07:32 GMT, of which 23 encountered an error and could not return

a route. The distribution of requests by metro area is shown in Figure 3-14, with each

city broken into three categories - requests made by app uses who consented to allow their

request data to be persisted, requests by those who did not consent, and requests by the

author. Every request made from the web frontend is marked as nonconsented, because

the web frontend does not have a consent form. Note that only 29 requests were logged by

consented users, of which there are four. A detailed analysis of those requests is omitted
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because of the ease with which they could be deanonymized.

Figure 3-14: Request count during test period.

With five users including the author, WideWorld is a spectacular failure as a data-collection

platform. To speculate, we could attribute this to the short study time, the failure of

the author to recognize that marketing is still important in a world dominated by viral

media, and paradoxically the mainstream success of transportation apps. The novelty of

WideWorld is somewhat subtle, and anyone searching the Android app store for “hubway”

or “mbta” has dozens of better-established apps to choose from.

As a piece of software WideWorld is a success. Six different instances running on a single

machine ran for two months, updating real-time state for every instance every minute

from six different bikeshare status APIs. Android clients never reported as single crash.

The median response time was precisely 1.0 seconds, with responses rarely taking over

5.0 seconds (see Figure 3-15). The author used the app nearly every day to navigate a

number of multimodal trips, for which it behaved perfectly. The paucity of information
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gathered leaves a number of questions unanswered. I address some potential next steps in

the dicussion section.

Figure 3-15: Histogram of response time for all non-error route requests.
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Chapter 4

Discussion

4.1 Future Work

It remains to be seen whether these two interventions are actually effective. Experiments

are needed to test effectiveness in two ways. First, do the interventions result in a modal

shift? Second, do the interventions quantitatively improve travel?

4.1.1 Qualitative Improvement and Modal Shift

Ultimately we’re interested in whether the interventions influenced travelers to shift the

mode of a large number of trips away from the automobile. It would be possible to ask

this question through surveys, interviews, or in-app questionnaires. Questionnaires or in-

terviews should address reasons why the interventions did or did not affect a modal change.

Additionally it may be preferable to establish pre- and post- intervention modal preferences

through a study designed to measure preference indirectly by, for example, offering study

recipients a choice of bus tickets or gas vouchers, or by directly measuring application usage.

Some questions the experimental design would be called upon to answer:

• Did users decrease automobile usage?
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• Did users increase usage of other modes, or did they simply eliminate trips?

• Did users feel that statements in the form “The bus has a 50% chance of arriving

within 5 minutes, 95% of arriving within 15 minutes” were more useful for planning

than “the scheduled arrival time is in 10 minutes”?

• Are users inclined or disinclined to transfer between modes? Even if it saves them

time? How much time would it need to save them before they were interested in

making a bus-bus transfer? Making a bus-bikeshare transfer?

• Does having bikeshare availability in a trip planner make them more inclined to use

bikeshare as part of a multimodal journey?

• Do users continue to use the BusBuzzard/WideWorld after they feel like they’ve

learned about the transportation options on their most commonly traveled routes?

• Is using the BusBuzzard/WideWorld an inconvenience?

• How much time would these apps have to save before they became worthwhile to use?

4.1.2 Quantitative Improvement

WideWorld and BusBuzzard are designed to qualitatively improve transit and multimodal

trips by reducing waiting time at origin and transfer stops, prevent missed vehicles, and

shorten travel time with efficient directions. It is plausible that the goal of these inter-

ventions - affecting a modal change by increasing perceived quality of service - would not

correspond to an actual quantitative increase in quality of service. For example, travel-

ers may feel better about the presence of more information without actually using it to

plan their journeys. Along similar lines travelers may enjoy shorter travel times but feel

so bothered by the planning process that quantitative experience is overall negative. In

any case it is necessary to collect information on quantitate travel experience independently

of perceived travel experience. Quantitative information would be more difficult to collect

reliably. Travelers could keep a journal, or carry a phone application that journals their

transit experience automatically by logging GPS and accelerometer readings.
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4.2 Signoff

These projects were made, to paraphrase the open source pioneer Richard Stallman, in the

hope that they will be useful, but with the recognition that they are just a starting point.

The state of the union is strong, and I feel confident that the white-hot pace of innovation

in the world of mobility and urban data will incorporate these concepts in the construction

of a new urban system - one that raises the values of subtlety, efficiency, thoughtfulness,

cleverness, and interdependence above the values of power, conformity, uniformity, linearity,

and dependence enshrined by motordom. I hope that at the other side of this story we

look back at a piece of heavy transportation infrastructure - an urban clover-leaf freeway

interchange for example - and see it much the same way we see computer mainframes in the

era of powerful handheld computing. What we have now is so much smaller, and so much

more fragile, but it is the condensation of a civilization’s worth of cleverness into an artifact

exponentially more subtle and more effective. The journey towards that world is well under

way, and it is both exciting and intimidating to say that we are only just beginning.
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Appendix A

History

A.0.1 Summary

As of 2013, every person moving around a city, regardless of travel mode, is spilling data.

Every car passing over an actuated intersection, through a toll booth, or over a bridge

generates a record. Wireless tollbooth passes are scanned outside tollbooths to track traffic

on city streets [12, 13]. In-car GPS navigation systems keep a memory of where you’ve

been, whether you ask them to or not. Most major public transportation agencies track

location, door-opening events, and passenger count of vehicles in real time. Users of car-

and bicycle-sharing systems generate records with each check-out and check-in. Every one

of New York City’s five thousand shared bicycles and thirteen thousand taxi cabs logs a

detailed, time-stamped GPS track [15, 16]. Even pedestrians generate movement data. One

proposed1 project in London intended to track mobile phones’ movement by listening to

their unique identifiers as they pass between different transceiver-equipped “smart” garbage

cans [17].

The history of the Data Mobility Ecosystem could be told in two ways - sequentially, as

a series of events, or longitudinally, in terms of each component conceptual thread. It’s

difficult to tell the story sequentially without losing sight of the longitudinal themes, and

1The proposed project was quickly cancelled due to privacy concerns following public uproar.
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difficult to tell the story longitudinally without losing sight of that fact that at each moment

in history the future was uncertain; people didn’t really know what they were building.

Indeed, one of the most fascinating aspects of this history is how surprising the future

would be to the people who were building it.

This history contains four longitudinal themes.

Sensor technologies The electronic sensing of vehicle movement and state, and the com-

munication, storage, and data-processing technologies necessary to transmit and per-

sist them. Includes early proximity sensors, digital data transmission over radio and

telephone lines, GPS, and the Internet.

Data-sharing protocols Different languages and protocols for communicating mobility

data between institutions.

User interface technologies Ways of communicating information to members of the

public. Includes signage, kiosks, telephone systems, the progression of internet and

mobile internet user interface technologies and paradigms.

Legal institutions The legal framework inside institutions for sharing and cooperating

with increasingly small, numerous, and amateur third parties.

This history can also be seen as five sequential eras corresponding to the ascendant user

interface technology of the time.

Institutional Sensing Before 1980. During this time most development was in sensing

technologies to produce data for institutional consumption, with little attention paid

to user interface technologies.

Telephone, Television 1980-1993. A period of maturation for sensing technologies and

traveler information systems based on touchtone phone interfaces.

World-Wide Web 1993-2004. An era beginning with experimentation with a variety of

competing technologies, from which the world-wide web emerged victorious.
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Web 2.0 2004-2008. A renaissance of the web driven by the maturation of Javascript,

enabling highly interactive websites.

Mobile Internet After 2008. A period starting with the introduction of the iPhone and

leading to the current ubiquity of smartphones.

A.0.2 Before 1980: Institutional Sensing

Though electronic pressure plates had been applied to sensing vehicles at actuated traffic

signals since the mid-1930s [18], these systems did not constitute a civic sensing network.

Usually stand-alone, and eventually networked into small clusters of coordinated actuated

signals [19], wide-area automatic aggregation, persistence, and analysis of mobility data was

presented tremendous data processing challenges to a pen-and-paper world.

Between 1954 and 1958, London Transport, faced with a number of operations challenges2

developed a system to track buses by affixing them with a scanning plate which is registered

at control points as they pass by. The system, dubbed “BESI” for “bus electronic scanning

indicator”, was a seminal example of signpost automatic vehicle monitoring (“AVM”, even-

tually more commonly automated vehicle location or “AVL”) technology, whereby vehicles

are tracked by the automatic registration of a vehicle’s proximity to some fixed reference

point. To save on cost, BESI placed the inexpensive tag on the vehicles and the more

expensive scanning hardware in fixed locations, which transmitted vehicle passby events

as binary messages over telephone lines to a central aggregation point. The control center

could monitor vehicle operations but as of 1958 storage and analysis of vehicle data was

still beyond the state of the art. In the concluding chapter of pick58 “The most logical first

step will be a punched-tape record which could be transferred to punched cards for analysis

in some form of computer-type equipment, for the rapid production of mileage statistics,

2So woeful was the fog of war over the transit system operations in those data-starved days that it seemed
hardly necessary to specifically state why they needed more information. From pick58, with dry finality: “It
is unnecessary to enumerate the difficulties facing the bus operating staff to-day” for which they prescribe
a system whereby an “increasing amount of information can be given at a central control point as to the
movement of buses” thereby enabling “measures to be taken before conditions deteriorate”.
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etc.”, anticipating future data collection efforts, if not the medium through which they are

transacted.

Following the introduction of affordable, mass-produced electronic computers3, the city of

Toronto developed the first centrally controlled traffic signal system starting with a pilot

project in 1960 followed by a steady expansion to several hundred intersections before 1973

[19, 20]. Using the first affordable, mass-produced computer, the IBM 650, the Toronto

project was able to marry the data production capacity of electronic sensors with the data

processing of electronic computers. Though the primary goal of the project was to achieve

better traffic flow through intersections, Dunn notes “The amount of traffic data available

from this form of control proved a fortunate by-product.”.

Several years later in 1968 Chicago began work applying computerized data aggregation

and processing to public transit AVL applications. Though motivated primarily by security

concerns, the Chicago AVL project became an incubator for technology for equipment

vendors and began the US Federal Government’s continued involvement in the development

of AVL technology. One particular Chicago AVL project spawned the PULSE (Public Urban

Locator Service) conference, a seminal event that brought together nascent AVL vendors and

government administrators, and is generally considered the kickoff event for the American

public transportation information technology industry [21].

The CTA AVL implementation demonstrated several technological innovations. First, the

CTA moved the event reporter from a piece of fixed infrastructure (as in the London Trans-

port implementation) to a radio transmitter in the vehicle4. Second, the project was the

first to apply electronic computers to aggregating transit AVL data. The CTA project had

at its disposal advanced technology; a GE-PAC 4020 computer with 36 kilobytes of memory

and three megabytes of disk storage5 accessed via a cathode-ray tube display.

Though the US Department of Housing and Urban Development funded the development

3Mass-produced in the sense that thousands were made, and affordable in the sense that medium-sized
institutions could own or lease one.

4This makes sense given that putting a channel for emergency communications in the vehicle was the
whole point.

5Technically, 12k and 1 million 24-bit words respectively.
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and testing of several competing AVL technologies (namely a diverse number of variations

of radio triangulation) [21], the CTA AVL’s signpost technology proved an ideal balance

of reliability and precision, and remained the state of the art in vehicle location until GPS

receivers became cheap and reliable in the early 1990s.6 By 1980 Toronto, Los Angeles, and

the New York MTA had large signpost AVL installations, and before the introduction of

GPS in 1993 both Seattle and San Francisco had implemented signpost systems comprising

over 1000 coaches each. [22]

The goal of civic sensing projects before 1975 was exclusively quality control and internal

management. There was no recognition by the makers of the BESI, the Toronto traffic

system, nor the CTA AVL system that their data could be useful to the public either

through services or in raw form. Throughout the 1970s however civic data started leak-

ing into applications in operations research and traveler information. In 1976 engineers at

Motorola (which manufactured the radio component of CTA’s AVL system) applied data

gleaned from the AVL system to an analysis of bus bunching behavior, partially as a demon-

stration that AVL data could be useful for analysis [23]. In 1977 the U.S. Department of

Transportation/Urban Mass Transportation Administration7 planned an AVL project in

Philadelphia featuring real time bus information kiosks located at bus stops, though it’s

not clear if this was ever implemented [24]. Public-facing data-driven street interventions

were a primary motivation behind traffic-sensing projects, with [25] listing a number of in-

ventive applications, though public-facing analysis and pre-trip traveler information had to

wait for advances in user-interface technology. In 1977 Roth [21] presciently imagined the

kind of devices that could exist if signpost beacons were ubiquitous and every vehicle were

equipped to read them: “...a gadget in the car where one enters his destination coordinates

at the beginning of the trip and at the appropriate time the gadget tells him where to make

the next turn.”.

6In some sense signpost location techniques never went away. Most smart phones locate themselves by
registering proximity to a wifi access point of known location. The only difference is that whereas the CTA
AVL system relied on signposts installed by the CTA, Apple and Google rely on signposts set up by the
public.

7Renamed the Federal Transit Administration in 1991.

51



A.0.3 1980-1993: Telephone, Television

Between 1980 and 1993 institutions began experimenting with different ways to convey

automatically sensed data to the public. In 1980 Toronto installed a passenger information

display in one subway station [26]. Between 1981 and 1983 the Nice transportation authority

developed traveler information system kiosks at bus stops showing real-time bus locations

[27, 28]. By 1983 Hamburg, Germany, Mississagua, Canada, and Salt Lake City, Utah

offered dial-in interfaces whereby travellers could request the next bus arrival from an

automated system[29, 30]. By 1983 Halifax had a dial-in system for requesting current bus

system information [31], and London had begun experimentation with video kiosks at bus

stops [32]. In 1989 San Antonio, Texas installed an AVM system with a dial-up passenger

information interface [33, 34]. During this time road-side signage technology offering real-

time traffic and event information to drivers transitioned from experimental to mature.

As of 1992 all interfaces to institutional data were themselves institutional - conceived,

funded, and implemented by the same organizations that produced the data. Before 1992

there were essentially no channels through which non-institutional actors could reach mass

audiences. One had to have significant organizational backing to install video displays at bus

stops or run a telephone information line. Consequently innovation in traveler information

systems had a distinctly different character and pace than the era after 1993.

A.0.4 1993-2004: The World Wide Web

The early 1990s saw several important events in close sequence. First, the internet as

we know it transitioned into the early mainstream. Second, King County Metro, a large

transit agency interested in technological innovation completed installation of a very large

AVL system. Third, non-institutional actors began applying the early internet to sharing

transit data both between between institution and to the public.

Between 1989 and 1993 Seattle Metro implemented a coach signpost AVL system in over

1300 coaches, the largest signpost-based AVL system in the US at that point, and the last
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signpost system before the era of cheap and reliable GPS devices8. The most interesting

feature of this system (other than its size) was the willingness of its implementors from the

outset to share data with third parties. Overgaard notes [35] “In response to the internal

markets for the by-products of the AVL system, we are taking steps to provide potential

users with direct access to an AVL database ... accessible from the wide area network”.

Further, they explain their interest in sharing these products outside the walls of Metro:

“Seattle Metro is participating with the University of Washington and Washington State

Department of Transportation in an exciting IVHS demonstration project for a regional

data-fusion network”.

The demonstration project to which they refer is that of Daniel Dailey at the University of

Washington’s Intelligent Transportation Systems group. Introduced in 1993 [37], maturing

into a proposed “Self-Describing Data” (SDD) component of the broader “National Trans-

portation Communications for ITS Protocol” (NTCIP) by 1998 [38], Dailey et al outlined

an architecture and set of protocols for transmitting live sensor information between or-

ganizations in the Seattle area. Conceived as a tool for inter-agency cooperation, Dailey’s

project nevertheless leaked into the public both in the form of a demonstration applica-

tion BusView9 [39], and almost as an afterthought, as the first publicly accessible real-time

transit data API.

Elsewhere other non-institutional actors were experimenting with building public outlets

for transit information. By 1995 more than one third-party Bulletin Board Systems (BBS)

focused on commuter information was available in the San Francisco Bay area. In May 1994

by Daniel Gildea, an undergraduate at the University of California, Berkeley started the

Bay Area Transit Information Project (BATIP), a comprehensive collection of Bay Area

transit routes and timetables [40]. BATIP was the most reliable and up-to-date source for

transit information for several Bay Area transit agencies; in some case for several years. The

effectiveness of third parties enabled by the Web stands in stark contrast to the institutional

8Metro’s technologists were aware of the new system’s impending obsolescence. “In due time, we expect
we will need to invest in GPS”, they note in a 1993 report [35]. Metro replaced the signpost system with
GPS in 2007 [36].

9First implemented as a standaone GIS application in 1993 and ported to a browser-based Java application
in 1998, as of September 2013 BusView is, incredibly, still available and functioning.
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traveler information systems that preceded it.

By 2004 nearly every transit agency in the country maintained their own website, and

web-based route planning applications had become commonplace at large agencies. The IT

infrastructure required to maintain an effective interactive route planning webapp, however,

placed it outside the means of most small transit agencies; an inequality between medium

and large systems that precipitated the move towards Google Maps after 2004.

The late 90s and early 00s saw a scattering of experiments in mobile interfaces to civic

data. In 1995 a consortium including IBM, Metro Transit, and The University of Wash-

ington tested a smartphone application on a variety of mobile endpoints, including a Seiko

MessageWatch, a Delco car radio, and portable PDA [41]. In 1996 NextBus, a company

that would eventually become a major AVL vendor, proposed a pager-like piece of dedi-

cated hardware to deliver real time bus updates [42], and a similar device was patented

by J C Decaux in France [43]. MacLean [44] described a successful 2000 application of

WAP-enabled cellular phones to real-time arrival updates. By about 2001 institutional mo-

bile interfaces to traveler information systems were relatively mature within the context of

available hardware, though they would have to wait for several years to see mainstream use.

A.0.5 2004-2008: Web 2.0

The Web 2.0 era was a renaissance in web development resulting from the confluence of

economic recovery after the dot-com crash and a maturation of client-side scripting tech-

nologies10. During this time a growing trend of taking advantage of the open architecture

of interactive web sites by combining them into “mashups” lead to a wide awareness of (a)

the logical architecture of a complicated, interactive web page; namely the concept of an

“API” and (b) demand for useful APIs from both private and public producers of data.

In February 2004 Google released Google Maps [46], which used client-side scripting tech-

niques to assemble an interactive map from component images (“map tiles”). One could

10Paul Graham, explaining the meaning of Web 2.0 in 2005: “One ingredient of its meaning is certainly
Ajax, which I can still only just bear to use without scare quotes. Basically, what ‘Ajax’ means is ‘Javascript
now works.’”[45]
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pan the map by clicking and dragging, or overlay the map with information - e.g. a store

location, or a driving route.

The Javascript-based client-side scripting employed by Google Maps in 2005 was as deliv-

ered to the client not as compiled code but as a text script; it was readable by default. By

June 2005 independent developers had used Google Maps as a substrate to show crime in

Chicago, and Craigslist housing advertisements in several cities in the US. In the spring

of 2005, Seattle-based developer Chris Smoak built busmonster.com, a traveler information

site displaying King County Metro routes and schedules atop a Google Maps [47]. Smoak

was enabled by the University of Washington ITS groups’s collaboration with King County

Metro, which had established protocols and for accessing Metro’s up-to-date schedules in a

machine-readable format. In contrast to earlier institutional traveler information applica-

tions of UW ITS’s data feeds, busmonster.com was one of the first applications of an civic

data API to a third party traveler information application.

At about the same time in the summer of 2005 Bibiana McHugh, a GIS manager at the

Portland Trimet transit agency, imaging a similar mashup of Portland Trimet information

and Google Maps, began a collaboration with engineers at Google, resulting in Google

Transit [48]. Released to the public in November 2005, Google Transit relies on a steady

feed of the current schedule information in a standard format drafted by Google and Trimet

“GTFS” (General Transit Feed Specification). King County Metro and Bay Area Rapid

Transit joined the Google Transit project soon afterward. Trimet, Metro, and BART all

published their GTFS feeds to the public, deciding from the outset not to restrict access to

Google, spawning a bloom of third party traveler information applications.

A.0.6 2008-present: Mobile Internet

By 2008 the protocols and technologies underlying the present civic data syndication were

present in their final form, but legal structures had not yet formed to accommodate the type

and number of informal, ad-hoc public-private partnerships that civic data fostered. The

short period 2008 to 2013 saw a growing community of civic data developers, a backlash
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from institutions, a campaign on the part of citizens to establish open data policies among

institutions, a mainstreaming of open data policies, and a growing reliance on open data

streams and noninstitutional actors by mainstream consumers.

By 2005 noninstitutional developers working on transit apps started seeing legal pushback

from intuitions. In August 2005 New York software developer William Bright received a

cease and desist notice from the New York MTA and Bay Area Rapid Transit for vending

schedules and route maps formatted for display on Apple Ipod screens11 [49]. Bright com-

plied with the requests, but this started a period of contentious relations between transit

agencies and sparked a public debate and general public confusion about the subtle dis-

tinctions between different types of intellectual property held by public institutions and the

legality and reasonability of denying access to the public.

The release of the iPhone in 2007 and the flurry of applications using public data that

followed opened up the gates for a full-scale confrontation between app developers and

institutions. The New York MTA dragged their feet on releasing schedules in 2007 [50] and

eventually became openly hostile to app developers in 2009 [51]. In Berlin Metro operator

BVG banned iPhone app Fahr-Info Berlin in 2008 [52]. In 2009 Sydney, Australia’s rail

agency RailCorp banned Transit Sydney [53].

It didn’t help matters that when it came to civic data, especially transit data, the intel-

lectual property landscape is extremely complicated and it’s often not precisely clear who

holds what rights on what intellectual property and the extent to which they are permitted

to exercise those rights. The distinction between trademark and copyright was often fuzzed

in takedown notices [51]. It was unclear whether transit schedules and vehicle locations

constituted facts, and to what extent facts could be copyrighted [54]. Commercial organi-

zations with unclear roles in the web of subcontractors underlying transit IT systems would

appear, claiming ownership of transit data and demanding royalties of app developers [55].

Non-practicing entities claiming ownership of the very idea of locating a vehicle demanded

and often received licenses from large transit agencies, placing a chilling effect on public-

facing uses of civic data [56]. The attendant confusion was often exploited to intimidate

11An interesting adaptation to contemporary technological limits, made obsolete almost immediately.
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smaller noninstitutional actors into self-censoring their applications.

As public debate progressed [50] and cases were made [57] to transit agencies and public

officials, institutional momentum for open data policies began to grow. In January 2009,

on inauguration day, the office of Barack Obama released a memorandum “Transparency

and Open Government” directing heads of agencies to “take specific actions implementing

the principles” that government should be transparent, participatory, and collaborative

[58]. Remarkably Obama saw this as a job for the Chief Technology Officer, reflecting his

campaign promise to create a “Google for government” [59].

This represented something of a turn of the tide in the open government data debate. In

August 2009 MUNI was able to assert its right to its own transit data, and reinstate an app

that had been shut down in the confusion [60]. In September 2009 New York City council

member Gale Brewer wrote an open letter to the New York MTA supporting data policies,

resulting in the reinstatement of the previously banned iPhone app StationStops [61]. In

January, 2010 the New York MTA began publishing schedule and real-time transit data

in open formats [62], marking the first time that the majority of rider-miles in the United

States were served in cities with open data [63]. In March 2010, the UK Prime Minister

Gordon Brown gave a speech expressing his administration’s goal of opening transit data to

the public [64]. As of 2012 nearly every large transit agency in the United States publishes

schedule data in the GTFS format [65], feeding an ecosystem of hundreds of apps serving

millions of travelers.

It’s important to reflect upon the peculiar fact that, at this point, the primary means of

using institutionally produced data is through noninstitutional interfaces. A 2009 paper in

the Yale Journal of Law & Technology posited that the public and private sector each have

different strengths uniquely suited to producing and presenting civic data [66]. The public

sector is good at building infrastructure, and the private sector best at bringing “Darwinian

innovation in the consumer space, and that fundamentally lowered our operating costs”

[109].

The public’s present reliance on noninstitutional interfaces to public data is illustrated by

the public outcry following the disappearance of Google Maps from the iPhone platform.
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Seeking to cleanse their brand, Apple briefly banned Google’s popular mapping application

from the iPhone and replaced it with their own. Google Maps featured transit directions

and Apple Maps did not, stranding millions of Google Transit users [67]. Partially as a

result of the outcry Apple fired Apple Maps product manager Richard Williamson and

acquired transit app developers HopStop and Embark in August 2013, presumably to bring

transit directions back to the iPhone.

58



Bibliography

[1] Bates, John, et al. “The valuation of reliability for personal travel.” Transportation

Research Part E: Logistics and Transportation Review 37.2 (2001): 191-229.

[2] Hutchinson, Timothy Paul. “The customer experience when using public transport:

a review.” Proceedings of the ICE-Municipal Engineer 162.3 (2009): 149-157.

[3] Jacobson, Sheldon H., Douglas M. King, and Rong Yuan. “A note on the relationship

between obesity and driving.” Transport Policy 18.5 (2011): 772-776.

[4] Leyden, Kevin M. “Social capital and the built environment: the importance of walk-

able neighborhoods.” American Journal of Public Health 93.9 (2003): 1546-1551.

[5] Berke, Ethan M., et al. “Protective association between neighborhood walkability and

depression in older men.” Journal of the American Geriatrics Society 55.4 (2007):

526-533.

[6] Eagle, Nathan, and Alex Pentland. “Reality mining: sensing complex social systems.”

Personal and Ubiquitous Computing 10.4 (2006): 255-268.

[7] Hasseries, Patrick. “Introducing Socratas Open Data Magazine: Open Innovation.”

Socrata. 18 Sept. 2013. Weblog.

[8] Maclay, Kathleen. “Media Advisory: Conference explores role of open data in democ-

racy.” UC Berkeley News Center. 4 Sept. 2013. Weblog.

[9] Howard, Alexander. “First International Open Government Data Conference Features

the Power of Platforms.” Huffington Post. 16 Nov. 2010. Weblog.

59



[10] Parry, Ian, Margaret Walls, and Winston Harrington. “Automobile Externalities and

Policies.” Journal of Economic Literature (2007): 373-399.

[11] Goodyear, Sarah. “The Invention of Jaywalking.” The Atlantic Cities. Atlantic Me-

dia., 24 Apr. 2012. Web. 15 Oct. 2013.

[12] Hill, Kashmir. “E-ZPasses Get Read All Over New York (Not Just At Toll Booths).”

Forbes. Forbes., 9 Sep. 2013. Web. 15 Oct. 2013.

[13] New York City Office of the Mayor. “Mayor Bloomburg Announces New, Real-Time

Traffic Management System to Reduce Congestion in Midtown Manhattan.” July 18,

2011. Press release.

[14] United States. Environmental Protection Agency. “On-Board Diagnostics (OBD): Fre-

quent Questions.” Web. 15 Oct. 2013.

[15] New York City Bike Share. “Frequently Asked Questions.” Web. 15 Oct. 2013.

[16] New York City. Department of Transportation. “2012 Sustainable Streets Index.”

PDF.

[17] Raphael Satter. “London rubbish bins that track people’s movements raise ire of

official London rubbish bins that track people’s movements raise ire of officials.” The

Sydney Morning Herald. The Sydney Morning Herald. 13 Aug. 2013. Web. 15 Oct.

2013.

[18] Preist, T. P. “Electrical control of road traffic by vehicle actuation.” Journal of the

Institution of Electrical Engineers 77.464 (1935): 149-165. Print.

[19] Casciato, Leonard, and Sam Cass. “Pilot Study of the Automatic Control of Traffic

Signals by a General Purpose Electronic Computer.” Highway Research Board Bulletin

338 (1962): 28-39. Print.

[20] United States. Federal Highway Administation. Traffic Control Systems Handbook.

2005. PDF.

60



[21] Roth, Seymour H. “History of Automatic Vehicle Monitoring (AVM).” IEEE Trans-

actions on Vehicular Technology 26.1 (1977): 2-6. Print.

[22] Okunieff, Paula E. AVL systems for bus transit. Washington, D.C.: National Academy

Press, 1997. Print.

[23] Cohn, J., et al. “Quantitative Analysis of Bus Location and Control.” 26th IEEE

Vehicular Technology Conference, 1976. Print.

[24] Symes, Denis J. “Multiuser Area-Coverage Automatic Vehicle Monitoring Program”

IEEE Transactions on Vehicular Technology 26.2 (1977): 187-191. Print.

[25] Cobbe, B. M., et al. “Computer-controlled road-traffic signal systems in the United

Kingdom” Proceedings of the Institution of Electrical Engineers 120.10 (1973): 1165-

1180. Print.

[26] Catton, F. D., and L. G. Berney. “Toronto Transit Commission Communications

and Information System. Evaluation of Operational Tests.” Convergence 80. IEEE

Vehicular Technology Society Annual Conference (30th), International Conference on

Transportation Electronics Proceedings. September 1980. Utica, Michigan. Print.

[27] “In Nice: A Dynamic Information Information System for Passengers at Bus Stops.”

Ingenieurs des Villes de France 275 (1981): 45-47. Print.

[28] Artaud-macari, J. “Nice: Development of the Videobus and Cibus Systems.” UITP

Revue 32.1 (1983): 43-46. Print.

[29] Pettersson, H. Information Systems for Public Transportation Controllers and Passen-

gers. Linkoeping, Sweden: Swedish National Road and Transport Research Institute,

1983. Print.

[30] Ruiter, E. R., and R. E. Lung. Evaluation of the Salt Lake City Computerized Rider

Information System. Urban Mass Transportation Administration, 1985. Print.

[31] Frederick, S. “Gotime in Halifax.” Metro 81.2 (1985). Print.

61



[32] Warman, P., and R. Sheldon. “Real Time Information for Bus Travellers in Lon-

don.” Public Transport Planning and Operation. Proceedings of Seminar. July 1985.

University of Sussix, England. Print.

[33] O’Neill, J. “Via Looks to the Future with AVL System.” Metro 85.3 (1989): 36-39.

Print.

[34] United States. Federal Transit Administration. “Advanced Public Transportation Sys-

tems: The State of the Art Update 9́2.” April 1992. PDF.

[35] Overgaard, Daniel A. “Automatic Vehicle Location at Seattle Metro.” Pacific Rim

TransTech Conference (1993 : Seattle, Wash.). Proceedings. Vol. 1. New York: Amer-

ican Society of Civil Engineers, 1992. Print.

[36] Metro Transit. “King County Metro On-Board Systems/Communications Center Sys-

tem Project.” Web. Oct. 15, 2013. Print.

[37] Dailey, Daniel J. “A Conceptual Framework for IVHS System Development.” Pro-

ceedings of the IVHS America 1993 Annual Meeting. Print.

[38] Dailey, Daniel J. “A self-describing data transfer methodology for ITS applications.”

IEEE Conference on Intelligent Transportation System, 1997. ITSC ’97. Boston, MA.

Print.

[39] Dailey, Daniel J. Busview: an APTS Precursor and a Deployed Applet. Washington

State Transportation Center, 2000.Print.

[40] Gildea, D., and M. Sheikh. “Applications of Technology in Providing Transit Infor-

mation.” Transportation Research Record 1521 (1996): 71-76. Print.

[41] Doganata, Y. N, et al. “A communication network architecture for transportation

information systems.” IEEE Symposium on Computers and Communications, 1995.

Alexandria, Egypt. Print.

[42] Walker, Thaai. “Gadget May End Lengthy Bus Waits.” San Francisco Chronicle 25

Nov. 1996. Print.

62



[43] Carreel, Eric, and Jacques Lewiner. “Boitier portatif pour informer les usagers d’un

reseau d’autobus sur les temps d’attente aux arrets de ce reseau.” French Patent CA

2204101. 3 Nov. 1997.

[44] Maclean, Stuart D., and Daniel J. Dailey. “Real-time bus information on mobile

devices.” Intelligent Transportation Systems, 2001. Proceedings. 2001 IEEE. Oakland,

CA. Print.

[45] Graham, Paul. “Web 2.0.” Nov. 2005. Web. 15 Oct. 2013. 〈http://www.paulgraham.

com/web20.html〉

[46] Taylor, Bret. “Mapping your way.” Google Official Blog. 8 Feb. 2005. Weblog.

[47] Gibson, Rich, and Schuyler Erle. Google Maps Hacks. O’Reilly Media, 2006. Print.

[48] Roth, Matthew. “How Google and Portlands TriMet Set the Standard for Open Tran-

sit Data.” LA.Streetsblog. 8 Jan. 2010. Weblog.

[49] Reed, Matt. “IPod Maps Draw Legal Threats.” Wired. 25 Sep. 2005. Weblog.

[50] James, Will. “It Is High Time The MTA Offer Its Schedule Data As A Public Feed.”

onNYTurf. 28 Aug. 2007. Weblog.

[51] Oshiro, Dana. “NY Transportation Authority Cites Schedules as Copyrighted Mate-

rial.” ReadWrite. 20 Aug. 2009. Weblog.

[52] Sorrel, Charlie. “Berlin Metro Bans Free iPhone Timetable Application.” Wired Gad-

get Lab. 5 Nov. 2008. Weblog.

[53] Braue, David. “RailCorp targets rogue iPhone app.” ZDNet. 3 Mar. 2009. Weblog.

[54] Masnick, Mike. “NY MTA The Latest Public Transportation Group To Declare It

Owns Facts.” techdirt. 14 Aug. 2009. Weblog.

[55] Batey, Eve, and Matt Baume. “Does A Private Company Own Your Muni Arrival

Times?” The San Francisco Appeal. 24 Jun. 2009. Weblog.

63

http://www.paulgraham.com/web20.html
http://www.paulgraham.com/web20.html


[56] Snyder, Tanya. “Patent Troll Sues Transit Agencies For Releasing Real-Time Transit

Info.” DC.Streetsblog. 16 Apr. 2012. Weblog.

[57] Antrim, Aaron. “Open source and open data make for transit innovation.” Trilliam

Solutions Blog. 11 Aug. 2008. Weblog.

[58] White House, The. “Transparency and Open Government.” Federal Register 74.15

(2009). Print.

[59] McCray, Douglas. “iGov: How geeks are opening up government on the Web.” The

Atlantic 1 Jan. 2009. Print.

[60] Batey, Eve. “Muni App Makers, Rejoice: MTA, Apple Disputes Private Companys

Claims To Own Arrival Data.” The San Francisco Appeal. 19 Aug. 2009. Weblog.

[61] Dumpala, Preethi. “Apple Reinstates New York Transit iPhone App After MTA Finds

Sanity.” Business Insider. 8 Oct. 2009. Weblog.

[62] Fried, Ben. “MTA Unveils Open Data Policy, Clearing a Path for NYC Transit Apps.”

Streetsblog. 13 Jan. 2010. Weblog.

[63] City-Go-Round. Web. 15 Oct 2013. 〈http://www.citygoround.org/〉

[64] Brown, Gordon. “Building Britains Digital Future.” London. 22 Mar. 2010. Speech.

[65] Badger, Emily. “How the New iPhone Will Expose Cities Lagging on Open Data.”

The Atlantic Cities. 17 Jul. 2012. Weblog.

[66] Robinson, David G., et al. “Government Data and the Invisible Hand.” Yale Journal

of Law & Technology 11 (2009): p160. Print.

[67] Gilbert, Jason. “iOS 6 Maps Comes Without Transit Directions, A Wrong Turn For

Apple And iPhone Users.” Huffington Post. 19 Sep. 2012. Weblog.

[68] “Chicago Streetcars.” chicagoinmaps.com. Web. 15 Oct. 2013.

[69] “Highway Map of Cook County, 1970.” chicagohistory.org. Web. 15 Oct. 2013.

64

http://www.citygoround.org/


[70] Parker, Sarah. “Senator tweets from trapped subway car.” CNN political ticker. 5

May 2009. Weblog.

[71] Adler, Jerry. “Life in the City Is Essentially One Giant Math Problem.” Smithsonian

Magazine May 2013. Print.

[72] Burwell, Sylvia M., et al. “Open Data Policy - Managing Information as an Asset.”

Executive Office of the President. Memorandum.

[73] Kaufman, Sarah M. Getting Started with Open Data: A Guide for Transportation

Agencies. Rudin Center for Transportation Policy and Management. 1 May 2012.

PDF.

[74] Rojas, Francisca M. Transit Transparency: Effective Disclosure through Open Data.

Ash Center for Democratic Governance and Innovation. Jun. 2012. PDF.

[75] Antrim, Aaron, and Sean J. Barbeau. “The Many Uses of GTFS Data - Opening the

Door to Transit and Multimodal Applications.” APTA TransiTech 2013. PDF.

[76] “Open Innovation”, Socrata. Web. Oct 15, 2013. 〈http://www.socrata.com/

magazine/〉

[77] Benkler, Yochai. “Coase’s Penguin, or, Linux and The Nature of the Firm.” The Yale

Law Journal 112 (2002): p370. Print.

[78] Howe, Jeff. “The Rise of Crowdsourcing.” Wired June 2006. Print.

[79] Sanders, Peter, and Dominik Schultes. “Highway Hierarchies Hasten Exact Shortest

Path Queries” Algorithms ESA 2005. October 2005. Palma de Mallorca, Spain. Print.

[80] Delling, Daniel. Engineering and Augmenting Route Planning Algorithms. Diss. Karl-

sruhe Institute of Technology, 2009. Print.

[81] Bast, Hannah, et al. “Fast routing in very large public transportation networks using

transfer patterns.” AlgorithmsESA 2010. Springer Berlin Heidelberg, 2010. 290-301.

Print.

65

http://www.socrata.com/magazine/
http://www.socrata.com/magazine/


[82] Bernoulli, Daniel. “Exposition of a new theory on the measurement of risk.” Econo-

metrica: Journal of the Econometric Society 22.1 (1954): 23-36. Print.

[83] von Neumann, John, and Oskar Morgenstern. Theory of Games and Economic Be-

havior. Princeton University Press, 2007. Print.

[84] Friedman, Milton, and Leonard J. Savage. “The expected-utility hypothesis and the

measurability of utility.” The Journal of Political Economy 60.6 (1952): 463-474.

Print.

[85] Chorus, Caspar G., Eric JE Molin, and Bert Van Wee. “Use and effects of Advanced

Traveller Information Services (ATIS): a review of the literature.” Transport Reviews

26.2 (2006): 127-149. Print.

[86] Chorus, Caspar G., Theo A. Arentze, and Harry JP Timmermans. “Traveler compli-

ance with advice: A Bayesian utilitarian perspective.” Transportation Research Part

E: Logistics and Transportation Review 45.3 (2009): 486-500. Print.

[87] de Palma, Andre, and Nathalie Picard. “Route choice decision under travel time

uncertainty.” Transportation Research Part A: Policy and Practice 39.4 (2005): 295-

324. Print.

[88] Bonsall, Peter. “Traveller behavior: Decision-making in an unpredictable world.” In-

telligent Transportation Systems 8.1. Taylor & Francis Group, 2004. Print.

[89] Zhang, Feng, Qing Shen, and Kelly J. Clifton. “Examination of traveler responses to

real-time information about bus arrivals using panel data.” Transportation Research

Record: Journal of the Transportation Research Board 2082.1 (2008): 107-115. Print.

[90] Reed, Thomas B. “Reduction in the burden of waiting for public transit due to real-

time schedule information: a conjoint analysis study.” Vehicle Navigation and Infor-

mation Systems Conference, 1995. Proceedings. In conjunction with the Pacific Rim

TransTech Conference. 6th International VNIS.’A Ride into the Future’. IEEE, 1995.

Print.

66



[91] Dziekan, Katrin, and Karl Kottenhoff. “Dynamic at-stop real-time information dis-

plays for public transport: effects on customers.” Transportation Research Part A:

Policy and Practice 41.6 (2007): 489-501. Print.

[92] Watkins, Kari Edison, et al. “Where Is My Bus? Impact of mobile real-time informa-

tion on the perceived and actual wait time of transit riders.” Transportation Research

Part A: Policy and Practice 45.8 (2011): 839-848. Print.

[93] Kenyon, Susan, and Glenn Lyons. “The value of integrated multimodal traveller in-

formation and its potential contribution to modal change.” Transportation Research

Part F: Traffic Psychology and Behaviour 6.1 (2003): 1-21. Print.

[94] Chorus, Caspar G., Eric JE Molin, and Bert van Wee. “Travel information as an

instrument to change car-drivers travel choices: a literature review.” European Journal

of Transport and Infrastructure Research 6.4 (2006): 335-364. Print.

[95] Avineri, Erel, and Joseph N. Prashker. “The impact of travel time information on

travelers learning under uncertainty.” Transportation 33.4 (2006): 393-408. Print.

[96] Chorus, Caspar G., and Benedict GC Dellaert. “Travel choice inertia: the joint role

of risk aversion and learning.” Journal of Transport Economics and Policy (JTEP)

46.1 (2012): 139-155. Print.

[97] Innocenti, Alessandro, Patrizia Lattarulo, and Maria Grazia Pazienza. “Car stickiness:

Heuristics and biases in travel choice.” Transport Policy 25 (2013): 158-168. Print.

[98] Steg, Linda. “Can public transport compete with the private car?.” IATSS Research

27.2 (2003): 27. Print.

[99] Tang, Lei, and Piyushimita Vonu Thakuriah. “Ridership effects of real-time bus infor-

mation system: A case study in the City of Chicago.” Transportation Research Part

C: Emerging Technologies 22 (2012): 146-161. Print.

[100] Sivak, Michael. “Has motorization in the US peaked?.” (2013). Unpublished

Manuscript.

67



[101] Davis, Benjamin, Tony Dutzik, and Phineas Baxandall. “Transportation and the new

generation: Why young people are driving less and what it means for transportation

policy.” (2012). PDF.

[102] Dutzik, Tony, and Phineas Baxandall. “A New Direction: Our Changing Relationship

with Driving and the Implications for Americas Future.” (2013). PDF.

[103] Thompson, Derek, and Jordan Weissmann. “The Cheapest Generation.” The Atlantic

Sep. 2012. Print.

[104] Dutzik, Tony, Travis Madsen, and Phineas Baxandall. “A New Way to Go.” (2013).

PDF.

[105] “Millennials & Technology: A Survey Commissioned by Zipcar.” Feb. 2013. Web

Slideshow. 15 Oct. 2013.

[106] Townsend, Anthony. Smart Cities: Big Data, Civic Hackers, and the Quest for a New

Utopia. W. W. Norton & Company, 2013.

[107] Dailey, Daniel J., Mark P. Haselkorn, and D. Meyers. “A Structured Approach to De-

veloping Real-Time, Distributed Network Applications for ITS Deployment.” Journal

of Intelligent Transportation Systems 3.3 (1996): 163-180.

[108] “Routing Bibliography.” OpenTripPlanner. Web. 14 Oct. 2013.

[109] Hansell, Saul. “The Nations New Chief Information Officer Speaks.” New York Times

Bits Blog. 5 Mar. 2009. Weblog.

68


	Abstract
	Introduction and Motivation
	Motivation
	Practical Usefulness
	Research Platform
	Demonstration of Open Data


	Previous Work
	Communities of transparency
	Transit developers
	Transit app implementation
	Traveler information and uncertainty
	Generational shifts

	Implementation
	WideWorld
	Backend
	Web frontend
	Android frontend

	BusBuzzard
	Data Collection
	Data Processing

	Results

	Discussion
	Future Work
	Qualitative Improvement and Modal Shift
	Quantitative Improvement

	Signoff

	History
	Summary
	Before 1980: Institutional Sensing
	1980-1993: Telephone, Television
	1993-2004: The World Wide Web
	2004-2008: Web 2.0
	2008-present: Mobile Internet



