
An Evolutionary Approach to Improved Performance of
Merged Companies

By

Raymond I. Ro

M.S., Electrical Engineering, 1995
North Carolina State University

B.S., Computer Engineering, 1993
B.S., Electrical Engineering, 1993

West Virginia University

Submitted to the System Design and Management Program in Partial Fulfillment of Requirements for the
Degree of Masters of Science In Engineering and Business Management

AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MAY 2001

@ 2001 Raymond I. Ro, All Rights Reserved

The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic
copies of this thesis document in whole or in part.

Signature of Author Raymond . Ro

System Design and Management Program

Certified by,-
James H. Hines

Senior Lecturer, Sloan School of Management
Thesis Supervisor
A

Accepted by
Stephen C. Graves

LFM/SDM Co-Director
Abraham Siegel Professor of Management

Accepted by
Paul A. Lagace

LFM/SDM Co-Director
Professor of Aeronautics & Astronautics and Engineering Systems

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

AUG 0 1 2002 BARKER

LIBRARIES

An Evolutionary Approach to Improved Performance of
Merged Companies

By

Raymond I. Ro

Submitted to the System Design and Management Program in Partial Fulfillment of Requirements for the
Degree of Masters of Science In Engineering and Business Management

1 Abstract

Mergers and acquisitions have become a key strategy for many companies. Possible reasons for

M&As include entrance into a new market, growth, intellectual capital, and the elimination of competitors.

However, over 80% of mergers have failed to create value to the shareholders and the merging

companies had expected. One reason for this failure might be in the integration of the companies. A

current method is the use of a transition team to carry out the integration issues. These teams look at

issues such as restructuring the company or creating best of practice policies. Sometimes consulting

firms are used to develop strategies for the merger. They may focus on different strategies, such as

generating company synergies. Our belief is that the lack of value created may be due to the lack of

knowledge transfer. By improving this transfer of knowledge, individuals within the company can operate

more effectively. These improvements of the overall performance of the organization shold bring more

value for the company and shareholders. Here, we suggest the use of an evolutionary approach, as

suggested by Hines and House, where members from both organizations are mixed together onto teams

to work on projects. We believe that by repeatedly mixing individuals from both organizations to work on

team projects, knowledge transfer will improve and the company will evolve to a better state. However,

since it may not be possible to fully mix two companies together in this manner, it is suggested that the

use of a small number of mixed teams will be just as effective as fully mixing two companies.

Advisor: James H. Hines
Senior Lecturer, Sloan School of Management

2

2 Acknowledgements

I am grateful to the many individuals that have contributed to this thesis.

To begin with, I wish to express my sincere thanks to my advisor, Professor Jim Hines. His guidance,

inspiration, wonderful insights, support, and unique sense of humor have made the creation of this thesis

an extremely fun and educational experience. In spite of his very busy schedule, he has always

managed to make time to help me out with any problems.

I also wish to thank Professor Jody House from the Oregon Graduate Institute. Her help with developing

the simulator was invaluable, and her participation, encouragement, and guidance on the project were

also essential for the completion of this thesis.

Also, many thanks to the other members of the organizational evolution team as well as my SDM

colleagues. Finally, a special thanks to my family for their encouragement through out this program.

3

3 Table of Contents

1 A bstract ... 2

2 Acknow ledgem ents .. 3

3 Table of C ontents... 4

4 List of Figures and Tables.. 6

5 Introduction ... 9

5.1 Motivation... 9

5.2 Goals... 10

5.3 Assum ptions and Scope ... 10

5.4 Work Process 11

6 Foundations... 12

6.1 Genetic Algorithm s ...-- 12

6.2 Sim ulation Structure .. 13

6.3 Company, Team , and Individual Structures .. 15

6.4 Team Policy Making ... 18

6.5 Prom otion... 20

6.6 Learning .. 20

6.7 Central Lim it Theorem ... 23

6.8 System Dynam ics Project Model.. 23

7 Experim ents... 25

7.1 No Learning and No Prom otion ... 26

7.1.1 Fully Merged, Single Company.. 26

7.1.2 Mixed Team Company .. 30

7.2 Prom otion Only ...----....... 33

7.2.1 Fully Merged, Single Company.. 34

7.2.2 Mixed Team Company .. 38

7.3 Learning Only ... -... . 42

7.3.1 Fully Merged, Single Company.. 43

7.3.2 Mixed Team Company .. 47

7.4 Learning and Prom otion.. 50

7.4.1 Fully Merged, Single Company.. 51

7.4.2 Mixed Team Company .. 54

7.5 Mixed Team Policy With Good and Bad Policy... 58

8 Conclusion... 62

4

9 References ... 66

10 A ppendix ... 67

10.1 Further Readings in Organizational Evolution .. 68

10.2 Matlab Code .. 69

10.2.1 Team Exp-m od-m .. 70

10.2.2 ControLm ... 71

10.2.3 Net alive.m ... 74

10.2.4 FunLib.m ... 76

10.2.5 Net fitness.rn .. 77

10.2.6 Network sim .m - Core of Mixed Team Company Sim ulator .. 78

10.2.7 Network 1-sim.m - Core of Fully Merged Company Simulator ... 93

10.2.8 Team-policy.m .. 100

10 .2 .9 R ip .m ... 10 1

10.2.10 Net shuffler2.m ... 102

10.2.11 Combine.m .. 104

10.2.12 Swap.m .. 105

10.2.13 Split.m .. 106

5

4 List of Figures and Tables

Figure 5-1. Work process for thesis includes a practical problem and a research problem................... 11

Figure 6-1. H igh-level flow of sim ulator. .. 15

Figure 6-2. Fully merged or single company structure with m number of teams.................................... 16

Figure 6-3. Mixed team structure with two legacy corporations. Company A has m teams, Company B
has n teams, and there are p mixed teams.. 17

Figure 6-4. Team structure for both corporations and the mixed team ... 17

Figure 6-5. Attributes for each individual in the simulation... 18

Figure 6-6. Block diagram for computing weighted team policy... 19

Figure 6-7. Member 2 learns from Member i. ... 21

Figure 6-8. Pie chart showing the percent chance an individual will be selected to be learned from....... 22

Figure 6-9. A simple project model represented in Simulink. .. 24

Figure 7-1. Histograms for individual policies show a uniform distribution for the first and last generation
(s _nInp_ r1p 5 0 u_ 4_ 1 1). ... 27

Figure 7-2. Histogram of team policies at generation 1 and at generation 100. Note how distribution is
not uniform but normal. Generation 100 looks a little less normal due to sampling error
(s -nln p rl p 5 0 u_ 4_ 1 1). ... 2 9

Figure 7-3. Average team policies and the variance over 100 generations (s_nlnp_r1p50u_4_11)......... 30

Figure 7-4. Histograms for individual policies in a mixed team company show a uniform distribution for
the first and last generation. Note how the distribution remains the same over the generations
(d -nln p -r3 m 6 p2 5 u 4 _1 1). .. 3 1

Figure 7-5. Histogram of team policies at generation 1 and at generation 100 for a mixed team company.
Distribution of team policies should follow a normal distribution shape due to the central limit
theorem. These distributions do not look perfectly normal because of sampling size and bin spacing
(d_ nInp_ r3m 6p25 u_ 4_ 11). .. 32

Figure 7-6. Average and variances of the team policies over 100 generations. (A) Whole company. (B)
Legacy company A. (C) Legacy company B. (D) Mixed teams. The average and variance over
generations is not as smooth as Company A or Company B's due to the small sample size (6 mixed
te a m s).. 3 3

Figure 7-7. Histograms of individual policies in a company with promotion only. Note the identical policy
distributions at generation 1 and at generation 100 (sp-rlOp5Ou_4_11). 36

Figure 7-8. Histogram of team policies in a company with promotion. In generation 1, the distribution of
team policies follows a normal distribution. By generation 100, weighting to individual policies has
skewed the team policy distribution toward better values (s_p_r1 Op5Ou4_1 1). 37

Figure 7-9. Average and variance of company team policies over 100 generations. Promotion is turned
on after 10 generations (spr1Op5Ou_4_11)... 38

Figure 7-10. Distribution of individual policies in a mixed team company with promotion, at generation 1
and generation 100. Note how the distribution remains the same (d-p-rlOm6p25u_4_11).......... 40

Figure 7-11. Team policies evolve from a normal distribution to a skewed distribution due to the effects of
promotion (d-p-r10m6p25u_4_1 1)... 41

6

Figure 7-12. Average and variance of team policies over 100 generations. Promotion is turned on after
10 generations. (A) Whole company. (B) Legacy company A. (C) Legacy company B. (D) Mixed
teams (d-prl Om6p25u4_1 1). 42

Figure 7-13. Learning causes individuals to change their policies over the generations
(s _I r1 0 p 5 0u 4_ 1 1). ... 4 4

Figure 7-14. Learning causes the team policy distribution to vary (sl-r1Op5Ou4_1 1)....................... 45

Figure 7-15. Average and variance of team policies over 100 generations. In this simulation, learning is
turned on after 10 generations, and the average team policy drifts toward a worse state
(s _I r1 0 p 5 0u _4 1 1). ... 4 6

Figure 7-16 Average team policy drifts toward an improved state (sI-r7p5Ou4_1 1).......................... 47

Figure 7-17. Distribution of individual's policies change with learning. Generation 1 and generation 100 is
shown here (dI rlOm6p25u_4_11). 48

Figure 7-18. Distribution of team policies at generation 1 and generation 100 (dl-rl Om6p25u_4_11).. 49

Figure 7-19. In this simulation, learning is turned on after 10 generations. Note how average team policy
drifts around. (A) Whole company. (B) Legacy company A. (C) Legacy company B. (D) Mixed
team s (d _irl 0m 6p25u 4 _1 1). 50

Figure 7-20. With learning and promotion, individual policies improve over the generations
(s lp -rl p 5 Ou _4 _12). ... 5 2

Figure 7-21. Team policies also evolve over the generations with learning and promotion
(s lp rl p 5 0 u4 -12).. ... 5 3

Figure 7-22. Average team policy and variance over 100 generations. Promotion is turned on after 10
generations and learning is turned on after 40 generations (s-lprl p50u_4_12). 54

Figure 7-23. With promotion and learning, individual policies evolve over the generations
(d -lp -rl m 6 p 2 5 u _4 _12). .. 5 5

Figure 7-24. Team policies evolve from a normal distribution to a single policy due to learning and
promotion (d-lp-rl m6p25u_4_12). 56

Figure 7-25. Evolution of the average team policy in a mixed team structure over 100 generations.
Promotion is turned on after 10 generations and learning is turned on after 40 generations. (A)
Whole company. (B) Legacy company A. (C) Legacy company B. (D) Mixed teams
(d lp rl m 6 p 2 5 u _4 _12). .. 57

Figure 7-26. Looking at one company with a good policy and another with a poor policy at generation 1
and generation 100. Individual policy distribution (d-bias-pol).. 59

Figure 7-27. Team policy distribution at generation 1 and generation 100 (d-bias-pol). 60

Figure 7-28. Evolution of the average team policy in a mixed team structure over 100 generations.
Promotion is turned on after 10 generations and learning is turned on after 40 generations. (A)
Whole company. (B) Legacy company A. (C) Legacy company B. (D) Mixed Teams (d-bias-pol).
... 6 1

Figure 10-1. Matlab code modules and their relationship.. 69

List of Tables

Table 6-1. Sample data for individuals on a team .. 21

Table 7-1. A Summary of All Experiments.. 26

7

"There is no law of progress. Our future is in our own hands, to make or to mar. It will be an uphill fight to

the end, and would we have it otherwise? Let no one suppose that evolution will ever exempt us from

struggles. 'You forget,' said the Devil, with a chuckle, 'that I have been evolving too.'

- William Ralph Inge

'A complex system that works is invariably found to have evolved from a simple system that worked."

- John Gall

8

5 Introduction

5.1 Motivation

Mergers and acquisitions (M&A) have recently become a growing trend among companies. Over

26,000 mergers occurred worldwide in 1998, which was estimated to be worth $2.4 trillion dollars.

Compare this to the 11,300 mergers that had occurred in 1990, which was worth around a half trillion

dollars ("After the Deal"). Not only has the number of mergers increased, the size of the mergers have

grown also. As of 1998, eight of the ten largest mergers had occurred in 1998 (Spitzer 4). In 1999, Cisco

had performed 18 acquisitions valued at $14.5 Billion (Barker 138). So why are companies so eager to

perform these mergers? This can be for several reasons, including the acquisition of new technologies,

improving their competitive advantage, growth, or other factors. In the end, companies expect to gain

added value through an M&A. However, in the last 10 years, 83% of M&A deals have never created the

value that the companies or shareholders had expected (Kelly 7). This is astonishing, considering the

number of mergers that have taken place and the size of some mergers.

One might think that this high failure is a result of poor evaluation strategy; however, this may not

be so. According to David Jemison, a professor at the University of Texas, "...organizations whose

transactions have failed have typically done as well with evaluating strategy and crunching numbers as

those whose have succeeded" (Spitzer 9). Another possible reason for failure may be due to how the

companies are integrated. Edgar Schein believes that mergers are difficult for a cultural reason:

Ideally we look for blending, by which the new organization takes the most functional

elements of each culture. But this presumes ability to decipher the cultures, which is

rarely present until long after the new organization has been formed (184).

Some companies attempt to capture these "functional elements" by having members from both

companies work together on a team, often known as a transition team. These transition teams are

usually tasked to reorganize the company and to decide upon best of practice policies. Policies are

implicit (sometimes explicit) rules that individuals use to make decisions (Hines and House, "Harnessing"

3). Unfortunately, the task of the transition team can be difficult since they may fall into a cultural trap of

falsely understanding the other company (Schein 179) or they may lack "maximum insight into their own

culture" (Schein 184). In the end, it is difficult for any one individual or small group of individuals to

understand all of these complexities in order to create effective policies for the company.

Another reason for the lack of value gained by mergers may be attributed to ineffective

knowledge transfer of policies between individuals of the merged companies. If we are able to create an

effective and simple method to improve knowledge transfer of policies between two merging companies,

we can then perhaps improve the effectiveness of how these merged companies operate, thus,

increasing the value of the merger. To explore this possibility, an organizational evolutionary approach

was taken, as suggested by Hines and House's paper on Organizational Management ("Harnessing" 3).

9

Specifically, Hines suggests "five rules for evolutionary management." One possible rule is to mix

individuals together in a company so that knowledge can be transferred (Hines, "Five Rules" 4). For

mergers, this would imply that all of the individuals at one company would need to relocate to the other

company, or that half of the individuals from each company would need to switch. This could be very

expensive to implement and may not be practical to do. What we suggest is to mix a small number of

individuals from both companies onto a few project teams, known as mixed teams. We expect that these

mixed teams will be just as effective in transferring knowledge as fully mixing two companies.

5.2 Goals

The work performed in this thesis attempts to apply organizational evolutionary ideas to improve

the performance of mergers and acquisitions. Specifically, a small mixed team structure is proposed as

an effective way to transfer knowledge across organizations. To test this proposed idea, a simulator was

developed, based on an existing simulator. Insight gained from simulation will be used to recommend

practical policies for applying the evolutionary method to an M&A.

The thesis output will consist of:

* An explanation of the mixed team structure.

* Overview of the simulation structure.

* Simulation code written in Matlab.

* Analysis of simulation data.

* Recommendations for applying the mixed team structure for M&As.

* Recommendations for further research and study.

5.3 Assumptions and Scope

The scope of this work is the application of organizational evolution to improve the knowledge

transfer of good policies in an M&A. When individuals copy part or all of a policy from other individuals, it

is known as learning. Team policies are affected by the different individual policies that each member

has. Depending how a team performs relative to other teams within the company, individuals on that

team will be promoted or demoted. Promotion and learning will be studied as methods to improve

knowledge transfer. The process when an individual creates a new policy or comes up with a new idea is

known as innovation. This will not be studied.

10

5.4 Work Process

The author used a practical problem and research problem appraoch (Booth, Colomb, and

Williams 49). This process is shown in Figure 5-1. The practical problem of improving the effectiveness

of a merger using an organizational evolutionary approach was chosen as the topic of this study. A

mixed team structure was proposed as a solution to this practical problem. It is believed that this mixed

team structure, compared to fully mixing two organizations, would be just as effective in improving

knowledge transfer but easier to implement. To see if this was feasible, an understanding of how the

knowledge transfer of policies within an organization was required. This motivated us to develop a model

of the mixed team structure and the fully mixed company structure. The effects of promoting and learning

were studied using these models. Several experiments were performed to gather insights. These

insights were then applied to the solution of the practical problem, the use of mixed teams.

Helps to solve

Research Answer:
Insights gained from
experiments.

~Finds

Motivates

Research Question:
How do learning and
promotion influence policy
making and the spread of
effective policies within an
organization?

Defines

Figure 5-1. Work process for thesis includes a practical problem and a research problem.

11

Practical Problem:
How to imrprove knowedge
transfer in M&As using an
organizational evolution
approach.

Research Problem:
Need to run controlled
experiments on leanring and
promotion.

0

6 Foundations

This chapter is intended to provide the reader with some basic background knowledge of how the

simulator works and of other needed concepts. An introduction to genetic algorithms is given, where

basic concepts and terminology will be discussed. Next, the structure of the simulator will be discussed,

followed by the data types used in the simulator. Then team policymaking, promotion, and learning will

be explained. A brief overview of the central limit theorem will be given. Finally a brief discussion of the

use of the system dynamics project model will be provided.

6.1 Genetic Algorithms

In essence, "Genetic algorithms are search algorithms based on the mechanics of natural

selection and natural genetics" (Goldberg 1). Genetic Algorithms (GAs) were derived from the work of

computer scientists that studied evolutionary systems in the 1950s and 1960s. Their motivation for

studying evolutionary systems was to find an optimization tool for engineering problems. The basic

characteristic of these evolutionary systems was to evolve a population of solutions toward an optimal

value (Mitchell 2). In the 1960s, John Holland and his students at the University of Michigan developed

the genetic algorithm. Two major goals of their research included:

1. "To abstract and rigorously explain the adaptive process of natural systems."

2. "To design artificial systems software that retains the important mechanisms of natural

systems" (Goldberg 1).

As suggested by Melanie Mitchell, the evolutionary approach used by GAs is attractive for several

reasons (4). First, the evolutionary approach is robust in nature. Given a large solution space, GAs are

able to effectively search multiple solution points in that space in parallel. Unlike other optimization

methods, GAs have a low probability of getting stuck at a local maximum or minimum solution. Second,

the evolutionary approach allows for the design of innovative solutions to problems. Due to its random

nature, GAs are able to create new solutions by producing offspring or by mutation. Third, the

evolutionary approach is adaptive and will perform in a changing environment. If the fitness function

changes, the population of solutions will evolve with the fitness function. Finally, the evolutionary rules

are simple to implement and program, even for complex problems. The fittest solutions within the

population survive. At the same time, new solutions are randomly being created within the population,

with the possibility that they will be more fit.

The mechanics behind how a GA works is based on biology. Basic elements of a GA include

"chromosomes," population, and a fitness function. Chromosomes contain a particular solution to an

optimization problem. This solution can be a set of parameters or a point in the solution space and is

usually encoded as a binary string (Goldberg 21). A set of chromosomes makes up a population. This

population represents many solutions within a solution space. Each chromosome within the population is

12

evaluated by the fitness function to determine its fitness value. The fitness function is a measure of how

fit an individual chromosome is. The idea is to maximize this fitness value. A more fit chromosome

represents a solution that performs better relative to some objective function. A less fit chromosome

represents a solution that performs worse relative to that objective function.

To evolve the population, basic evolutionary functions are carried out: selection, crossover, and

mutation. Selection is the process where chromosomes are randomly selected for reproduction. Like

biological evolution, the more fit individuals survive to produce offspring. In the GA, individuals with

higher fitness values will more likely be chosen for reproduction. Once the individuals have been

selected for reproduction, known as parents, the offspring is created. In reproduction, parents (pairs of

individuals) transfer segments of their chromosome with each other to create two new children. This is

known as a crossover. Finally, a few bits within the offspring chromosomes are flipped randomly to

represent mutations. Mutations occur with a very low probability and represent a jump to a new point in

the solution space. When selection, crossover, and mutation has occurred for the population, a

generation has occurred. GAs will run for several generations, while the population evolves towards a

more optimal state.

6.2 Simulation Structure
New code was developed and added to the original Organizational Evolution simulator to allow

for simulation of merging companies. Matlab was used as the programming language, due to its flexibility

and its abundance of mathematical functions. This newer code differs from the original code in that the

data structures have been designed to allow for simulation of two legacy companies merging together,

along with the use of mixed teams. To help improve the simulation speed, vectors are used as much as

possible. Furthermore, more control is given to the user to turn on and off the learning and promotion

functions at a specified number of generations. This allows one to clearly see the before and after effects

of learning and promoting.

Construction of this simulator consists of an agent based modified genetic algorithm, wrapped

around a system dynamics project model. The modified genetic algorithm was written in Matlab.

Differences exist between the modified genetic algorithm and the standard genetic algorithm. First, the

population is divided into teams, where individuals learn from other team members. Second, mutations

were not implemented to simplify the analysis. Third, the fitness function evaluates the team policies, not

the individual policies. Fourth, individuals are never replaced within the population. Finally, a simplified

system dynamics project model was used as a fitness function. The project model was used to evaluate

the team policies. More detail of this is given in the paper by House, Kain, and Hines, "Metaphor for

Learning: An Evolutionary Algorithm."

13

A high level flow diagram of the Matlab code is shown in Figure 6-1. This basic flow is the same

for the single, fully merged company case or for the split companies with mixed team case. More detail

about the company structure will be given later on. At the start of the simulation, various simulation

parameters are loaded and used to create the data structures. Some of these parameters include,

number of generations, team size, number of mixed teams, number of teams in the company, and

probability of learning. Once the data structures for the company, teams, and mixed teams have been

created, each individual is given an initial policy value. The simulator now begins the iterative part of the

simulation. It first begins by checking to see if it is at the last generation or not. If so, the simulation ends,

else the simulator continues onward. In the next step, the team policy is computed, based on a weighted

average. Team policy computation will be discussed later on. Next, each team's policy is then evaluated.

A simplified project model is used to evaluate how fit a policy is. This project model was created in

Simulink, a Matlab block diagram simulator, and interfaces directly to the Matlab code. Matlab feeds the

number of programmers into the project model. Simulink will then return the project completion time to

Matlab. In the project model used, more programmers will complete a project faster. Thus, teams with

policies of more programmers will perform better than teams with policies with fewer programmers.

Teams are then ranked based on their project completion time. Next, the simulator checks to see if

promotion for teams is enabled. If so, promotion values are computed for all teams and the members are

then updated by this value. Individuals are then randomly assigned to new teams. Next, the simulator

checks to see if learning is enabled. If so, individuals randomly select another team member to learn

from. A "roulette wheel" is used to select another individual to learn from. However, an individual's status

will determine how much of the roulette wheel an individual has, thus, changing their probability of being

selected. An individual with high status will be given more of the wheel and improving their chances of

selection. An individual with low status will be given a smaller portion of the wheel, thus making it harder

for other individuals to select them for learning. This is analogous to real life, where individuals who want

to do well tend to learn from people with more knowledge and experience than them. After learning has

been performed, the generation is checked to see if the iterative loop is to be executed again.

14

Start

SimuLink Project
Create Company Simulation Model

& Team Structures Parameters

Initialize
Population eached Max No Compute Team , Evaluate Team

(Mixed Teams & Generations? Policy Fitness
Company) Yes

Compute
Promotion Promotion for

Perform Learning Enabled? teams and update
individuals

Yes No
No+

End Learning Assign Individuals

_<Enabled?
to New Teams

Figure 6-1. High-level flow of simulator.

6.3 Company, Team, and Individual Structures

To help organize the data in the simulator, three basic structures were created: the company

structure, the team structure, and the individual structure. This allowed for the creation of a simulator that

could operate as a fully merged company (single company mode) or a mixed team company.

The single company simulation mode operates as if learning and promoting occur within a single

company. This is also identical to two merging companies completely immerse themselves into one

single company. By doing this, we are allowing all members from both companies to mix and to work with

each other on projects. This also creates a boundaryless organization, which allows for easy assignment

of members from both companies onto a team. Ultimately, this looks just like a single company as shown

in Figure 6-2. In this simulation mode, a company structure with m teams will be setup according to the

specified simulation parameters. Each team will have the same number of individuals, which is also set

by the simulation parameters. The team size and number of individuals per team will remain fixed

throughout the simulation, but the specific individuals on a team will change each generation.

15

Company

Team 1

Team 2

Team 3

Team m

Figure 6-2. Fully merged or single company structure with m number of teams.

In contrast to the single company case, a different situation was created in which a small number

of project teams contained a mix of individuals from both companies. Instead of diffusing knowledge by

mixing all of the individuals from both companies, knowledge was spread between companies through the

use of these mixed teams. In the mixed team simulation mode, the simulator generates two company

structures and a mixed team structure, as shown in Figure 6-3. This mode of simulation simulates the

case when two merging companies remain separate; however, each company assigns a small number of

individuals to work on projects with members of the opposite company. Working on these mixed teams

will hopefully be an effective way for individuals from both companies to learn from each other. These

mixed teams, along with the teams in the legacy companies, will be rated on how well their project

performs. This rating translates to a promotional value. Each team's promotional value will then be

applied to all the team members. After the completion of a project, individuals who had been on mixed

teams may rotate back to their original companies, hence, taking and spreading their new knowledge.

For the simulator, the number of individuals per team, the number of mixed teams, and the number of

teams per company are specified. Both companies have the same number of teams. These parameters

remain constant during the simulation. Furthermore, individuals are not allowed to switch companies, i.e.,

an individual from company A cannot be assigned to a team in company B. However, an individual from

company A can be assigned to a mixed team, which has individuals from company B. Mixed teams are

represented by an equal number of members from both companies. Thus, the mixed team acts as a

16

conduit for transferring knowledge or policies between both companies. Once an individual returns to

their home team with their newly learned policy, that information can then be transferred to other

members of that company via learning.

Company A

Team 1

Team 2

Team 3

Team m

Mixed Teams

Team 1

Team 2

Team p

Company B

Team 1

Team 2

Team 3

Team n

Figure 6-3. Mixed team structure with two legacy corporations. Company A has m teams,
Company B has n teams, and there are p mixed teams.

Mixed
Team 1

Member 1 - A
Member 1 - B

Memberj - A
Member j - B

Memberj - B

Company A
Team 1

Member 1 - A

Member 2 - A

Member 3 - A

Member i - A

Company B
Team 1

Member 1 - B

Member 2 - B

Member 3 - B

Member i - B

Figure 6-4. Team structure for both corporations and the mixed team.

17

-4

Figure 6-4 illustrates a more detailed view of the team structure. Teams from the legacy companies

consist of members from that company only. On the other hand, mixed teams have an equal

representation of members from both companies. As stated before, all team sizes are the same.

Information for each individual is tracked at each generation throughout the simulation. Figure

6-5 is a list of attributes kept on each individual. The chromosome, or individual's policy (knowledge) is

tracked at every generation. For this simulation, this policy is the number of programmers to assign to a

project. Each individual has a unique ID to track them by and a team ID to identify which team that

individual is assigned to. The individual's status' is also kept track of throughout the simulation. A short

history of whom an individual learns from is stored in the personal network attribute. For individuals on

mixed teams, identification of which home company they came from is stored. Finally, team policies and

team rankings are stored.

Individual Other
Information Information

Chromosome Team Policy

Team ID Team Ranking
Individual ID

Position (Status)

Personal Network

Company ID (for
mixed teams only

Figure 6-5. Attributes for each individual in the simulation.

6.4 Team Policy Making

Team policies are generated using a weighted average of all the team members as specified in

House, Kain, and Hines (3). These weights are the individual statuses of all team members at the

beginning of a project. Figure 6-6 shows a block diagram for how a team policy is created. A weighted

policy value is created for each individual on the team by taking the weighting factor or status, Wi, and

multiplied by his or her policy value, Pi. The weighted policy value is then added up for the team. At the

same time, a sum of each individual's weighting factor is computed. The team policy value is the sum of

the weighted policy value divided by the sum of the weighting factors. Thus, an individual with a high

1 "Status" is a more general idea of what Hines and House refers to as "position." The author chooses to
use status rather than position in order to minimize possible confusion with a title or a position on an
organizational chart. This change in terminology does not change any underlying mathematics.

18

status value will have more influence on the team policy than an individual with a low status value. For

example, lets say that an engineering team is composed of a principle engineer and a young engineer

who is the early stages of their career. Though the young engineer may be well regarded by other

engineers within the company, we would expect the principle engineer to have a much greater status than

the young engineer. Thus, we would expect that the decisions and actions of this team to be heavily

influenced by the principle engineer.

1/FWi

1i W1 P 2 W2 000 Pi Wi

X X X

P, - Policy of individual i.

Wi - Weighting of individual i. X

Team Polic

Figure 6-6. Block diagram for computing weighted team policy.

19

6.5 Promotion

When a team has good policies and performs well on a project, that team is looked favorably upon by

other members within that company. Likewise, if a team that has poor policies and performs poorly on a

project, other members of that company look down upon that team. This favorable or non-favorable

impression on the team is transferred to the individuals on that team. If a team performs well, individuals

on that team improve their status. If a team performs poorly, the individuals on that team lose some

status. In the simulator, teams within the company are evaluated on how their policy effects the

completion time of a project. The faster the completion time of the project, the better the team evaluation.

Once all of the teams have completed the project, they are ranked based on the project completion time.

The promotion scheme used in this simulator is the same as the one specified in the "Metaphor for

learning: an evolutionary algorithm" (House, Kain, and Hines 3). This promotion uses a base 2 and is

defined as:

Statusnew = Status,,d x 2 K

Where K is defined as:

K- 2x (Team Rank-)
(Number Of Teams -1)

The best performing team will double its status value, while the worst performing team will half its

status value. Thus, all of the individuals on the best performing team will double their status value, while

all the individuals on the worst performing team will have their status values cut in half.

6.6 Learning

Learning allows the genetic information from one individual to be transferred to another individual

and is much like the crossover function in a standard genetic algorithm (House, "Metaphor" 2). In a

standard crossover, two individuals exchange parts of their chromosome, which imitates a biological

recombination between two single-chromosome organisms (Mitchell 3). In organizational evolution,

policies are encoded into the individual's chromosome. Like crossover, learning transfers part of the

genetic material; however, only the chromosome for the individual that is learning changes. This learning

process is illustrated in Figure 6-7. In this example, team member 2 is selected to learn from team

member i. Copies of chromosomes are made for members 2 and i. The simulator then generates a

random crossover point; in this case, the crossover point is four bits into the chromosome. Next, a

segment up to the transfer point of member i's chromosome is copied over member 2's chromosome. As

20

shown in the figure, "1101" from member i is copied to member 2, yielding a new policy of "01001101."

This new chromosome is then copied back to member 2's chromosome attribute.

Team n

Member 1

Member 2

Member 3

Member i

Member 2's Policy

0100 0011
ALI

crossover
Point

CopySequ
r cpOver

1010 1101

Member i's Policy

Member 2's New
Policy

1 0100 11101

Figure 6-7. Member 2 learns from Member i.

Another very important part of the learning process is selecting whom an individual learns from.

In the simulator, team members learn from another team member by a random selection. However, a

team member's status will greatly influence if they are selected to be the source of learning by another

memeber. At the beginning of the simulation, each individual on the team has equal status, thus, there is

an equal probability for each member to be selected. As each project is completed, promotional values

will be assigned to members of a team, which will change their status. As an individual achieves higher

status, the probability that he or she will be selected for learning increases. Conversely, as an individual's

status is reduced, the probability that that individual will be selected decreases. This probability of being

selected is calculated by taking an individual's status and dividing it by the sum all the individual statuses

on that team. Table 6-1 lists each individual's status and probability of being learned from for a particular

team. Figure 6-8 represents the percent chance that a particular individual will be selected for learning.

Status Probability of
Individual (Weighting) Being Selected

I-1 0.4244 0.09
1-2 0.8816 0.19
1-3 0.3137 0.07
1-4 2.0771 0.44
1-5 0.3742 0.08
1-6 0.6353 0.13

Table 6-1. Sample data for individuals on a team.

21

I-1, 9% 1-6, 13%

1-2, 19%
1-5, 8%

1-3, 7%

I-4, 44%

Figure 6-8. Pie chart showing the percent chance an individual will be selected to be learned
from.

Suppose a team consists of a principle engineer and several new engineers. Recall that the principle

engineer's status will be extremely high, while the status of the new engineer's will be quite low.

Consequently, the probability that individuals on the team will select the principle engineer to learn from

will be higher than the probability of selecting another new engineer. There is a small probability that the

principle engineer might select a new engineer to learn from. This could improve or worsen the principle

engineer's policy; however, in most cases, the principle engineer would select his or herself to learn from,

in which case we do not change. Now suppose that this team had the highest ranking within the

company. Then the status for each individual on a team would be doubled. When the team members are

assigned to their next project and team, the probability of that individual being selected to be learned from

increases. If however that team performed the worst of all teams within the company, then the status of

each individual would be halved. When individuals are assigned to their next team, there is now less of a

probability that they would be selected for learning. It would also be more probable for those individuals

with low status to learn from other individuals with higher status on the new team.

22

6.7 Central Limit Theorem

Team policies are created using a weighted average. Since the statuses of all individuals are the

same at the beginning of a simulation, an interesting phenomenon in the distribution of all team policies

occurs. The central limit theorem is used to explain this phenomenon and will be applied later on.

Suppose we have a sequence of identically independently distributed (iid) random variables, X 1,

X2, that have a finite mean of g and a finite variance of 2 . Lets then sum up the first n random

variables in the sequence, such that:

Sn = X1 + X2 + ... + Xn.

Then according to the central limit theorem, as n becomes large, the cumulative distribution function (cdf)

of Sn approaches the cdf of a normal distribution (Leon-Garcia 280). As long as the Xi's are iid, then Sn
2has a mean of ng and variance of n(. If we are looking at averages, where

Mn = Sn/n,

then the mean is l and variance is C2 (Walpole 210).

6.8 System Dynamics Project Model
The system dynamics project model is not the core of this study; however, we will briefly mention

its use in the simulator. Figure 6-9 shows a simple project model created in Simulink, based on the

project model described by Hines and House ("Source of Poor Policy" 9). This project model represents a

software project. On this project, there are an assigned number of computer programmers that must

complete a specified number of tasks in order to finish this project. The team of programmers has a

productivity value, which allows them to complete each task at a certain rate. Unfortunately,

programmers make mistakes that create bugs in the software code. The number of bugs is affected by

the quality of work by the group. These bugs take time to discover and once they bugs found, they

become rework or tasks that need to be corrected. The policy value of the teams in the simulator is to

decide upon the number of programmers to assign to this software project. Valid policy values are

anywhere from 11 to 20 programmers. In this simple policy, the more programmers assigned, the faster

the project completes. Project completion time is used to evaluate the team policies. The shortest

completion times represent the most fit group, while the longest completion time represents the least fit

23

group. Other parameters, such as quality, productivity, time to discover rework, and initial tasks remain

constant for all projects.

t8 6 7 6 9 - 7 8 7 Scope4
Programmers

Sumi CodeToWrite Code2Write

2 Scope7

NormalPDY
WritingCode

x WritingIncorrectly s
add UndiscoveredE gs UndiscoveredBugslritingCorrectly

. uality p iscoveringBugs
CorrectlyDo Correct

AppCorrect + + 100 2 DiscoveryTime

-= FinalTime

Product Relational gFinal~mD
Operator

Fraction Soe
Scope10

Figure 6-9. A simple project model represented in Simulink.

24

7 Experiments

To help gain further insight on the effectiveness of the mixed team structure, a series of

experimental simulations were run. These simulations are divided into two major categories. In the first

category, we will look at a single company situation, which is analogous to fully merging two companies

together. The second category is the mixed team simulation, where a small number of individuals from

both companies are mixed together on a team to work on a project. To help us gain more insight, each

category is broken down into four situations. We look at how a company evolves with no learning and no

promotion, with promotion only, with learning only, and with learning and promotion. The experiments are

summarized in Table 7-1. We hope to understand the effects of learning and promotion in the mixed

team structure and to see if it will evolve as well as a fully merged company.

The setup is consistent for all of the experiments. In the simulations, the teams must decide on

the number of programmers to staff on a project. Each team policy will then be fed into its system

dynamics project model. This is the basic project model as described earlier. Recall that the project has

a faster completion time when there are more programmers assigned to the project. Teams are allowed

to staff anywhere between 11 to 20 programmers. This range of programmers was constrained by the

author and is not a limitation of the simulator. Thus, a team policy of 20 programmers would yield the

fastest project completion time, while a team policy with the value of 11 would yield the slowest project

completion time. Each individual's initial policy for staffing is generated randomly, using a uniform

distribution over the valid range of 11 to 20 programmers. Recall how the individual's status will affect the

weighting of the team policy. Initial status values for all individuals start off equal. After all of the teams

have completed their projects, teams are assigned promotional values, and the individuals are then

promoted and randomly assigned to a new project. This process is repeated again for the specified

number of generations.

In both the single company and the mixed team company case, there are six members to a team.

In the mixed team case, each company has 3 members per mixed team. Furthermore, there are a total of

six mixed teams plus 25 additional teams per company (a total of 56 teams). In the single company case,

there are 50 teams total. Finally simulations were run for a total of 100 generations.

To evaluate performance, it is convenient to have a method to determine if a company is evolving

to a better state. One method of measuring this evolution is to compute the average of all the teams'

policy values. If this value improves, say toward the optimal value, we can say that the organization as a

whole is evolving to a better state. In our case, the average team policy value would be around 15

programmers. The optimal value is 20 programmers.

Finally, simulations of the single company case (fully mixing) and the mixed team case were

studied. The single company case provided us with a baseline, in which the mixed team case was

compared to.

25

Table 7-1. A Summary of All Experiments.

7.1 No Learning and No Promotion
To better understand how promotion and learning effects the evolution of a merging company, it

will be helpful to understand how a baseline case of no learning and no promotion behaves. Since no

learning occurs, individuals do not change their policies. Since no promotion occurs, no one individual

has more influence over the team policy than another individual, regardless if their policy is very good or

very bad. Since a uniform distribution (11 to 20 programmers) is used to set the individual's polices, we

would expect an average around 15 programmers to be staffed.

Randomly mixing good and poor performers on a project is somewhat realistic. One would hope

that the individuals with poor policies would learn from individuals with good policies. Furthermore, it

would be uncommon for a company to have all of its good people on one project and poor people on

another project. This could cause some projects to be extremely successful, while the other projects fail.

In an engineering firm, it's like putting all of the principle engineers on one project, and all of the new hires

on another project.

7.1.1 Fully Merged, Single Company

When a company lacks methods for improving individual's policies, we would not expect the

company to evolve to a better state, nor do we expect it to get worse. Suppose there exists a company

that has just fully merged (single company case), if no learning occurs, nor do we give more weight to any

one individual in the decision making process, there will be no improvement in team policies. Individuals

on teams that perform well do not get promoted, even though they probably carry a good policy. On the

26

Experiment Main Section Fully Merged Mixed Team
_______________Team

No Learning and 7.1 7.1.1 7.1.2No Promotion

Promotion Only 7.2 7.2.1 7.2.2

Learning Only 7.3 7.3.1 7.3.2

Learning and 7.4 7.4.1 7.4.2Promotion

Good/Bad Policy 7.5 - 7.5

flip side, individuals with poor policies do not become demoted for their poor performance. Since the

policies within the company are equally good as well as bad, we expect that on average, the teams will

select 15 programmers on a project. This will lead to average project performance by the teams. Figure

7-1 shows the histogram for all individuals within a company, in generation 1 and generation 100.

Histogram For All Individual Policies
50

40

30

20

10

0
10

50

40

30

20

10

0o
10

At 1 Generation

11 12 13 14 15 16 17 18 19 20

Individual Policy (Number of Programmers)

Histogram For All Individual Policies

At 100 Generations

11 12 13 14 15 16 17 18
Individual Policy (Number of Programmers)

19 20

Figure 7-1. Histograms for individual policies show a uniform distribution for the first and last
generation (s-nInp-r1p50u_4 11).

27

0

Cz

0

E
z

0

0

E-
Ic

U)

Since no learning is going on, we expect that everybody's policy will remain the same from

generation to generation. As we can see in Figure 7-1, the histogram for the first generation is identical to

the histogram of the last generation.

In companies, projects tend to be run by teams, thus, a team will develop a policy based on each

member's input. When a team policy is created, each member of that team has a certain amount of

influence over the team policy. This influence is usually based on the individual's status. If an individual

has performed well in the past by having good policies, they are usually rewarded and gain a higher

status within a company. If an individual has a poor policy and has not performed well in the past, they

will most likely be demoted and have a lower status within the company. Thus, if status is based on

performance, than we expect individuals with good policies to be more influential over the team's policy

than individuals with poor policies. However, since there is no promotion in this specific case, each

individual within the company will have the same influence over their team's policy. Since no learning

and promotion is being performed in this case and individuals are randomly assigned to teams, we would

expect that half the members of a team to have a good policy and the other half to have poor policies.

Individuals with policies that are between the good policy and bad policy have average policies. Because

everyone has the same influence on the team policy, we would expect the team to create an "average"

policy. Thus, this policy is just as good as it is bad. In fact, we would expect most of the teams within the

company to produce a policy that is around the average. A few teams may produce team policies higher

than the average, while some other teams may produce team policies below the average. If all of the

projects were completed and the company policy was to randomly reassign individuals to new teams, we

would expect roughly the same team policy results within the company. Since we would not expect the

average policy for all the teams within the company to get better, we do not expect the company to evolve

to a better state. That is, we do not expect the average of all the teams to improve.

If we look at Figure 7-2, which shows the distribution of teams from the simulation, we see that

the histogram of the team policies within a company follows a normal distribution, with an average of

about 15 programmers. Recall that the each individual can have a policy of anywhere from 11 to 20

programmers. Since every individual within the company has the same status, regardless of whether

their policy is good or bad, the team policy is just an average of each person's policy. Because we are

looking at the averages of several policies that were generated using a uniform distribution, we expect a

normal distribution about the mean of the uniform distribution, due to the Central Limit Theorem. This

reflects what we would expect the distribution of team policies to be, namely most team policies are

average. As we expect, the histograms in Figure 7-2 have a normal distribution in generation 1 and

generation 100. The average and variance for all team polices over 100 generations (projects) is shown

in Figure 7-3. As expected, both the average and variance remain constant, thus no evolution.

28

Histogram For All Teams, No Learning, No Promotion

At 1 Generation

0

U)

E

0

z

14 16

Team Policy (Number of Programmers)
18 20

Histogram For All Teams, No Learning, No Promotion

At 100 Generations I

0 [
10 12 14

Team Policy (Number
16 18 20

of Programmers)

Figure 7-2. Histogram of team policies at generation 1 and at generation 100. Note how
distribution is not uniform but normal. Generation 100 looks a little less normal due to sampling
error (s-nlnprl p50u4_1 1).

29

14

12

10 k

0 12

8

6

4

2

0
1

12

10

8

6

4

2

E
0

E
z

15

10 20 30 40 50 60 70 80 90
Generations

Figure 7-3. Average team policies and the variance over 100 generations (s-nlnprlp50u_4_11).

7.1.2 Mixed Team Company

Just as in the single or fully merged company case, it is desirable to understand how promotion

and learning affects the evolution of a mixed team company. Once again, lets assume that policies for all

individuals are randomly initialized using a uniform distribution over the range of 11 to 20 programmers. If

this company uses a small number of mixed teams where there is no learning or promotion of individuals,

we would still not expect the company to evolve. Though individuals from both companies are randomly

selected to work together on team projects, new policies are not created, due to the lack of learning.

Also, people with good policies have just as much say into the team policy as people with poor policies.

Again, due to the random initialization of people's initial policy, we would expect each team to contain

individuals with good, bad, and average policies. Thus, most of the team policies in the company would

be "average," while some teams are above average and some are below. Therefore, this case is identical

to the single company case, and we would expect the same results as before.

Figure 7-4 shows the histogram for all individuals within the company at generation 1 and at

generation 100. Since learning does not occur, no individuals within the company will learn new policies,

30

Team Averages & Variances over Generations

-.......----..- ...CD

c

CZ

-0

0)

10 k

5 L

0
100

thus, the histogram for individual policies should remain the same over the generations. Finally, we

would expect the average of all the team policies to be around the average (15 programmers). We see

that in Figure 7-6 (A-D), this is true for the whole company, each of the legacy companies, and within the

mixed teams.

Histogram For All Individual Policies

50 At 1 Generation

40

30

20

10

0
10 11 12 13 14 15 16 17

Individual Policy (Number of Programmers)
18 19 20

Histogram For All Individual Policies

50 -At 100 Generations

40

30

20

10

0
10 11 12 1 3 1 4 1 5 1 6 1 7 18 19 20

Individual Policy (Number of Programmers)

Figure 7-4. Histograms for individual policies in a mixed team company show a uniform
distribution for the first and last generation. Note how the distribution remains the same over the
generations (d-nlnp-r3m6p25u_4_11).

31

0

CL)

LO

Cz

0

z

0

0

Ec

Cl3
Co

I I I I I I

Histogram For All Teams, No Learning, No Promotion

- At 1 Generation

12 13 14 15 16 17

Team Policy (Number of Programmers)

Histogram For All Teams, No Learning, No Promotion

At 100 Generations

10 k

0 1 1 1
10 11 12 13 14 15 16 17 18 19 20

Team Policy (Number of Programmers)

Figure 7-5. Histogram of team policies at generation 1 and at generation 100 for a mixed team
company. Distribution of team policies should follow a normal distribution shape due to the
central limit theorem. These distributions do not look perfectly normal because of sampling size
and bin spacing (d-nlnp-r3m6p25u4_1 1).

32

12

10 k
0

0)

0

E
Ca

8

6

4

2

0
10 11

12

18 19 20

CZ)

0

E
=3
I-

8

6

4

2

1 ---- 7- 1 1 1 1 1

I I

(B) Company A Avg & Var
15 -

10

5

0-
0

15 -

10

5

0-
0

-c

(A) Total Avg & Var

- --------

15

10

5

CU,

CU

06

-a

00 <

CU,

06
-0
CD

00)

50
Generations

(D) Mix Team Avg & Var
20

15-

10-

5

50
Generations

0
0 50

Generations

Figure 7-6. Average and variances of the team policies over 100 generations. (A) Whole
company. (B) Legacy company A. (C) Legacy company B. (D) Mixed teams. The average and
variance over generations is not as smooth as Company A or Company B's due to the small
sample size (6 mixed teams).

Though it is nearly impossible to find a company where nobody learns from each other and individuals

have equal status, it is important to understand how this company evolves over time. By understanding

this very basic case, we can see how promotion and learning will affect merging companies.

7.2 Promotion Only
When a promotion scheme is used, we would expect that the policies generated by teams in a

merged company to evolve to a better state. Lets assume that there is a company where no learning

occurs; however, people's status within the company affects how much influence they have on a team

policy.

Like before, we assume that initially there is a uniform distribution of policies over the range of 11 to
20 programmers. Since no learning occurs, no new policies are being created, and we expect the

33

50
Generations

(C) Company B Avg & Var

100

100

- - - - --- - - - - - -

- - - - - - - - - - - - --- - - - - -

o0
0

1
-

-- - -- - -- -- -

--- - - - - - - -

histogram of individual policies in the first generation to be identical to the histogram of policies of the last

generation. Again, this situation is not realistic, but it allows us to understand what the effects of

promotion are in a controlled manner.

Promotion has an interesting effect on the team policies and how the company evolves. Initially, all

individuals start off with the same status; hence, the team policies are just an average of all individual

policies. As promotion occurs, individuals on teams that perform better become promoted, while

individuals on teams that do not perform well become demoted. Recall from before that we expect this

distribution of team policies to be a normal distribution. A few teams will be above average, because they

consist of more individuals with better policies. A few teams will be below the average, because they

consist of more individuals with worse policies. The rest of the teams will have about average policies.

Since individuals do not learn and policies do not change between generations, we expect to have a

normal distribution of team policies. However, as more generations go by, the weighting becomes more

influential on the team policy creation. That is, individuals on teams that perform well are promoted, while

individuals on teams that do not perform well are demoted. After several generations, we expect that

some individuals in the population to have an extremely high status, while other individuals to have an

extremely low status. Individuals with extremely high statuses will dominate the team policy, while the

individuals with extremely low statuses will become insignificant in the creation of the team policy. As a

result, we expect the average of all team policies to improve but never reach the optimal value. This is

because there are teams that consist of individuals with just poor policies, thus, pulling the average of the

team policies down. What is interesting is that even though promotions are based on teams, this process

still identifies how individuals perform.

7.2.1 Fully Merged, Single Company

In this case, we have a promotion scheme in a company that has fully mixed all of the individuals.

We expect the individuals to have the same policy distribution over the generations. Since the

individual's weights influence team policies, in the condition where everybody has the same weighting, we

expect a normal distribution of team policies. As weighting becomes more significant, the distribution

shifts toward the better policies. As mentioned above, this is because individuals with good policies

become more influential in team policy making, while individuals with poor policies become less influential

in team policy making. Since individuals with poor policies become less significant and individuals with

good policies become more significant, we would expect the average for all the team policies to be

somewhere between the average policy and best policy. Thus, the company has evolved to a better

state.

Figure 7-7 shows the histogram for policies of all individuals within the company at generation 1

and at generation 100. Policies were assigned to individuals using a uniform distribution. Since no

34

learning has taken place, no individual policies have changed, thus keeping the same individual policy

distribution throughout the simulation. In Figure 7-8, we have the distribution of team policies at

generation 1 and at generation 100. At generation 1, promotion has not taken effect yet, so we have a

normal shaped distribution. As an individual's status begins to change, individuals with stronger policies

have more influence on team policies, due to their weighting value. Individuals with weaker policies have

less influence on the outcome of the team policy. Therefore, the distribution for the team policies shifts

towards the more optimal policy value, as shown in generation 100 of Figure 7-8. Since there is no

learning, we still expect some teams to create poor policies. Figure 7-9 shows the average of team

policies over 100 generations. Promotion is turned off for the first 10 generations. From generation 10 to

30, we see an increase of the average of team policies. From there, a steady state value of around 17

programmers is reached. Note the increase in the variance of team policies. Looking at Figure 7-8, we

can see that the cause of this variance increase is due to the increased spread of team policies between

generation 1 and generation 100. This spread in team policies is due to the initial wide range of individual

policies along with the effects of promoting.

35

Histogram For All Individual Policies

At 1 Generation

40

30

20

10

0
10

Histogram For All Individual Policies
At 1 i

At 100 Generations

30

20

10

OM
10 11 12 13 14 15 16 17 18

Individual Policy (Number of Programmers)

Figure 7-7. Histograms of individual policies in a company with promotion only. Note the
identical policy distributions at generation 1 and at generation 100 (s-plr1Op5Ou_4_11).

36

0

0

-c

en

E
z

11 12 13 14 15 16 17 18 19 20

Individual Policy (Number of Programmers)

0
0

-z

_0

-o

0

E
z

19 20

Histogram For All Teams, Promotion Only

15 k At 1 Generation

10k

5

10 11 12 13 14 15 16 17 18 19 20
Team Policy (Number of Programmers)

Histogram For All Teams, Promotion Only

At 100 Generations

11 12 13 14 15 16 17 18

Team Policy (Number of Programmers)

Figure 7-8. Histogram of team policies in a company with promotion. In generation 1, the
distribution of team policies follows a normal distribution. By generation 100, weighting to
individual policies has skewed the team policy distribution toward better values
(s-prl Op50u_4_11).

37

E

C.
0
E

-
05

25

20 -

15 -

10 -

0

(0

E
CO

z
5

01
1 0 19 20

I I

18

16

0)

0

Cc

0
Wl

14-

12-

10-

8

6

4

2

0

Team Averages & Variances

I I I I

~- -- - -- --- -

- - -

-- -

10 20 30 40 50 60 70 80 90 100
Generations

Figure 7-9. Average and variance of company team policies over 100 generations. Promotion is
turned on after 10 generations (s-p-r10p50u_4_11).

7.2.2 Mixed Team Company

In the mixed team case, there are different ways to rank teams. One method is to rank teams

from each company separately. Another method is to rank all teams from both companies together.

Depending upon the goal of the merger, both methods are valid. For example, suppose a defense

company that specialized in missiles and radars developed a new cooking method and wanted to enter a

new market (this is actually how the microwave oven was introduced). To do this, they acquire an

appliance company and setup mixed teams to develop this product. In this case, it makes sense to

evaluate each of the company's teams separately. Since the defense market is quite different from the

washer and dryer market, these products vastly differ in their requirements, resources, manufacturing

needs, development time, functions, and much more. It would be very difficult to determine if a missile

project was more or less successful than a washer project. However, suppose that this defense company

had also acquired another missile company because they were able to build better heat seeking missiles.

Mixed teams would be used to improve the knowledge transfer between companies. In this case, it would

make sense for all the project teams from both companies to be evaluated against each other. These

projects would most likely have similar development times, resource requirements, manufacturing needs,

38

etc. Because of this, it is easier to determine if one project team performed better than another. Also, we

can look at the single company approach, where individuals from two companies are fully mixed together.

It makes more sense to mix two missile companies together than it does mixing a missile company with

an appliance company. As a result, we will rank all team from both companies together in the

simulations.

In the mixed team case, we would expect promotion to have the same effects on average team

policies as in the fully merged company case. As mentioned above, promotion is being performed on the

whole company, i.e., all teams are evaluated against each other. Figure 7-10 shows the histogram for

policies of all individuals within the company at generation 1 and at generation 100. Policies were

assigned to individuals using a uniform distribution. Since no learning has taken place, no individual

policies have changed, thus keeping the same individual policy distribution throughout the simulation. In

Figure 7-11, we have the distribution of team policies at generation 1 and at generation 100. At

generation 1, promotion has not yet taken effect, so we have a normal shaped distribution. As an

individual's status begins to change, the individuals with stronger policies will have more influence over

team policies, due to their weighting value. Individuals with weaker policies will have less influence on

the outcome of the team policy. This causes the distribution of team policies to shift toward the more

optimal policy value, as shown in generation 100 of Figure 7-11. Since there is no learning, we still

expect some teams to create poor policies. Figure 7-12 (A) shows the average of all team policies over

100 generations. Figure 7-12 (B) and (C) show the average for each legacy company, and Figure 7-12

(D) show the average of the mixed teams only. Promotion is turned off for the first 10 generations. From

generation 11 to 30, we see an increase of the average of team policies, where it seems to reach a

steady state value of around 17 programmers. The average team policy has improved but has not

reached the optimal value. Note the increase in the variance of team policies. This is due to the wider

spread of team policies.

39

Histogram For All Individual Policies

At 1 Generation50

40

30

20

10

0
10

Individual Policy (Number of Programmers)

Histogram For All Individual Policies

At 100 Generations

11 12 13 14 15 16 17 18 19 20

Individual Policy (Number of Programmers)

Figure 7-10. Distribution of individual policies in a mixed team company with promotion, at
generation 1 and generation 100. Note how the distribution remains the same
(dp-rl 0m6p25u_41 1).

40

0
.I

c..

E

E
z

11 12 13 14 15 16 17 18 19 20

50.2-
0

0z

C:

.5

~0

E

z

40

30

20

10

O
10

Histogram For All Teams, Promotion Only

At 1 Generation

0 1 1
10 11 12 13 14 15 16 17 18 19 20

Team Policy (Number of Programmers)

Histogram For All Teams, Promotion Only

At 100 Generations

12 13 14 15 16 17

Team Policy (Number of Programmers)

Figure 7-11. Team policies evolve from a normal distribution to a skewed distribution due to the
effects of promotion (d-prl Om6p25u4_1 1).

41

20

15

10

5

0

0

0

E
I

z

30

25 -

20 -

15 -

10-

0
_L

0
E

I-

E

z
5

0L
1) 11 18 19 20

(A) Total Avg & Var

- -- - -

50
Generations

(C) Company B Avg & Var

50
Generations

20

15

10

20

15

10

5

0
10

(B) Company A Avg & Var

----,- -

-- - -- --- - - - -

0L
0

20

15

10

5

0
1i

50
Generations

(D) Mix Team Avg & Var

50
Generations

0

10

ic

policies over 100 generations. Promotion is turned on
(B) Legacy company A. (C) Legacy company B. (D)

7.3 Learning Only
To understand the effects of learning on a population, let us assume that there is no promotion

within a company. This is also another unrealistic situation; however, it will let us understand the affects

of learning under controlled conditions. Since there is no promotion, individuals with good policies will

have the same influence on the team policy as individuals with poor policies. This also means that

individuals on a team would randomly learn from each other. As a consequence, an individual will be just

as likely to learn from someone with a good policy as a poor one. Hence, we would expect the average

for all team policies within the company to be around average (around 15 programmers in this case).

Depending upon the initial distribution of the individual policies and who learns from whom, this average

42

0

5

20

15

10

5

0
0

Figure 7-12. Average and variance of team
after 10 generations. (A) Whole company.
Mixed teams (d-p-r10m6p25u_4_11).

-- --- ---

- - - -- - - - - - - -

- --- - - ---- --- -

-- - -- - - - -

0

0

0

0

can be higher or lower than expected. For the most part, we would expect that polices generated by the

teams to be about average, whether we are looking at a mixed team structure or fully merged company.

7.3.1 Fully Merged, Single Company

As mentioned above, we do not expect to see any improvement in the average of the team

policies. In the fully merged, single company case, we initialize the individual's policy using a uniform

distribution. Figure 7-13 shows the distribution of the policy for individuals at generation 1 and at

generation 100. Since learning is occurring, individuals are learning new policies at each generation;

thus, the policy distribution at generation 1 is different from the policy distribution at generation 100.

Figure 7-14 shows the distribution of team policies at generation 1 and at generation 100. As we can see

from Figure 7-14, the average of the team policies is around 15 programmers. Finally, Figure 7-15 and

Figure 7-16 shows how the average policy can improve or become worse in two different runs. Due to

the randomness, the average of team policies will drift around. If we introduced promotion into the

simulation, we would expect that the status of individuals would provide direction for learning.

Taking a closer look at generation 100 in Figure 7-13, we see that the distribution is no longer

uniform. Specifically, many individuals in the population seemed to have come to a consensus of around

17 programmers. To understand consensus of a policy better, lets look at the population size and the

range of policy values. Within this organization, there are 300 individuals (50 teams of 6 individuals) and

10 valid policy values (11 to 20 programmers). Due to the limited number of policy choices, it is easier for

one policy to be more randomly selected by individuals for recombination. This causes the policy to

spread throughout the population, hence, causing consensus. An everyday example of this would be

trying to get a large group of people to decide on a restaurant to eat at in Boston. Since everybody's

preferences are different and the selection of restaurants is large, it would be very difficult for the group to

come to a consensus. However, if we limit the group's choice of restaurants to the Kendall Square area,

it would be much easier for the group to come to a consensus.

43

Histogram For All Individual Policies

At 1 Generation
50

40

30

20

10

0
10

At 1'00 Gen'erationg ' I ' '

11 12 13 14 15 16 17 18 19 20

Individual Policy (Number of Programmers)

Figure 7-13. Learning causes individuals to change their
(slrl 0p50u_41 1).

policies over the generations

44

Cz
_0

0

-c

z
11 12 13 14 15 16 17 18 19 20

Individual Policy (Number of Programmers)

Histogram For All Individual Policies

0

E,
=3

z

80

60

40

20

0
10

Histogram For All Teams, Learning Only

At 1 Generation

I I Ii

11 12 13
I I

14 15 16 17 18 19

Team Policy (Number of Programmers)

Histogram For All Teams, Learning Only

I I I I I I

>' 15

0

S10

E
Cz

5
0

E
z

0

At 100 Generations

V

10 11 12 13 14 15 16 17 18 19 20
Team Policy (Number of Programmers)

Figure 7-14. Learning causes the team policy distribution to vary (slrl 0p50u_41 1).

45

15

10 -
E

0

C'n
E

0

E
z

5

0
10 20

I

I i I I i

C)

CO)

_0

a)

a
06
_0

U)

16

14

12

10

8

6

4

2

0

Team Averages & Variances

- - - - -

- - - - - - - - -

10 20 30 40 50 60 70 80 90 100
Generations

Figure 7-15. Average and variance of team policies over 100 generations. In this simulation,
learning is turned on after 10 generations, and the average team policy drifts toward a worse state
(sIr1 0p50u4_1 1).

46

Team Averages & Variances

10 20 30 40 50 60 70 80 90 100

Generations

Figure 7-16 Average team policy drifts toward an improved state (sjjr7p5Ou4_1 1).

7.3.2 Mixed Team Company

Like the fully merged company case, we expect that having mixed teams with learning to react in

the same way. Policies for the individuals are initialized randomly, using a uniform distribution. Figure

7-17 shows the distribution of the policy for individuals at generation 1 and at generation 100. Since

learning is occurring, individuals are learning new policies at each generation; thus, the policy distribution

at generation 1 is different from the policy distribution at generation 100. Again, we see the effects of

consensus. Figure 7-18 shows the distribution of team policies at generation 1 and at generation 100.
As we can see from Figure 7-18, the average of the team policies is around 15 programmers. Finally,

Figure 7-19 (A) shows the average of team policies of the whole company over 100 generations. Due to
the randomness of learning, this average drifts around; however, it remains around 15 programmers. In

Figure 7-19 (B) and (C), we see the average team policy in both legacy company. Figure 7-19 (D) shows

the average team policy within the mixed teams over 100 generations.

47

16

14

12

10

8

6

4

CZ

CZ,

CO_

0

CO

0)

- - - - ---- u.-- ~ .~.....----7-

- -. F-.---

I - I I

2

0

Histogram For All Individual Policies

At 1 Generation
30

25

20

15

10

5

0
10

At 100 Gen'erations
0-

0 -

0 -

0 -

0-

0

10 11 12 1

I~IIflIj

3 14 15 16 17 18 19 20

Individual Policy (Number of Programmers)

Figure 7-17. Distribution of individual's policies change
generation 100 is shown here (dlrl1Om6p25u_41 1).

with learning. Generation 1 and

48

0

-z

*0

E
z

11 12 13 14 15 16 17 18 19 20

Individual Policy (Number of Programmers)

Histogram For All Individual Policies

6

5

4

3

2

1

C-n

0

0

Ec

:3

-e

Histogram For All Teams, Learning Only

At 1 Generation
0

C,)

E
Cz

0

z

At 100 Generations

16
16

I I I
17 18 19 20

of Programmers)

n 1 and generation 100

49

0 1 1 1 o
10 11 12 13 14 15

Team Policy (Number

Figure 7-18. Distribution of team policies at generatic
(dj-rl 0m6p25u_4_1 1).

20

15

10

5

12 13 14 15 16 17 18 19 20

Team Policy (Number of Programmers)

Histogram For All Teams, Learning Only

0 11
10 11

20

15 -

10 -

C..)
0

0-
E
Cz
a,

0

E
z

5

I I I I I I I I I

(B) Company A Avg & Var

-

-- - - - - - - - -

20

15

10

5

0

20

15

10

5

0
50

Generations
1

(A) Total Avg & Var

- - - - - - - - - -

- - - - - - - - - - - - - - - - - - - --

- - - - - - - - - - - - - - - - - - - --

20

15

10

a)

a)
-C
(12
Cz

Cz

a)

CO

Cu

01
0

20

15

10

5

0
00

50
Generations

(D) Mix Team Avg & Var

50
Generations

Figure 7-19. In this simulation, learning is turned on after 10 generations. Note how average team
policy drifts around. (A) Whole company. (B) Legacy company A. (C) Legacy company B. (D)
Mixed teams (dlrl Om6p25u4_1 1).

7.4 Learning and Promotion
Now that we have investigated the effects of promotion and learning alone, let's see what

happens when we put them together. In a company where promotion and learning takes place, we would

expect to see that the company would evolve to a much better state. Promotions allows for individuals

with good policies to gain more status and individuals with poor policies to lose status. Because of this,

we would expect to see some improvement within the company. Individuals with good policies will have

greater influence over the team policies than individuals with poor policies. If we now introduce learning,

individuals are now able to change their policies. An individual with high status on a team will have a

greater probability of being selected by another individual for learning. Thus, an individual with a poor

50

C 50 1

Generations

(C) Company B Avg & Var

- -.---

0

100

100

5

)00

-------~ ------

0

policy might improve their policy from learning from an individual with a good policy. If that team is ranked

high, individuals on that team will be promoted and their status will go up. This does two things for when

individuals move onto their next project. It increases their influence on the team policy. It also improves

the probability that they will be selected by another individual to learn from. Learning (recombination)

allows an individual with a poor policy to create a good policy. Furthermore, individuals with good policies

that may not be optimal can recombine with other individuals to create an even better policy than before.

Because of this, we would expect that the average of team policies to improve over several generations.

Eventually, we would expect individual policies to converge to some optimal value because of the

learning and promoting.

7.4.1 Fully Merged, Single Company

As mentioned above, we expect to see improvement in team policies and individual policies due

to the effects of promotion and learning. In this fully merged, single company case, we initialize the

individual's policy using a uniform distribution. Figure 7-20 shows the distribution of the policy for

individuals at generation 1 and at generation 100. Since promotion and learning occur, individuals will

tend to learn good policies at each generation. We expect that the distribution of individual and team

policies to improve. At generation 100, we see that all of the individual policies have converged to 20

programmers. This is the best policy value and we had expected this due to the learning and promotion.

Figure 7-21 shows the distribution of team policies at generation 1 and at generation 100. As we can see

from Figure 7-21, the average of the team policies at generation 1 is a normal distribution around 15

programmers. By generation 100, the team policies have also converged to the best policy of 20

programmers on the project. Finally, Figure 7-22 shows the average of team policies over 100

generations. Promotion and learning is turned off for the first 10 generations. As expected, the average

team policy value is 15 programmers. From generation 11 to 40, promotion is turned on and we see an

improvement of team policy values. Under these conditions, the average of the team policy plateaus out

at around 17 programmers. However, since no learning occurs, the variance increases due to the wider

spread of team policies (recall from the promoting section). From generation 41 to 100, promotion and

learning is turned on and we see another rise in the average team policy value. This value approaches

20 programmers. Also, the variance drops back down to zero, since the individuals have recombined to

learn the best policy. By having promotion and learning in the simulation, we are able to provide direction

and drive for the evolution of policies within a fully merged company.

One other point to note here is the effect of turning promotion on before learning. Though we

would expect the same results if promoting and learning were turned on at the same time, there could be

several generations of "counterproductive learning" before teams begin to improve. In Figure 7-22, we

see that promoting is performed in generations 10 to 40, and that learning is turned on after generation

40. Notice how rapidly we converge when learning is turned on. Under these conditions, an individual's

51

status has already been determined within the company, due to the pre-promotion. Therefore, individuals

with good policies will already have a higher status and will most likely be selected for recombination by

others. If we turned on learning at the same time as promotion, there would be no clear initial distinction

between individuals with good or bad policies, because everyone starts off with equal status. The

question now becomes do we promote first? That is, does it make sense to sort out individuals with good

and bad policies before learning is applied? It can be argued that promoting before learning has already

been done to a limited extent, since companies have already evolved somewhat before a merger. What

is not known is the status of individuals in one company relative to the other. An individual in Company A

could be an outstanding performer; however, compared to Company B's standards, this individual would

be just average. Because of this ambiguity of status between companies, it would be a good idea to sort

out individuals with good and bad policies before learning, and to rank all teams from both companies

together.

>)

0

-C

0

z

0

Cz

C:

0

E
z

Histogram For All Individual Policies
50

At 1 Generation

40 -

11 12 13 14 15 16 17

Individual Policy (Number of Programmers)

Histogram For All Individual Policies

30

20

10

01
10

300

250 -

200-

150 -

100 -

50

0

18 19 20

At 100 Generations

15 16 17

Individual Policy (Number of Programmers)
18 19 20

Figure 7-20. With learning and promotion, individual policies improve over the generations
(slprl p50u_4_12).

52

Histogram For All Teams, Promotion and Learning

15 k At 1 Generation

M-,

12 13 14 15 16 17 18

Team Policy (Number of Programmers)

Histogram For All Teams, Promotion and Learning

11 12 13 14 15

Team Policy (Number
16 17

of Programmers)

Figure 7-21. Team policies also
(slp-r1p50u_4-12).

evolve over the generations with learning and promotion

53

0

E
CC,

E
z

10

5

0
1 0 11 19 20

,
.u 50

a0
40

30
E
Ca

S20
0

.10

z

At 100 Generations

L
V

k

0o
1 18 19 20

I I I I I I I I
0

Team Averages & Variances

20

10 20 30 40 50 60
Generations

70

- - - - - - - - - - - - - - - - - -

- - - - --- - - -

- - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - -

- - - - --- - - -

- - - - - - - - - - - - - - - - - -

Figure 7-22. Average team policy and variance over 100 generations. Promotion is turned on
after 10 generations and learning is turned on after 40 generations (slprl p50u_4-12).

7.4.2 Mixed Team Company

In the mixed team case, individuals are randomly assigned a policy value using a uniform distribution.

Figure 7-23 shows the distribution of the policy for individuals at generation 1 and at generation 100.

Since promotion and learning occurs, individuals will tend to learn good policies at each generation; thus,

we expect that the distribution of policies to improve. At generation 100, we see that all of the individual

policies have converged to 20 programmers. This is the best policy value and we had expected this due

to learning and promoting. Figure 7-24 shows the distribution of team policies at generation 1 and at

generation 100. As we can see from Figure 7-24, the average of the team policies at generation 1 is a

normal distribution around 15 programmers. By generation 100, the team policies have also converged

to the best policy of 20 programmers on the project. Finally, Figure 7-25 (A), (B), and (C) shows the

average of team policies over 100 generations for all the teams within the company, all the teams in

legacy company A, and all the teams in legacy company B respectively. Promotion and learning is turned

off for the first 10 generations. As expected, the average team policy value is 15 programmers. From

generation 11 to 40, promotion is turned on and we see an improvement of team policy values. Under

54

18 -

16 -

14 -

12 -

10 k

U)

(j)
CU

Cz

_0
(D)

8

6

4

2

0

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -

80 90 100

, 2

these conditions, the average of the team policy plateaus out at around 17 programmers. Since no

learning occurs, the variance increases due to the spreading of team policies over a wider range. From

generation 41 to 100, promotion and learning is turned on and we see another rise in the average team

policy value. This is when individuals with poor policies learn from individuals with good policies. This

improves the average team policy value, and over time, this value approaches 20 programmers. Notice

that the rate of improvement from learning and promoting in the mixed team case (after generation 40) is

slower than in the single company case in Figure 7-22. This is because a smaller number of individuals

are mixing in the mixed team structure as compared to the single company structure. Also, the variance

drops back down to zero, since all of the individuals have learned the same policy. As we can see, the

mixed team case produces the same results as the fully merged company case.

Histogram For All Individual Policies
50

At 1 Generation

40

30

20

10

oN
10

300

250

200

150

100

50

0

11 12 13 14 15 16 17 18 19 20

Individual Policy (Number of Programmers)

Histogram For All Individual Policies

At 100 Generations

15 16 17 18 19 20
Individual Policy (Number of Programmers)

Figure 7-23. With promotion and learning, individual policies evolve over the generations
(dlprl m6p25u_4_12).

55

0
0L

-

3*0

E
S

-3

_0

0

E
=3

Histogram For All Teams, Learning and Promotion

15 - At 1 Generation

10 V

5

0 1 1 1
10 11 12 13 14 15 16 17 18 19 20

Team Policy (Number of Programmers)

Histogram For All Teams, Learning and Promotion

At 100 Generations

0-

0 --

0
10 11 12 13 14 15 16 17 18 19 20

Team Policy (Number of Programmers)

Figure 7-24. Team policies evolve from a normal distribution to a single policy due to learning and
promotion (dp-rl m6p25u_4_12).

56

2

0

Cn

0C,

E

z3
z

60

50 -

40 -

30 -

E

0

E
=3

z

2

1

(B) Company A Avg & Var

- --- -- --- -- --- - - -

-- --- --- - - - - -

CO

CO,

Ca6
_0

0)

(1)

ca

06

70

Q)

100

20

15

107- ---

Generations

(C) Company B Avg & Var

- ----- - - -

50

Generations

0 50
Generations

(D) Mix Team Avg & Var

--- - - --- --

CD

C/)
Ca

06

Ca

6)

100

20

15

10

5

0
0 50

Generations

Figure 7-25. Evolution of the average team policy in a mixed team structure over 100 generations.
Promotion is turned on after 10 generations and learning is turned on after 40 generations. (A)
Whole company. (B) Legacy company A. (C) Legacy company B. (D) Mixed teams
(d-lprl m6p25u_4_12).

57

20

15-

10

5

0
50

5-

0
0 100

~0

06

70

(1)

20

15

0

5

0
0 100

(A) Total Avg & Var

1

7.5 Mixed Team Policy With Good and Bad Policy

Now that we understand the effects of learning and promotion in the fully mixed company structure

and the mixed team structure, lets see what happens when we merge a poor policy company with a good

policy company in the mixed team structure.

Suppose Company A is a company with poor policies and Company B is a company with good

policies. In Company A, individuals have a policy value of around 12 programmers on a project.

Individuals in Company B have a policy value of 19 programmers on a project. This individual policy

distribution is shown in Figure 7-26 at generation 1. Policies are clustered either around 12 or 19

programmers. If we look at the team policy distribution at generation 1, we would expect that team

policies in Company A to be around 12 programmers per team policies in Company B to be around 19

programmers per team. Since individuals in Company A and Company B are equally represented on

mixed teams and everybody has equal weighting, we would expect the mixed teams to produce policies

around 15. Figure 7-27, generation 1 shows the initial distribution of team policies.

From what has been learned so far, we would expect that the company with poor policies to

evolve to a better state. The key to making this happen is to allow the effect of promoting and learning on

the mixed teams. Since the teams in Company B already have good policies, learning will not have a

great effect there. Company A will not be able to evolve also, since individuals in that company will only

learn poor policies, which they already know. Since promoting on the whole company has been

implemented first, the status of the individuals in Company B improves, while the status of the individuals

in Company A worsens. Initially, we expect the policy of mixed teams to be somewhere between the best

policy and the worst policy, since mixed teams are equally represented by both companies. Eventually,

the individuals from Company B that are sent to the mixed teams will have a higher status than the

individuals sent by Company A. This shift in status causes the policies created on the mixed teams to be

much closer to the better policies created by the teams in Company B. We expect to see an

improvement in the overall company performance, due to the effects of promoting. Once learning occurs

with promoting, good policies on the mixed teams will be transferred effectively and the organization as a

whole will evolve even further. Because individuals from Company B on the mixed teams have higher

status than individuals from Company A, the individuals from Company A will tend to learn from

individuals from Company B. Since the mixed teams perform better than Company A's teams, individuals

from Company A are able to improve their policies through learning. Individuals return back to Company

A with improved policies and higher status. Their improved status will cause other individuals on their

new team to select them for learning. Furthermore, their improved status will also cause their policy to be

weighted heavier in the creation of the team policy. Thus, these teams perform better, and individuals in

Company A are able to learn better policies. After several generations, we expect that the individuals in

Company A to learn the good policies of Company B. If an individual from Company B learns a poor

policy from and individual in Company A while on a mixed team, we don't expect that to be a problem.

58

When that individual returns to Company B, they will relearn the better policies from other members of

their company.

Figure 7-28 shows the average team policy over 100 generations. For the first 10 generations,

there is no learning and no promotion. As we would expect, an average of all the team policies yields an

average policy value of about 15. Promotion is turned on after 10 generations; however, we do not see a

large overall affect to the company. Since the mixed teams accounts for only a small percentage of the

total teams, we do not see a drastic increase in the total company performance. Learning is turned on

after generation 40. This has a dramatic effect on the average team policies in Company A, as shown in

Figure 7-28 (B). After a few generations, policies in Company A improve and eventually become identical

to policies in Company B. Figure 7-26 and Figure 7-27 show that individual policies and team policies

have all conformed to the best policy by generation 100.

150

1

Histogram For All Individual Policies

At 1 Generation

01 L
10 11

300

250

200

150

100

50

0

12 13 14 15 16 17

Individual Policy (Number of Programmers)

Histogram For All Individual Policies

18 19 20

At 100 Generations

15 16 17

Individual Policy (Number of Programmers)
18 19 20

Figure 7-26. Looking at one company with a good policy and another with a poor policy at
generation 1 and generation 100. Individual policy distribution (d-bias-pol).

59

00 -

so -

I I I I I

Histogram For All Teams, Learning and Promotion

At 1 Generation
30

25

20

15

10

5

0
1

C-z
0

0

E
Cs

0

E
Cz

0

E
=3

z
11 12 13 14 15 16 17

Team Policy (Number of Programmers)
18

Figure 7-27. Team policy distribution at generation 1 and generation 100 (d-bias-pol).

60

11 12 13 14 15 16 17 18

Team Policy (Number of Programmers)

Histogram For All Teams, Learning and Promotion

0

At 100 Generations

19 20

60

50 -

40 -

30 -

20 -

10 -

0 -
10 19 20

I I i I I I

I I I I I I I I

(B) Company A Avg & Var

-- -- - -- - - - - -

(n

C

oC5

aO

50
Generations

ca

Cz

CzS

(1)

100

a)

a

0

Cc

100

20

15

10

5

0

20

15

10

5

0

0 50
Generations

100

(D) Mix Team Avg & Var

0 50 100
Generations

Figure 7-28. Evolution of the average team policy in a mixed team structure over 100 generations.
Promotion is turned on after 10 generations and learning is turned on after 40 generations. (A)
Whole company. (B) Legacy company A. (C) Legacy company B. (D) Mixed Teams (d-bias-pol).

61

20

15

10

5

0
50

Generations

(C) Company B Avg & Var

a)

U)

(0

C

06

IV

0

20 -

10

5

0-
0

(A) Total Avg & Var

- ----- -------

- - - - - - --- - --

- - - - - - - - - --- - - - - - - --

.- -

8 Conclusion

As stated earlier, we believe that an organizational evolutionary approach to improve the transfer

of knowledge between merging companies will result in a more successful merger, as a result, creating

more value for the company and its shareholders. One way of implementing an evolutionary approach

would be to fully mix individuals from both companies together. However, the use of a small number of

mixed teams should be just as effective as fully mixing the individuals from two companies but at a slower

rate.

To gain a better understanding of how knowledge is transferred between companies, simulations

were performed to gain insight on how learning and promoting affects the transfer of policies in a mixed

team structure. As we have found, the results from the mixed team structure indicate that it is as effective

as fully mixing two companies together. Here is a summary of the results:

1. No Learning and No promoting - This is the baseline case. As expected, the company does not

evolve at all. No learning takes place and everybody has the same status.

2. Promotion only - Here we look at the effects of status and promotions. Though status changes,

policies do not. This will affect an individual's weight or influence on a team's policy. Teams that

perform above average will be promoted, while teams that perform below average are demoted.

Hence, individuals with good policies will have better status. When these individuals are

assigned to the next project, they will be more influential on the team policy. This influence shifts

the team policy closer to their policy. Individuals with poor policies lose status, thus they will be

less influential on the team policy. With promotion only, the company evolves some but won't

reach the optimal value. The optimal value is never reached, since this would require individuals

to learn better policies. Though individuals do not change policies, good policies become more

influential in team decisions than poor policies.

3. Learning only - Here we look at the effects of individuals randomly learning. This is not good,

since the overall evolution of the company can evolve to a better state, a worse state, or remain

in the same. Individuals change policies but with no direction of who to learn from. Depending

upon the conditions, we may see consensus by individuals within the population.

4. Learning and promoting - Here we have status influencing how individuals learn new policies.

Individuals with good policies will eventually gain higher status through promotion. When mixed

onto the next project, individuals with good policies will have more influence over the team policy.

This creates a better team policy. Also, individuals with poor policies will tend to learn from

individuals with higher status, thus, improving their policy. Individuals with good policies can also

62

learn from other individuals, which as a result could create an even better policy. Eventually, the

whole organization evolves in a positive direction, more so than just promoting alone. We also

expect a faster convergence in this case due to two factors. First, we perform ranking on the

merged company as a whole. When we do this, an individual's status is known in both

companies, instead of their own company only. If we had ranked individuals against their

respective company only, there is an initial ambiguity of not knowing which company performs

better. Thus, there is the possibility that an individual could be highly ranked one company but

average in the other, which could slow down evolution. Ranking the company as a whole

eliminates this initial ambiguity. Second, promoting is turned on before learning. This allows

individuals with good and poor policies to be identified before learning takes place. When

learning does occur, individuals will have a better idea of who to learn from; as a result, speeding

up convergence.

5. Good Policy/Poor Policy - In this experiment, we initialize the individuals at one company to have

good policies, while the individuals at the other company to have poor policies. As we expected,

the learning that occurred on the mixed teams allowed for the company with poor policies to

evolve. When individuals with poor policies worked on a mixed team, they were able to learn

from individuals with good policies. When these individuals returned to their companies, their

higher status influenced other individuals to learn from them. Eventually, the company with poor

policies evolved to the same level as the company with good policies.

From these experiments, we see that promoting provides direction for individuals to learn from and

learning provides a way for these individuals to improve their policies. We can use the metaphor of a

sailboat to describe the effects of learning and promoting. Say one's organization is a sailboat, and the

goal of the sailboat is to reach a certain landmark. The sail on the boat is analogous to learning, while the

rudder is analogous to promoting. If you could just control the rudder, the most you could do is point your

boat toward the landmark. The sailboat is unable to reach the landmark without a force to move it. With

just a sail, the boat can move around, but there is no method to guide the boat toward the landmark. With

a sail and rudder, the sailboat is able to capture the wind and navigate toward the landmark.

From the analysis of the simulations, we were able to make suggestions on how to implement the

mixed team structure for merging companies.

1. The mixed teams provide a conduit for passing information between organizations; thus, we

would like the least amount of resistance in this mixed team structure. Individuals on the mixed

team should be willing to learn from others as well as teach others.

63

2. If it makes sense, rank all projects and individuals together, not with respect to their own

company only. This will help to identify individuals with good or bad policies for both companies.

3. Once individuals with good policies have been identified from both companies (from step 2),

encourage others to learn from them. This is analogous to promoting first and then learning.

4. Individuals that are good performers and are highly respected within their own company should

be used on the mixed teams. Chances are, these individuals will have something to teach other

individuals on the mixed teams. The real benefit is when they return to their own companies.

Since they are good performers and are well regarded by their peers, more individuals will likely

try to learn from them or imitate them.

5. Mix individuals frequently on the mixed teams. This allows for more information to be diffused

between companies.

6. Try to keep the mixed team project lengths short in nature; however don't make the projects

trivial. Shorter projects will help speed up the mixing of individuals. Yet, the project needs to be

of some significance. We want individuals to transfer hard to learn knowledge; however, this may

not happen when teams work on simple projects. There may be another benefit for having short

projects. Since some individuals do not wish to relocate, they may be willing to work at another

site for a short period of time. One suggestion is to have a few mixed teams at each location.

Another possibility is if the project is long, have the individuals switch sites in the middle of a

project.

There are several benefits for using this mixed team structure for merging companies.

1. This mixed team structure is not as costly to implement as fully mixing two companies together.

The merged company would only need to support the few individuals on the mixed teams that

are changing locations.

2. Individuals are able to create a network of people to learn from, which would span over both

companies. Though this was not investigated in this study, we believe that individuals that use

this network will improve the transfer of knowledge and speed up the evolutionary process.

3. Companies are very dynamic and could change goals after a merger or when changes in the

market occur. Policies that individuals had before these changes may not be as optimal after

the changes. This evolutionary approach allows for individuals to evolve their policies when the

goals of the company have changed.

If we look beyond the scope of mergers and acquisitions, it may be possible to apply the idea of

using mixed teams to improve the transfer of knowledge in other areas. This concept may be a valid way

to transfer information between organizational boundaries. For example, many large engineering firms

have both an R&D group as well as a design engineering group. The R&D group develops new

64

technologies, while the design group develops products based on these technologies. Having mixed

teams of R&D individuals with design individuals to work on R&D or design projects should improve how

knowledge is transferred. Not only is it important to transfer R&D knowledge to design, but vice versa.

Analysis from the simulation has suggested that the mixed team approach is an effective method for

improving knowledge transfer between two merging companies. Suggestions on how to implement the

mixed team approach were also given. To further understand how evolution affects knowledge transfer

within merging organizations, organizational evolutionists should further study various promotional

policies, learning behavior, network of individuals that people learn from, and insights from simulation and

how well they apply to the real world.

65

9 References

"After the Deal," The Economist, Jan. 7, 1999

Barker, Robert. "Cisco May Not Be Bouncing Back Soon," Business Week, Apr. 16, 2001, pp. 138.

Booth, Wayne C., Gregory G. Colomb, and Joseph M. Williams. The Craft of Research. Chicago:
University of Chicago Press, 1995.

Colvin, Geoffrey. "The Year of the Mega Merger," Fortune, Jan. 11, 1999, pp. 62-64.

Goldberg, David E. Genetic Algorithms in Search, Optimization & Machine Learning. Massachusetts:
Addison-Wesley, 1989.

Hines, James H. "Five Rules for Evolutionary Management." System Thinker, 1998.

Hines, James H. and House, Jody L. "Harnessing Evolution for Organizational Management," in
InterJournal, International Conference on Complex Systems. 1998. Nashua, New Hampshire:
NECSI.

Hines, James H. and House, Jody L. "The Source of Poor Policy: Controlling Learning Drift and
Premature Consensus in Human Organizations," System Dynamics Review, Vol. 17, No. 1,
Spring 2001.

House, Jody Lee, Alexander Kain, and James Hines. "Evolutionary Algorithm: Metaphor for Learning."
In Genetic and Evolutionary Computation Conference. 2000. Las Vegas, NV: Morgan Kaufmann.

Kelly, John, et al. "Unlocking Shareholder Value: the Keys to Success," KPMG White Paper, 1999, pp.
7.

Leon-Garcia, Alberto. Probability and Random Processes for Electrical Engineerinq. Massachusetts:
Addison-Wesley, 1994.

Mitchell, Melanie. An Introduction to Genetic Algorithms. Cambridge, MA: The MIT Press, 1999.

Schein, Edgar H. The Corporate Culture Survival Guide. San Francisco: Jossey-Bass Publishers, 1999.

Spitzer, Don, et al. "The New Art of the Deal: How Leading Organizations Realize Value From
Transactions," KPMG White Paper, 1999, pp. 3.

Walpole, Ronald E, and Raymond H. Myers. Probability and Statistics for Engineers and Scientists. New
York: Macmillan Publishing Company, 1989.

66

10 Appendix

67

10.1 Further Readings in Organizational Evolution

1. Hines, J. and J. House. Harnessing Evolution for Organizational Management. in OACES 98.
1997. England.

2. Hines, J. and J. House. Harnessing Evolution for Organizational Management. in InterJournal,
International Conference on Complex Systems. 1998. Nashua, New Hampshire: NECSI.

3. Hines, J. and J. House. Team promotion to foster policy evolution. in International Conference on
Complex Systems. 1998. Nashua, New Hampshire: original submission to NECSI in 98.

4. Hines, J. and J. House, Policy Evolution within an Organization: Research Proposal, 1998, NSF
IOC 98.

5. Hines, J. and J. House. Where policies come from. in International System Dynamics
Coneference. 1998. New Zealand.

6. Hines, J. and J. House, Baskin-Robbins vs. Darwin. Harvard Business Review (hopefully), 1999.

7. Hines, J.H. and J.L. House. Policy Evolution within an Organization. in 2000 Design and
Manufacturing Conference. 1999. Vancouver, B.C.

8. Hines, J.H. and J.L. House. Management fads & poor policies: A year of organization evolution
research. in 2001 NSF Design and Manufacturing Research Conference. 2001. Tampa, FL.

9. House, J., GA coupled to continuous time feedback model, . 1999.

10. House, J., Organizationl Evolution Simulator: Matlab, . 1999.

68

10.2 Matlab Code

This section contains the main sections of the Matlab code.

teamExpmod
.M

net-project2.mdl
(Simulink)

Control.m

netalive.m FunLib.mr netfitness.m

.m network sim.
teampohcy.mm

rip.mn netshuffler2. split.m

combine.m+ swap.m

Figure 10-1. Matlab code modules and their relationship.

69

10.2.1 TeamExpmod.m

function E=teamExprmod ()

% load

funlib
fUnCtiron library

%' Fvrma : n , mode , t e iams , gen, pop , ; , pm, i cswit <h

%n aub fe amFormat:2unC t, mod, num15t ubteams, sub t ea size , S comparaT y

% genaerations, network size, -xover, pmutation, pnetwork, ini t.swith

E=1 ...

%S.;ingle corr.,any simrulation
d .d ' , 6, 30, ,o 5<01(12 Umd. St 6, , , .5 9 1

{projectM l..stl, st ,

C- M)~ (J4 C -;-L

{pr ojc tMd1 st,

{projectdlcst,
{projectMd. c....t,f pr1o je c t. Md 1st,

projectMdlst,

s'

st'

s*LF

st,

6, 6,) 0,
6, 6, 50,
o 6, 53,
6, 6, 0 ,
6, 6, 50,

6, .50,
6, 6, 50,
6, 6, 5C,

6, 6, 50,

5, 1, 0, .5, } .

50,
50
.I -

0,

1,
71,
~1,
71,
1,..

F,

1,
1,.
1,

0,

0,

(-,

F-,

C)
(-,

1,

5,

I'

71)

'C 1

%8 Merin , ompany s

Sp oject Mol Cst,
{pro](etMol st,

{projectMdls t,

ro jC -tMd C st,
C pr'oj(ct Mo Cst, .
{proj ectMdl.st,
prj(.(c tMl...t,
{proj ectMdl st,

', 4 ,
's , ' , 6,

t, 6, 6,

's' , 6, 6,
Fs ' 6, 6,

Fst', 6, 6,
'st', 6,6,

6, 6,
st, 6, 6,

Cproj tM . s t,'sft', 6,

25,
25,

25,

25,

2Z,
25,

2, 5,

100,I C)D 0,

.100,

101,

:i,.

5,

5,
F,

F,

F,.

5,
F,

1,
1,
1,

1,

.1)

0,

0,
0,<,

-,

C,

1)

6, 25, 100, 5, 1, 0, .5, 1} ...

};

70

10.2.2 Control.m

(% onr((enter17 0 m I l

ecco2000; % Format: fun, mode, teams, pop, pc, ,.m

%EteamnAssignudxp;

clear;
pack;

% - * - A -, -A -All** * * * *

C t) :::: c CC c 1.. Ct (1act a.
% cdat = 4 - don t collect data
cdat = 0;

*- *A. k..* A -A

* kk* * * * *

%f MId

Sets th.e SeLngie
D es -

or Mergino;g cornpany- mtode. -k *** **2**

Single company mode.

company = 2;
2-AA*- ***A A

Merging compnay mo de.

E=teamExpMod;

% the :nber f clls (-]rows) in E. Eac Ih cel..L cntais mu-It.). l

lenE = length(E);

Con rol Variables
% - = I; Made t1i s a variate, wich 1. i. set e11('e r.

a.(n re t ; % C(. r t , s at , c l c t
ver= - ;
% perform actions
for cntra = 1:len E

% j=char (112+i);
j:car (cnta ;l
% sich acti1on

% case 2 Create'

parameters

SI rs A s al. Ii.. c. f sliCe COISS 1(31.1.1.

.tc .wer - Int ra} {2))
case (st')

.:i s p (1. . s .s he ne twor ke 1 r .s ' .

71

%

disp(lower(E{cntra}{2}))

net .live (E{i} I1 ,L{i} {2} , E~i} {3} , E{i} {4} , E{i} {5} , E{i} {6} , E{i} {7} , E{I} {8} , E{i

% E I } , E (E{1 s eei);

%Frin int the random s t a

seed -1;

netalive;

if cdat == 1
ravg(cntra) .lavg = mean(avgteamp(1:10));
ravg(cntra) .havg = mean(avg-teamp (25 :experiment .generationjmax));
ravg(cntra).mixsize = E{cntra}{3);
ravg(cntra).puresize = E{cntra}{5};
ravg(cntra).percent = abs((ravg(cntra).lavg-

ravg(cntra) .havg)/ravg(cntra) .lavg)*10;
switch company
case 1

save (['s r num2str(cntra) 'm num2str(E{cntra}{3}) 'p'
num2str(E{cntra}{5}) '_4_']) ;

case 2
save ([dLp -r' num2str(cntra) 'm num2str(E{cntra}{3}) '

num2str(E{cntra}{5}) 'u_4_ 1 2);
otherwise

disp (' Error in writing selection')
end

%cj...se (gc f)
%,clo -se (gc f
%close (gc f)
disp(' En of Run:)
cntra

end

save (['nv' ver ' ' num t (i) ' s ' nums t.1 (seed)] ,
%: ct~herwiLse

% d.i.sp ('Standard Case')

eai (Ei} 3} , E{i} {2} ,E{i} 3} Eji} {4} , EUi} 5} E{i} {6}, E{i} {7} , Eji} 8} , seed)

save(['' ver '.e num2str(i s num2 s ti:(seed) , e
% end

end

%case 'tt

%i
% oa ([a' var '_e ' num2sr; (i.) '_s num2s tr (seed)) ;

% s-stat (e)

%save (a.' ...' ...r _ i' n 2satr (i) ' _s num2str (seed ., ' ')

% en

72

%, cas S c lDectu
% desie-red st a variabLes into memory f:(.r eacs p.0:in

% D-r seed,-l sl ength
d 'v' ver e ' numzstr (i-) s num2str (seed

%) bF (i, see)=) ~ stat;

sae. rl jprag

end
%. ed

if cdat =

disp ('***SmltinCmlt

save apr12_d_.lp ravg;

end

%cear le...E s-ength;

%a ck ;

73

10.2.3 Netalive.m

% Cio nX x A;>rit net .alive (fun moe, sun-.teams, team-size,
corp tea.me, .

I.- , ,, Jn.. I, seed)

% This 111 ns:ti:1.onr: in:clu.odes tihe networyk siz e fot:r each indivi.dua...-

% ditness funct on f

%These parametors comes fr:m :e f : I e f unI. -i . m
experiment. domain=E{1} {1} .d; % function defined over tlhis domeain

experiment. epsilon=E{1}{1}.e; % simulation accurac
experiment. fitness=E{1}{1} . f; % fitness

% experiment mode

experiment . mode=E{1} {2} % s(2 - Network. and su-- teams
experiment.subteams=E{1} {3}; % number of sub- teams
experiment . subteam_s i ze=E{11 {4}; % s i% z of the teams

experiment. corp-teama = E{1}{5}; % Number of teems in company A

experiment.corp-teamb = E{1}{5}; % Number of teams in company E. Equ to A

experiment. teamode=' random' ; % for tm mode: random/best /equal

experiment.init=E{1}{11};
experiment. generation max=E{ 1}{6} % number of Conerat:ions to simuate

experiment.netsize E{1}{7}; Psets an indivI.ual's network size

% -s (*1************* Netr siz k-e **** '

% YiLp C oxperimont - net.si ze)

experiment.p_crossover=E{1} f; % probability of crossover (or learning)
experiment.p_mutation=E{1} {9}; % robabi.ity of mutai01

experiment. p_network=E{ 11 {101; % probability of learnino Prom a network.

. .p iment ILabel..

experiment. label= ' AL IVE Gene tic Simulator';

experiment.seed=seed; % -1 for truly random" nonnes0ativenumber is seecd or

"denerat in r m

% n i ., fitness function
F[ncti[on y, t rack]= it:nss (x, gener:"atiin) \n

%% This te i s 2roe t ed a Lt on t ica y, manual eoi.s vil be (s'

tree>= [L] ; \n'
experiment.fitness ' ;\n'

f y0, error (' Negative f itness not allowed) , end' . . . guard
aga-ins neg a tiv.e f i1.toess

]1;

fid=fopen(fitness.m ,'

fprintf (f id, F, s) ;

74

fclose (f id) ;
clear fitness

Checkino

%This checks to see if the members per: team is even.
if rem(experiment.subteamsize,2)

error ('Number of individuals per team must be even'
end

% E co
f print f(Simulation: %s \n\n' , experiment. label'
fprintf ('Mode: %s \n' experiment.mode');

fprintf ('uber of one -rations to simulate: %i\nexperiment. generation max)

fprint f ('Total number of individuals in simulation %i ,

2* ((experiment.subteams/2+experiment.corpteama)*experiment.subteam-size));
fprintf (' Number of individuals per company: %i \ ,.

(experiment.subteams/2+experiment.corp_teama)*experiment.subteam-size);

fprintf ('h imber f su.bteams : %i\n ,experiment. subteams);

fprint f (' Nuer of indi.vi~dua.s pr subteam : %in . ,experiment. subteamsize);
fpr intf('Number of teams per company: %i \n' , experiment. corp-teama)

fprintf ('Team moce: %s\nexperiment.teammode)

fprintf (Network size per inividual: %i\n',experiment.netsize);

fprintf('Probability of crossover: % f \n ,' experiment. p_crossover);
fprintf(Prf_..i ' i of using network: %f\n',experiment.p network)
fprint f (' Pro bab1iLy of mutation: %f\n' ,experiment. p_mutation)

fprintf ('Domain: \n') ; disp(experiment.domain);

f print f (' Ep ils : \n ') ; disp(experiment.epsilon');

Forn g into thue randiom state

% -Rand,-x,,ness

if experiment.seed<O

experiment. seed=sum (100 *clock) ; % truly random

end

rand(' s ,experiment. seed);

% 00 it

switch company

case 1
disp (Performing a Single Company Simulation'

network_siml;

case 2
disp ('Per f orming a Merged Company Simulation
networksim;

otherwise
error (> > This is not a vai0 company simulaton case <<'

end

75

10.2.4 FunLib.m

% fulib- aplae t stre -ften used fitness, funtin
% in "de" structure: domain, epsilon, function

disp ('Loading function librabry '

peak norm=struct ('c' , [-3 3; -3 31,
abs (peak (x (1) , x (2)
peaksame=struct ('d , -10 10; -10 101,

(x-6) . ^2 (y-6) ^2)+ ex o (x 6) .^2- (y0)
(x).'^2-- (y-.6) .^2) , + xp-. (+6). 2- (y-0)

[.1 .1], f ,'y

[.5

^2)+ exo
.2) + ex-p

.51, f:
6)
6)

.^2- (y+6.) . 2)
.^2-(y+6) .'2)

DeJong(1)=struct('d.', [-5.12 5.12; -5.12 5.12 , 'e', [.1 .1], ', 'y::::x(2);x::::'x(1);

DeJong(2)=struct(d ,repmat ([-2.048 2.048 ,2, 1) , erepmat (.1, 2, 1) ,' '
1 *(x (1 2 X.()) 2 (1-...x (1))^'2'

DeJong (3)=struct (' d', repmat ([-5.12 5.12] ,5,l1) ,'e ,repmat (.1, 5, 1) ,'f ', '
sum(f.coo r (abs (x)))) ;

DeJong(4)=struct('d' ,repmat([-1.28 1.28],30,1), 'e' ,repmat(.1,30,1), f' 'y=0;
for =1:30 y~~i~ (i^4+ranidn(1 ; nd');

DeJong(5)=struct(' ' ,repmat([-65.536
65.536] , 2,1) , 'e' , repmat (.001,2,1) , f, 'y=; ircoml.et e')

ProjectMdl=struct('d,[0.25 10; 0.25 10], 'e', [1

y1,: Pr c', 'y projts im(x (1),x(2))';
projectMdl2=struct ('d , [0 151, 'e' , [1] , f', 'y r oj ectSim2(x()) ;
ProjectMdl3=struct('d', [0 15 0 15], 'e', [1
1 f] , '' y pro j t:S 1i'm3 (x g() , enerati n. o)

1-- th fc- it n ss f.uniIiEc ti. on t ha.t 'm using rih now - .,

projectMdlst=struct(' ,d[10 20] , 'e, [1] ,P ' 'y=projectSim2 (x (1)) .);
% *********4******************************* *

MrktMdl=struct ('d' ,[0.1 1; 100 50001,
100], If ' , 'y mrktSim(x (1) ,x (2))
wfSalesMdl=struct('d',[0.l 1; 0.1 11,

76

y);
+ (. -

') ;

'e ' 0 . 1 0 .] , ' f ' , vy v f ;-,im(.T x (1) , x(2)');

10.2.5 Netfitness.m

function [finalTime]= netfitness(programmers)

~~"1VY1Ct4 - (J e-(~ Im. 1*7 171 i.T.I&I L t J. 12l :f: 111qfY0 77 11() C .1
%Tisfuctionl dete(rInEs th 1iaim o the pro. c modTe0ClC P

S iulation in simulink. 7/26/99
%. h. iEt ic alg:rim.--(th . ain1. t is useg (as th measure

simTime=80; % Is this how long it. s suppose to run for - ro?7

lb =
rb ='
prgms [lb num2str(programmers) rb];

setparam(net 1ro1 ect2 / Programmers F' 'Valle' , prgms);

set -pa.ram (t _p;>r o ec t: 2 iPaogrammers ' ,F' Valu e F num2str (pregrammers))

%runf poect model.
[T, X, Y] sim(' net7pr1 oCt2 F simTime) ; % Run te siimut in for s :."imme arid.

colec sat - rr o
done= (FinalTime);

finalTimeMatrix=[T,done];

[y, indx] = max (done);

for j = l:length(indx)
u(j,:) [T(indx(j)) simTime-T(indx(j))];

end

%F Tin (7 U(7tt 7(r t p rrimanie7 e largr th number
finalTime round(u(:,2));

%%id t wh Ftlhe ayoiunt l1o7 : f cl de U. C, wIri. tfa. t aer o

%i1

hile i< (1ength (T))
% . .1i E.J..ina Tme(:Ma.tr..,i.x (J., 2) =

% V ina11TimeoIfil'ie trx(i , .1)

% i=.-length (T) +10;

% TMe1 imT me -1f a L IF ;

77

10.2.6 Networksim.m - Core of Mixed Team Company Simulator

% Raymon?-d 1P, _01 U -u a. ytuc oo 2 1)
% 1u.ni: cC)Xmpany simuiator

disp(..************** Mer. Company Sim.ulatr ** *** * ** A****

****** ********A*******A********A******************

% .****** Sets te pro.ot ion mAde. * A* ***

Mode Desc

iTeams a.re eva ua ted anast athr t s i. thi. respect: Ive

companies.

%Mi.xa0 taims (csitans) are evaLusted -a ist eac other
on.

% 2 Teams fri pia, pOb and the st ms areK a.L .va Ju a. 2e

toget her.

No ir:m its nal valu is used (no we ight s.ing) ; however, teams

are sorted
witin thir companies only. Tis is only ffcts _1ow tShe

datLK a is kept.

No prrvoti(Inal value . .is used (no we:ihtipg) ; however, all
teams ace sor ted

%togeth~r, rga.r~dlss of company Tis :is ony e 2acts Vow
e dlata is kep

% .:.ing is turned on aft er a spec; i.d nc mrC f
pereaions. The variable

Sep Ds us d. t- spec.fy tie numier C) generaticns w/0
we agnt ing . Mle 1 is

% used far t0 e ty'pe of eighting.

6 Weighting is turned on after a. spec.ified. nuimber of

gn1rat ins . 1The vai. abl E
% tep is used to specify the numbr of generati ons w/o

weig:in. M-de 2 iCs
%1us(d for t.C toe (:f weig ht.ing

prommode 6;
step 10;

A * Sets the Learning mode. ** * **-*****

Mode Ds C

78

No learning occurs.

% 2 Lea nine in aLl teams occur.

Onl 2Lerning in ixied -Rms occur.

4Leariing i1n AL teams occure af:ter a c etain time
Variable stepl is -used to inoicate when learnoing s turned

on.

5Learning in MIXED team c;ur after a certain time.
Va.Iable ste; is used t indicate when learig is turnad

6 Lea rT rning a in all teaims occur a.Loyg i us.in a network.

7 .ar in a1. teams occur aontic wi. th. us ing a. nae twork.
Ts well be

turned on after a specifiec time.

learning = 4;
stepl 40;

**** *********************************k**********

Q-Y**<<*******-*********************** ** *- k******

***** t Sts uie HI s togamove mode ** ** ** *

Mode Desc.

0 No movIe -

%Novi2..esw.tc is set IC a. andi a m2ve i recOrded

movieswitch 1;

% *- k ** * * * * ensonalesoluti on * * * * * ** ***

% This secti on cal cul' ates the number of bits needed for each gene in the
1a rom s m.

locus=zeros(size(experiment.domain,1) ,3)
for dim=l:size(locus,1) % 1 to length of locus (rows)

locus(dim,3)=ceil(log2(abs(experiment.domain(dim,l)-
experiment.domain(dim,2))/experiment.epsilon(dim)));
end

% Now we start to build the Steino loci aefineteon
%t (S.arn bi.t SILLopping bit:- Segntle ngL t a ar ea1(h2 gen e
locus (1, 1) =1;
locus(1,2)=locus(1,3);
for dim=2:size(locus,l)

locus(dim,1)=locus(dim-1,2)+1;
locus(dim,2)=locus(dim,1)+locus(dim,3)-i;

end

79

fprint f (St rn . i (. t ri. qiv and iL ength s)pe I i mens i on: \ ')
disp (locus);

timer=cputime; % start

generation 1;

chromlen = locus(end,2);
comp size = experiment. corp-teama*experiment. subteamsize;

% * Sets the initia-l population poLicy distribution.
** *.***

%ode Des.

% - a~
% Cre1 aa teas p (1)ic(ie s based on a uni .rm d 52C0 2 2i..iut in 1OVer tL1.he

odynami (C (alge .

2 Creates polices bDased on two uniform di4.st riL)bu t.ons.

ComEan a'Oill,
have a. mean of ul and b wil.l have a miean of u.2. Margin

how wide the distribution should spread around the means.

distribution = 2;

base = 2;

drange = base^chromrlen;
ul = 2;

u2 = drange-2;

margin = 1;

% .Thi s a.11. oc)(a.s 1: memory2d aheaof t:ime for the vai..os pOpuati at.r. iutes

for generation=l:experiment.generationmax+l

popa(generation) .chromosome = zeros(compsize,chromjlen);
popa(generation) .teamid = zeros (compsize,l);

popa(generation) .id = zeros(compsize,l);
popa (generation) .rank = zeros (compsize, 1)
popa (generation) .network = zeros (comp__size, experiment.net-size)

whi Ch pop a individual . the network is from 1 - oth er population

% DeCis the (:Icompanv an ii.nd2livildual is from
popa(generation) .net_team = zeros (comp-size,experiment.net size);

popa(generation) . teamrpolicy = zeros (experiment.corpteama, chromjlen);

popa(generation) .teamranking = zeros(experiment.corpteama,l);

% '- F)busggng purposes.
popa(generation) .xover = zeros (compsize,l);

80

popb (generation) . chromosome = zeros (compsize, chrom len)
popb(generation) .teamid = zeros(compsize,l);
popb (generation) . id = zeros (compsize, 1) ;
popb(generation) .rank = zeros(comp-size,l);

popb (generation) .network = zeros (compsize, experiment.netsize)
% wThih nop a individualithe network r 1 - Oth-r p-pu.t i0n

popb(generation) .netteam = zeros (comp-size,experiment.net size);

popb(generation) .teampolicy = zeros (experiment.corpteama,chrom-len);

popb(generation) .teamranking zeros (experiment.corp-teamb,l);

% (9r Debugging)~ pr poses .

popb(generation) .xover = zeros(compsize,l);

end

% a reae an a:i.itial val..u e f or e ach inda.iv.idual
%oa (I) .chromosome = ceil (rand (compsize, locus (end, 2) *2)

p () .cromosome =.cc.1 (rand (compsi ze, locus (en.d, 2)) *2)
1;

popa(l) .rank = ones (comp-size,l);

popb(l).rank = ones(comp-size,l);

Assgn ID' s to all niivid uas

popa (1) .id (1: compsize) = 1:comp-size;

popb(1) .id (1: comp-size) = 1: comp-size;

%Ass!g-n each member to a. team

%Th. s is just picking a. batch of individuals and then assigning th.m to a
eam

for team = l:experiment.corp-teama

popa(l) .team _id(experiment.subteam_size*team-

experiment.subteam_size+l:team*experiment.sub team_size) =team* ...
ones(experiment.subteam size,l);

popb(l) .team id(experiment.subteam_size*team-

experiment.subteam_.size+l:team*experiment.subteamsize) =team* ...
ones (experiment .subteam-size, 1);

end

id sub-teams now

% ofbe o r ind.i.vi..dual s in the subteamlas
sub-size = experiment.subteams*experiment.subteam_size;

This a.Locates memory ahea.o of time for the various population. attriutes

for generation=1: experiment. generationmax+l
subteam(generation) .chromosome = zeros (sub size, chromjlen);
subteam(generation) .teamid = zeros(sub-size,l);
subteam(generation).id = zeros(subsize,1);
subteam(generation) .rank = zeros(subsize,l1)

81

subteam(generation) .network = zeros (subsize,experiment.net size)
% hich pop a iniduaVrl iin the network is from. 1 - other population

subteam(generation).netteam = zeros(sub size,experiment.net size);

subteam(generation).corpid zeros(sub size,l);

subteam(generation) . team-policy zeros (experiment .subteams, chromlen);

subteam(generation) .teamranking = zeros(experiment.subteams,l);

SFor Debugging purposes.
subteam(generation) .xover = zeros(sub_size,1)

end

Cr E ate a initial val e f(r AIacn i.no I.iua

%subteam (l) . chromosome = ceil (rand(sub size, locus (end, 2)) *2) -1;

% nitialize everybod.ys rank to 1.
subteam(l).rank = ones(subsize,l);

% Assini 1.' st) a1 indiviL-uaals

cntr 1;

for i = 1:2:subsize

subteam(l) .id(i) = cntr + compsize;

subteam(l) .id(i+l) = cntr + compsize;

cntr = cntr + 1;

end

clear cntr;

% This Is -just p1 c~ickiig a batch of ind.ividua.ls and ther. assigning them to a

for team = 1:experiment.subteams

subteam(l) .teamid(experiment.subteamsize*team-

experiment .subteam_size+l:team*experiment.subteam_size) =team* ...

ones (experiment. subteam-size, 1);

end

for team = l:subsize

STake team arid divide by 2 and assign by vectors

%i Ietfing whih company an individual care rrm.
if mod(team,2)

subteam(l).corp_id(team) = 'a';
else

subteam(1) .corpid(team) = 'I'
end

end

re ate an. ni.ti.a vaue for eac iLn.vidu a

switch distribution

case 1

disp (s Uig a uni form distribution to create poic ies ')

popa(l) .chromosome = ceil(rand(compsize,locus(end,2))*2) -;

popb(l) .chromosome = ceil(rand(comp-size,locus(end,2))*2)-l;

82

subteam(l).chromosome ceil(rand(sub_size,locus(end,2))*2)-1;
case 2

disp ('Usin a unorm distribution to create p..icies arounr 2 means)
[popa(l) .chromosome, popb() .chromosome, subteam(l) .chromosome]

biaspolicy(popa(l) .chromosome, popb(l) .chromosome,

subteam(1).chromosome,...

ul, u2, drange, margin);

otherwise

error('>>> This is not a valid initialization case <<<')
end

%.*************** This is the main loop *************************

Soxpe riment .oneraton ma.x 3;

% Creates a handle for the figurge

switch movieswitch
case 0

case 1

moviefig = figure;

otherwise

error ('>>> Th.i.s is not. a. valid. movie option <<<')

end

for gen = 1:experiment.generationmax % Need to expand this for the total

number of genferati on1s

% *** ** * *** ** **** Create team p;oli~cies *** * ** * * * ** * * * ***

% This computes the team policy for the subteams (mixed teams)

for i = 1:experiment.subteamsize:subsize

subteam (gen) . team-policy ((i+experiment. subteam_size-

1)/experiment.subteam size, :) = ...
team-policy(subteam(gen) .chromosome(i:i+experiment.sub team_size-

1,1:chromlen),...

subteam(gen) .rank (i: i+experiment. subteam_size-1))-48;

end

%dsp (P Return :r(:m Sub rtn '..
%sUbtea.2(i) . teampolicy

%rhis computes the team policy for both corporations

for i = 1:experiment.subteamsize:comp size

popa(gen) .team-policy((i+experiment.subteam_size-

1)/experiment.subteam size,:) = ...
teampol icy (popa (gen) .chromosome (i: i+experiment. subteam_size-

1,1:chromlen),...
popa (gen) . rank (i: i+experiment. subteam_size-1)) -48;

83

popb(gen) .team_policy((i+experiment.subteamsize-

1)/experiment.subteam-size, :) = ...
teampolicy(popb(gen) .chromosome(i :i+experiment. subteam_size-

1,1:chromlen)

popb(gen) .rank(i:i+experiment.subteamsize-1))-48;
end

***************** Evaluate Team F it.nesses *******************

rC rt pal icie t o actuaL ners
% ContL (ains t pol.ici-es in this order: popa, popb, & subteam

% oly vC= [b idec (char (popa (.) team policy-+));..

b In:dec (ciar (popb (1) .team policy -+48));.

% e (ch ar subteam (1.). team.po li+'. c) 4 ';

%pol ,cv VC.C

policyveca
policy-vecb
policyvecs

policy-veca
policyvecb
policyvecs

policy-veca
policyvecb
policyvecs

% This is
tpolicy

% subplot (

pol.icy vec /2 (chprom.len)) ;
poiyvec *di ff (experiment,. domain) + experiment .domea();

[bin2dec (char
[bin2dec (char
[bin2dec (char

(popa(gen) .team-policy+48)) ';
(popb(gen) .teampolicy+48))]';

(subteam(gen) .team-policy+48))] ';

(policyveca/base^ (chromlen));

(policy-vecb/base^ (chrom.len)) ;
(policyvecs/base^ (chromlen));

policy-veca*diff (experiment .domain)

policy-vecb*diff (experiment .domain)

policy-vecs*diff (experiment.domain)

o capture the histog-raxm
policy veca policyvecb
211)

+ experiment.domain(l);
+ experiment.domain(l);
+ experiment.domain(l);

policy-vecs];

tpol(gen,:) = tpolicy;

avg-teamp(gen) = mean(tpolicy);
varteamp(gen) = var(tpolicy);

avga (gen)

vara (gen)

avgb(gen)

varb (gen)

= mean(policyveca);
= var(policyveca);

= mean(policyvecb);
= var(policyvecb);

avgs(gen) = mean(policy-vecs);
vars(gen) = var(policyvecs);

switch movieswitch

case 0

case 1

% Creating a- movieA of the histogram

[n(gen, :), bincen(gen,:)] = hist(tpolicy);

84

%S L t, 221k /I)

hist(tpolicy);

title ('Hiso ram For All. TI"e ams')
axis([experiment.domain(1) experiment.domain(2) 0 max(n(gen, :))+2])
xlabel (Team Policy (Number of Pirogrammers))
ylabel (Number of Teams WIth PolLicy')
grid;

figure(movie fig);

m(gen) = getframe;

%sub-L ot (2 22)
%list'(policv veca) ;

%tile(CrpA Teams')
%gr d;

%a (n) =getframe ;

.supt1t (223)
%1is (policy...vech);

%titE:(, Corp B Tam '-:)r

mb(ge) = geotframe;

%subpot'(24)
%s, o i. 1cyvecs)r;

% subp o j(212)

I hist (policy.vec)

otherwise
error ('>>> Tinis is no a valid movie opt.Ion <<<'

end

% Thc retu :r ns tIe fi t ns s of eacih team1 pc1. : slIcy

fit a = net fitness(policy-veca);
fit b = netfitness(policyvecb);
fit s = net fitness(policyvecs);

%**Tis is uasd t11o turn Onl rank ing **

i -eI <= 20
SUs n omotion for non-promotion

% va c, pna (genI) .eam raninlg] = It _.pro in2 (i ita) ;

% [promvalb, popb) (gen) team ranking] = net0rOmotion2/(fito)
% [prm val, sut am(gn) .t(' 05 Vr1nPi =c ntprOTmOt'n2(f its);%1 s

% % UsC pOtn 0to allow for P rnotion of i ndi vidua s
% pon ja.la,opa (gEni) . 1eamr anking] r etUr mon(f

[pr'ih vaLI, pc1O" (ger') team ranking] =)et prCmTtion (fit b)

85

% rm val. s subt:ea6RI (gen) . team0rank.ing] rit promt ion (fi s)

% *** Promotion is calculated here

switch prom mode

case 1
di sp('Cas I - ara t teamt evaluation bet:ween c, rporat.ons);
[prom vala, popa(gen) .teamranking] = net-promotion(fita);
[prom valb, popb(gen) .teamranking] = netpromotion(fit-b);
[prom-vals, subteam(gen) .teamranking] net-promotion(fit-s);

%Tese~ var ia bI.es5 ar efor m0nit or ing p ury;>oses
m-vala(:,gen) = prom vala;
m-valb(:,gen) = prom valb;
m-vals(:,gen) = prom-vals;

case 2

disp('Case 2 - All teams are evaluated together);

alength = length(fit-a);
blength = length(fitb);
slength = length(fit-s);
fitall = [fit-a; fit-b; fit-s];
[prom-val, team-rankings] = netpromotion (f itall);

promjvala = promrval(l:alength);
prom valb = prom val(alength+1:alength+blength);

prom vals = prom val (alength+blength+1:alength+blength+slength);

popa(gen) .team ranking = teamrankings (1 :alength);
popb(gen) .team ranking = teamrankings (alength+l:blength);
subteam (gen) . teamranking = teamrankings (...

alength+blength+1:alength+blength+slength);

% tamrankiri.gs

% ro vala'
%.rom valb'

%,or o m -v als
%p 'al'

%-pause;

% These variables are for monitoring pu.icpOS.es
mrvala(:,gen) = prom-vala;

mnvalb(:,gen) = prom-valb;

m-vals(:,gen) = promVals;

case 3

di sp (Case 3.(-4:-ara to tea.m evaLuation between crorations but no

promot ion);

[prom vala, popa (gen) .teamranking] = netpromotion2 (f ita) ;
[prom valb, popb (gen) .teamranking] = netpromotion2 (f itb) ;
[prom vals, subteam(gen) . teamranking] = net-promotion2 (fit_s)

% These variables are for monitoring purposes

m_vala(:,gen) = prom vala;
m_valb(:,gen) = prom-valb;

m_vals(:,gen) = prom vals;

86

case 4

disp ('Case 4 All teams evaluated together but no promotion
alength = length(fit-a);
blength = length(fit-b);
slength = length(fit-s);

fitall = [fit-a; fit-b; fit-s];
[prom-val, team-rankings] = netpromotion2 (f itall);

prom vala = prom-val(l:alength);
prom valb = promval (alength+l:alength+blength);
promrvals = prom val (alength+blength+l:alength+blength+slength);

popa (gen) .teamranking = teamrankings (1:alength);
popb(gen) .team-ranking = teamrankings (alength+l:blength);

subteam(gen) .teamranking = teamrankings(...
alength+blength+l:alength+blength+slength);

% .ea.. _rankings
%pronva1 a

-rom valb'
%ni-rT.m va '

%orom va"L'

%These variables are for monitoring purposes

m-vala(:,gen) = prom vala;
m-valb(:,gen) = promvalb;
m_.vals(:,gen) = prom-vals;

case 5

* *

separa.te..i..y.
ihis is used to tur onrnin11rvaie
., -* *'k

are ranked

disp ('Case 5 - Promotion i.S turned on with a delay. Compani.es are

rank d separately ');
if gen <= step

Use notpromoti on2 for non-promotion
[prom _vala, popa(gen) .team ranking] = netpromotion2 (fita);
[prom valb, popb(gen) .team ranking] netpromotion2 (fitb);
[prom vals, subteam(gen) .teamranking] net-promotion2(fits);

else
disp('Promotion is enabled ')

Use neti r-ooion to allow for promoti.n 0f individua.s

[prom vala, popa (gen) . team-ranking] = netpromotion (f ita);
[prom valb, popb(gen) .team ranking] = net-promotion(fit-b);
[prom vals, subteam(gen) .teamranking] = net-promotion(fit_s);

end

% These va.r.i ables are for monitoring purposes
mvala(:,gen) = prom vala;
m-valb(:,gen) = prom valb;
m-vals(:,gen) = prom vals;

case 6

87

* Ts is use<-d to turn on r..-arking CDpanis are r-an.d, tgee..r

disp ('Case 6 - Promot ion is turned on wi th a. delay. Comparies are
r ankred t eot hr');

if gen <= step

% Use net -.promotion2 for non-promot ion

alength = length(fita);
blength = length(fit-b);
slength = length(fit-s);

fitall = [fita; fitb; fits];

[prom val, teamrankings] = netpromotion2 (f itall);

promvala = prom val(l:alength);
promvalb = promval (alength+1: alength+blength);
promvals = prom-val (alength+blength+l alength+blength+slength);
popa (gen) . teamranking = teamrankings (1: alength) ;

popb(gen) .teamranking = teamrankings (alength+l:blength);
subteam(gen) .teamranking = teamrankings(...

alength+blength+l:alength+blength+slength);

else

di sp ('Pr omro ti i.s: j. I na bIed '.)
Use net promotion to allow for promotion of individuals

alength = length(fita);
blength = length(fitb);
slength = length(fits);

fitall = [fit-a; fit-b; fit-s];

[prom val, teamrankings] = net-promotion(fit-all);

promvala = prom val(l:alength);

promvalb = prom val(alength+l:alength+blength);
promvals = prom val (alength+blength+l:alength+blength+slength);

popa (gen) .teamranking = teamrankings (1: alength) ;

popb (gen) .teamranking = teamrankings (alength+1: blength);

subteam(gen) .teamranking = teamrankings(...
alength+blength+l:alength+blength+slength);

end

% These vari.ab.es are 1r monitoring prposes
m-vala(:,gen) = prom-vala;

mnvalb(:,gen) = prom-valb;
mrvals(:,gen) = prom vals;

otherwise

error('>>> This is not- a valid promotion case <<<')

end

88

for i = 1:experiment.sub teamsize:comp_size

ae t--akinx the prmot ion values for the teams

ancd ten multipolying them to the individual's 'ar on te teams.

% trs the current gneration rak in va b ar ak b1as J. e new

The

e hankina is pa6ssd over t o the netshuf r rutn.s moved wi th

vndi.vidua. to the new team. After the shuffle, the old rankinc
inf rmati)n

is placed back into the current ceneration.

arank(i: (i+experiment.subteam_size-1) ,1) =
popa(gen) .rank(i: (i+experiment.subteamsize-1));

popa(gen) .rank(i: (i+experiment.subteamsize-1)) =

popa (gen) . rank (i: (i+experiment. subteam size-1))*. ..

prom-vala((i+experiment.subteamsize-i) /experiment.subteam_size);

brank(i: (i+experiment.subteamsize-1) ,) =

popb(gen) .rank(i: (i+experiment.subteamsize-1));

popb (gen) . rank (i: (i+experiment. subteamsize-1))

popb (gen) . rank (i: (i+experiment. subteam size-1)) *...

prom-valb((i+experiment.subteamsize-i) /experiment.sub team_size);

end

%uk =-U;
% ior (gen) = 1prom vala (uk) aopa (gen) rank ('u Zexperimet ..suteams i e)

poa (ge n+ .4 anka (uk* xper iment - b eam 1 ze);

for i = 1:experiment.sub team size:subsize
%e' are takJin g t- promroi 'i Ivalues for the teams

% and m Iu[tpi them o the individasank on te teans.

't-ores the current generation rank. in V a.e arank, because the new

cormrput:.ed in this curren t generation and overwri t es the old inf'rmation.

%new rcrank.i~ngc ai s passed oh:ver t:i the t ffr routire arld s move(i

th
%d ividal to t he new tea. Af ter the shf fle, th old rank.ing

in(.ration

% is placed back into the current gene.ra.t.i on.

srank(i: (i+experiment.subteamsize-1) ,l) =
subteam(gen) .rank(i: (i+experiment.subteamsize-1));

subteam(gen) .rank(i: (i+experiment.subteam size-1))

subteam(gen) .rank (i: (i+experiment. sub teamsize-1))* ...

prom-vals ((i+experiment. subteamsize-1) /experiment. sub teamsize)

end

%1T.i section ranomvly assigns 1-1ni..viduals to new teams, using the routine
% r ne C~sho I:lera2. .A Iteriwa rds,

89

[popa(gen+1) ,popb(gen+1) ,subteam(gen+1)] =
netshuffler2 (popa(gen) ,popb(gen) ,subteam(gen));

for i = 1:experiment.subteamsize:subsize

subteam(gen) .rank(i: (i+experiment. subteamnsize-1))

srank(i: (i+experiment.subteamsize-1) ,l);

end

for i = l:experiment.sub teamsize:comp size

popa (gen) . rank (i: (i+experiment. subteamsize-1)) =
arank(i: (i+experiment.subteamsize-1),l);

popb (gen) . rank (i: (i+experiment. subteamsize-1)) =
brank(i: (i+experiment.subteamsize-1),i);

end

%********* Larnling Procedure **********

switch learning

case 1

disp ('Case 1- No Learning'

case 2

disp ('Case 2- Learning in all teams')

aring. in Pona.

[popa(gen+1) = netlearningi (popa(gen+i) ,experiment.subteam_size,

experiment.pcrossover,..

experiment .pjmutation, experiment .pnetwork);

Lea 1 rig 1-n Ponb

[popb(gen+l)] = netlearningi (popb(gen+l) ,experiment.subteamsize,
experiment.p-crossover,...

experiment .pjmutation, experiment .p_network);

% J., r ni ng i I inUI S-UbLE:O amY-1s (MixId E tams)

[subteam(gen+1)] = netlearningi(subteam(gen+l),experiment.subteam size,
experiment.p_crossover,..

experiment .pmutation, experiment .p-network);

case 3
Mixed t: ea earning)nly

disp ('Case 3 Learning in mixed teams only'

[subteam(gen+1)] = netlearningi(subteam(gen+l),experiment.subteam size,
experiment.p_crossover,..

experiment .pmutation, experiment .pnetwork);

case 4

disp('Case 4 - Learnin i.n al. teams after a. neiay

if gen > stepl

di sp ('LearnIingo Eabled')
fLearning in Popa

[popa(gen+l)] = netlearningi(popa(gen+l),experiment.subteamsize,

experiment.pcrossover, ...
experiment.p mutation, experiment.p_network);

90

% Lea rig inPp

[popb(gen+1)= netlearningi (popb(gen+1) ,experiment.subteamsize,
experiment.pcrossover, ...

experiment.pmutation, experiment.pnetwork);

% Learning in Subteams (Mixed teams)
[subteam(gen+1)] =

netlearningi(subteam(gen+1),experiment.subteamsize,

experiment.pcrossover,...

experiment.p_mutation, experiment.p_network)

end

case 5

disp (Case 5 - Learningi in mixed teams after a delay'

if gen > stepl

di sp (Learning Enabl ('

% Mixed team learning on.y
[subteam(gen+1)] =

netlearningi(subteam(gen+l),experiment.subteamsize,

experiment.pcrossover, ...
experiment.pmutation, experiment.pnetwork);

end

case 6
disp (Case 6 - Learning and using the network

[popa(gen+1), popb(gen+1), subteam(gen+1)] netlearning(...
popa(gen+l), popb(gen+l), subteam(gen+l), experiment.subteamsize,...

experiment.p crossover, experiment.pmutation, experiment.p-network,1);

[popb(gen+1), popa(gen+1), subteam(gen+1)] = netlearning(...

popb(gen+l), popa(gen+1), subteam(gen+l), experiment.subteamsize,...

experiment.p crossover, experiment.pmutation, experiment.p-network,0);

case 7

disp ('Case 7.-Learni ng and using the network after a delay)

if (gen > stepl)
disp ('Learnirn, and Networ.k is Enablecd.')

[popa(gen+1), popb(gen+1), subteam(gen+1)] = netlearning(...

popa(gen+1) , popb(gen+1) , subteam(gen+1), experiment.subteamsize,...

experiment.p crossover, experiment.pmutation, experiment.p-network,1);

[popb(gen+1), popa(gen+1), subteam(gen+1)] = netlearning(...
popb(gen+1), popa(gen+1), subteam(gen+1), experiment.subteamsize,...

experiment.pcrossover, experiment.p mutation, experiment.pnetwork,0);

end

otherwise

error('>>> This .i.s not a valid promotion case <<<'

end

disp ('T his is._ generation:

gen

end % n of generation for Loop

91

avg-fig = figure;

figure(avgfig);

subplot (221)

plot (1:experiment.generationmax,avgteamp, 'r

, 1: experiment. generation-max, var_teamp, 'b:)
xlabel ('Generat ions '

ylabel ('Average - ed & Var iance - Blue')
title (Populat ion Avg & Var over Gens')

grid;

subplot (222)

plot (1: experiment. generationmax, avga,

,1: experiment. generationmax, vara, 'Ib:

xlabel (' Generationcs')

ylabel (' Average - e. & Parian -I .Blue)
title (I Population A Avg & Var over Gens

grid;

subplot (223)

plot (1: experiment. generationmax, avgb,' -

,1: experiment. generation_max, varb, 'b:'

xlabel ('Genera ens)
ylabel ('Average.--. Red & Variance - Blue'

title (F Popueation B Avg & Var over Gens '
grid;

subplot (224)

plot (1 :experiment .generationjmax, avgs,'r-

,1: experiment .generationmax, vars, ' b:)
xlabel (F Gnr r ns c r 'F)

ylabel (' Average - Red & Variance - Blue ')

title (' Popu l.at.i..on Mix Avg & Var over Gens F,

grid;

disp (F' Si muuti on aTe 'F)

ftimer=cputime-timer % Fin.sed

92

10.2.7 Networkisim.m - Core of Fully Merged Company Simulator

% RaymIUC)d 'P,,(:) 2001
% Single company sirmulator

disp (* ************* Single Company Simulator * **********)

% .***

No promotional value. is used (no weighting) -

%roiiotion is used (wighting)

% (7)Pr (m1tion. >1 (we .ih t:ing) is7. t urnad o~n aftear a s pe()ca.iied:a numbe r
gneratr on

%T"he vai7.a'bIle s te) 1-S ts.. (speci fy t: rumbar (
generat ions /o weighting.

% ot .Dm . on (w.it i s urnd on ait: r a scii7 n(umr:(

ofgnarati ons
%.Ih vaJj .rib].a 1 tey. 7i us (N 7 o spa cify t he P'um2(r)7(71

generatiions w/ o weighting.

prom_mode =3;
step = 10;

..

* 1** * ** ** *

Mode

2

Sets the Learnig mode. **********

No Iea rninc occuis.

Learning i..n all teams occur.

Lea- ning in all teams occur after a certain time.

V a riaab11e77 stp.is s Lo i:ndi.7cate whtieni. ling7is tued

learning = 3;

stepl = 40;

*. * ***

% 1

Sets the Histogram movie mode. **********

No movi

Movieswitch is set o' 1. anc a movie is recocieDO.

93

movieswitch = 1;

%- * ** * * A**** Di~mensiornal Resoltn *1 ~f *** A** ****

S se~~~1.)n Alu te th, nnb E-. 'It nRed: fr (a- g ne in t'

SChr omo s o me.
locus=zeros(size(experiment.domain,l),3);
for dim=1:size (locus, 1) % 1 toength of locus (rows)

locus(dim,3)=ceil(log2(abs(experiment.domain(dim,1)-
experiment.domain(dim,2))/experiment.epsilon(dim)));
end

% ow ve sLt-art to uil. he Srng
% (S tart ing bit Stopping bit i
locus (1, 1) =1;
locus(1,2)=locus(1,3);
for dim=2:size(locus,l)

locus(dim,1)=locus(dim-1,2)+1;

locus(dim,2)=locus(dim,1)+locus
end
fprintf(Strng loci (left, right,

disp (locus) ;

o c i c e E i.f n. i. it: i.n. t:),r
Segment length.) for each gene

(dim, 3) -1;

and lengths) per dimension:\n)

timer=cputime; % start

% ia .e T Dopulations

generation = 1;

chrom__len = locus(end,2);

comp size = experiment.corp_teama*experiment. subteam-size;

% ********* Sets the initial population policy di.stributon.

M Mode Desc.

Creates policies based on a uflirm distribution over the

dynami.(-r.an .

Com*pany will

:itibutit.on

Creates pa1ices ase. on a uf r .t Jistbution

have a mnean of u .Margi.n speeci.i hoVi wid 1t.

sh.oul. d spread. around tIhe mean.

distribution = 1;
base = 2;

drange = base^chrom-len;

94

ul = 2;

margin 1;

%1 In dex (Gden er atiaons)

% Th is alL. atas memofr ahaa L (f time or the ari-us p1pu.ai I n. 1.arIuts

f or generation=1 :experiment .generationmax+1

popa (generation) .chromosome = zeros (comp_size,chrom-len);

popa(generation) .teamid = zeros (compsize,1);

popa(generation) .id = zeros(compsize,1);

popa(generation) .rank = zeros(compsize,1);

popa(generation) .network = zeros (compsize,experiment.net_size);

% i op a anndividua in ti-i e netlris frm1 - nther popsfa rio

Des ibes the company an individal is from

popa(generation) .netteam = zeros (comp_size,experiment.net size);

popa (generation) team-policy = zeros (experiment .corpteama, chromjlen);

popa(generation) .teamranking zeros(experiment.corpteama,1);

%or Debu~igg2 ig purposes.

popa(generation) .xover = zeros(compsize,1);

end

%2 ..reate an iitia. Va . Or eah inaicviua.L

popa(1) .rank = ones(comp-size,1);

% Assigan ID's2 t : ala. idiv. iuai.s
popa(1) .id(1:comp size) = 1:compsize;

Assign0 hac. member to a. team

%Tis is.5 j]ust p..ickinig a. batch of i.nd.iA..vidua.ls and then assigning them to a
t amII
for team = 1:experiment.corpteama

popa (1) .teamjid(experiment.subteamsize*team-

experiment.subteam_size+1:team*experiment.subteam_size) =team* ...
ones (experiment.subteam-size,1);

end

% rat .. an i. vaLe f (r a c a. uinfivia a

switch distribution

case 1

disp (Using a uni. form distribution to creat(e poL.icies

popa (1) . chromosome ceil (rand (compsize, locus (end, 2))*2) -1;
case 2

di sp('Usig a.)n irm distribut.on to .eat a iasad pli.cy aro.:nd a.
,Mean')

[popa(1) .chromosome] = bias-policyone (popa(1) .chromosome, ul, drange,
margin);

otherwise

95

error (> s is nOt a varl initialiLzation ase
end

%. *** **k*******************~ 'is is the main loop ****** *A* * ** ** ******

Cr El.s a hand.l.e r the Cig0.

switch movieswitch
case 0

case 1
moviefig = figure;

otherwise
error ('>>> Tli. s is not a valid movie opt.i on <<<'

end

for gen 1: experiment. generationmax % Need to expand lh.s for the tota.
nUml.be <.. Cr.: Qf eIeraCti. Ons

* AA ** * A 1 * A *'A * ~zet:: 50111 p ~icis *~ **k A . -k *k -A * . k*

% Thi.s computes the team policy for the cororat ion
for i = 1:experiment.sub team_size:compsize

popa(gen) .teampolicy((i+experiment.subteamsize-
1)/experiment.subteam size, :) = ...

team-policy(popa(gen) .chromosome(i:i+experiment.subteamsize-
1,1:chromlen)

popa (gen) .rank (i: i+experiment. subteam_s ize-1))-48;

end

S*** * * ***** ***** Evaluat e Team Fitnesses *********** *

policyveca =
policy-veca =
policy-veca =

[bin2dec(char(popa(gen) .team-policy+48))] ';

(policyveca/base^ (chromlen));

policy_veca*diff (experiment.domain) + experiment.domain(l);

T.is iS to capture the histogr~am

tpolicy = [policyveca];

% t (21l)

tpol (gen,

avgteamp

varteamp,

(gen)

(gen)

tpolicy;
= mean(tpolicy);
= var(tpolicy);

switch movieswitch
case 0

96

case 1
Creatin a movie of the histogram

[n(gen,:), bincen(gen,:)] = hist(tpolicy);
hist(tpolicy);
axis([experiment.domain(1) experiment.domain(2) 0 max(n(gen, :))+2])
title (' His togram For All. Tneams')

xlabel (Team Pol.cy (Number of Programmers)
ylabel ('Number 0f Teams With Pcicy

grid;

figure(moviefig);
m(gen) = getframe;

otherwise
error(>>> This is not a valid movie option

end

SThiT sots t e :f:itne f e ac t e am po i..:I.cy
fita = net_fitness(policyveca);

% ** Promoti is calculated here * **

switch prommode
case 1

disp (' Case 1. No promot.in used');
[promvala, popa (gen) . teamranking] = net-promotion2 (f ita);

% This variable are For monitoring purposes

m-vala(:,gen) = promrvala;

case 2
disp ('Case 2 - Promot i0n used')

[prom vala, popa (gen) . teamranking] = net_promotion (f it_a);

% This variable are for monitoring purposes
mnvala(:,gen) = prom-vala;

case 3

% bis is used to turn on ranking. ***

disp ('Case 3 - Promotion is turned on with a delay.

if gen <= step
- Use net promotion2 for non promotion
[promvala, popa (gen) . team-ranking] = net-promotion2 (f ita);

else
disp ('Promotion enabled')
% Use nlet prom)ti1 on to a ow fri ;>romoti 2.0 of .ndividials
[prom vala, popa(gen) .teamranking] = net-promotion(fit-a);

end

% These variables are ror monitoring plurposes

97

m_vala(:,gen) = prom vala;

case 4

* This is used to turn on ranking. ***

disp ('Case 4 - Demotionis turned on with a de ay.

if gen <= step

% Jse not promotion2 for nonpromoL ton
[promvala, popa(gen) .teamranking] net-promotion2 (fit-a);

else

disp('Demotion. enabled ')
% U2 nretprOmYti0n to allOw fo prmotin of indi viduals
[prom vala, popa(gen) .teamranking] = netdemotion(fit_a);

end

These variables are for monitoring purposes
m_vala(:,gen) = prom-vala;

otherwise
error ('>>>his i-s not a vaid proo ticn case <<<'

end

for i = 1:experiment.subteam_size:comp-size

We are taking the promotion values for the teams

% and thin mi. lng thom t(the in.ivi.ua1's rank. (n the teamns

Stores the current generation rank in va-riab le arank, because the new

rankiJ.n~g i.s
oIpu n. l thi..s current generation and vercrites the old 1 n frmaio. 0

a. n i s passo over t o the notIs uff1er rtin an 'Uf.:s mUOve it.

th e

% .ndivid.a. to the new team. After the shu f F the old ranking

. is placed back into tihe current cg nraton..

arank(i: (i+experiment.subteamsize-1) ,l) =

popa(gen) .rank(i: (i+experiment.subteam_size-1));

popa(gen) .rank(i: (i+experiment.subteamsize-1)) =

popa (gen) . rank (i: (i+experiment. subteam size-1))* ...
prom-vala((i+experiment.subteam_size-) /experiment.sub team_size);

end

[popa(gen+1)] = netshuffler(popa(gen));

% Copies proper ranking back to the current generation
for i = l:experiment.subteamsize:comp size

popa (gen) . rank (i: (i+experiment. subteamsize-1)) =

arank (i: (i+experiment. subteam_size-1) ,1);

end

****&**** Tearning Procedure **********

98

switch learning

case 1

disp('Case 1. No T.earning)

case 2

disp (Case 2. Learnin in all teams

%Jri in Popa

[popa(gen+1)] = netlearningi (popa(gen+1) ,experiment.subteamsize,
experiment.pcrossover,...

experiment.p-mutation, experiment.p-network);

case 3
disp (Case .3 - Learnin in Ua.ll te(s ater a: (. y'.

if gen > stepl

disp('Learning Enabled')

%, Learning in Popa

[popa(gen+1) = netlearningl (popa(gen+1) ,experiment.subteamsize,

experiment.p crossover,...

experiment .p_mutation, experiment .pnetwork);

end

otherwise

error (>>> Tis is not a valid promotion case <<<'

end

disp (' This is generation: ')

gen

end % End Of enerat ion for Loop

avgfig = figure;

figure(avg fig);

plot (1: experiment. generation-max, avgteamp, 'r-
,1:experiment.generationmax,varteamp, 'b: ')

xlabel ('ent ions ')
ylabel ('Average Red & Variance Blue ')
title (Popul at i-on Avg & Var over Gens
axis ([1 experiment.generationmax 0 max(avg teamp)+2])

grid;

disp (Simulation Time
ftimer=cputime-timer % Pinishe3

99

10.2.8 Teampolicy.m

function [chromosome] = team_policy(team, trank)
i creaes Ie net team policy, given a team.

%J 2em = i c fchar (48 + eam)
%ak :nt(trank)= :enath(trank)

%wum =su ((in2deC (char~ (4 8+team)) A*trank))
%sup =sum'trank)

teampol = round(sum((bin2dec(char(48+team)) .*trank)) /sum(trank));
chromosome = dec2bin(team_pol, length(team(l,:)));

100

10.2.9 Rip.m

function [a, b] rip(subt)

his s ubr out I ne is use to break-up the mIxeI suteam gr up
into One poroa and popb group. These subgroups are then returned

% to beino rpo r ate. with the pop.&tins or t A an.d B Orporations

%i sp('** This is the length in the rip subroutine ***

len = length(subt.chromosome(:,1));

% P (.**bSubea I n o * -* *)

%subto orp idt

cnta = 1;
cntb = 1;
for i = 1:len

if subt.corpid(i) == 97
a.chromosome(cnta, :) = subt.chromosome(i,:);
a.id(cnta) = subt.id(i);
a.rank(cnta) = subt.rank(i);
a.network(cnta,:) = subt.network(i,:);

%Debug pu rpos es
a.netteam(cnta,:) = subt.net_team(i,:);
a.xover(cnta,:) = subt.xover(i,:);
cnta = cnta + 1;

else
b.chromosome(cntb,:) = subt.chromosome(i,:);
b.id(cntb) = subt.id(i);
b.rank(cntb) = subt.rank(i);
b.network(cntb,:) subt.network(i,:);

Debug purposes
b.netteam(cntb,:) subt.net_team(i,:);
b.xover(cntb,:) subt.xover(i,:);
cntb = cntb + 1;

end

end

%. D0e6:u s tuf I
%disp ('** * Size Sof po: A * **'

%size (a . chromosome (: , 1))
%disp (Jk-k SIze o I rp B -A*o-))

i-ze (D i chromosome (1)

101

10.2.10 Netshuffler2.m

function [popa, popb, subt] = netshuffler2(popa, popb, subt)

Only the current generat-ion is passed. over.

lenpa = length(popa.chromosome(:,1));
lenpb = length(popb.chromosome(:,l));

lens length(subt.chromosome(:,l));

%h rp t.he cmbind subt.eam apart
[suba, subb] = rip(subt);

sublen = length(suba.chromosome(:,1));

% Now we combine the subteam members with the rest of the population

[tpopa] = combine(popa, suba);

[tpopb] = combine(popb, subb);

range = length(tpopa.chromosome(:,1));

% Now e s wap al :f the indi vidual
for i = 1:range

rndposa = ceil(range*rand(l,l));
rndposb = ceil(range*rand(l,l));

tpopa = swap(tpopa, i, rndposa);

tpopb = swap(tpopb, i, rndposb);

end

% e spit to :ew sbteam m.mers .rm the i;>Tpua ti)Yn

[tmpa,suba] = split(tpopa, lenpa, sublen);

[tmpb,subb] = split(tpopb, lenpb, sublen);

Now we combine the subteam members

temp = sew(suba,subb);

Add. attributes that have changed back to the populations

subt .chromosome = temp . chromosome;

subt.id = temp.id;

subt.rank = temp.rank;

subt.network temp.network;

subt.netteam = temp.net_team;

subt.xover = temp.xover;

popa .chromosome = tmpa. chromosome;

popa.id = tmpa.id;

popa.rank = tmpa.rank;

popa.network = tmpa.network;

popa.net team = tmpa.netteam;

popa.xover = tmpa.xover;

popb. chromosome = tmpb. chromosome;

popb.id = tmpb.id;

102

popb.rank = tmpb.rank;

popb.network = tmpb.network;

popb.net team = tmpb.netteam;

popb.xover = tmpb.xover;

% Ad iri sew rout irlE? anid then rec o.bi.ne r.ti.ne, or pt rermn : i..nt sew
anI pass over

%th sb t:eaa vari able.

popa;
popb;

subt;

103

10.2.11 Combine.m

function [tpop] = combine(pop, sub)

lenp = length(pop.chromosome(:,l));

lens = length(sub.chromosome(:,l));

tpop = pop;

for i = l:lens
tpop.chromosome(i+lenp,:) = sub.chromosome(i,:)
tpop.id(i+lenp) = sub.id(i);

tpop.rank(i+lenp) = sub.rank(i);

tpop.network(i+lenp,:) sub.network(i,:);
% Debu4g purposes

tpop.netteam(i+lenp,:) = sub.netteam(i,:);

tpop.xover(i+lenp,:) = sub.xover(i,:);
end

104

10.2.12 Swap.m

function [pop] = swap(pop, p 1 , p2)

swa 2 individuals given their location within the nopulati. on

%size(pop. chromosome)

temp. chromosome(,:) = pop.chromosome(p2,:)

temp.id = pop.id(p2);
temp.rank = pop.rank(p2);

temp.network(l, :) = pop.network(p2,:);

% Debug erms

temp.netteam(l,:) pop.net-team(p2,:);
temp.xover(l, :) = pop.xover(p2,:);

pop.chromosome(p2, :) = pop.chromosome(pl,:);
pop.id(p2) = pop.id(pl);
pop.rank(p2) = pop.rank(pl);
pop.network(p2,:) = pop.network(pl,:);

%Delbug

pop.net-team(p2,:) pop.netteam(pl,:);

pop.xover(p2,:) pop.xover(pl,:);

pop.chromosome(pl,:) = temp.chromosome(l,:);

pop.id(pl) = temp.id;

pop.rank(pl) = temp.rank;

pop.network(pl,:) = temp.network(l,:);

% D elbuig
pop.net-team(pl,:) = temp.netIteam(l,:);

pop.xover(pl,:) = temp.xover(l,:);

105

10.2.13 Split.m

function [pop, sub] = split(tpop, lenp, lens)

% This spi.ts tpop into the sub pop and pop components

is (' ***********I* TLIT FUNCTION

pop.chromosome(l:lenp,:) = tpop.chromosome(l:lenp,:);

pop.id(l:lenp,l) = tpop.id(l:lenp);
pop.rank(l:lenp,l) = tpop.rank(l:lenp);

pop.network(1:lenp,:) = tpop.network(1:lenp,:);

% ug pu) 0 SEs

pop.net team(1:lenp,:) tpop.network(1:lenp,:);

pop.xover(l:lenp,:) = tpop.xover(l:lenp,:);

%S i ze (tiD0 . C(11'r omosome)

%ens

sub.chromosome(l:lens,:) = tpop.chromosome(lenp+l:lenp+lens,:);

sub.id(l:lens,1) = tpop.id(lenp+1:lenp+lens);

sub.rank(l:lens,l) = tpop.rank(lenp+l:lenp+lens);

sub.network(1:lens,:) = tpop.network(lenp+1:lenp+lens,:);

% Debug purposes

sub.net team(l:lens,:) = tpop.netteam(lenp+1:lenp+lens,:);

sub.xover(l:lens,:) = tpop.xover(lenp+l:lenp+lens,:);

106

107

