
MASSACHU~S INGTF'11JT E

OF TECHNOLOGY

Sanitizing Private Data for Repair Systems
JUL 15 2014

by
I

Katherine Jien-Yin Fang LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2014

@ Massachusetts Institute of Technology 2014. All rights reserved.

Signature redacted
A uthor

Department of Electrical Engineerinjand f- uter Science
Feb 10, 2014

Signature redacted
Certified by...................

ilNikolai Zeldovichi
Associate Professor

Thesis Supervisor

Signature redacted
A ccepted by

Albert R. Meyer

Chairman, Master of Engineering Thesis Committee

2

Sanitizing Private Data for Repair Systems

by

Katherine Jien-Yin Fang

Submitted to the Department of Electrical Engineering and Computer Science

on Feb 10, 2014, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The SOLAR system helps restore interconnected system integrity after security attacks

with a focus of minimizing the exposure of sensitive data in the repair logs. It builds

upon Warp, a repair system for Django web applications which logs all major actions

taken by the server from incoming request to outgoing response, and addresses the

inherent security vulnerability of logging all data and actions. It provides application

developers with a way of notating particular fields as sensitive and ensures that the

exposure of these fields to the logs are minimized while maintaining and improving the

reexecution of code during repair operations. A series of tests were written to show

that SOLAR continues to support repair operations even with certain data removed.

Thesis Supervisor: Nikolai Zeldovich

Title: Associate Professor

3

4

Acknowledgments

I thank my advisor, Nikolai Zeldovich, for his support throughout this process from

advice on the work itself through guiding the thesis organization.

I would also like to thank Ramesh Chandra for his help in understanding the Warp

system. Additionally, I would like to acknowledge him and Taesoo Kim for their work

on implementing the Warp recovery system for Django, allowing me to build upon it.

Thanks to my family and friends, especially the residents of Epsilon Theta, for

supporting me through this process. Particular thanks goes to my habit party for

keeping me on track by saving polar bears, to Adam Hesterberg for waking me up

on all the important days, to Alwina Liu for showing me how to grow tomatoes, to

Melissa Ko and Anders Kaseorg for motivating me through puppies and kittens, and

to Sarah Gontarek for nagging me about dungeons.

5

6

Contents

1 Introduction 13

2 Background 17

2.1 Django . 17

2.2 Basic Access Authentication . 18

2.3 OAuth 2.0 . 19

2.4 W arp . 20

3 Design 23

3.1 Log Sanitation for User Input . 23

3.1.1 Forms . 24

3.1.2 HTTP Basic Access Authentication 25

3.2 Server-Generated Confidential Data 25

3.3 Replaying Requests . 26

4 Implementation 29

4.1 Tokens . 29

4.2 Buffered Logging . 31

4.3 Basic Access Authentication . 31

4.4 User-Generated Data . 32

4.4.1 Forms . 32

4.5 Server-Generated Data . 34

4.5.1 M odels . 34

7

4.5.2 Key Generation 35

4.5.3 HTTP Response . 36

4.6 Logging Randomization . 36

4.6.1 Server Initiated Randomness 38

4.7 Code Change Summary. 38

5 Evaluation 39

5.1 Example Application . 39

5.2 Correct Re-execution . 42

5.2.1 Documents Application . 42

5.2.2 OAuth 2.0 . 43

5.3 Sanitizable Fields . 44

6 Related Works 47

7 Discussion and Future Work 49

8 Conclusion 51

8

List of Figures

2-1 Sequence of events of how the client, resource provider, and resource

owner interact in OAuth. 19

4-1 The model definition for Tokens. 30

4-2 Diagram of how tokens interact with application code and Warp.. . 33

4-3 The Client model of oauth2app modified to mark the secret field

sensitive. 35

4-4 Code demonstrating how to wrap the random. randrange () function. 36

5-1 Code demonstrating making a form field sensitive. 40

5-2 Code modifications to make check-password compatible with the So-

LAR system . 41

5-3 Code modifications to make check-password2 compatible with the

SOLAR system . 41

9

10

List of Tables

4.1 Table summarizing code changes. 38

11

12

Chapter 1

Introduction

Although web security is better understood than it once was, web applications still

have many vulnerabilities discovered daily including cross-site scripting and SQL

injections [6]. Even when the code is correct, it is possible for site administrators to

configure the site improperly, potentially allowing malicious users access or privileges

that should have been denied. Using those permissions, a malicious user could make

unauthorized changes such as installing long-standing scripts. Discovering the extent

of the harm done and reversing the effects is often difficult. In addition, more and more

applications interact with one another and other web services today, allowing users to

use protocols such as OpenID [2], OAuth 2.0 [1], REST or other APIs [9, 8, 11, 12] to

access and manipulate information across domains. A vulnerability in one application

could compromise other connected services.

Warp [4],1 a recovery system for Django applications [7], addresses these issues.

Once a request that exploits a security vulnerability has been identified, Warp can

be used to rollback the effects. Warp can also help administrators recover from

configuration mistakes by making it possible to retroactively cancel or alter requests

to the server. Any actions that would have been prevented from proper configuration

would be rolled back while all authorized requests wold remain valid. Warp also works

in a distributed setting, capable of rolling back requests across servers [13, 5].

To accomplish this, Warp records the requests and responses made by users inter-

'Web Application RePair

13

acting with the application. These are stored in log files on disk. Database updates

are also saved using a versioned database. Major actions such as database queries

and remote requests to other servers are also stored in the log files, allowing Warp

to track input and output dependencies. To perform a repair, Warp rolls back to a

previous state and re-executes commands.

Although this approach allows recovery from a large number of undesirable situ-

ations, by logging the requests and responses on disk, Warp inadvertently introduces

a potential security vulnerability. That is, sensitive user data might be logged in the

logs themselves. For instance, many applications will send the password a user in-

putted to the server to be checked against the database. This data is often submitted

via a form, which will be logged by Warp with the rest of the request in plaintext.

Even services which use HTTPS to prevent eavesdroppers from reading packets to

discover username-password combination or other sensitive information are subject

to this vulnerability. This is due to the fact Warp operates alongside the application

on the server, allowing it to read and record the requests as the server sees it - in

plaintext.

This thesis presents SOLAR2 as an improvement to Warp. The main issue that

SOLAR addresses is removing sensitive data from the logs. The difficulty here is

to remove the sensitive data while maintaining the ability to rollback and re-execute

during repair. In order to do this, SOLAR relies on the application developer to identify

the sensitive information that should be removed. Once identified, the system can

automatically remove the information from the log while recording and replaces it

with an alphanumeric token. This token can map to a single value that is stored in

the database to help the program recover during repair. However, since the use cases

of sanitizing sensitive data might be different, SOLAR also relies on the application

developer to set the token's value as well as specify how to use that value during

repair. This thesis breaks this challenge into two parts: user-inputted data from form

data and HTTP basic access authentication, and server generated data such as secret

keys in OAuth 2.0.

2 Sanitation of Logs in Asynchronous Repair

14

Another issue is that Warp is incapable of replaying sequences with randomized

effects affecting multiple requests such as session identifiers generated on authentica-

tion. However, this type of request often is accompanied by sensitive data such as

passwords. To enable repair these types of requests, SOLAR logs randomization.

Chapter 2 gives an overview of the components used in the implementation of

SOLAR. Chapter 3 discusses the design of log sanitation and randomization logging,

and Chapter 4 discusses the implementation of these designs. Chapter 5 presents an

evaluation of SOLAR by offering an example of what must be done to alter a Warp

application to be compatible with SOLAR and addresses how well the system works.

Chapter 6 gives an overview of related work while Chapter 7 includes a discussion of

the limitations and possible extensions of SOLAR. Finally, Chapter 8 concludes.

15

16

Chapter 2

Background

SOLAR builds upon a version of Warp that repairs Django applications. It also dis-

cusses the particular use case of cleaning authentication and authorization data from

HTTP basic access authentication and OAuth.

2.1 Django

Django is a web framework written in Python [7]. Applications written in Django

can be easily dropped into different Django projects, allowing them to be ported from

one website to another with little effort. Django also provides several built-in features

to help developers such as a model system to interface with the database, a default

authentication backend, and a framework for handling forms.

Models allow developers to structure their data and interface with the database

without directly writing queries. A model can have many fields in which data can

be stored. Each model corresponds with a table in the database, and each field

corresponds with a column. An application can generate new model objects based

on user input as well as query these model objects and update them. Developers can

also provide validation for each field entry of the model as well as across the different

fields and on the overall model itself.

One often used model provided in Django is the User model used in the default

authentication backend. It is capable of storing information such as first and last

17

names and emails. More importantly for authentication, it stores username-password

combinations where the password is stored as a string that encodes the algorithm used

to hash the password, the salt, and the hash of the password. Each user is mapped

to a User model object which is created when the user registers. Later, when a user

inputs his or her information to log back into the website, the inputted password is

hashed the same way and compared to the password stored on the User model object

identified by the inputted username.

Django also provides a structured way of dealing with forms. Forms can have fields

as well as validators for each field and for the form as a whole. Perhaps unsurprisingly,

forms can be backed by models. In this case, the form's fields will be.drawn from the

fields of the model, and validation of the form calls back to the model's validation

methods. Django forms also provides methods to turn the form into HTML to print

out to the user as well as binding the user's input back to the form for easy handling

and validation. Some forms have also been provided by default for dealing with user

registration and authentication backed by the User model.

In addition to all the built in features, the Django community has also developed

many other importable features. Two used in evaluating SOLAR are Tastypie [3]

and OAuth2App [10]. Tastypie helps developers create a REST-style interface to the

application's data and can accept authentication through basic access authentication.

OAuth2App provides a module to help Django developers provide an OAuth 2.0

interface to their application.

2.2 Basic Access Authentication

Basic access authentication allows an HTTP user agent to provide a username pass-

word combination when making a request. This information is passed in the Au-

thorization header and is simply Base64 encoding of the username and password

separated by a colon. It provides a way to pass authentication data that does not

require forms, cookies, or session identifiers, but it is the server's job to check whether

or not the header data actually authenticates a user. Basic access authentication pro-

18

vide authentication data in both Tastypie and OAuth2App which are used to evaluate

SOLAR

2.3 OAuth 2.0

OAuth 2.0 is a protocol to allow distributed authorization [1]. The purpose is to

allow web applications, called clients, to access protected resources, of other web

applications, called resource providers, so long as the user, or resource owner, grants

permission through an access token. The protected resource might be an e-mail

address or the ability to send an e-mail on your behalf.

1. establish client public

3. forwards request

5. authorization code granted
Client Resource

Application 6. request access token Provider
7. access token granted

8. request resource using
access token

2. reqluests clien 4. confirm granting
to access provider tcif ientaccess to resource

Resource
Owner
(User)

Figure 2-1: Sequence of events of how the client, resource provider, and resource
owner interact in M~uth.

For this to work, client applications must first get a client public and secret key

from the resource provider. With this information, the resource provider will be to

authenticate later requests from the client. This set of keys does not not expire, and

is very long-lived. The set is unique between client and provider. That means that

if multiple users are own separate resources on a given provider and want the same

client to be able to access them, the client can use the same set of keys to access each

user's respective resource from the provider.

19

This set of keys, however, is not enough. This authenticates the client with the

provider, but OAuth also requires that the resource owner grant the client autho-

rization to access the resource. To do this, the resource owner can grant a client

application an authorization code with an optional scope. The authorization code

does not actually grant permission itself, but is actually a short-lived, one-time code

that enables the client to retrieve an access token from the provider. The scope

determines what sort of access the resource owner is allowing the client application.

To use the authorization code, the client needs to send its client public and secret

key to the resource provider along with the authorization code. The resource provider

will then provide an access token as well as a refresh token.

Once a client has the access token, it can send the access token along with the

client public and secret key to the resource provider which will then allow the client

access to the protected resource. The access token also has an expiration, but the

refresh token can be sent to the server to extend the expiration date of the actual

access token.

In this thesis, we use OAuth2App, a Django module that provides Django appli-

cations with an OAuth 2.0 interface.

2.4 Warp

Warp is a system that allows administrators to recover from exploited security vul-

nerabilities and misconfigurations [4, 13, 5]. It has two modes: record and repair.

During normal operation in record mode, data is stored in a versioned database,

and Warp logs records for import events such as receiving a request or querying a

model. In repair mode, the application receives repair commands which triggers re-

pair. These commands can add a new request back in time, replace data that was

sent in a request, or delete an old request.

If a repair command replaces data of a given request or creates a new request, the

state of the server is rolled back to right before that request was sent. The request

is then started with the new data, and the rest of the processing of the request is

20

replayed. If that request happens to affect other requests, such as modify a model

that is later read by a different request, then those requests are also rolled back and

replayed.

When starting the server in repair mode, the server will also build the action

history graph from the logs. There are Client and Django Actors which keep track

of the state of processing a particular request. There are also Actions. These each

correspond to one of the logged events. Each Action is responsible for understanding

how it rolls back and also how it executes repair.

This action history graph tracks dependencies between models. For example, if a

particular model object's data is modified in one repair request, and a later request

reads the data, then the later request will also be queued for re-execution. Warp also

tracks dependencies across servers by storing information about the remote requests

and responses. However, Warp treats the actual HTTP requests and responses as

independent. That is to say, in the actual course of an application it is common

for the data in one response to become input in the next request. For example, a

user will receive a session id once authenticated. This session id is passed along in

the user's later requests. By not tracking this sort of dependency, if the data in the

response is changed, it will not propagate the changed data to the next request. In

the previous example, this means that if the user receives a new session id during

repair due to randomization, the later requests will still be using the old session id.

The later requests will probably be triggered for replay because the session is backed

by the same model object, but the user's legitimate requests will be discarded as

unauthenticated.

To allow a server to accept both normal requests and repair requests, Warp runs

a repair manager. The repair manager acts as a proxy to the actual server spins up

the actual server in either repair mode or record mode based on the requests it is

receiving.

21

22

Chapter 3

Design

This chapter focuses on the design of SOLAR. It first handles the case of dealing with

log sanitation from user input perhaps from user registration or authentication. Then,

it details the design for the case when the server also generates sensitive data as is the

cause when an OAuth 2.0 server generates keys and access tokens for clients. Finally,

it deals with how to enable the repair system to successfully re-execute authentication

and authorization requests.

3.1 Log Sanitation for User Input

One of the main challenge that SOLAR addresses is the fact that Warp saves username-

password combinations in plaintext in the logs. This is a rather unfortunate breach

of security. It is hard to know what fields need to be sanitized. Once the fields are

sanitized, the repair system still needs to maintain enough information to re-execute

the code without the original data. This problem can be broken down into three

parts:

1. Knowing what to sanitize,

2. Removing the sensitive data from the logs, and

3. Ensuring repair still works without the original data.

23

We discuss these issues and their solutions in two different contexts. First, we dis-

cuss this in the context of receiving authentication through POST data from user-

submitted forms. For this, we use Django's built-in User model and related Django

forms. Second, we consider these issues when receiving authentication in headers be-

cause of basic access authentication. For this particular implementation, we consider

basic access authentication in Tastypie.

3.1.1 Forms

While it is easy to pinpoint which field of the default authentication form is the

password and therefore sensitive field, it is not generally easy to know what field(s)

are should be sanitized. To support generic forms, and not just default Django forms,

SOLAR relies on the developer to denote what fields are sensitive. To do this, we have

augmented Django forms fields to have an optional 'sensitive' field, which is set to

False by default. Once the POST data has been bound to a form, it is possible to

identify what needs to be sanitized.

To address the issue of removing sensitive form data, we first needed to buffer the

logs. Keeping the previous implementation of immediate logging would mean that the

Django framework needed to know what data in the http-body was private prior to

forwarding the data to the application. While this is possible, it destroys the notion

of separating the framework from the application.

We also introduced the concept of a token. Whenever a field is denoted as sensitive,

its data is replaced in the logs by a token string of the form token$token-identif ier

where token-identif ier is a length 32 alphanumeric string. The token string maps

to a developer-set value in the database which can be used to help replay the system.

A concrete example of the changes necessary to make an application compatible

with SOLAR can be found in Section 5.1.

24

3.1.2 HTTP Basic Access Authentication

Basic access authentication is in many cases easier than dealing with forms. We know

exactly what data needs to be cleaned, the data from the Authorization header, and

this can be removed as soon as the server receives the request. To ensure that repair

works afterwards, we use the same token methodology used with forms, relying on

the developer to provide the token with which, if any, user was authenticated.

3.2 Server-Generated Confidential Data

The challenge presented in sanitizing server-generated data is that the entry point of

the data is unknown. The example used in this section will be OAuth 2.0. While

the actual data retrieved using OAuth 2.0 might be considered sensitive, this section

focuses primarily on sanitizing data that is generated by supporting the OAuth 2.0

interface and would be present in any such application.

OAuth 2.0 has many different keys, codes, and tokens of varying degrees of sensi-

tivity. For example, each client receives two keys - one which is public, and one which

must remain secret. These keys are generally long-lived, potentially set up at the time

the client web service is set up and never again touched. With knowledge of both

the public and secret key of a client application, a malicious user could forge requests

from the client to the resource provider. If the malicious user were to further find

any access tokens, they will have essentially gained the permission from the resource

owner to access the corresponding protected resource on the provider. While these

access tokens can be shorter-lived, they can also be continually refreshed and kept

around for a long time.

The goal is to completely eliminate these client secrets and access tokens from

the logs while still maintaining the ability to perform re-execution of authorization

requests.

To address this challenge, SOLAR makes extensive use of Tokens. Anywhere the

log would write down sensitive data, we instead replace it with a token string. As

before, the token has a repair value to help with re-execution using the Token model.

25

Because the data we are dealing with is largely already stored in the database, it

is permissible to use the actual value presented during the actual execution as the

repair value. The issue then becomes tracking down all the areas in which the sensitive

data exists. We found four different areas: basic access authentication, storing and

querying model objects, generating keys, and in HTTP responses.

Removing data from basic access authentication is essentially the same as in the

case when the sensitive data is generated by users rather than the server. This is

because the client is the one sending the Authorization headers and is essentially

acting as a user of the OAuth 2.0 server. The actual data from the header is replaced

with a token, which then stores the raw header data as the repair value.

To help deal with logging model object data when saving and querying model

objects, SOLAR introduces the optional parameter sensitive for model fields. When

logging a model, the data stored in sensitive field are replaced with a token. The

actual data is stored as the token's repair data and is passed to the BufferedLog.

When the BufferedLog is flushing to disk, it can search the other log entries for

sensitive data and tokenize it before writing to disk. This allows SOLAR to tokenize

log records corresponding to key generation as well as remove keys sent in the log

record for HTTP responses.

3.3 Replaying Requests

Another minor challenge SOLAR must address is the issue that Warp cannot replay

authentication sequences successfully as mentioned in Section 2.4. This occurs both

when dealing with sensitive data from the user as well as from the server. This

happens because randomized functions are called in record and repair mode, but due

to their non-deterministic nature, a different result is returned on each call. This

often causes failures to occur and possibly kicks off more requests to be repaired than

necessary.

For instance, if an authentication sequence was replayed and the session id was

changed, this would kick off repair for all requests touched that backing session model

26

object. However, due to the fact response-request data dependencies are not tracked,

these would now have the wrong session id, and the requests would appear unau-

thenticated. An example of this occurring in OAuth 2.0 is when an access token gets

generated differently. Subsequent requests that would have worked using that access

token would now be denied.

In the case that the user should have been authenticated, the result of the user's

later requests should also be the same. There are two possible solutions to deal

with this problem. One would be to propagate the new data from response to other

requests. Another way would be to log randomization to ensure that the repaired

session id is the same. SOLAR follows the second approach. The advantage here is

that the session id would remain the same, so the user's request would not need to

be re-executed unless something other than the session id changed.

In particular, SOLAR logs the results of calls to non-deterministic functions like

random. randrandom 0. During repair, these results are then fed back to the applica-

tion to simulate the environment that the original handling of the request occurred.

27

28

Chapter 4

Implementation

This chapter discusses the actual implementation of SOLAR. It begins with the imple-

mentation of Tokens and moves on to discuss the BufferedLog. It then details how to

handle basic access authentication requests which appear both in the user- and server-

generated sensitive data cases. After this, it discusses the specific modifications for

the user-generated case followed by the specific modifications for the server-generated

case. Then, the implementation for logging randomization is discussed. Finally, we

summarize the code changes in a table.

4.1 Tokens

The goal of tokens is to replace sensitive while storing enough information to help

with re-execution. Each token has associated with it three pieces of information:

the token identifier, the repair value, and the raw value, and the repair value. The

token identifier is a length 32 alphanumeric string and uniquely identifies the to-

ken with a Token model object, shown in Figure 4-1 stored in the database. The

repair value is a developer-specified value that helps the system recover. It is not

stored in the logs, but stored on the Token model object instead, and it is initialized

to "unset." The raw value is never directly stored on the Token model object and

is ultimately removed from the logs and replaced with a token string of the form

token$token-identifier. During the original execution of the code, however, hav-

29

class Token(models.Model):

token = models.CharField(max-length=128)

value = models.CharField(max-length=128)

Figure 4-1: The model definition for Tokens.

ing the raw value is also important to perform actual computations. To retain the

raw value as well as the token that will replace it, augmented token strings of the

form token$token-identif ier$raw-data are used in record mode.

Since the Token model is just another developer specified Django model, it is stored

in the same database as the rest of the Django project. And like all models, it requires

its containing application, django.warp, to be added to the list of INSTALLEDAPPS

in settings .py. However, it is undesirable to have the Token model be versioned. If

the Token objects also rolled back, the Token's stored value would not be available

at the point of re-execution at which it was needed. To prevent this, SOLAR checks

whether or not a model belongs to the application django.warp. If it does, it skips

the steps needed to version the backing database table.

During ordinary operation while recording is enabled, the application will even-

tually need to access the raw input. At this point, the application can ask SOLAR to

give it the Token as well as the raw value via the parse-token-string call. Given

an augmented token string, the method will return a tuple of the associated Token

model object and the raw value. An input of a regular token string will result in

returning a tuple with the Token object and None for the raw value. If the input is

not actually a token string, the method will simply return None for the Token object

and the whole input as the raw value. This means that even when SOLAR is disabled

and therefore the system isn't producing Tokens, the regular flow of the program can

still proceed.

With the token and raw value, the application can then compute on the raw value

and set the Token's repair value field. Presumably, the application already needs to

transform the sensitive data somehow to store in the database, so storing this same

30

value for the repair value should be fine. This does mean that it is impossible to

replay the computation of that value from the raw value.

It is also assumed that the application has been modified for repair. An application

can detect whether or not it is in repair because it will only have a token string and

not an augmented token string to pass to parse-token-string. The application can

then grab the Token's stored repair value to help with the re-execution.

4.2 Buffered Logging

Warp logged events as soon as they happened. However, at the time the request data

comes in and is logged, the Django framework often cannot be certain whether or not

the data is sensitive. Instead of logging events immediately, SOLAR buffers the event

records. Later, when it receives an http-end record, which designates the HTTP

response to be returned, the BufferedLog post-processes all of the records and flushes

them out to the log file. To successfully post-process, the BufferedLog stores some

state based on what sensitive data there is.

4.3 Basic Access Authentication

The authentication data that comes in via HTTP basic access authentication is rel-

atively easy to deal with. Receiving a request triggers the system to record the data

in an http-start event. As soon as the BufferedLog receives this event, it checks for

an HTTPAUTHORIZATION header. If it exists, the data is replaced with an augmented

token string. Because the username-password combination is Base64 encoded, it is

impossible to separate out and just tokenize the password. Whenever the header

is accessed, the augmented token string will be returned instead of the original raw

data. When the BufferedLog writes to disk, the http-start record is then processed,

replacing the augmented token string with a normal one.

In the regular authentication case, the repair value stored is what user, if any, was

authenticated. This means that the code must first check if its in repair mode, and

31

if it is, simply return the user identified by the repair value. If it is in record mode,

it must store what user was authenticated. SOLAR cannot simply store the Base64

encoding because if a malicious user were able to break into the database and found

these repair values, he or she would be able to learn more information by looking at

the Token models than could be learned from the vanilla application. In particular,

the malicious user would be able to decode the values and retrieve the valid, plaintext

authentication information for users.

In OAuth 2.0, the repair value maps directly to the Base64 encoding of the client

public and secret keys. This is allowable because the client secret key is already stored

with the client public key on the Client model in the database. So, in the event of

a database breach, the malicious user would not be able to learn more from the data

from the Token models than from the existing models. Upon seeing the token while

repairing, SOLAR can easily replace it with the original header data, and OAuth2App

can compute the validity of the header as easily as it computed it during the original

run. A better OAuth 2.0 implementation would probably store a cryptographic one-

way hash of the client secret key. To deal with that, the token repair value would

need to be changed to which client, if any, were authorized.

4.4 User-Generated Data

User input usually enters the server via forms. In Django web applications, this

translates to user input getting bound to Django forms.

4.4.1 Forms

Forms fields have been modified to include an optional 'sensitive' field. Upon binding

data to a form, it becomes possible to determine whether or not that data is denoted

as sensitive. At this point, the form takes the names of the fields that need to be

tokenized and passes them to the BufferedLog via the tokenize-fields method.

This method only checks for whether or not the field exists in the http-body and

not in other events. If the particular field name is found in the http-body, a token

32

Django,

Recieve
HTTP request

run code

Application -
Code

3. bind data
to frm

Form

2. record
- request -

data

1. record
- request -

data

10. request
token

12. get
token

4. tokenize
fields

9. return
token

strings

Solar

a warp_record-log

parse
_token-string

tokenizefields

Database

Token 44 11. retrieve object |

objects 44 7. create object

13. set token value (record)
or use token value (repair)

Figure 4-2: Diagram of how tokens interact with application code and Warp.

is generated, and the field's corresponding data in the httpbody record is replaced

with the new token's augmented token string. The tokenize.fields method finally

returns with a dictionary mapping the field names to the augmented token string

that replaced the field data. The rest of the application can now deal with the newly

tokenized data. Figure 4-2 depicts the flow of data regarding tokenizing.

When it is time for the BufferedLog to flush to disk, SOLAR goes through and

post-processes the records. To do this, the BufferedLog remembers all of the tokenized

fields and will strip the raw value from the augmented token strings in the http-body,

leaving just the normal token string.

33

-4

5. tokenize
fields

8. return
token
strings

Buffered Log

store request
data in buffer

6. modify
httpbody

data

tokenizefields

4.5 Server-Generated Data

This implementation closely follows what modifications are necessary to be able to

repair the OAuth2App module. Specifically, it considers how to remove the client

secret key. Removing it from the Authorization header on basic access authentication

requests has already been discussed in Section 4.3. The other three areas the secret

key appears is dealing with model operations, in key generation, and in logging HTTP

responses.

4.5.1 Models

It is also important to remove sensitive data when logging a record which stores

sensitive data in its fields. This happens when the Client model for OAuth2App is

saved. In particular, it holds the client secret key. Similar to how SOLAR deals with

forms, it is the developer's job to mark which fields on which models are sensitive. To

do this, the base Field class has been modified with a new optional named argument,

sensitive, which defaults to False. A developer can simply mark a field, such as

the secret field on the Client model, as sensitive by passing in sensitive=True.

This is shown in Figure 4-3.

With fields tagged, SOLAR can now remove the sensitive data on model operations.

This includes saving the model object in the first place as well as dealing with later

queries. These correspond with the model..save record and the queryset: iter record

respectively. Luckily, these two record types call model-value in dj ango. warp. model

to marshal the data values and ignore Warp-added columns such as _end-time.

In SOLAR, this method is modified to check for whether or not a field is sensitive.

If it is, then the value is replaced with a token string, and the raw value is stored as

part of the mapping on the corresponding Token model object. Once again, since the

sensitive data is already stored in the database, it is not unreasonable to store it on

the Token model object so long as it does not get written to the logs.

Finally, upon discovering a secret field, the method also informs the Buff eredLog

of the sensitive data. This allows us to deal with scrubbing the data in other log

34

class Client(models.Model):

name = models.CharField(max-length=256)

user = models.ForeignKey(User)

description = models.TextField(null=True, blank=True)
key = models.CharField(

unique=True,

maxlength=CLIENT-KEYLENGTH,

default=KeyGenerator(CLIENTKEYLENGTH),

dbindex=True)

secret = models.CharField(

unique=True,

maxlength=CLIENTSECRETLENGTH,

default=KeyGenerator(CLIENTSECRETLENGTH),
+ sensitive=True)

redirect-uri = models.URLField(null=True)

Figure 4-3: The Client model of oauth2app modified to mark the secret field

sensitive.

records.

4.5.2 Key Generation

Since the client secret key and access token are both randomized strings generated

on the fly, it is important to log their generation for the purpose of re-execution.

However, this means that this is yet another location to sanitize the sensitive data

from. These keys are generated when the corresponding model object is created. This

means that the generation is followed by a model-save operation while processing the

same request. Although it is difficult to know upon generation whether or not the

randomized string will be a public or a secret key, we will know which is which once

the model-save record occurs. Now that the model-save informs the BufferedLog of

the sensitive data, when flushing the log, SOLAR can check for that particular string

of data in any of the wrapped-function log records. Upon finding any, SOLAR rips

out the sensitive data, and replaces it with a token string for the log. And similar

to model-save, it stores a Token model object to map the token identifier to the raw

35

data.

4.5.3 HTTP Response

The last area the client secret key appears is in HTTP responses. The processing for

this happens as the log is written to disk. Essentially, SOLAR performs a search for

any sensitive data, replaces it with a token string, and maps the corresponding Token

to the raw data.

4.6 Logging Randomization

Logging randomization became necessary to replay authentication sequences. To do

so in the user generated data case, SOLAR wraps random.randrange() as seen in

Figure 4-4, which is base call for most of the calls for randomization in Django, using

a decorator. The decorator allows us to reuse this method of wrapping for other

sources of randomness.

from warp import log as warp-log

class Random(_random.Random):

... other method definitions ...

Owarp-log

def randrange(self, start, stop=None, step=1, int=int,

default=None, maxwidth=1L<<BPF):

... method definition ...

Figure 4-4: Code demonstrating how to wrap the random. randrange () function.

When in record mode, the decorator notes that it has begun logging a function,

then calls the wrapped function. At the end, it toggles off the logging indicator

and has SOLAR store the result along with the name of the wrapped function. If at

36

any point the execution wants to log another function and the indicator is still on,

meaning that this call is a subcall to an already wrapped function, SOLAR will simply

perform the execution without storing the result.

A newly implemented action, the WrappedFunction, allows these log entries to

be added into the action history graph. They are stored as a dictionary mapping

the function name to an ordered list of WrappedFunctions, each representing a value

returned during the original execution. These are then connected to the Django

Actor that handles the request. So when a wrapped function now calls through the

decorator code during repair, SOLAR returns the next value rather than making a call

to the actual function.

The decision to only store the result of the outermost wrapped function is due

to the fact on repair, only the outermost wrapped function will be returned. This

is because none of the wrapped function's code will actually be executed, so if the

decorator also logged the results to sub-calls, those results would not be popped off

their respective lists. This causes future calls to wrapped methods to return the

wrong value.

There are a few fine points to bad addressed about this system. While adding

the decorator makes it possible to replay sequences that could not previously been

replayed, adding this decorator to functions requires much care. In particular, the

wrapped code should be as small as possible because the code inside is not actually

replayed on repair. This means that if the wrapped function's return value were to

change on replay, this would not be caught. Furthermore, any side-effects such as

manipulating models would be lost.

To enable the re-execution of authentication sequences, this decorator was added

to random. randrange (). Unfortunately, this was not enough as the Django's session

module also calls os.getpid() as a source of randomization. Luckily, the decorator

makes it easy to wrap any function. Since it was difficult to add the decorator to the

os module, we instead added it to the function which called it, -get _new-session-key.

Improvements to this wrapped logging would include making the interior code

replayable as well as being able to log the os.getpid() directly rather than the

37

surrounding function. It would probably also be better to log the arguments that were

passed to the wrapped function and return logged results based on this in addition

to the function's name.

4.6.1 Server Initiated Randomness

Because nearly every model in OAuth2App creates a randomized key, implementation

of the re-execution of OAuth 2.0 also relies on randomization logging. Unfortunately,

the logging on random. randrange () does not catch this randomization. Instead,

OAuth2App implements a KeyGenerator which creates keys by taking the sha512

hash of a universally unique identifier (UUID). When creating a length n randomized

key, the KeyGenerator returns the first n characters of the hash. To record this, we

applied the same decorator from Section 4.6 to OAuth2App's KeyGenerator.

While it may seem preferable to apply the decorator to the UUID generator,

uuid.uuid4(0, because it is a Python module and not in a specific Django module,

applying it to the KeyGenerator makes it easier to later remove sensitive data from

other logs. Attempting to track down the UUID creation call that generated secret

data from the resulting data stored on models is trickier than simply matching the

key generated. Leaving the UUIDs logged is not an option because if discovered, it

is easy to compute the sha512 hash of UUIDs found and generate valid keys.

4.7 Code Change Summary

The code change for SOLAR is summarized in Table 4.1.

Component Description Lines of Code

Solar Solar code implemented on top of Warp 768
Django Modifications made to Django framework 119
Python Changes to Python modules 30
Documents Example Django application 26
OAuth2App Example Django OAuth 2.0 application 47

Table 4.1: Table summarizing code changes.

38

Chapter 5

Evaluation

This section provides answers to the following questions:

" What needs to be changed in an application in order to work with Solar?

" Can SOLAR correctly replay requests containing sensitive data without leaking

information to the logs?

" What fields can be successfully sanitized?

5.1 Example Application

There are several steps that a developer needs to take to prepare an application for

SOLAR. The following details the changes made to Django's built-in user authenti-

cation system as an example of the necessary modifications to make an application

compatible with SOLAR. In particular, Django provides a User model along with sev-

eral default forms found in django. contrib. auth. f orms such as UserCreationForm,

a user registration form, and AuthenticationForm, a log in form. The developer does

need to expose the forms to users with views as well as bind input to the forms once

the data is posted, but since SOLAR does not require modifications at the views level,

the specific views will be omitted. Furthermore, since the modifications needed for

user creation and login are similar, this section focuses only on authentication.

39

password = forms .CharField(label=_("Password"),

widget=forms.PasswordInput,

sensitive=True)

Figure 5-1: Code demonstrating making a form field sensitive.

The first major change is marking the form's password field as sensitive. As seen

in Figure 5-1, this is as easy as setting the optional sensitive field of a form's field

to True.

The second necessary step is setting the value on the token during record and mod-

ifying control flow for repair. For authentication, this starts in the check-password

method which can be found on the User model. This method takes in the password

as entered into the form ultimately returns whether or not it matched the password

stored on the User. However, to do so, it first performs a backwards compatibility

check and updates the password on the actual User model to support the newer stan-

dard of storing passwords if it passes the old password check. Otherwise, the data is

passed to a second method, check-password2, which performs the actual check.

As seen in Figure 5-2, only five lines were changed in check-password. At the

beginning of the method, the token string was parsed into an actual Token object and

the raw value using the utility method parse-token-string. If the raw value was

actually returned from the utility method rather than a None value, then we know

that the server is currently operating in record mode rather than repair mode. The

operations that would have been performed without SOLAR are performed. The final

computation, the password in its new standardized form, is stored in the Token using

the utility function set-token.

During repair, this backward compatibility step is skipped, but the Token, whose

value is in the new standard, is forwarded on to check-password2, which assumes

that the password is in the new standard.

The objective of check-password2 is to actually compute whether or not the

inputted password matches the User's actual password. The actual modifications

40

41

def check-password(self, raw-password):
+ token, raw-password = parsetoken-string(raw-password)

Backwards-compatibility check. Older passwords won't include

the algorithm or salt.
- if '$' not in self.password:

+ if raw-password and '$' not in self.password:

iscorrect = (self.password ==

get-hexdigest('md5', '', raw-password))

if iscorrect:

Convert the password to the new, more secure format.

self.set-password(raw-password)
self.save()

+ warp.util.set token(self.password)

return iscorrect

- return check.password2(raw-password, self.password)
+ return check-password2(raw-password, self.password, token)

Figure 5-2: Code modifications to make check-password compatible with the
SOLAR system.

- def check-password2(raw-password, encpassword):
+ def check-password2(rawpassword, encpassword, token=None):

algo, salt, hsh = enc-password.split('$')
- return constant_time-compare(hsh,

get-hexdigest(algo, salt, raw-password))
+ # if repairing, grab the hashed password from the token
+ if raw-password:

+ hashed-password = get-hexdigest(algo, salt, raw-password)
+ warp.util.settoken(hashed-password)

+ elif token:

+ hashed-password = token.value
+ return constanttime-compare(hsh, hashed-password)

Figure 5-3: Code modifications to make check-password2 compatible with the

SOLAR system.

can be found in Figure 5-3. First, the password is parsed from its stored form to read

out the algorithm, salt, and actual hash. This is left unmodified. The final line in the

original code is to hash the inputted password and use a constant time compare to

check the hashes. In the modified code, this has been split into two separate parts:

finding the hash and comparing the hashes.

In record mode, finding the hash follows the same methodology as the unmodi-

fied code. This can be done because the raw-password parameter is the raw value

that the user submitted in the authentication form. The method can simply use

get-hexdigest using the algorithm, salt, and raw input to find the hash. Since

raw-password will not exist while re-executing this code in repair, the Token needs

to be used. While in record mode, the hash digest is stored as the Token's value,

which can then be retrieved during repair.

Finally, the method uses the same method, constant _time-compare to determine

whether or not the hashes are the same. This allows replay on authentication unless

modifications have been made to how to hash a password given the algorithm and

salt.

5.2 Correct Re-execution

To demonstrate that SOLAR is capable of correctly replaying requests without leaking

sensitive information to the logs, several tests were implemented.

5.2.1 Documents Application

For the single sever, we implemented a simple documents application that allowed

users to log in, create documents, and edit them. The user authentication system

used was primarily Django's default authentication system with a slim view around

it to interact with the forms. Users could log in during normal execution and create

and edit documents. Warp could support replaying or cancelling document creation

and editing, but could not deal with the re-execution of the actual authentication. To

do this, Warp also needed to record the plaintext user-inputted password in the log.

42

SOLAR successfully replaces the password from the http-body record with a token

string. Furthermore, it is possible to either cancel the request or re-execute it such

that the user has the same session identifier. Any other requests from that user with

the same session identifier can then be safely skipped.

We were also able to implement a Tastypie REST-ful API on top of the documents

application. This would allow users to pass their username-password combination

through the Authorization header to edit documents that they owned. Warp could

handle this test case without SOLAR, but would log the base 64 encoded username-

password combination to disk. SOLAR is capable of tokenizing the header and re-

executing the authentication sequence successfully.

5.2.2 OAuth 2.0

For OAuth 2.0, we looked at a module called OAuth2App. Warp was capable of

recording authentications using OAuth2App as well as cancelling invalid OAuth 2.0

operations, but it could not handle re-execution of authorization requests.

To evaluate whether or not OAuth 2.0 would work with SOLAR, we created the

following workload:

1. Create account with OAuth2App, the resource provider.

2. Create client (generates public and secret key) for a client application.

3. Create authorization code for accessing user's email for the client.

4. Redeem the authorization code for an access token.

5. Use the access token to get the email address registered with the account.

To determine whether or not re-execution worked, the repaired database was

checked against the results produced during regular execution. That is to say, we

ensured that the same client keys, access token, etc. were produced from the repaired

system. Performing re-execution beginning at any of these step was done successfully.

43

We also ensured that the client's secret key was removed entirely from the logs.

The only points at which the client's secret key are exposed are the same ones they

would be exposed at without using the repair system. More specifically, the client

key can only be found in the database and in the actual returned HTTP response.

5.3 Sanitizable Fields

It is probably possible to remove all application data from the logs by replacing them

with tokens that map to the actual data using Token model objects. This would

effectively remove all data from the logs. However, for each model field sanitized, there

can be potentially many Tokens associated with it which would bloat the database

unnecessarily.

The most care was needed when sanitizing the password field in the single server

implementation. This is primarily due to the fact the raw value, the actual password,

is never actually stored in the database, so it would be inadvisable to store the

raw password as the token's repair value. The hardest place to deal with this was

with basic access authentication. The entire Authorization header data needed to

be replaced with a token, but this also meant that the username was also tokenized.

Rather than being able to store the hash of the password as was done with form-

inputted password values, it was necessary to store which user, if any user, was

authenticated. In addition, because the original code flow had many ways in which

to exit the authentication method, the additional code required to handle tokens is

interspersed everywhere.

In the OAuth 2.0 implementation, since nearly all of the secret keys were already

stored in the database, the SOLAR-introduced tokens often simply stored the original

value that the token replaced. Any further secret keys simply needed one line of code

on the model to be sanitized. Since the Buf f eredLog technically only stores the actual

data that needs to be replaced, it is possible that it unnecessarily replaces data. That

is to say, a sensitive model field might store the data "abcdef" which would cause

the Buff eredLog to believe all instances of "abcdef" were secret whereas in reality,

44

this might not be true. However, because all of the keys, codes, and tokens used

in OAuth 2.0 are randomized, this is extremely unlikely. It is also unlikely that

any of the different tokens interfere with one another since each one is at least 10

characters long. In the extremely rare case that this did happen, it probably still

would not matter as both would get tokenized and the value would still be stored in

the database for later retrieval. This would be a larger problem if we were not able

to store the original raw value in the database.

45

46

Chapter 6

Related Works

There exist several repair systems that log randomized data or discuss privacy con-

cerns.

Warp, as implemented for PHP, addressed the issue of randomize data. [4]. How-

ever, the focus of the Django implementation was on being able to recover from

distributed workloads across multiple servers and ignored the issue of randomization

[13, 5].

Sprenkle et al. built a system that is capable of recording user sessions as well

as replaying the recorded sessions as test cases that mimic a real-world environment,

but they do not address the issue of sensitive data.

Unlike SOLAR which captures all data into and out of the Django application,

SCARPE, built by Orso and Kennedy, can selectively capture data of an application's

subsystem in a log and replay the events [14]. This is similar to how SOLAR deals

with logging randomization. They address the privacy issue by discussing the possible

removing of any subsystems with confidential data to prevent the logging of such data,

but acknowledge that this is not always possible. Another suggestion they make is

the possibility of replaying the events on the users' machine and then to collect the

resulting, sanitized analysis at the end. This would be an interesting direction to

explore. To do this, users would probably have to record data in addition to the

server's logs.

47

48

Chapter 7

Discussion and Future Work

SOLAR builds upon Warp. Warp is capable of handling most re-execution situations

including inter-server interactions. SOLAR presents two major improvements. First, it

is capable of re-executing randomized sequences, enabling it to repair authentication

and authorization requests, which Warp could not handle. SOLAR also sanitizes the

repair logs of sensitive information such as passwords and provides a framework to

allow future developers to integrate SOLAR into their applications, giving them the

benefits of a repair system without added breach of security from storing sensitive

data in the logs.

However, while SOLAR can help re-execution and also sanitizes the log, it is still

possible that the sensitive data leaks out through other means perhaps due to admin-

istrative configuration error. As of right now, SOLAR can rollback offending requests,

but it cannot undo damage done from unauthorized reads. SOLAR could be extended

to help identify leaked data, and with tagged fields on forms and models, this ex-

tension could also rate how devastating the situation is in terms of whether or not

the data leaked was sensitive. Another potential extension would be to audit how

sensitive data is being used in an application and where it is being exposed to users

and other applications.

The current implementation of SOLAR generates a new Token model object every

time a model save or query happens on a model with a sensitive field whether in

record mode or repair mode. Warp's logs and versioned database already grow in

49

size over time and eventually need garbage collection. The rate of Token generation

only adds to this problem. While garbage collection is probably necessarily no matter

what optimizations are made, there are a couple of optimizations that can be made

regarding decreasing the number of Tokens generate. For example, it should be

possible to limit SOLAR to generating only one Token per sensitive field per request.

It should also be possible to reuse the same Token for the corresponding repair entry

to a record entry if the data in fact stays the same.

There can also be further improvements on token strings. One particular im-

provement would be to make it possible to compare two augmented token strings for

equality. Rather than testing the entire token string, only the raw value should be

compared. This type of operation occurs when validating user registration forms that

have a password and a password confirmation fields.

50

Chapter 8

Conclusion

Many web applications store private information about its users. While many tools

have been built to help maintain security of web applications, there are few tools that

help recover from such vulnerabilities. Warp is a system that records enough data

as the web application runs so that it can recover from an exploited vulnerability.

However, it introduces new security weaknesses by logging sensitive data that should

be kept secret. This thesis presented SOLAR, an improvement to Warp that addresses

the challenge of maintaining a working repair system while also sanitizing the logs.

SOLAR accomplishes this by providing a logging mechanism for randomness, a

tagging mechanism for sensitive data on forms and fields, and a tokenizing mechanism

for those fields. A large focus of this thesis has been to demonstrate that it is possible

to re-execute authentication and authorization code without logging sensitive details.

This thesis also included a discussion of SOLAR's limitations, improvements that

could be made upon it, as well as other, related directions this could be taken such

as auditing how private data is used in an application.

Overall, it is important to keep minimum exposure of sensitive data to the outside

world, and SOLAR works to accomplish that goal in repair systems.

51

52

Bibliography

[1] OAuth community site. URL http://oauth.net/.

[21 OpenID foundation website. URL http://openid.net/.

[3] Welcome to tastypie! URL http: //django-tastypie.readthedocs.org/.

[4] Ramesh Chandra, Taesoo Kim, Meelap Shah, Neha Narula, and Nickolai Zel-
dovich. Intrusion recovery for database-backed web applications. Proceedings

of the 23rd ACM Symposium on Operating Systems Principles (SOSP), pages

101-114, October 2011.

[5] Ramesh Chandra, Taesoo Kim, and Nickolai Zeldovich. Asynchronous intrusion

recovery for interconnected web services. Proceedings of the 24th ACM Sympo-

sium on Operating Systems Principles (SOSP), November 2013.

[6] National Vulnerability Database. CVE statistics, February 2014. URL http:
//web.nvd.nist.gov/view/vuln/statistics.

[7] Django Software Foundation. The web framework for perfectionists with dead-

lines. URL https://www.djangoproject .com/.

[8] ifttt, Inc. Put the internet to work for you. URL https: //if ttt . com/.

[9] Google, Inc. Google apps script. URL http://www.google.com/script/.

[10] HiiDef, Inc. Django oauth 2.0 server app. URL https: //github.com/hiidef/
oauth2app.

[11] Yahoo, Inc. Pipes: Rewire the web. URL http://pipes.yahoo.com/pipes/.

[12] Zapier, Inc. Automate the web. URL https: //zapier. com/.

[13] Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich. Recovering from in-

trusions in distributed systems with dare. Proceedings of the 3rd Asia-Pacific

Workshop on Systems (APSYS), July 2012.

[14] Alessandro Orso and Bryan Kennedy. Selective capture and replay of program
executions. Workshop on Dynamic Analysis (WODA), May 2005.

53

