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Abstract

Red blood cell development is crucial to the survival of all mammals and occurs
primarily in the liver during embryogenesis and then in the bone marrow during
adulthood. In spite of the different microenvironments of the liver and bone marrow,
current research shows that the majority of protein-coding genes important to cry-
thropoiesis are expressed during both the fetal and adult developmental stage and the
difference between red blood cells from the two stages remains unknown. Differences
in the expression of long non-coding genes, which are more tissue and developmental
stage specific than coding genes, may play a role in the production of red blood cells
in the two tissues but also have not been studied. In this paper, we analyze RNA-seq,
ChIP-seq, and DNase-seq experimental data in order to shed light on the differences
and similarities in gene expression of both coding and non-coding genes, chromatin
markings and promoter and enhancer activity, and transcription factor motifs be-
tween fetal and adult red blood cell progenitors. We find that solute carriers make up
many of the differentially expressed genes, most notably Glut1, and that there is no
clear difference in chromatin markings near transcription start sites of differentially
expressed genes. Further work will analyze enriched transcription factor motifs inside
DNase-I footprints generated in this work to determine which transcription factors
may be responsible for differential gene expression.

Thesis Supervisor: Harvey F. Lodish

Title: Professor of Biology
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Chapter 1

Erythropoiesis and Long

non-coding RNA Background

Red blood cells are the most common type of blood cell and the principal means of

delivering oxygen to tissues through the circulatory system. The development of red

blood cells is known as erythropoiesis and is vital to the survival of all mammals

and occurs throughout their lifetimes. Hematopoietic stem cells in the fetal liver and

adult bone marrow undergo cell lineage specification, proliferation, and differentiation

in order to form mature erythrocytes19 . Dysregulation of erythropoiesis can lead to

diseases such as anemia and leukemia, and identifying the transcriptional networks

and regulatory circuitry involved in this process can lend insight into the development

of treatments for those diseases'.

Long non-coding RNAs have been identified as regulators of erythropoiesis, and

previous works have shown several IncRNAs that are crucial to mature erythrocyte

formation. In this chapter, we give background on erythropoiesis and IncRNAS to

motivate their study in the role of red blood development.

1.1 Red Blood Cell Development

In mammals, the blood is continuously replenished from stem cells located in the liver

in the fetal developmental stage and in the bone marrow in the adult developmental
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stage. These stem cells all derive from a single type of multipotent hematopoietic

stem cell (HSC) which in turn differentiates into the more restricted myeloid and

lymphoid progenitor stem cells. The body can exquisitely control the proliferation

and differentiation of precursor cells for each blood-cell lineage through cytokines

such as erythropoietin which promotes the formation of erythrocytes and G-CSF

which promotes the formation of macrophages .

The earliest committed erythroid progenitor from the hematopoietic lineages is

the burst-forming unit-erythroid (BFU-E). Early BFU-E cells divide and differentiate

through the mature BFU-E stage into rapidly dividing colony-forming unit-erythroid

(CFU-E cells). CFU-E progenitors divide 3 to 5 times over 2 to 3 days as they differ-

entiate and undergo changes such as a reduction in cell cells, chromatin condensation,

hemoglobinization, and eventual enucleation to form mature erythrocytes 9 .

As previously mentioned, cytokines can regulate erythropoiesis, and many other

proteins, RNAs, transcription factors, and chromatin modifications do as well. The

transcription factors GATA1 and TAL1 bind upstream of many important erythroid

genes and promote their expression'. GATA1 binding tends to occur at distal en-

hancer elements marked with the chromatin modification H3K4mel, and several lncR-

NAs are targeted by enhancers bound by GATA1, implicating them in erythropoiesis.

In spite of this, the contribution of IncRNAs to the regulation of erythropoiesis re-

mains largely unknown, although several IncRNAs have been shown to be crucial to

the formation of mature erythrocytes.

1.2 IncRNA Background

The central dogma of gene expression is that DNA is transcribed into messenger RNA

which is then translated into an amino acid sequence for protein synthesis. However,

extensive RNA transcripts that do not code for proteins have been discovered, showing

the centrality of RNA in gene regulation36 . The noncoding genes which code for these

RNA can produce small regulatory RNAs such as ribosomal RNA, transfer RNA,

small nucleolar RNA, and microRNAs as well as longer transcripts such as IncRNAs.
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IncRNAs are RNA transcripts longer than 200 nucleotides that do not encode for

a protein. IncRNAs are similar to messenger RNAs which code for proteins: most are

Pol II transcripts that undergo splicing (removal of introns), 5/ capping, polyadenyla-

tion, and are regulated by specific transcription factors and chromatin modifiers6 '1 6 .

However, they mainly reside in the nucleus and rarely engage translating ribosomes

in the cytoplasm, unlike mRNA6' 8 . The versatility of RNA has allowed lncRNAs to

be implicated in various processes: recruitment and regulation of transcription fac-

tors and chromatin modifiers, chromosomal domain organization, and mRNA splicing

modulation, translation, and degradation 7,12,27,32,34. LncRNAs also have properties

such as moderate sequence conservation between that of introns and exons of coding

genes across mammals, greater tissue-specificity than coding genes, lower expression

levels compared to coding genes, smaller size than coding genes, and multi-exonic

structure with alternative splicing4"6 '1 7 . Many lncRNAs are differentially expressed

across tissues, developmental stages, and physiological states and some have special-

ized functions in response to developmental or physiological cues 2 ,4,6,9,13,15,28,40

Due to their evolutionary conservation and expression patterns, IncRNAs have

potentially interesting and cell-specific biological functions. Indeed, several lncR-

NAs have been functionally profiled and associated with cellular processes such as

apoptosis, stem cell proliferation and lineage commitment, and dosage compensation,

and imprinting3 9 . Dozens of IncRNAs expressed in mouse embryonic stem cells were

found to be necessary for maintaining pluripotency 18 . For blood cells, one IncRNA

termed lineRNA erythroid prosurvival (lincRNA-EPS) identified and profiled in pre-

vious work was found to rescue erythroid precursors from apoptosis in the absence of

Epo through ectopic expression, and inhibition of lincRNA-EPS blocked proliferation

of erythroid precursors and promoted apoptosis 2 0.

Because of their tissue specificity, roles in development, and their differential ex-

pression under different physiologic conditions, IncRNAs are potentially important to

the shift of erythropoiesis from the fetal liver to the adult bone marrow. Addition-

ally, several lncRNAs have already been implicated in regulating crythropoiesis. In

this paper, we identify IncRNAs from the mouse fetal liver and adult bone marrow

15



in order to find those differentially expressed between the two developmental stages.

Profiling the function of such IncRNAs may reveal insights into the reasons behind

erythropoiesis moving and lead to greater understanding of erythropoiesis in general.

16



Chapter 2

Methods

In order to find lncRNA transcripts differentially expressed between mouse fetal liver

(FL) and adult bone marrow erythroid-committed cells (BM), we first had to assemble

the transcriptomes of erythroid progenitor cells from both tissues. Assembling the

transcriptome of a cell involves sequencing all of the RNA messages being transcribed

in a cell, mapping them back to the genome from which they came, and determining

the structure and expression level of genes from the mapped reads.

The mouse July 2007 (NCBI37/mm9) genome assembly was used throughout the

study. ENSEMBL transcript structures and annotations were obtained from EN-

SEMBL version 67 (http://useast.ensembl.org/inf o/data/ftp/). RefSeq and

UCSC transcript structures were downloaded from the UCSC genome browser (De-

cember, 2013). RNA-seq mapped reads from CSHL, PSU, UW, and LICR for dif-

ferent tissues and developmental stages were downloaded from the Expression and

Regulation tracks of the UCSC genome browser (January, 2014).

2.1 RNA-Seq Methodology

This section describes the process of preparing cells for RNA sequencing, the sequenc-

ing library preparation and method used, and the assembly of the transcriptome of

mouse fetal liver and adult bone marrow erythroid progenitor cells. Additionally, we

analyze known genes from ENSEMBL in order to verify the correctness of our assem-
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bly. The process of gathering mouse fetal liver cells and preparing RNA sequencing

libraries for them was done previously in the lab and is described below.

Mouse embryonic day 14.5 (E14.5) fetal liver cells were separated into TER119+

and TER119- fractions via magnetic-assisted sorting cell sorting. Total RNA was

isolated from these cells using QIAGEN miRNeasy Kit according to the manufac-

turer's instructions. Ribosomal RNA was depleted from 4 ug total RNA using the

Ribo-Zero Gold Kit from Epicentre. Strand-specific sequencing libraries were gen-

erated following a previously described protocol from the total RNA (TER119+/-

cells) or from the poly(A)+ and poly(A)- fractions (TER119+ cells)'. The latter

fractions were separated using the Solexa kit (Illumina) according the manufacturer's

instructions. cDNA fragments of 400-600 bp from these libraries were selected by gel

purification and then sequenced on an Illumina HiSeq2000 sequencer. The resulting

directional 100 base pair paired-end reads were quality-checked with FastQC (http:

//www.bioinformatics .babraham. ac .uk/projects/f astqc/). A similar protocol

was followed to obtain mouse adult bone marrow erythroid progenitor cell paired-end

reads.

Reads were mapped to mm9 using TopHat v2.0.837 . The bone marrow reads

were mapped using default parameters and the options -p 4 -- solexal. 3-quals

-- library-type fr-f irststrand -- min-anchor 5 -r 200. Insert sizes were col-

lected for the BM mapping using Picard tools (http: //picard. sourceforge. net/)

and TopHat was rerun with default parameters and the options -p 4 -- solexal. 3-quals

-- library-type fr-f irststrand -- min-anchor 5 -r 187 -- mate-std-dev 95. The

junctions found by TopHat from the FL mapping (gathered through the same pro-

cess as BM mappings) were merged with the junctions from the BM mapping and

TopHat was run again on the BM reads using default parameters and the options -p 4

-- no-novel-juncs -- solexal.3-quals -- library-type fr-firststrand -- min-anchor

5 -r 187 -- mate-std-dev 95 and on FL reads using default parameters and the op-

tions -p 4 -- no-novel-juncs -- solexal.3-quals -- library-type fr-f irststrand

-- min-anchor 5 -r 150 -- mate-std-dev 56 as well as the -j option set to the

merged junctions for both BM and FL read mappings.
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Accepted hits from BM and FL reads were assembled using Cufflinks v2.1.13 8 in

order to construct transcript and gene models and estimate gene expression using

FPKM (fragments per kilobase of exon per million mapped reads). Cufflinks was run

with default parameters and the options -p 4 -- min-frags-per-transf rag 0 and

the -M option (mask option) set to a GTF of mouse rRNA from ENSEMBL for BM

and FL accepted hits to assemble their transcript structures de novo. The assemblies

produced by Cufflinks were merged with Cuffmerge and then Cufflinks was rerun with

the merged assemblies as a guide. An ENSEMBL transcript models GTF was also

used as a guide for Cufflinks assembly for both BM and FL accepted hits via the -G

option.

Looking at those differentially expressed (Z 4x expression in one tissue relative to

the other) we found 1,435 BM over-expressed genes and 278 FL over-expressed genes.

In order to determine the function and type of genes being differentially expressed,

we used DAVID to find the gene ontology terms most enriched in each set of differ-

entially expressed genes 22. Only GO Biological Process and Molecular Function

terms (GOTERMBPFAT and GOTERMMFFAT) were considered. To identify

the most significant non-redundant GO terms in a gene list, we grouped annotation

terms into non-redundant clusters using the Functional Annotation Clustering tool,

and then selected the most significant term in each of the top clusters ranked by their

enrichment score. Only GO terms enriched in our lists with a Benjamini-Hochberg

adjusted p-value iO.05 are reported. Figure 2-1 shows the most highly enriched GO

terms in the BM over-expressed gene list and Figure 2-2 shows the most highly en-

riched GO terms in the FL over-expressed gene list. Unfortunately, the terms most

highly enriched in the BM over-expressed gene list are not related to erythropoietic

cell function and are most concerted with the immune system. This suggests that

some cells from another hematopoietic lineage, probably the lymphoid linage, were

present in the preparation of the RNA-seq libraries for BM and sequenced.

In light of the potential contaminants, we followed a process similar to one de-

scribed previously24 . We eliminated sentinel contaminants from our list of genes.

Additionally, we used CSHL, PSU, UW, and LICR mapped RNA-seq reads from
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Figure 2-1: BM unregulated genes GO term enrichment.
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Figure 2-2: FL unregulated genes GO term enrichment.

278 downregulated genes
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the UCSC browser's expression and regulation track to estimate ENSEMBL gene

expression levels in 31 different tissues in order to determine genes most specific to

contaminant tissues. We chose placenta, adult liver, T-naive, B-cell, and macrophage
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as contaminant tissues and calculated tissue specificity scores for each tissue using

a metic previously described'. Approximately 3,500 genes were removed from con-

sideration for being most specific to a contaminating tissue. Contaminating tissues

were chosen by analyzing from which tissues sentinel contaminants and probable con-

taminants came, and figures 2-3 and 2-4 contain histograms of to which tissue each

sentinel and probable contaminant is most specific.

Figure 2-3: Histogram of sentinel contaminants and their tissue of maximum speci-
ficity. T-naive, macrophage, bone marrow, B-cell, liver, and placenta are the tissues
where the most sentinel contaminants are most specific.

#I

I .- LIII
II j I

I.!
I

2.2 IncRNA Filtering Pipeline

After assembling transcripts de novo using Cufflinks, we implemented the following

process in order to identify potential lncRNAs:

1. Transcripts shorter than 200 nucleotides were excluded per the definition of a

lncRNA.

22
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Figure 2-4: Histogram of probable contaminants and their tissue of maximum speci-
ficity. T-naive, macrophage, liver, B-cell, and placenta are the tissues where the most
probable contaminants are most specific.
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2. Transcripts with a single exon were discarded as well as those with no coverage

greater than or equal to 3 in either BM or FL to ensure that the transcripts did

not result from strange behavior during assembly.

3. Transcripts with known protein coding domains were removed by retrieving the

longest ORF for each transcript in all three possible frames using the Sixpack

tool from EMBOSS, and then used HMMER3 to query the Pfam A and Pfam B

databases (downloaded from ftp://ftp.sanger.ac.uk/pub/databases/Pfam/current-release/

on Nov 2012) with default parameters11 ,3 5 . Any transcript with a significant

Pfam hit (E-value Z 0.001) was discarded.

4. Repeat-masked transcripts were also blasted against the human, rat and mouse

RefSeq databases separately using Blastx". Transcripts mapping to any of the

three protein databases with an E-value < 0.0001 were removed.
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5. We used PhyloCSF to filter out transcripts under evolutionary pressure to pre-

serve synonymous amino acid codons2 9 . The PhyloCSF score of a given tran-

script indicates how much more probable its alignment across 29 mammalian

genomes is under a model of protein-coding sequence evolution than under

a non-coding model. We calculated PhyloCSF scores with removeRefGaps -

frames=3 -orf=ATGStop parameters and discarded any transcript with a score

>100, which corresponds to a 9.3% false negative rate and a 9.7% false positive

rate using RefSeq mRNAs and RefSeq lincRNAs as reference.

6. We used the Coding Potential Calculator to exclude transcripts with charac-

teristic coding features independent of their conservation 25 . The CPC score

of a given transcript indicates its distance to a classification as protein-coding

based on significant similarity to sequence features of known protein-coding

transcripts learned via support vector machine learning. We calculated CPC

scores using default parameters and discarded any transcript with a CPC score

> 0, which corresponds to coding or weakly coding classifications.

7. We used BEDTools to intersect our de novo transcript models with transcript

models from the RefSeq, UCSC and Ensembl databases, and discarded any

transcript overlapping at least 1 bp in the same strand with any known mRNA

eXOn.

Applying this process to the transcripts assembled de novo from Cufflinks, we

identified 1,243 potential IncRNA genes and 1,398 potential IncRNA transcripts. In

order to filter out potential contaminants from the potential lncRNAs transcripts

identified, we used a similar procedure as that for filtering out contaminants from

known ENSEMBL genes. Using CSHL, PSU, UW, and LICR mapped RNA-scq reads

from the UCSC browser's expression and regulation track, we assembled transcripts

using Cufflinks and a GTF of our potential lncRNAs as a guide for assembly. Again,

transcripts most specific to placenta, adult liver, T-naive, B-cell, and macrophage

were discarded, resulting in 1165 potential non-contaminant lncRNA transcripts.
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2.3 DNase-seq and ChIP-seq Datasets, Peak and

Footprint Calling Methodology

DNase-seq data for fetal liver was used from DNaseI Hypersensitivity by Digital DNa-

sel from ENCODE/University of Washington, GEO accession GSE37074. Bone mar-

row DNase-seq data as well as ChIP-seq data for H3K4me3, H3K4mel, H3K27me3,

and RNAP2 was used from2 6 GEO accession number GSE27921. Fetal liver ChIP-

seq data for H3K4me2, H3K4me3, H3K27me3, and RNAPII was used from4 ' GEO

accession number GSE32111. Peaks were called for ChIP-seq data using MACS4 2

with p < 0.01 and DNase-seq data using Peakranger 0 q < 0.01.

DNasc-I footprints were called within Peakranger peaks using an algorithm adapted

from 33 . A per-nucleotide DNase-I cleavage score was generated by counting the num-

ber of 5' ends of DNase-seq data falling at that nucleotide. Left and right regions of

3-10 nucleotides around a center region of 6-40 nucleotides were analyzed and called

footprints if the average cleavage score in the center region was smaller than the av-

erage cleavage score in the left and right regions. Then, we calculated a footprint

occupancy score (FOS) defined as (C+1)/L + (C+1)/R where C represents the av-

erage cleavage in the center region, and L and R represent the average cleavage in

the left and right flanking regions, respectively. We generated all possible footprints

within each peak and then iteratively chose the footprint with the smallest FOS and

removed all other footprints within that peak with center regions that overlapped the

minimum FOS footprint's center region until no more footprints were left within that

peak that overlapped a selected footprint. To estimate FDR, we randomly shuffled

the total cleavage score inside a single peak and called footprints on the shuffled data

for each dataset. At a FOS score cutoff of 0.97, the number of footprints called in the

randomly shuffled datasets divided by the number of footprints called in the actual

datasets first reached less than 0.01 and was used as a threshold for FOS. The code

used to generate footprints can be made available on request.
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Chapter 3

Conclusions and Additional Work

3.1 Discussion of Results

3.2 Discussion of RNA-seq Analysis

In order to characterize the difference between erythroid progenitor cells in the fetal

liver and adult bone marrow, we analyzed RNA-seq data from Terll9+ cells from

both tissues. Total RNA was isolated in both RNA datasets. Using the pipeline in

figure 3.2 we assembled gene models and transcript expression estimates for known

ENSEMBL protein-coding genes as well as IncRNA genes. Identifying lncRNA tran-

scripts followed a protocol done before in the lab and is detailed in the methods

section. In order to focus on reliably transcribed genes in both tissues, we only in-

clude genes with an FPKM (fragments per kilobase of exon per million mapped reads)

of 0.1 or greater in both fetal liver and adult bone marrow and an FPKM of 1 or

greater in either fetal liver or bone marrow, leaving 10,965 genes in total. Of the

10,965 genes analyzed, 1,435 had expression levels four-fold greater in bone marrow

over fetal liver, and 278 had expression level four-fold greater in fetal liver than adult

bone marrow. Figure 3-2 contains a plot of the log of expression level of the 10,965

genes in bone marrow versus fetal liver. With an R-squared of 0.65, the correlation

of gene expression between erythroid cells in the two tissues is very good. For 489

known erythropoiesis-induced mRNAs such as Gatal and Tall, the expression level
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correlates even better between the tissues Figure 3-3 contains a plot of the log of

expression level of 489 known erythropoiesis-induced mRNAs in bone marrow versus

fetal liver, with an R-squared of 0.861. Based off of this analysis, it appears that

the gene expression amongst reliably-transcribed protein-coding genes and known

erythropoiesis-induced genes are similar between the two tissues as expected.
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Figure 3-1: Pipeline for RNA-seq analysis.

A. ENSEMBL mRNAs transcript assembly process. RNA-seq read were mapped to
the mm9 genome using TopHat and then transcript models and expression levels
were generated using Cuffidff with a GTF of known ENSEMBL mRNAs as a guide
for mapping to identify differentially expressed genes. B. de-novo lncRNA transcript
assembly process. RNA-seq reads were mapped to the mm9 genome using TopHat
as before. Cufflinks was then used on mapped reads in order to form transcript
models which were then merged using Cuffmerge to form the entire transcriptome for
bone marrow and fetal liver erythroid progenitor cells. IncRNA models were selected
from the transcriptome and used as a guide for Cuffdiff to estimate differential gene
expression.
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Unfortunately, most of the genes that are enriched in bone marrow relative to

fetal liver are known to be immune cell or macrophage-specific. For example, the

genes Irf4, Ifitm6, and Ltf are among the most enriched in bone marrow and all

are involved in immune system-related functions such as interferon regulation and

antimicrobial activity. Indeed, the three most highly enriched gene-ontology terms for

the 1,435 unregulated bone marrow genes are leukocyte activation, defense response,

and positive regulation of immune system process. Similar contamination occurs in

the fetal liver enriched cells by different tissues. For example, the gene Afp is known

to be produced in the yolk sac and liver during fetal development in huge quantities,

implicating it as a contaminant as well. Analysis of 59 sentinel contaminant genes

from a paper doing a similar study showed that the contaminants were mostly from

T-naive cells, macrophages, bone marrow, B-cells, liver, and placenta as expected.

Including 264 probable contaminant genes whose expression is highly correlated with

sentinel contaminants from the same study, we found that the probable contaminants

also come from the same tissues. To filter out genes potentially from contaminating

tissues in our own datasets, we chose to analyze expression levels of ENSEMBL genes

across 30 tissues including our RNA-seq data from bone marrow and fetal liver and to

remove genes from our analysis when the gene has highest expression across the tissues

in a contaminating tissue (T-naive cell, macrophage, bone marrow, B-cell, liver, and

placenta). This resulted in approximately 3,500 genes removed from our analysis and

significantly changed the number and type of genes differentially expressed. Figure 3-

4 contains two heatmaps: one of tissue expression level in differentially expressed

genes before removal of contaminants and the other post-removal of contaminants.

The considerable overlap of expression between bone marrow and macrophage has

been reduced, leaving the largest overlap of gene expression as those genes that are

highly expressed in bone marrow and fetal liver erythroid progenitors.

Of the approximately 9,000 genes left, 275 ( 3%) were significantly differentially

expressed more highly in bone marrow and 113 ( 1%) more highly in fetal liver.

The top enriched genes minus contaminants in bone marrow were Adpgk, Serpinbla,

Plbdl, Chi3ll, Rsad2, and Camp. The top enriched genes minus contaminants in
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Figure 3-2: Scatter plot of logio values of fetal liver FPKM versus bone marrow

FPKM for genes with FPKM values over 0.1 in either bone marrow and fetal liver

and over 1 in either bone marrow or fetal liver (R-squared 0.65). 10,965 genes are

plotted in total with 1,435 genes (shown in red) having four-fold higher expression in

bone marrow over fetal liver and 278 (shown in blue) having four-fold enrichment in

fetal liver over bone marrow.
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Figure 3-3: Scatter plot of logio values of fetal liver FPKM versus bone marrow
FPKM for 489 genes known to be induced during erythropoiesis (R-squared 0.86).

r= 0.86

C.
IL

I
C
6

I

C:-

0 2 3 4

IclO(MLFPM)

32

0
0

00

0 r Q

0 0

Ito 0000 0
0

0~ 0



fetal liver were Hif3a, Podxl, Pacsin3, Slc30a10, Sed2, and Slc2al. Interestingly, 152

of the total genes differentially expressed are solute carriers, with 72 high in adult

bone marrow and 80 high in fetal liver. Transcription factors also made up 19 of the

differentially expressed genes, with 11 high in adult bone marrow and 8 high in fetal

liver. Perhaps due to the anaerobic environment of the fetal liver, different solute

carriers are necessary to ensure survival of erythroid progenitors. Slc2al (Glut1) is

necessary for glucose transport and is widely distributed in fetal tissues and Hif3a is

induced during hypoxia, perhaps indicating a larger need for glucose for fetal liver

erythroid progenitors as both genes are highly expressed in fetal liver and not bone

marrow. Grb10 is a protein that interacts with insulin receptors and insulin-like

growth-factor receptors and is also high in fetal liver and not bone marrow, again

implicating some connection between glucose metabolism as a difference between the

erythroid progenitor cells. Unfortunately, some genes suspected to be contaminants

such as Afp survived our filtering of contaminants, so genes from contaminating tissues

may still be represented.

We identified 1,335 potential lncRNA genes in our RNA-seq fetal liver and bone

marrow datasets and performed filtering as with mRNAs by removing those IncRNAs

from consideration that had expression level highest in contaminating tissues, leaving

519 IncRNAs. Of these 519 IncRNA genes, 84 (16%) were labeled as significantly

differentially expressed and high in bone marrow and 26 (5%) significantly differen-

tially expressed and high in fetal liver. Consistent with earlier findings surrounding

IncRNAs, those identified by us in our RNA-seq datasets are more tissue-specific

than coding genes. Figure 3-5 contains a heat map of lncRNA and mRNA differen-

tially expressed genes minus contaminants which shows that even among differentially

expressed genes, IncRNA genes appear more tissue specific than coding genes.

In summary from our RNA-seq experiment analysis, the gene expression pro-

files of significantly expressed coding genes in fetal liver and bone marrow crythroid

progenitors is highly correlated and even more highly correlated amongst known

erythropoiesis-induced mRNAs. Unfortunately, contamination by non-erythroid cells

means that some filtering is necessary to remove potentially contaminating tran-
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Figure 3-4: Heatmaps of differentially expressed gene expression levels in different
tissues pre- and post-contaminant removal. Left: pre-contaminant removal. There
is significant overlap of genes that have high expression in bone marrow erythroid
progenitors and macrophage pre-contaminant removal. Right: post-contaminant re-
moval. The overlap between highly expressed genes in bone marrow erythroid pro-
genitors and macrophage has been reduced, leaving more genes that are high in bone
marrow erythroid progenitors or fetal liver erythroid progenitors.
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Figure 3-5: Top: Heatmap of 388 differentially expressed mRNAs and Z-score of
their expression level in different tissues. Bottom: Heatmap of 110 differentially
expressed IncRNAs and Z-score of their expression level in different tissues. Differ-
entially expressed lncRNA genes appear to be more specific to bone marrow or fetal
liver erythroid progenitors than differentially expressed mRNA genes.
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scripts. Filtering by expression level in known contaminating tissue and cell lines

proved useful for eliminating many contaminating transcripts, but was not effective

in removing all suspected contaminants. Future work will analyze DNase-I hypersen-

sitivity (DHS) sites at the promoters of differentially expressed genes in bone marrow

and fetal liver in order to determine if there is evidence that the differentially ex-

pressed genes are really being expressed as the chromatin in their promoters is open

in erythroid progenitor cells and not a contaminating cell. For example, the gene

Afp (fetal liver contaminant) lacks a DHS site within +/- 2kb of its transcription

start site, indicating that it may not actually be transcribed in fetal liver erythroid

progenitors. Additionally the gene lrf4 (bone marrow contaminant) lacks a DHS site

within +/- 2kb of its transcription start site. It will be useful for other RNA-seq

experiments in the future to combine their results with DNaseI-seq experiments in

order to determine more reliably if largely expressed genes are in actuality coming

from the cell type desired. The analysis so far has found that many solute carriers

are differentially expressed between fetal liver and bone marrow, most interestingly

Slc2al (Gluti). incRNA genes show more differential expression compared to mR-

NAs between fetal liver and bone marrow and more tissue specificity than mRNAs,

consistent with previous findings about lncRNAs.

3.3 Discussion of ChIP-seq Analysis

In order to determine if differences in promoter or enhancer elements were driving

differential expression of genes between fetal liver and adult bone marrow, we ana-

lyzed ChIP-seq experiments of fetal liver and adult bone marrow, including ChIP-seq

performed for H3K3me3, H3K3mel, and H3K27ac chromatin modifications, TALI,

GATA1, CTCF, RNA polymerase II, and NEF2. Figure 3-6 contains plots of read

density near transcription start sites for ChIP-seq and DNase-seq experiments for dif-

ferentially expressed genes enriched in bone marrow. Chromatin markings for active

promoters and enhancers are higher near transcription start sites in bone marrow for

bone marrow enriched genes, as expected. The genes ALDHlA1, CTSE, and RSAD2
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are all enriched in bone marrow relative to fetal liver. Figures 3-7, 3-8, and 3-9 contain

images from the UCSC browser near the genes Aldh1al, Ctse, and R.sad2, respec-

tively. Tracks from bone marrow-related data are displayed in blue while tracks from

fetal liver data are displayed in red. Gray boxes represent areas around promoters

or enhancers that have similar chromatin markings between bone marrow and fetal

liver, blue boxes surround bone marrow promoters or enhancers with active chro-

matin markings that do not appear in fetal liver, and red boxes surround fetal liver

promoters or enhancers with active chromatin markings that do not appear in bone

marrow. The first four tracks at the top are RNA-seq read density from bone marrow

positive strand and negative strand and fetal liver positive strand and negative strand,

respectively. The order of pairs of tracks after RNA-seq read density with continuous

signal, from top to bottom, are DNase-hypersensitivity, Gatal, H3K4me3, H3K4mel,

H3K27ac, and H3K27me3. All three genes show H3K4me3 enrichment near their

promoters in bone marrow that are lacking in fetal liver. CTSE and RSAS2 addition-

ally show H3K27ac enrichment near their promoters. Interestingly, CTSE appears

to have a shorter isoform that is only expressed in bone marrow by RNA-seq read

density and chromatin markings.

Figure 3-10 contains plots of read density near transcription start sites for ChIP-

seq and DNase-seq experiments for differentially expressed genes enriched in fetal

liver. H3K4me3 ChIP-seq read density shows the greatest difference near transcrip-

tion start sites for fetal liver enriched differentially expressed genes, while DNase-seq

and ChIP-seq data for H3K4mel and H3K27ac do not appear significantly different

between bone marrow and fetal liver. The genes Slc2al (Glut1), Mtl (metalloth-

ionein 1), and Mt2 (metallothionein 2) are differentially expressed and enriched in

fetal liver. Figures 3-11 and 3-12 contain images from the UCSC browser near the

genes Slc2al, and Mtl and Mt2, respectively. Mtl and Mt2 have enrichment of

H3K4me3 H3K27ac at proximal enhancers in fetal liver that are lacking in bone

marrow, suggesting active enhancers are responsible for their differential expression.

Slc2al contains enrichment for DNase-I, H3K4me3, H3K4mel, and 113K27ac near its

promoter and proximal enhancers that are lacking in bone marrow, suggesting that
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Figure 3-6: Top row: Heatmap of DNase Hypersensitivity, H3K4me3, H3K4mel, and
H3K27ac read density around transcription start site for 275 adult bone marrow-
high differentially expressed genes. Bottom row: Graph of DNase Hypersensitivity,
H3K4me3, H3K4mel, and H3K27ac read density around transcription start site for
275 adult bone marrow-high differentially expressed genes with fetal liver in green
and adult bone marrow in orange. Active chromatin markings are present in higher
density in bone marrow.
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Figure 3-7: Aldh1al shows active promoter chromatin markings in bone marrow and
not in fetal liver. DNase-hypersensitivity, H3K4me3, and H3K4mel, and H3K27ac
enrichment appears at Aldh1al's promoter in bone marrow and not in fetal liver.
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Figure 3-8: Ctse shows active enhancer chromatin markings (H3K27ac) upstream
of its transcription start site and active promoter chromatin markings (H3K4me3,
H3K4mel, and H3K27ac) at the promoter of a shorter isoform that may only be ex-
pressed in bone marrow. Chromatin markings at the promoter of the longer isoforms
appear similar between bone marrow and fetal liver.
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Figure 3-9: Rsad2 shows active chromatin markings (H3K4me3 and H3K27ac) at its

promoter in bone marrow that are lacking in fetal liver.
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Figure 3-10: Top row: Heatmap of DNase Hypersensitivity, H3K4me3, H3K4mel, and
H3K27ac read density around transcription start site for 113 fetal liver-high differ-
entially expressed genes. Bottom row: Graph of DNase Hypersensitivity, H3K4me3,
H3K4mel, and H3K27ac read density around transcription start site for 113 fetal
liver-high differentially expressed genes with fetal liver in green and adult bone mar-
row in orange. Active chromatin markings (H3K4me3 and H3K27ac) are present at
a higher density near transcription start sites of fetal-high genes in fetal liver than in
bone marrow.
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active promoters and enhancers are responsible for Slc2al's differential expression.

Interestingly, Gatal shows enrichment at proximal enhancers upstream of Slc2al's

transcription start site.

The known genes induced during erythropoiesis-induced genes Gatal and Band3

show similar chromatin enrichment at their promoters and proximal enhancers. Fig-

ures 3-13 and 3-14 contain images from the UCSC browser near the genes Gatal and

Band3, respectively. Gatal has enrichment for H3K4me3, H3K27ac, and Gatal at

its promoter and proximal enhancer in both bone marrow and fetal liver. Band3 also

has enrichment for H3K4me3, H3K27ac, and Gatal at its promoter and proximal en-

hancer in both bone marrow and fetal liver. Another known erythropoiesis-induced

gene Tall also has similar enrichment for chromatin marks indicative of active pro-
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Figure 3-11: Slc2al (Gluti) shows active chromatin markings at promoters and many

upstream enhancers as well as Gatal binding at some upstream enhancers in fetal
liver which are completely lacking in bone marrow.
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Figure 3-12: Mtl shows active chromatin markings at downstream enhancers and
Mt2 shows active chromatin markings in upstream enhancers that are present in fetal
liver yet lacking in bone marrow. Active promoter chromatin markings are present
in both Mtl and Mt2 in both bone marrow and fetal liver.
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Figure 3-13: Gatal shows similar chromatin markings between bone marrow and fetal
liver at its promoter and upstream enhancer.
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moters and proximal enhancers.

In summary, differentially expressed genes enriched in bone marrow show enrich-

ment for chromatin marks indicative of active promoters near their transcription start

sites, H3K4me3 and H3K27ac, at higher levels than fetal liver, implicating promoters

drivers of differential expression. Those genes differentially expressed and enriched

in fetal liver show enrichment for chromatin marks indicative of active promoters,

H3K4me3, at higher levels than bone marrow, again implicating promoters in differ-

ential expression. Genes involved in erythropoiesis such as Gatal, Band3, and Tall

show similar enrichment for chromatin marks indicative of active promoters.

3.4 Discussion of DNase-seq Analysis

DNase-I hypersensitivity sites are places where DNase-I can cleave DNA due to open

chromatin. We analyzed DNase-seq I data of fetal liver and adult bone marrow cry-
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Figure 3-14: Slc4al (Band3) shows active chromatin markings at its promoter, up-
stream enhancer, and downstream enhancer that are similar between bone marrow
and fetal liver.
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throid progenitor cells in order to determine areas of DNase-I hypersensitivity near

promoters and enhancers of differentially expressed genes. We called peaks or DNase-

I hypersensitivity sites using the software Peakranger and found ares within sites with

enrichment for JASPAR and TRANSFAC motifs. Further work will analyze enriched

motifs in order to determine if there are specific transcription factors driving differ-

ential expression of genes between bone marrow and fetal liver. In order to reduce

the search space and increase specificity of search for enriched motifs, we analyzed

DNase-I footprints within DNase-I hypersensitivity sites as well. Locations where

transcription factors bind DNA block DNase-I from cleaving DNA leaving areas of

low cleavage inside sites between sites of high cleavage. Figure 3-15 shows an example

of a DNase-1 footprint near the promoter of the human gene MTPN. Interestingly, the

area within the DNase-I footprint shows enrichment for the transcription factor NRF1

as well as conservation among vertebrates by PhyloP scores. We adapted a DNase-I

footprint finding algorithm used to find footprints for human cells for mouse. In short,

we calculated a per-nucleotide cleavage score by taking the 5' end of each DNase-seq

read and found areas within DNase-I hypersensitivity sites where the average cleav-

age score was high in 3-10 base left and right flanking regions and high in 6-40 base

center regions. Although DNase-I footprints make up only 12% of DNase-I hypersen-

sitivity sites in the fetal liver datasets, 53% of enriched JASPAR motifs fall within

them. Figure ?? contains an image from the UCSC browser near Slc2al which demon-

strates that the promoter of Slc2al has a called DNase-I footprint with significant

enrichment for a number of transcription factors: Ctcf, Egri, Klf4, Klf5, Spi, Sp2,

and Zfx. Figure 3-16 contains an image from the UCSC browser near Hif3a, another

gene differentially expressed and enriched in fetal liver which also exhibits DNase-I

footprints overlapping an enriched Ctcf motif. Hif3a additionally contains DNase-I

footprints and enriched motifs in its promoter and proximal enhancers. Interestingly,

Grb1O (differentially expressed and enriched in fetal liver) contains a DNase-I foot-

print as well which overlaps an enriched Ctcf motif near a proximal enhancer. Where

the enriched motif occurs in all three genes (Slc2a, Hif3a, and Grb1O) also contains

enrichment for Ctcf by ChIP-seq in fetal liver. While study of more differentially ex-
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pressed genes is necessary, preliminary analysis of three differentially expressed genes

enriched in fetal liver suggest that while the repressive chromatin mark H3K27me3

is located near all three genes, Ctcf may act as an insulator to prevent transcription

silencing of these genes.

3.5 Further Work

Continuing work will analyze enriched motifs more throughly at DNase-I hypersensi-

tivity sites for genes differentially expressed between bone marrow and fetal liver in

order to gain insight into transcription factors that may be driving differential expres-

sion. Further work will also attempt to filter contaminating transcripts by alternative

methods, rather than our expression level highest in a contaminating tissue approach,

such as by finding evidence for open chromatin near the promoter of genes in our cells.

As highly expressed contaminating transcripts would show up in RNA-seq data as

being differentially expressed because the contaminating tissues are different between

fetal liver and adult bone marrow, other methods that are sensitive instead to the

number of cells rather than transcript abundance such as DNase-seq would be more

useful in determining whether or not a transcript is actually expressed in the desired

cell line.

3.6 Miscellaneous Work

In addition to the work described here, a website was developed to make it easy to

identify potential IncRNAs involved in erythropoiesis. Previous work in our group

catalogued the repertoire of IncRNAs active during erythropoiesis, including over 100

previously unannotated IncRNA genes that are often erythroid-restricted. They com-

prehensively characterized these RNAs by their tissue specificity, expression patters,

chromatin state, and TF binding in vivo, and integrated these features to select can-

didates for functional studies. The table located at http: //lodishlab. wi . mit .edu/

data/lncRNAs/ contains a table of the lncRNAs identified in the previous work1 . The
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Figure 3-15: Figure 1 (a) from33 . DNase-seq cleavage exhibits a footprint where there
is an enriched motif for NRF1 and evidence of NRF1 binding by ChIP-seq in human
K562 cells near the gene MTPN's promoter. The footprint also shows vertebrate
conversion by phyloP.
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Figure 3-16: Slc2al (Gluti) shows a DNase-I footprint overlapping enriched motifs
and significant mammal conservation at its promoter. The tracks are DNase-I cleav-
age, JASPAR motifs, DNase-I footprints, and mammal conservation. The enriched
motifs are for the transcription factors Ctcf, Egri, Klf4, Klf5, Spi, Sp2, and Zfx".
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website contains data indicating each IncRNA's locus, if it has CAGE (Cap analysis

gene expression) tags, an RPOL II (RNA polymerase II) peak, an H3K4me3 peak,

an H3K35me3 peak, an H3K4mel peak, an H3K27ac peak, a GATAl peak, a TAL

peak, a KFL1 peak, and the erythroid tissue specificity score for each IncRNA gene.
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