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Abstract

This work presents PhysioMiner, a large scale machine learning and analytics frame-
work for physiological waveform mining. It is a scalable and flexible solution for
researchers and practitioners to build predictive models from physiological time se-
ries data. It allows users to specify arbitrary features and conditions to train the
model, computing everything in parallel in the cloud.

PhysioMiner is tested on a large dataset of electrocardiography (ECG) from 6000
patients in the MIMIC database. Signals are cleaned and processed, and features are
extracted per period. A total of 1.2 billion heart beats were processed and 26 billion
features were extracted resulting in half a terabyte database. These features were
aggregated for windows corresponding to patient events. These aggregated features
were fed into DELPHI, a multi algorithm multi parameter cloud based system to
build a predictive model. An area under the curve of 0.693 was achieved for an acute
hypotensive event prediction from the ECG waveform alone. The results demonstrate
the scalability and flexibility of PhysioMiner on real world data. PhysioMiner will be
an important tool for researchers to spend less time building systems, and more time
building predictive models.
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Chapter 1

Introduction

Over the past ten years, the amount of data that is collected, stored, and analyzed

on a daily basis has grown exponentially. Ninety percent of the data in the world has

been created in just the last two years [20]. Companies like Google and Facebook

have petabytes of information stored in various warehouses. As storage has become

extremely cheap, companies and researchers generate and store tremendous amounts

of user interaction data from their products. The goal is to process and analyze this

data for patterns and correlations, and build predictive models. In some cases, the

amount of data has allowed researchers to build much more accurate models of real

world events - everything ranging from human behavior to weather patterns.

Healthcare data has seen similar growth, as hospitals can now store terabytes of

information about their patients at a reasonable price. But health care data is not

limited to hospitals alone. Healthcare data comes from a variety of sources in a variety

of formats. EMR (Electronic Medical Records) and EHR (Electronic Health Records)

service providers like athenahealth, e Clinical Works, and Epic maintain patient records

including demographics, medical history, and laboratory results from clinical visits.

These companies store records for millions of patients, and their mission is to be the

information backbone for a patient's entire medical history [4].

A large subset of the patient data recorded by various players in the medical space

9



is physiological signals. ICU's monitor various physiological signals continuously

throughout the patient's stay, in a hope to better medical diagnosis, enhance fu-

ture care, or personalize the care space. Measuring physiological signals like Arterial

Blood Pressure (ABP) and Electroencephalography (EEG) are invasive procedures,

requiring electrodes placed on the scalp or the insertion of catheters into an artery.

Other physiological signals like Electrocardiography (ECG)) are less invasive, and

simply require placing on a monitor on the heart or fingertips of the patient. Because

ECG is less invasive, it is becoming increasingly popular in collecting data outside of

the hospital. Fitbit, for example, allows users to put on a wristband to record and

store personal health data throughout the day [11]. Alivecor created a specialized

heart monitor (that acts as an iPhone cover) that is both affordable and easy to

use in various settings [1]. While Alivecor is prescription only, Cardiac Design is an

Over-The-Counter iPhone heart monitor that users can use to record their own ECG

signals [5]. Qardio lets users record both BP and ECG data using two specialized

products, a wireless blood pressure cuff and a chest strap-on device [14]. With the

myriad of companies starting to get into the physiological analysis space, petabytes

of data are being collected everywhere from the home, to hospitals, to the gym.

Given the large amount of data from multiple health data vendors, the machine

learning community has been particularly interested in health care data. A subset of

researchers and practitioners are interested in physiological signals, because of their

implications on society. Lets take a look at a specific example: heart disease. 600,000

people die from heart disease every year in the United States [9]. Some occupations

are much more susceptible than others - fireman are 300 times more likely to suffer

a heart attack than the average person. With the decreasing costs of monitoring

technology, we can actually monitor the ECG signals of each fireman in real time.

If we could predict when a fireman was likely to have a heart attack with a minutes

notice, we could likely save the lives of thousands of firemen every year.

At the same time, a large amount of research has gone into predicting Acute Hypoten-

sive Episdoes (AHE) using ABP data. An Acute Hypotensive event occurs when a

10



QARDIO

Figure 1-1: Fitbit (top left) built a wristband that lets users record personal data

throughout the day. Alivecor (top right) built an iPhone app and case that allows

users to record their ECG signals. Cardiac Design (bottom left) has a similar product

to Alivecor, except it is over the counter. Qardio uses a blood pressure cuff to measure

ABP signals.

patient's blood pressure goes below a specific threshold for a significant period of

time. Physionet and Computers in Cardiology hosted a machine learning challenge

for developers to predict AHE events 30 minutes into the future, given a large training

data set. The resulting models were promising - accuracies of over 90% were reported.

Only a small surface of the vast amounts of healthcare data has been tapped. Ten

years ago, the problems were in accumulating enough data to analyze, and finding

scalable, accessible storage for the data. Now, the problems lie in how to manage and

exploit the sheer scale of available data. Along with big data has come cheap storage

and cloud computing. Cheap storage has allowed us to maintain high resolution data

from millions of patients over extended periods of time. Data centers have allowed
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this storage to be scalable and anywhere accessible. Cloud computing has made it

possible to build scalable applications to analyze this extremely large, and quickly

growing dataset. With a few clicks of a mouse, it is just as to easy to spin up ten

machines or ten thousand. Scalable cloud computing has made it possible to analyze

petabytes of data in mere hours.

While the benefits of cloud computing are easily seen with building services and

distributed storage systems, figuring out how to divide a data processing or machine

learning pipeline into separate, parallelizable processes can take a significant amount

of time and resources. Building a compute infrastructure to handle this pipeline takes

even more time. A lot of focus is on building scalable customized architectures for

processing data, when it should be on the processing and analysis itself.

Raw Clean

Figure 1-2: PhysioMiner acts as a black box for users. Users provide data and features,
and PhysioMiner outputs a set of processed data. This processed data can be used
along with analysis conditions to extract results.

We have all the tools needed to learn from this vast sea of data - a scalable cloud,

cheap storage, machine learning algorithms, and the data itself. Yet, the time between

data collection and analysis is often in the order of months. Researchers have to

build an entire system that connects each of these tools together, often taking weeks.

While starting up 1000 servers might be easy, creating a parallelized application that

runs on all of them is often difficult. In the context of physiological waveforms,

we observe that the analytics pipeline used by a number of researchers follow the

same framework. Cleaning and filtering the data, splitting the data into periods

12



(onset detection), extracting features (e.g. wavelet coefficients) on a per period basis,

and aggregating the time series of features to perform machine learning. While the

machine learning problem in focus could change, the data processing pipeline does

not. Hence, a feature time series represents a good intermediate representation of

data storage, which would save enormous startup times, and enable extremly scalable

experimentation, discovery, and machine learning. Ideally, researchers would have an

application that handled connecting the cloud and storage to data, precomputing

various calculations for later use, and querying the data to investigate hypotheses.

PhysioMiner is that application for physiological waveforms.

1.1 What is PhysioMiner?

PhysioMiner is a large scale machine learning and analytics framework for analyzing

periodic time series data and creating an instance of BeatDB [18]. The periodicity

of time series data allows data processing and machine learning algorithms to be

easily parallelized. PhysioMiner is an application for developers to use to process

and analyze their data in a scalable fashion on the cloud. This will save developers

the start up costs of setting up a cloud computing framework for their time series

analysis, so they can focus on the analysis itself.

PhysioMiner is split into four simple modules that allow users to:

o Populate the database with patient's physiological data

o Extract features from physiological data

o Find windows exhibiting some patient condition

o Aggregate features for different windows

PhysioMiner handles connecting the data to the cloud and database using Amazon

Web Services. It abstracts away the cloud from the user, giving the user a simple

command line interface to process and query data. While PhysioMiner can be used

for any periodic time series data, we will focus on physiological waveforms here. A lot
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of research has gone into analyzing the ABP and ECG signals posted for thousands of

patients in the MIMIC 2 database [12]. PhysioMiner will allow researchers to easily

process and query the data at scale, while ignoring the cloud computing framework

that PhysioMiner is built on. PhysioMiner will allow researchers to make the most

out of the physiological data available, and will hopefully stimulate new discoveries

in health care.

Patient
Data

Feature
ExtractionS

cripts

Processed 01Results
Data

Analysis
Conditions

Figure 1-3: PhysioMiner acts as a black box for users. Users provide data and features,
and PhysioMiner outputs a set of processed data. This processed data can be used
along with analysis conditions to extract results.

1.2 Goals

PhysioMiner was built to be used as an analysis blackbox. There are several goals

PhysioMiner must meet to achieve this.

Usability - It should be easily used by a variety of users - hospital data scien-

tists, research groups, even businesses. This means it must be both simple and

powerful.
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Flexibility - Users should be able to customize their data processing and anal-

ysis. Users should be able to adjust things on the fly, without restarting the

entire process. In particular, PhysioMiner should support:

- Adding new patients - The user should be able to add new patients

into the database at any time, with all necessary data processing done

automatically.

- Adding new features - The user should be able to extract new features

from existing patients into the database at any time.

- Adding new conditions - The user should be able to specify new con-

ditions to aggregate data on for analysis.

Scalability - It should be just as easy to process a 1MB of data as it is 1TB. In

addition, analyzing 1TB of data should take roughly as long as analyzing 1MB.

Fault tolerance - Handling instances that fail or files with errors should be

seamless to the user. The user should simply receive a list of files that were

unable to be processed.

Speed - The processing and analysis time should never be the bottleneck for

research. Time should be spent examining results, and creating new features to

test, not waiting for the data to process.

Economical - Processing and storing terabytes of data will not be cheap, but

the costs of running an analysis should be reasonable. Specifically, the expected

benefits of running multiple analyses should greatly exceed the cost of running

them using PhysioMiner.
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Chapter 2

Populating the Database

Feature time iseries

Figure 2-1: The basic pipeline for
raw waveforms. These waveforms
then calculated for each beat.

processing physiological signals. Signals come as
are divided into periods, or beats. Features are

The initial step in setting up a database is populating it with segmented physiological

waveforms. Figure 2-1 illustrates the steps used to process and store signals. Each

patient has a signal file containing readings for a particular time frame. These signals

are segmented into beats, using an onset detector. These beats often correspond to

natural periodic events like heartbeats. Features are then extracted per beat, and

stored in the database.
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2.1 System Architecture

Populate SQS

Master messfges

0

EC2 EC2 EC2
Slave Slave I

S3

Figure 2-2: The basic system architecture for PhysioMiner. There are three main
components and interactions - database, master-slave framework, and file storage.

Figure 2-2 illustrates the overall system architecture of PhysioMiner. There is a

basic master-slave framework that PhysioMiner is built upon which connects to both

patient file storage and the database. These components use various Amazon services

to provide scalability and fault tolerance. The following is a list and brief description

of each of the services that is used:

DynamoDB - A NoSQL database. It is designed to be fast, scalable, and

supports hash keys and range keys per table. It also provides a very simple API

for interacting with the database.

Simple Queue Service (SQS) - A simple messaging system. It provides a

messaging queue that is optimal for a master-slave workflow. The master can

add tasks onto the queue as messages, and slaves can pop messages off of the

queue to work on them. It is designed to handle concurrency. For PhysioMiner,

18
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the cost is effectively $0 for most workflows.

Elastic Compute Cloud (EC2) - A scalable cloud. It provides an easy API

for starting and stopping virtual machines (instances), and provides full control

over each instance. It is extremely flexible, allowing cost tradeoffs for RAM,

disk space, and CPU.

Simple Storage Service - A scalable storage mechanism. Costs depend only

on the amount of data stored, and it can be easily integrated with the various

other Amazon products.

The following sections discuss each of the three components and how we built Phys-

ioMiner using them.

2.1.1 Database Schema

PhysioMiner stores all of its data in NoSQL tables using DynamoDB. Each patient

has a unique identifier to access the data. Signals recorded for each patient may be

split among multiple files, called segments. Each segment has a list of samples for a

given time period - these samples are split up into periods called beats. Each beat

has a start and end time, validity, and several precomputed features. The schema is

split up into three separate tables in DynamoDB.

Segment Table This table stores a row for each segment. A segment represents

a single file of patient data stored in S3. Segment ids are globally unique. The file

location corresponds to the associated signal file stored in Amazon S3.

Patient Id Segment Id File Location

3000003 AH837bC data/mimic2wdb/3000003

3612860 98HF7wj8 data/mimic2wdb/3612860

Beat Table This table stores a row for each beat. Each segment is divided into a

list of beats, representing contiguous segments of signal data. For each beat, there are
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several columns of metadata - start sample id, end sample id, validity. There is an

additional column for each feature extracted for the beat. Patient id is redundantly

stored with beats, since DynamoDB does not support multiple hash keys or JOIN

operations. This allows us to quickly identify which patient a beat belongs to, without

scanning the segment table [7].

Patient Id Segment Id Beat Id Interval Start Interval End Valid Feature 1

3000003 AH837bC 108 173119 173208 True 183.32

3000003 AH837bC 109 173209 173292 True 185.94

Window Table This table stores a row for each window. Windows are defined as

periods of time where a certain condition has happened to a patient (i.e. arrhythmia).

There is a different window table for each condition. Each window starts and ends at

specific beats on a particular segment. The features of these beats can be aggregated

via various functions (mean, kurtosis, etc.) and stored as aggregated features in

the table. Each window is also labeled with a classification, so a machine learning

algorithm, like logistic regression, can easily be run using this table.

Window Id Segment Id Start Beat Id End Beat Id Class Agg. Feature 1
IFJ83G AH837bC 108 1502 AHE 392.1

837HR AH837bC 10388 1322 Normal 392.1

2.1.2 File Storage

PhysioMiner uses Amazon S3 to store patient files. Users can upload each of their

patient files to a folder in S3. Several tools exist to upload files, or users can do it

manually with the S3 Management Console [3]. Each file should correspond to exactly

one patient, and the name of the file should be the patient id. Currently, PhysioMiner

has built in support for ABP and ECG files stored in the European Data Format

(EDF). Otherwise, signal files should be in a CSV format with a (sample-id, value)

listed on each line. An example signal file may look like:

20



>>> cat signal.csv

1,29.8

2,30.1

3,31.2

4,34.5

10,36.7

Users also store feature extractor scripts and onset detectors in S3. Users specify the

script location to PhysioMiner on initialization (see Section 2.2.1. These scripts are

then downloaded and used by the EC2 instances (slaves) to process the signals and

extract features.

2.1.3 Master Slave Framework

PhysioMiner is structured as a master-slave framework using Amazon SQS. Opera-

tions on the database are divided up into tasks, each of which can be encoded in a

message. These message are put into a global message queue. The slaves continuously

read messages from this queue, and perform the tasks associated with them. Most of

these tasks involve some sort of data processing and writes to single global database.

The basic workflow is shown in Figure 2-3.

Master

The master is responsible for creating tasks. A job is broken down into tasks, and

the master populates the message queue with these tasks. PhysioMiner breaks down

each job (populating, extracting, conditioning, aggregating) into parallelizable tasks.

Each task is encoded as a message, and placed on the message queue for slaves to

read. The master can be run on any machine (EC2 instance, laptop, etc.) Typically,

the division of tasks and population of the queue takes no more than a couple of

minutes.
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SQS

Figure 2-3: The master slave framework that PhysioMiner uses. Messages are sent
from the master to the slaves through Amazon SQS, and the slaves write the output
of each task to the database.

Slave

The slave is responsible for completing the tasks in the message queue. When a

slave starts running, it listens to the message queue for messages. Once it receives

a message, it parses the message to extract the task to complete. The slave then

finishes the task, stores the results in the database, and deletes the message from the

queue.

PhysioMiner uses an Amazon EC2 instance for each slave. Each instance is its own

virtual machine, with its own memory and disk storage. Users can use PhysioMiner

to create these instances automatically. Users can specify the number of instances

they want to use during their analysis, and the type of instance. Each instance type

has different amounts of RAM, CPU power, and disk space. Table 2.1 compares the
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specifications and costs of each instance that was considered.

Instance Type CPU (ECUs) RAM (GiB) Cost per hour

c3.large 7 3.75 $0.105

c3.xlarge 14 7.5 $0.210

c3.2xlarge 28 15 $0.420

r3.large 6.5 15 $0.175

r3.xlarge 3 0.5 0.350

r3.2xlarge 26 61 $0.700

Table 2.1: The per hour costs of different Amazon EC2 instances.

Amazon EC2 Instances are created using an Amazon Machine Image (AMI). An

AMI is a snapshot of an EC2 instance, and can be used to initialize new instances in

the same state. We have created a public AMI for PhysioMiner that contains all of

the installations necessary to run the PhysioMiner software. These include Python,

Java, and various Physionet software [17]. These images also come preloaded with the

software stack required by the slaves as discussed in Section 2.1.3. When PhysioMiner

creates the instances, it automatically starts the slave program on the instance using

the user data framework provided by Amazon [10].

PhysioMiner uses this public AMI as the default image for its slaves. However, users

can specify an optional argument with the id of the AMI they want to use instead.

This allows users to configure an instance themselves, and install any software nec-

essary to run their code. To do this, a user can create an instance using the public

PhysioMiner image, configure it as desired, and take a snapshot of the new image.

This image does not need to be public, so users with privacy concerns can simply set

the new AMI to be private.

Amazon SQS

Amazon SQS provides a variety of services to make the master-slave framework easier

to build. Once a message is read by a slave, the message is marked as not visible.

This prevents other slaves from performing the same task. Once the slave is done

with the task, it deletes the message from the queue. It also provides a fault toler-

ance mechanism - once a slave reads a message and marks it as not visible, it has
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some allotted time to perform the task and delete the message. If the slave does

not complete the task in time, the message is marked as visible automatically, and

other slaves can perform the task. This mechanism allows creates a robust, fault

tolerant architecture - if a slave dies, or cannot successfully finish a task, the task will

eventually get re-added to the queue.

2.2 How is it used?

Populating a PhysioMiner database can be conceptually split up into two separate

modules - Populating and Feature Extracting. These conceptual modules also

represent how the code was structured, to provide maximum flexibility to the user.

Some additional features were added to improve the speed of PhysioMiner- these are

discussed in Section 2.3.

2.2.1 Population Module

Users initialize their PhysioMiner instance using this module.

User Specifications

Users specify the following items to run the populate module:

" S3 Bucket - container in S3 for any data PhysioMiner needs access to

" S3 Patient Folder - the folder in S3 which contains all of the patient signal

files. Currently, PhysioMiner supports signal files stored in EDF format for its

built in physiological onset detection.

" Signal type - PhysioMiner has built in support for ABP and ECG signals.

Other signal types can be specified, but custom onset detection algorithms

must be given.

" Onset detector - the location of the onset detection script in S3. If the signal

type has built in support (ABP or ECG), then this is not necessary.
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Optionally, features can be given to the populate module to compute them at ini-

tialization time. This allows PhysioMiner to be both flexible and economical by

minimizing the data processing time. This is discussed more in Section 2.3.1.

Master

The master retrieves a list of patient files from the S3 patient folder. It then cre-

ates a PopulateMessage for each patient, and pushes it to Amazon SQS. A sample

PopulateMessage might look like:

Patient id: 3000003

S3 Bucket: mybucket

File path: data/ecg/3000003.edf

Signal type: ECG

Onset Detector: scripts/ecg/onset-detector

If feature extractors were given to the master, then the PopulateMessage also con-

tains a mapping from feature names to an S3 file path for the feature script. This is

discussed more in Section 2.3.1.

Slave

Once a slave receives a PopulateMes sage, it performs the following steps:

1. Downloads the corresponding signal file from S3.

2. Reads the sample values from the file.

3. Performs onset detection to split the signal into beats.

4. Optionally, extracts features from the beats.

5. Stores the beats into DynamoDB.

Customization

PhysioMiner was designed to be flexible and customizable, so users can specify custom

onset detection scripts to run on their signals. PhysioMiner accepts arbitrary binary

executables as onset detectors, which take as input a csv file of (sample id, value),

and output the starting sample id for each beat on a separate line. A typical use of
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the program might look something like:

>>> ./my-program signal.csv

5

134

257

381

This gives the user complete control over their data. To test the onset detection

in the environment it will be run in, the user can simply spin up an EC2 instance

using the default PhysioMiner AMI and perform his tests there. PhysioMiner uses

the PhysioMiner AMI by default for its slave EC2 instances. However, it provides a

simple interface to create PhysioMiner slaves using different AMIs (see Section A.1).

SS e

Messae Beat
metadataIe

Figure 2-4: The framework that the Populate Module uses. Each message corresponds
to a patient file to process. The slave downloads the file from S3, processes it, and
stores the beat metadata into the database.
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2.2.2 Feature Extract Module

Users can extract features from existing patients in the database using this module.

PhysioMiner stores features per beat.

User Specifications

To extract features from all of the existing patients in the database, users specify the

following items:

e S3 Bucket - container in S3 for any data PhysioMiner needs access to

9 Features - a mapping from feature names to the script location in S3

A feature extractor is a function that takes as input a list of beat values, and outputs

a single feature value. Feature scripts can be arbitrary binary executables. A typical

use of a feature extractor might look like:

>>> ./featureextractor 21.1 23.0 22.88 25.2 4 32.7 41.2 39.8 42.2

5

Master

The master retrieves a list of patient ids from the database. It then creates a

FeatureExtractMessage for each patient, and pushes it to Amazon SQS. A sam-

ple FeatureExtractMessage might look like:

Patient id: 3000003

S3 Bucket: mybucket

Features: [(mean, scripts/mean), (max, scripts/max)]

Slave

Once a slave receives a FeatureExtractMessage, it performs the following steps:

1. Downloads the patient file from S3.

2. Reads the sample and signal values from the file.

3. Divides the samples into beats using the beat metadata in the database.

4. Extracts features from each beat.
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5. Adds the features to existing rows in the database.

Customization

Allowing arbitrary feature extraction scripts allows the user complete control over

the extracted features. It allows users to write their scripts in any language, as long

as they update the slave EC2 AMIs to support it. While this provides complete

flexibility, this caused significant speed challenges for PhysioMiner. Section 2.3.2

describes these challenges, and the changes made to overcome them.

Ppate

SQS
Feature
Extract

Messages Beat features

Figure 2-5: The Amazon framework that the Feature Extract uses. Each message
corresponds to a segment of the database to process. For each patient in the segment,
the slave will download the file from S3, process it, and store the features into the
database.
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2.3 Architectural Challenges

The challenges in implementing PhysioMiner stem directly from its goals - speed,

cost, and flexibility. These often create conflicting axes for design. In some cases,

PhysioMiner was able to accommodate both goals, while in others, tradeoffs were

necessary. Other software concerns like modularity also played a significant role in

the implementation decisions.

2.3.1 Flexibility vs. Speed: Supporting Different Use Cases

The division of PhysioMiner into modules gives the user a lot of flexibility in inter-

acting with the data. Since each module can be run separately, the user can choose

exactly what he wants to run. However, this division could mean a significant loss of

speed.

For example, the populate module downloads the patient files, reads the samples,

splits them into beats, and stores them in the database. The extract module down-

loads the patient files, reads the samples, reads the beats from the database, and

stores the features back into the database. While dividing these into separate mod-

ules is good for specific use cases, it almost doubles the amount of downloading and

processing necessary when feature extraction is done immediately after populating.

To solve this issue without sacrificing flexibility, the populate module can optionally

take a list of features to extract. The populate module then extracts the features

before populating the database. Feature extraction uses the same code as the extract

module, but importantly does not create a new task. Instead, a single slave handles

both the populate and feature extraction steps simultaneously. This prevents double

work in downloading files and writing to the database, and ultimately makes feature

extraction run about twice as fast. This solution provides the flexibility of separate

modules with the speed of a single module.
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2.3.2 Flexibility vs Speed: User Defined Procedures

PhysioMiner allows users to provide binary executables for onset detection and fea-

tures. This gives users complete flexibility over their data processing, as it allows

them to write feature extractors a language of their choice. This was also relatively

easy to implement from an architectural standpoint. However, this had tremendous

effects on speed.

Since PhysioMiner is implemented in Java, it supports binary executables using Javas

ProcessBuilder. When extracting features via these binary executables, PhysioMiner

simply creates a new process for each beat and reads the output of the users ex-

ecutable. However, starting a process has a non-trivial overhead, measured to be

around 30ms on an Amazon EC2 Micro instance. Since a typical signal file can con-

tain up to a million beats, extracting features from a single file would take a minimum

of 30,000 seconds (8 hours). This goes against PhysioMiner's speed goals.

The total number of spawned processes had to be limited (ideally constant). To solve

this problem, we sacrifice some user flexibility by limiting the supported languages of

feature extractors to only Python. This could be extended to support other popular

languages such as Java, Matlab, and C++.

To support feature extractors written in Python, PhysioMiner has a python aggrega-

tor script (written in Python) on the instance AMIs. The python aggregator script

makes use of Pythons dynamic module loading. This script imports the feature ex-

tractor as a python module, and calls it for each beat in a segment. Structuring it

this way means we only need to spawn one process for the python aggregator.

The feature extractor must contain a method called extract-feature, which takes

in a list of values corresponding to a beat. This method must return the computed

feature value. The python aggregator script is shown below.
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# filename of the feature script

script = sys.argv[1]

module = imp.load source("module", script)

# filename of file containing the data for each beat

data_file-path = sys . argv [2]

datafile = open(data-file-path)

# filename to output feature values to

out-file-path = sys.argv[3]

out-file = open(out-file-path, 'w')

for line in datafile:

# get the data for a single beat

data = [float(s) for s in line.split(" ")]

val = module.extractfeature(data)

outfile.write(str(val) + "\n")

Using this structure reduced the feature extraction time from 8 hours to around 20

seconds for easily computable features on a million beats. Though the gains in speed

(1500x) are tremendous, the tradeoffs in flexibility are also large, as they force the

user to write extraction scripts in Python. This is an area where additional work

could be done to expand the flexibility.

2.3.3 Flexibility vs. Simplicity: Variable-sized Tasks

Processing a single patient file and extracting features requires a significant amount

of memory. For a file with n beats, with an average of 100 samples per beat, this

requires at least 800n bytes just to store the sample values. For a typical file with

one million beats, this requires more than almost 750MB of memory. To process this

data and extract features, it requires 2400n bytes of memory.

Unfortunately, there is wide variation in patient file sizes. Some are more than 10
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Figure 2-6: A graph showing the number of samples in each signal file on MIMIC.

times larger than the average size.

into memory requires a significant

and simplicity of implementation

PhysioMiner.

Processing all of this data and extracting features

amount of RAM. There is a tradeoff between ease

and the ultimate cost of running anaylses using

The amount of RAM necessary changes the costs of running an analysis, as EC2 server

costs scale with the instance specifications. Table 2.1 shows a comparison of RAM,

CPU, and cost for various EC2 instances. There is a cost tradeoff between how fast

computation can be performed, and how much memory the instance has. Memory

is particularly important, since Java garbage collection tends to take a significant

amount of time when the heap size gets too close to the maximum. Ultimately, the
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R3 family of EC2 instances was a better bang for the buck. Using a one-size-fits all

approach, we would need to use a R3.2xlarge instance to support the largest files.

Using the R3.2xlarge would cost $0.70 per hour per instance, which could make

costs of an analysis fairly high. There are two possible solutions to reduce the costs:

1) Divide up tasks by file size, and 2) reduce the memory footprint via partitioning.

1) Divide tasks by file size

Since not all of the files are the same size, different size instances can be used to

process different size files. If 50% of the files are less than half the size of the largest

file, then the this method would save 25% on server costs. Realistically, more than

80% of the files tend to be much smaller than the largest file, so the savings in server

costs would be substantial.

This requires a lot more configuration and implementation, as instances need to be

aware of their specifications, and there needs to be a separate queue for each type of

instance. This will eventually be a built in feature of PhysioMiner, but it is possible

to do this manually by using the populate module multiple times.

2) Partition files into memory

Currently, the memory requirements are a function of the number of samples in the

signal file. This means that, as samples are stored at higher resolutions and for longer

time periods, memory requirements will go up. This is not strictly necessary, as most

of the modules only require a small portion of the signal at any given time.

Files could be split up into chunks, which are each loaded and processed separately.

This would require some amount of care, as often beat features depend on previous

beats. In addition, most open source onset detection algorithms expect a full signal

file, so stitching the results together would require some work. Though this is out

of the scope of the original implementation of PhysioMiner, this is definitely possible

and would decrease the server costs of running an analysis.
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2.3.4 Scalability: Database Interactions

Initial tests of PhysioMiner showed that the majority of the populating time was

not from data processing - it was from time spent writing to the database. Amazon

DynamoDB allows users to pay for more read and write throughput. To provision an

additional 10 writes per second costs $0.0065 per hour.

A scaling test was run using the populate module with 5 patients and 200 writes per

second. 80% of the time was spent writing to the database. Using 800 writes per

second reduced the database write time to about 50%. For an hour of analysis, this

amount of throughput would cost $0.52. While this seems like a trivial amount, it

scales with the amount of data to analyze. To analyze 1000 patients with one million

beats each in 5 hours, this would require more than 50,000 writes per second. Over

five hours, this would cost $162.50. These costs scale linearly with the amount of data

to process. PhysioMiner is scalable for large data sets, but scaling is costly. However,

the creation of beatDB which uses the populate module is only done once per new

data source.

Unfortunately, there are no solutions to this problem other than using another database

solution. There is no time/cost tradeoff here - increasing the allowed time does not

change the total cost of database throughput. Amazon has a concept of reserved

capacity - purchasing throughput for an entire year at a steeply discounted price.

However, since most analyses are done sporadically, this would not be a good solu-

tion for the typical user of PhysioMiner.

2.4 Other Considerations

2.4.1 Cloud Services

There were several options considered when deciding what cloud framework to use

for PhysioMiner. We considered using both OpenStack and Amazon. Ultimately, we
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decided to use Amazon because of the variety of services it had that could be easily

integrated into PhysioMiner. In particular, services like Amazon SQS were critical in

making PhysioMiner a simple and scalable solution.

We were initially deciding between using Amazon Relational Database Service (RDS)

and Amazon DynamoDB. RDS is a SQL database designed to be fast, though it has

scalability issues with data sizes over 3TB [2]. With the following considerations, we

decided that DynamoDB was a better solution for PhysioMiner:

e NoSQL databases tend to perform better when there are few JOIN operations.

The workflow that PhysioMiner uses requires no JOIN operations.

e DynamoDB provides a much better scaling framework. Users can pay for more

throughput to the database, with extremely high limits.

e RDS is currently limited to 3TB per instance. If the amount of data grows

larger than this, then the user will have to implement a sharding technique for

their data. The sizes of tables in PhysioMiner are expected to grow to terabytes

in size, so this limit would become a problem.

2.4.2 File Formats

PhysioMiner has built in support for ABP and ECG signal files stored in EDF for-

mat. The public MIMIC database of signal files contains patient data stored in MIT

format. Each patient is stored as a group of header files and data files, correspond-

ing to segments of time where signals were continuously recorded. This format is

interchangeable with the EDF format, using the Physionet software mit2edf [8]. The

decision to support EDF over MIT was somewhat arbitrary, but since the EDF format

is easier to work with (a single file), we selected EDF.
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Chapter 3

Building Predictive Models

PhysioMiner provides a framework to build predictive models over the feature repos-

itory data. At a very high level, this framework allows users to specify events and

conditions that occur on a patient's time line, and build a classifier on the features

in the feature repository to predict the events ahead of time. PhysioMiner provides

an interface to specify conditions, and features to use for the classifier. It will even-

tually have a built in classification system, but it currently ports them into Matlab

or Delphi.

Hypothesis testing is split into two separate modules in PhysioMiner- Conditioning

and Aggregating. These modules can be used separately or together to extract

the aggregated features for each event. The basic structure of feature aggregation is

illustrated in Figure 3-1.

3.1 Condition Module

Users can find all windows matching a specific condition using this module. Medical

events are often directly related to a specific condition of the physiological wave

form, and finding such windows allows users to find these events. For example, acute

hypotensive events can be defined in terms of the mean arterial pressure over a given
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Figure 3-1: The basic workflow of feature time series aggregation. A window is
specified corresponding to a patient event. A time period before that is designated
the predictive window, or learning segment. This window is divided into subwindows,
and feature time series is aggregated for each of these windows. For n aggregation
functions and m beat feature time series, there are nm aggregated covariates for
machine learning per subwindow.

duration. The overall structure of the Condition module is illustrated in Figure 3-2.

User Specifications

PhysioMiner only currently supports built in conditions, but will soon support arbi-

trary condition scripts. The user provides:

" S3 Bucket - container in S3 with the scanning script

" Condition script location - file path in S3

Optionally, aggregators and feature names can be given to the populate module to

compute them at initialization time. This allows PhysioMiner to be both flexible and
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Figure 3-2: The framework that the Condition Module uses. Each message cor-
responds to a segment to process. The slave reads the beat metadata from the
database, finds any windows that match the specified condition, and stores them into
the appropriate window table.

economical by minimizing the data processing time.

Master

The master retrieves a list of segment ids from the database. It then creates a

ConditionMessage for each segment, and pushes it to Amazon SQS. A sample

ConditionMessage might look like:

S3 Bucket: mybucket

Segment Id: 7hf73hYAU83AnnHCBAL

Condition Script: scripts/acute-hypotensive-episode

Window Table Name: AHE
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If aggregators were given to the master, then the ConditionMessage also contains a

list of feature names, and a list of aggregators.

Slave

Once a slave receives a ConditionMessage, it performs the following steps:

1. Downloads the beats and features for the given segment

2. Searches the segment for a window that matches the given condition

3. Adds all matching windows to the appropriate window table

Customization

Currently, users can only use built in condition scripts. PhysioMiner will eventually

be able to support arbitrary condition scripts to determine windows.

However, PhysioMiner allows users to input windows directly into the database. If

the user has a list of predefined event times, they can write those windows into the

database, and use the Aggregate module described in the next section.

3.2 Aggregate Module

The main use case of PhysioMiner is using machine learning to predict certain physio-

logical events. Users can aggregate feature time series from their conditioned windows

using this module, and use these as input covariates into a classifier (logistic regres-

sion, SVM, etc). PhysioMiner will soon support subaggregation windows, which

divides the predictive window into several chunks before aggregating. The overall

structure of the Condition module is illustrated in Figure 3-3.

User Specifications

The user provides:

e Window table name - the table in DynamoDB containing all windows to

aggregate features for
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Figure 3-3: The framework that the Aggregate Module uses. Each message corre-
sponds to a window to process. The slave reads the window and beat values from the
database, aggregates features, and stores the features back into the database.

" List of feature names - the features to aggregate from these windows

" List of aggregation functions - the aggregation functions used to combine

each feature (mean, skew, etc)

" Lag - the length of history to aggregate features on

" Lead - time interval between the last data point of history and the beginning

of the window

" Subaggregation Window - time interval to divide windows into before ag-

gregating

Lead and lag are illustrated in Figure 3-4.

PhysioMiner currently has built in support for five different aggregation functions:

mean, standard deviation, kurtosis, skew, and trend. PhysioMiner will soon
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Figure 3-4: An window is defined by some interval corresponding to a patient event.
The lead is the gap between the predictive window and the event. The lag is the
duration of the predictive window.

support arbitrary aggregation scripts which the user can provide. These scripts would

take in a list of feature values, and return a single aggregated value. A typical use

case would look like:

>>> ./aggregator 57.2 43.2 34.1 56.7 91.1 22.2

53.54

Master

The master retrieves a list of windows from the window table that the user specified.

It then creates an AggregateMessage for each window, and pushes it to Amazon

SQS. A sample AggregateMessage might look like:

Window id: HUje8kwmqoN839GhaO

Feature names: duration, heartrate

Aggregator Functions: mean, skew, trend, kurtosis

Lag: 1800

Lead: 600

Subaggregation Window: 60

Slave

Once a slave receives an AggregateMessage, it performs the following steps:

1. Reads all feature time series for the segment in the predictive window

2. Divide the window into subaggregation windows of the appropriate size

42

event

9,90



3. Perform each aggregation function for each given feature time series

4. Store all aggregated features into the given window table

Customization

Users will be able to specify arbitrary aggregation functions to use, instead of just the

ones built into PhysioMiner. Since, the typical number of features and aggregators

will be small, these scripts can be arbitrary binary executables, without suffering a big

performance hit. PhysioMiner does not yet support arbitrary aggregation functions,

but this is left as future work.
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Chapter 4

New Patients and Features

One of the goals of PhysioMiner was to be flexible - to allow users to add patients,

add features, and create new databases. The modules described in the previous two

chapters allow this flexibility.

4.1 Adding Patients

When populating the database, the user has the option of recreating the tables. If

the user elects to recreate the tables, then all existing data is wiped, and the database

will consist only of the patients the user just added. If the user elects not to recreate

the tables, then patients are simply added to the existing database. PhysioMiner uses

the same framework for initialization and adding patients, so this process is seamless

to the user. The user justs specify which features to extract from the new patients

during populating.

4.2 Adding Features

PhysioMiner's feature extract module allows users to easily add features at any time.

While users will typically extract most features during the initial populating of the
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database, it is just as easy to extract features for existing patients. The process of

extracting features is very similar to populating the database - the user specifies the

table name, patient folder, and features to extract. The feature extract module does

not require an onset detector, since all onsets have already been calculated and stored

in the database

4.3 Adding Signals

PhysioMiner does not directly support multiple signals. Multiple signals for the same

patient would divide into different onsets, so storing them in the same database would

be complicated. Instead, PhysioMiner allows the user to specify the table name

everytime they run a PhysioMiner module. This allows users to manage multiple

databases with different signals. If the patient names are the same, it is easy to write

a script to link two patients across tables.
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Chapter 5

Demonstrating with ECG Data

To demonstrate PhysioMiner's interface firsthand, we extracted several features from

ECG data stored in the online public MIMIC database. '. We selected 6933 patients

with ECG Line II data to extract features from. We then used already-known acute

hypotensive events to test the analytics framework of PhysioMiner. Listed here is a

detailed analysis of the steps taken in extracting these features, the problems that

occurred along the way, and the various solutions to these problems.

5.1 Selecting the Patients

Physionet provides a variety of tools to interact with their signal files, without down-

loading the file from the database. In particular, wf dbdesc is a program that gives a

summary of a patients file - which signals are included, the sampling rate, the dura-

tion, etc. [17]. Using this, we were able to iterate through all the patient records in

the MIMIC II Waveform Database, and determine which signals they contained. We

selected all patients that had both ABP and ECG Line II data.

'We picked the same patients for whom the ABP features were extracted in the original BeatDB
paper [18].
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5.2 Downloading the Data

PhysioMiner requires that the patient files be located in Amazon S3. Since the original

data is stored in the MIMIC database on Physionet, we had to download the data

as an EDF file, and store it in S3. There were two possible workflows that were

considered:

1. Use mit2edf to download the file directly as an EDF, then upload the EDF file

to S3.

2. Download the file as a zip, convert it to EDF, then upload the EDF file to S3.

Even though the EDF and zip file sizes were similar, the second workflow was about

20 times faster. Though the reasons are unclear, it is likely that the conversion from

the MIT file format to EDF file format is extremely slow on the MIMIC servers. We

implemented the second workflow to download all of the patient data.

The MIMIC II Waveform Database is split up into 10 separate databases, each com-

prising approximately one tenth of the patients. This allowed us to easily parallelize

the download process by doing each database independently. We used the following

steps:

1. Create an EC2 instance with a 200GB EBS volume for each of the 10 databases.

2. Use rsync to download the entire database onto the EC2 instance.

rsync -Cavz physionet.org::mimic2wdb-30 /usr/database

3. Run a python script to convert each file to EDF format, and upload it to S3.

This process took about 15 hours. Instead of uploading all of the patient files into

the same folder in S3, they were split up by total number of samples in the file.

This allowed us to have more fine grained control over speed and costs, which will be

detailed in Section 5.3.3.
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5.3 Populating the Database

This was the first large scale test of PhysioMiner. Our goal was to do onset detection

and extract a large number of features from the ECG Line II data while populating

the database, to minimize time and costs. Populating the database required both

a sophisticated onset detection algorithm, and feature extraction scripts. We imple-

mented both of these.

5.3.1 Onset Detection

PhysioMiner requires an onset detection script to divide a signal file into beats. There

is no accepted way to divide ECG data into beats, so we used the structure of a typical

ECG waveform to divide it into beats [19].

A typical waveform is shown in Figure 5-1. There are distinct points along the wave

labeled P, Q, R, S, and T. While some beats may only have a subset of these, all

beats will contain a QRS complex. Thus, we used a QRS detection algorithm to

find the QRS complexes, and subsequently divided the signal into beats around these

complexes.

Given the QRS complexes for a given signal file, we simply create beat divisions

in between each complex. This gives us a beat roughly centered around each QRS

complex. This can be seen in Figure 5-2.

To calculate the start of the beat, we use the following procedure:

1. Start at the left side of the QRS complex (the Q).

2. Travel left until you reach either a halfway boundary, or a gap.

3. Mark this as the start index

To calculate the end of the beat, we use the following procedure:

1. Start at the left side of the QRS complex (the Q).
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Figure 5-1: A typical ECG waveform. It can be divided into a P wave, a QRS
complex, and a T wave. The QRS complex is always present, while the outside waves
are sometimes hard to locate. [15]
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Figure 5-2: The division of an ECG waveform into beats. The start of each beat is
exactly halfway between consecutive QRS complexes.

2. Travel left until you reach either a halfway boundary, or a gap.

3. Mark this as the start index

A specific example of using this algorithm is shown in Figure 5-3.

To detect QRS complexes, we used the wqrs software listed by Physionet (cite). This

software annotates the beginning and ends of each QRS complex in a signal file, even

when that signal file contains gaps.
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Figure 5-3: The division of an ECG waveform into beats, using the specified algo-
rithm. Notice that for the last boundary, there is some data not included in any
beat

Onset Detection Challenges

After implementing the above onset detection algorithm, we ran it on several patients

to see how it performed. We noticed odd behavior start to occur at the end of files.

The wqrs detection program began detecting QRS complexes that were within 200ms

of each other. This would correspond to a heart rate of over 300bpm.

After plotting the waveform, and the calculated QRS complexes, we found the issue.

The wqrs program was mistakenly identifying P-waves as QRS complexes, as shown in

Figure 5-4. After experimenting with the software, we found that the results became

more accurate when the analyzed signal was short. The wqrs program is a stateful

QRS detector, so previous QRS complexes affect the detection of future ones. If the

signal file contains a particularly bad section of data, the detection can often get

skewed.

To solve this issue, we divided the signal file into chunks, and detected QRS complexes

separately. Each chunk had a small overlap, and we post-processed the data to remove

duplicates. If the chunk size was 100, and the overlap was 10%, then the chunks would

be from 0 - 100, 90 - 190, 180 - 280, etc. This reduced the propagation of errors in the

QRS detection, and resulted in significantly less false positives. The results from each

chunk are sorted and concatenated together. To remove duplicates, we traverse the

concatenated list and remove any onsets that are not in sorted order. This ensured

that there were no overlapping onsets, but also that we correctly did onset detection

over the entire signal. There was a tradeoff between the chunk size, and the total
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Figure 5-4: The wqrs software sometimes mistakenly identifies P waves as QRS com-
plexes. The red boxes indicate where the wqrs software indicated a QRS complex.
However, only every other box has a real QRS complex, as indicated by its large peak.

running time of the onset detection. We settled on using chunk sizes of 100,000 and

an overlap of 10%.

5.3.2 Feature extraction

A lot of research has gone into extracting features from ECG data. These features

come in several forms - wavelets, intervals, and morphology. Together, these give an

accurate summary of a beat. The extracted features are listed below, by category.
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Wavelet Features

A wavelet transform takes a signal, and returns an output with both frequency and

location information. There are several types of wavelet families that can be used.

We found that the Daubechies 4 and Symlet 4 wavelet family were used with success

in ECG feature extraction so we used coefficients from each of those [21].

" Daubechies 4 - the discrete wavelet transform of the beat using the Daubechies

4 wavelet family. We extracted the first four coefficients of the approximation

vector and first four coefficients of the detail vector.

" Symlets 4 - the discrete wavelet transform of the beat using the Symlets 4

wavelet family. We extracted the first four coefficients of the approximation

vector and first four coefficients of the detail vector

Interval Features

We stored various interval related features, which are illustrated in Figure 5-5.

" RR Interval - the time interval in between consecutive R points (saved on the

subsequent beat)

" Heart rate - the inverse of the RR Interval

" QS length - the time interval between the Q and S points

" QR length - the time interval between the Q and R points

* RS length - the time interval between the R and S points

" Q start - the interval between the start of the beat and the Q point

Morphological Features

* Dynamic Time Warping - a measure of the similarity between consecutive

beats, that accounts for changing time and speed (saved on the subsequent

beat)

We used the Python PyWavelets package to do the discrete wavelet transform [13],

and the Python mlpy package to do dynamic time warping [16].
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Figure 5-5: The wqrs software sometimes mistakenly identifies P waves as QRS com-

plexes. The red boxes indicate where the wqrs software indicated a QRS complex.

However, only every other box has a real QRS complex, as indicated by its large peak.

Feature extraction challenges

We ran the feature extraction scripts on a few patient files to make sure it worked as

expected. We ran into two unexpected issues, both of which were easily resolved.

The first issue was with dynamic time warping (DTW). Occassionally, the mlpy pack-

age would throw a MemoryError during the calculation of the DTW. With some

experimentation, this occurred when the two input arrays were larger than 50,000

elements each. A typical beat only has around 100 samples in it, so this case only

occurred when the data was extremely noisy (or nonexistent). In particular, this

happened several times when the data was all zeros for several minutes. To fix this

issue, we simply ignored any beats which were longer than 1000 samples while do-

ing dynamic time warping. These beats were already invalid, and would not count

towards in the aggregation functions anyway.

The second issue was with the discrete wavelet transforms. Occasionally, the detail
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and approximation vectors had less than 4 coefficients in them. This occurred when

the input arrays were less than 4 samples long. These corresponded to invalid beats

(when the QRS detector had too many false positives), so we simply ignored these

beats while doing wavelet transforms.

5.3.3 Challenges at Scale

There were several issues that arose when running PhysioMiner at scale that did not

occur in initial small scale testing. These issues, and their solutions, are documented

here.

Scaling costs

One of the goals of PhysioMiner was to make it economical. To analyze the projected

costs of this analysis, we used the following considerations:

9 R3.2XLarge EC2 Instances - we need instances this large to support the larger

files

* 100,000 writes/sec throughput to the database

* An average signal file has 300,000 beats

* Processing an average file (excluding database writes) takes about 4 minutes

Using these assumptions, we estimated to have a total of 2.1 billion beats to write

to the database. At the given throughput, this would take 21000 seconds, or 5.83

hours. This means, the total processing time would be about 11 hours with 100

EC2 instances. The total DynamoDB costs would be 11 hours * 100,000 writes/sec

* 0.00065 =715. The total EC2 costs would be 1 hours * $0.70/hour/instance * 100

instances = $770. This brings the total cost to $1485. This did not align with our

goals of being economical.

To mitigate this, we divided our signal files by number of samples. This allowed us to

use smaller EC2 instances where needed. More than 4000 of the patients could be run

using the R3.Large instance, which costs only $0.175/hour. This would reduce the
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EC2 costs by about $450, bringing the total to about $1000. We ran the Populate

module several times, using different instance sizes each time. We ended up not

analyzing the 800 largest patients. The total cost ended up being about $1000.

Database Throughput

DynamoDB has a pay-per-throughput payment model, which allows users to pay for

exactly how much throughput they need. However, this is the maximum throughput

allotted to the database - it is divided amongst various partitions. Since partitions

are by primary key, Amazon suggests structuring the database such that primary

keys are approximately uniformly accessed at any given time.

Unfortunately, this structure does not work well with PhysioMiner. We need to group

beats by segment id, and we need to write all of the beats of a given segment id at

the same time. This means that a partition may have a heavy load at any given time.

Using 20,000 writes/sec theoretical throughput for the database, we were only able

to achieve 5000 writes/sec actual throughput using 20 instances.

The more instances we can run at a time, the more spread out the database writes

will be across primary keys. Using 50 instances instead of 20, the actual throughput

jumped from 5,000 to 10,000. We requested Amazon to increase the user limit on

EC2 instances for us so we could maximize throughput to the database.

Failing Instances

Throughout the initial run, we found and fixed several of the problems that were

listed above. However, each time one of these problems occurred on the slave EC2

instance, the slave program would crash. PhysioMiner was built to handle these sort

of failures - if a slave crashed, its task would eventually be put back into the queue

for another slave to handle.

However, there was no way of knowing which nodes had failed, besides manually

watching all of them. To solve this, we implemented a simple Keepalive protocol

to check on the slaves. Every few seconds, each slave would post a message to the

KeepAlive Queue in Amazon SQS. The master would read these messages as they
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came in, and keep track of who was alive. If the master did not hear from a slave in

more than 30 seconds, it informed the user that one of the slaves had died.

This solved two issues. First, it pointed us directly to the problem slave, so we

could find and solve the problem that arose. Then, we could simply restart the slave

program on that instance. Second, it saved us EC2 costs by not keeping around failed

instances. In the initial run through, more than half the instances failed with various

issues that were eventually fixed. This would have been a serious cost burden without

the notification system.

No Transactions

Failing instances caused more problems than just restarting the slave. Often times,

these slaves would fail in the middle of writing to the database. Since segment ids

were randomly generated, simply rerunning the task would not be idempotent. In

addition, the task would get added to the queue again, so it would likely run on

another slave and have duplicate data in the database.

To fix this issue, we noted down the patients which caused problems, and scanned the

database for them at the end. If any of the patients had multiple segments where we

were only expecting one, we deleted both from the database. We then did a second

run to repopulate the database with these patients. The total number of problem

patients was small, so this did not add any significant time or cost to the processing.

This could have been solved in multiple ways. The slaves had multiple bugs that were

fixed throughout the initial initialization process. After fixing the bugs, there were

no more instance failures. It turns out that instance failures were not that apparent

in practice, and were only a result of a few small bugs.

However, for large scale analyses, we need PhysioMiner to be completely fault tolerant

- even if the instance itself crashes, the database should be intact. Unfortunately,

DynamoDB does not support transactions, so this is much harder. The easiest way

to accommodate this would be to make all tasks idempotent. This way, running a task

twice (or one and a half times) would result in the same output to the database. We
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could accomplish this by derandomizing segment ids. DynamoDB does not provide an

incremental id on primary keys, so this would require a decent amount of engineering.

This is probably the best solution, however, and will be left as remaining work.

5.4 Building Predictive Models for AHE

After populating the database, the next step was aggregating features. We had a

predetermined list of timestamps and windows where AHE events occurred in the list

of patients. After converting these time stamps to beat ids, we wrote a simple script

to populate a window table with the given intervals. We then used PhysioMiner's

aggregation module to collect features.

We did not have a list of non AHE events, so these were generated instead. We

selected time intervals that were at least 5 hours away from an AHE event, and

added it to the window table with a fiormaklassification. Our final window table had

3323 AHE windows and 476 normal windows.

For each feature listed in Section 5.3.2, we calculated five different aggregations:

mean, standard deviation, skew, kurtosis, and trend. We collected 23 features per

beat, so there were 115 total aggregated features for each window. We ran this module

for a lead of 10 minutes and a lag of 30 minutes. Running on a single EC2 instance

and using 6000 writes/sec throughput to the database, this process took 25 minutes

to complete.

5.4.1 Building a Classifier

PhysioMiner does not currently have a classification algorithm built into it. However,

Amazon provides a mechanism to export the database into a text file using Ama-

zon Elastic Map Reduce (EMR). After exporting the database to text format, we

converted it to CSV and ran it through logistic regression. The results were (unsur-

prisingly) not very accurate. With a lead of 10 minutes and lag of 30 minutes, we
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achieved an area under the curve (AUC) of the receiver-operating characteristic curve

(ROC) of 0.57.

We then used Delphi, a multialgorithm, multiparameter, distributed meta-machine

learning platform that is currently in beta [6]. It found that the best machine learning

algorithm for the given data was an SVM using radial basis functions. This achieved

an AUC of 0.693 on cross-validation testing. The various ROC curves produced by

Delphi are plotted in Figure

1.0 ROC- lead = 600 lag 1800

0.8

0.6 --

0.2 - - ROC SVM curve (area 0.693)
ROC SGD curve (area 0.552)

ROC KNN curve (area = 0.633)

I O 0.2 0&4 0a0 0.8 1.0
False Positive Rate

Figure 5-6: Three different ROC curves produced by Delphi for different machine
learning algorithms.

While this is a reasonable area under the curve, there are several reasons why it might

not be as high as possible:

" ECG values are not good predictors of AHE events. Acute Hypotensive Episodes

are based on blood pressure, so it seems reasonable that blood pressure signals

would be better predictors of AHE than ECG signals.

" We generated the non-AHE events based on a list of AHE events, but it is

possible that the time periods we chose were not normal. The final predictor

based on logistic regression classified 95% of the training data as AHE, and

inaccurate classifications would explain that.

* The onset detection for ECG was challenging and could have lead to inaccura-

cies. The wqrs software used to find QRS complexes often mistakenly identified
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P waves as QRS complexes. This resulted in a heart rate that was double the

actual heart rate of the patient.

5.5 Summary of Results

Total number of patients 6118

Total number of beats 1,138,953,214

Total number of Features extracted 26,195,923,922

Total size of database 504 GB

Total time taken 20 hours

Number of nodes used 60

Type of node used R3.Large

DynamoDB throughput used 30,000 writes/sec

AUC for ROC curve 0.693
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Chapter 6

Conclusion

We have presented PhysioMiner, a large scale machine learning and analytics frame-

work built in the cloud. PhysioMiner is built to handle terabytes of physiological

signal data, allowing users to clean, process, extract features, and analyze the data

at scale. Using just four simple modules based on the master-slave framework, Phys-

ioMiner is able achieve flexibility and scalability, without sacrificing accuracy and

reliability.

6.1 Future Work

There is a lot of work left to improve upon for PhysioMiner. Many of these issues

have been documented in the sections above, but we will list them here again:

Arbitrary Feature Extraction

While PhysioMiner supports binary executables for feature extraction, these have a

tremendous cost in both time and money. There are two possible solutions. One is to

figure out a way to support binary executables without sacrificing speed. The other

is to add support for other languages. Currently, feature extraction support is only

written for Python.
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Arbitrary Aggregation Functions

PhysioMiner currently only supports five built in aggregation functions. To be com-

pletely flexible, it should allow users to specify aggregation functions via binary exe-

cutables. These functions would simply take in a list of feature values, and output a

single aggregated value.

Memory management

PhysioMiner requires RAM proportional to the size of the signal file. With some

care, PhysioMiner could split up segments into constant size regions, and process

them separately. This would bring the RAM requirements down to a constant size,

allowing users to use the same size instance for all jobs and still be cost effective.

Window conditions

Curruently, PhysioMiner only supports built in window conditions. Since it is open

source, users can directly write their window conditions into the source. However, it

would be ideal if these conditions could be written as separate modules, and uploaded

to S3 before the start of an analysis.

Machine Learning

PhysioMiner does not have a built-in machine learning framework. However, it easily

allows users to export the data from DynamoDB, and run their own machine learning

scripts. This process should be pipelined so that users can easily see the results of

their classification models.

6.2 Future Goals

We hope that PhysioMiner allows researchers and practitioners to focus on analyzing

their data, and not building and maintaining a cloud system. We have designed it

to be flexible, general, and scalable so that it reaches the maximum number of users.

We hope that with such a system, users will find it easier to process and analyze their
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data. We hope that this ultimately stimulates new research and results.
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Appendix A

PhysioMiner Interface

This chapter will discuss exactly how a user interacts with PhysioMiner. This should

be used as a guide to how PhysioMiner works, but for up to date documentation,

look at https: //github. com/gigabeats/beatdb/wiki/Tutorial.

Users should start by downloading the JAR files from https: //github. com/gigabeats/

beatdb/. They will need JRE 7 and an AWS account to get started. Command line

options can be found by running:

java -jar physiominer.jar -- help

A.1 Populate

PhysioMiner Populate accepts the following command line arguments:

-a, -- ami <arg>

-b, -- bucket <arg>

-d, --folder <arg>

-f, --features <arg>

Amazon Machine Image to launch instances

with (default is the public Physiominer AMI)

S3 Bucket

S3 data folder containing patient signal files

File containing feature extraction scripts

This file should contain a row for each feature

65



-i, --initialize

-n, --num-instances <arg>

-o, --onset-detector <arg>

-p, --iamprofile <arg>

-s, --signal-type <arg>

-t, --table <arg>

-y, --instance-type <arg>

in the format "<featurename> <script-path-inS3>"

Pass this argument to initialize the tables for

the first time. If tables with the given table

name already exist, they will be deleted and

recreated

Number of instances to create

Location in S3 of the onset detector algorithm

Name of IamProfile to use for EC2 instances

(must have access to DynamoDB, S3, and SQS).

Optional, the signal type

(possibilities: ECG, ABP). If a signal type is

specified, a built in onset detection algorithm

is used.

Name of table to store in the database (names will

be "<table_name>_beats" and "<table-name>_segment")

Amazon EC2 Instance type to launch

(possibilities: r3.large, r3.xlarge,

r3.2xlarge, r3.4xlarge, r3.8xlarge,

c3.large, c3.xlarge, c3.2xlarge,

c3.4xlarge, c3.8xlarge)

To populate the database, the command to run might look like:

java -jar populate.jar -- bucket mybucket -- folder mydata

-- features scripts/ecg/features.txt -- num-instances 3

-- iamprofile myiamprofile -- table ecg -- instance-type r3.large

-- signal-type ECG -- onset-detector s3path/to/onsetdetector

Running the above line will create 3 r3. large instances using the public PhysioMiner

AMI. It will create an entry in the ecg-segments table for each patient the the mydata

folder. It will use the built in ECG onset detection to split each signal file into beats.

It will download all feature scripts listed in features.txt, and calculate these features
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for each beat. Each beat will be stored as a row in the ecg-beats table.

A.2 Extracting Features

PhysioMiner FeatureExtract extracts features for existing patients in the database.

It accepts the same arguments as Populate, with the exception of the onset detector.

All onsets have already been calculated, so this is no longer necessary. Running

feature extraction might look like:

java -jar feature-extract.jar -- bucket mybucket -- folder mydata

-- features scripts/ecg/features.txt --num-instances 3

-- iamprofile myiamprofile -- table ecg -- instance-type r3.large

-- signal-type ECG

Running the above line will create 3 r3. large instances using the public PhysioMiner

AMI. For each patient in the ecg-segments table, it will extract each of the features

listed in features.txt.

A.3 Aggregate Features

PhysioMiner Aggregate aggregates features for existing windows in the database. It

accepts the following arguments:

-a, --ami <arg>

-g, --aggregators <arg>

-f, --features <arg>

-1, --lead

Amazon Machine Image to launch instances

with (default is the public Physiominer AMI)

Comma-separated list of aggregators to use

(possibilities: mean,skew,trend,kurtosis,

standarddeviation)

Comma-separated list of feature names to

aggregate on

The lead to use in seconds
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-- lag

--num-instances <arg>

--iamprofile <arg>

--table <arg>

--instance-type <arg>

The lag to use in seconds

Number of instances to create

Name of IamProfile to use for EC2 instances

(must have access to DynamoDB, S3, and SQS).

Name of window table with windows to aggregate on

Amazon EC2 Instance type to launch

(possibilities: r3.large, r3.xlarge,

r3.2xlarge, r3.4xlarge, r3.8xlarge,

c3.large, c3.xlarge, c3.2xlarge,

c3.4xlarge, c3.8xlarge)

To aggregate features for existing windows, the command might look like:

java -jar aggregate.jar

-- features length,max,min --num-instances 3

-- aggregators mean,skew,trend -- lead 600 -- lag 1800

-- iamprofile myiamprofile --table ecgwindows

-- instance-type r3.large

Running the above line will create 3 r3. large instances using the public PhysioMiner

AMI. For each window in the ecg-windows, it will calculate the predictor window

using a lead of 600 seconds and a lag of 1800 seconds. It will use three aggregation

functions (mean, skew, and trend) on three different beat features (length, max, min).

These results will be stored in the table ecg-windows-lead_600_lag_1800.
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