
TaleBlazer Multiplayer: Expanding Multiplayer

Functionality for Meaningful Location-Based AR A; WE*

Games SSA os #48
OF TECHW)LO W

by JUL 15 2014
Tanya X. Liu

S.B., Massachusetts Institute of Technology (2013)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

@ Massachusetts Institute of Technology 2014. All rights reserved.

Signature redacted
A u th or

Dep~<ment of Electrical Engineering and Computer Science

-7 May 23, 2014
Signature redacted

C ertified by
6-/ Professor Eric Klopfer

Director, MIT Scheller Teacher Education Program
Thesis Supervisor

Signature redacted
A ccepted by

Prof. Albert R. Meyer
Chairman, Masters of Engineering Thesis Committee

2

TaleBlazer Multiplayer: Expanding Multiplayer Functionality

for Meaningful Location-Based AR Games

by

Tanya X. Liu

Submitted to

Master of

the Department of Electrical Engineering and Computer Science
on May 23, 2014, in partial fulfillment of the

requirements for the degree of
Engineering in Electrical Engineering and Computer Science

Abstract

TaleBlazer is a location-based, augmented reality game platform. Its web-based editor
provides game designers with a method to create games regardless of programming
experience. Users play these games while walking in the real world, using the mobile
application as a gateway for interactions with the virtual world. This thesis extends
previous work done on the TaleBlazer multiplayer game platform. It details the
implementation of new multiplayer functionalities that allow meaningful interactions
between players in multiplayer games.

Thesis Supervisor: Professor Eric Klopfer
Title: Director, MIT Scheller Teacher Education Program

3

4

Acknowledgments

First of all, I'd like to thank Eric Klopfer, Lisa Stump, and Judy Perry for allowing

me to join the TaleBlazer developer team and to work on this project. I have learned

so much over the past year, and it would not have happened without them.

I'd like to thank Judy Perry for being a guiding force throughout the entire project

and helping me keep a timeline of work. I'd also like to thank her for all her help when

it came to design decisions. I'd also like to thank Lisa Stump for being so helpful and

patient when it came to all my questions about implementation and code structure.

Without the both of them, this project would never have gotten off the ground.

I'd also like to thank the TaleBlazer Development team, including my fellow

M.Engs Fidel Sosa, Cristina Lozano, and Stephanie Chang. It is because of them

that the project was so enjoyable to work on, and I am forever grateful for their

patience and helpfulness in answering my barrage of questions.

I'd like to thank my predecessor, Sarah Lehmann, for getting the multiplayer

server chugging along so that I could have the opportunity to implement and expand

the multiplayer features. I would especially like to thank Paul Medlock-Walton for

all his wise words and many suggestions that greatly furthered development work.

I'd also like to thank Albert Meyer, my academic advisor. Without his advice and

help during my undergrad (and graduate) years I would have been rather lost.

I'd like to thank my friends, whose support and cheer have kept me alive, kicking,

and positive during stressful times.

Lastly, I'd like to thank my family, whom without their eternal support I never

would have gotten the chance to be where I am today.

5

6

Contents

1 Introduction 15

1.1 Why TaleBlazer Multiplayer? . 16

1.2 Thesis Summary . 16

2 TaleBlazer Background 17

2.1 Similar Software . 17

2.1.1 MITAR . 17

2.1.2 StarLogo TNG . 18

2.1.3 Previous AR Simulations/Games 18

2.2 TaleBlazer Game Structure . 19

2.3 Current TaleBlazer Design . 20

2.3.1 E ditor . 20

2.3.2 Servers . 21

2.3.3 Mobile . 21

3 TaleBlazer Multiplayer 23

3.1 Multiplayer Goals . 23

3.2 Possible TaleBlazer Multiplayer Game Types 24

3.2.1 Player vs. World . 24

3.2.2 Single Cooperative Team . 24

3.2.3 Multiple Competitive Teams 25

3.3 Previous Work . 25

3.3.1 Multiplayer Server . 26

7

3.3.2 Server/Mobile Interaction .

4 Multiplayer Game Mechanics

4.1 Starting the Multiplayer Game

4.1.1 Server/In-Game Player Ide nti

4.1.2 Queuing Update Messages

4.2 The

4.2.1

4.2.2

4.3 "For

4.3.1

4.3.2

4.3.3

4.3.4

4.4 Tea

4.4.1

4.4.2

4.4.3 ,

Give Action

Server Communication . . .

Mobile UI

Each" Block on Editor .

Block Design

Block Dropdown Population

Block Evaluation

Applications to Single Player

n s

Team Structure

Teams in the Editor UI . . .

Team Blocks

fication

Games

4.4.4 Teams in the Mobile UI .

5 Play Testing

5.1 Mobile Functionality Playtests .

5.1.1 TaleBlazer Team Give Test: Hot Potato

5.1.2 "For Each" Block Test: Defeat the Dragon!

5.1.3 Team Functionality Testing

5.2 User Feedback Playtests .

6 Future Work

6.1 Device Identification .

6.2 Implementation of Idle Players .

6.3 Modifications to "For Each" Block

8

27

31

32

33

35

36

37

39

40

41

43

46

47

47

47

48

49

52

55

55

55

56

57

58

59

59

59

60

6.3.1 Unique Variables . 60

6.3.2 Visibility Propagation . 60

6.4 Location-Based Mechanics . 60

6.4.1 Location-Based Give Action 61

6.4.2 Team Zones . 61

6.5 Direct Player-to-Player Interaction 61

6.5.1 Messaging . 61

6.5.2 Players Bumping Players . 62

6.6 Teams Modifications . 62

6.6.1 Team Tab Additions . 62

6.6.2 Customization of Player Icons 63

6.6.3 Methods of Choosing a Team 63

6.6.4 Dynamic Teams . 63

7 Contributions and Conclusion 65

7.1 Contributions . 65

7.2 Conclusion . 65

A Tables 67

9

10

List of Figures

2-1 An example of a block script. 21

2-2 An example of tabs that can be shown on the mobile UI. 22

4-1 This is the role selection screen. 33

4-2 The player must first select a username before entering the game. 35

4-3 This is the workflow for a connection check during the give action. 38

4-4 Screenshots of the player selection screen 40

4-5 This is an example of the "for each" block with the predefined variable

dropdown. 42

4-6 In this example, both "for each" blocks have the variable "player".

This makes it impossible to tell which "player" variable in subsequent

blocks refers to which "for each" block. 43

4-7 An example of the nested "for each" block. 44

4-8 An example dropdown with both agent types and string types. 44

4-9 An example of the dropdown option of a block nested within a "for

each" block. 46

4-10 Screenshots of the team tab on the editor 50

4-11 Examples of the new team blocks . 52

4-12 An example of the team mobile tab 53

4-13 An example of the icons depicting players in the game. 54

11

12

List of Tables

A. 1 Blocks that can have an option of type variable in their dropdowns . 68

13

14

Chapter 1

Introduction

TaleBlazer is a location-based, augmented reality game platform developed in the

MIT Scheller Teacher Education Program (STEP) lab. Using TaleBlazer, game de-

signers can develop their own educational games regardless of previous programming

experience. These games are played on mobile devices, where players use the device

GPS while walking outdoors to interact with the virtual game world. TaleBlazer is

a mature single player platform that has been published for both Android and iOS

phones. Organizations currently partnered with the project use TaleBlazer games as

an unique learning experience for visitors. For example, the Old Sturbridge Village, a

historical representation of New England, has created a game to teach visitors about

historical economics. The games are a fun and engaging way for players to experience

and learn something new.

Though TaleBlazer is successful in providing a single player an interactive virtual

world, rapidly evolving mobile technology leads users to increasingly expect a level

of connectedness with other users that TaleBlazer currently does not have. It thus

follows that the TaleBlazer project would be greatly enhanced by the inclusion of

multiplayer functionality.

15

1.1 Why TaleBlazer Multiplayer?

Adding multiplayer capability to TaleBlazer adds a social dimension to an educational

experience. In a single player game, interactions are limited to the player and his

or her own game world. The player gathers information on his own, and, for the

most part, relies only on himself to accomplish a goal. Adding more players to the

game world and allowing them to interact and cooperate introduces the concept of

teamwork. Instead of individually working toward a goal, players now must learn both

reliance on and accountability towards others. The implementation of multiplayer

within TaleBlazer would allow for games that revolve around such qualities.

1.2 Thesis Summary

" Chapter 2: provides background on the history and implementation of Tale-

Blazer

* Chapter 3: discusses the goals and applications of multiplayer functionality, and

also details the current state of implementation

" Chapter 4: explains the design decisions made as well as the implementation of

the new multiplayer features

" Chapter 5: describes the various tests conducted

" Chapter 6: discusses features that can be implemented to extend multiplayer

games

" Chapter 7: discusses contributions and conclusions

16

Chapter 2

TaleBlazer Background

As a location-based, augmented reality game platform, TaleBlazer enables the cre-

ation of education-based games that help users learn. The TaleBlazer project has

many different components, and has several predecessors that have helped guide its

development.

2.1 Similar Software

There have been previous platforms and software developed in the STEP lab that

were similar in functionality to TaleBlazer. The experiences and ideas from these

past ventures helped guide further development of TaleBlazer.

2.1.1 MITAR

MITAR was a predecessor to TaleBlazer. Users could create augmented reality games

for handheld devices, and gameplay functioned similarly to TaleBlazer. Players would

be able to interact with different icons on the map in order to gain information re-

garding a particular in-game scenario. An example MITAR game was "Environmental

Detectives", where players ventured outdoors to uncover the source of a toxic spill.

To do so, players interacted with virtual characters and simulated data collection and

analysis [5]. Unlike TaleBlazer, MITAR did not use a block-based scripting language.

17

MITAR was more difficult to use, as the editor was an installed windows application,

and the deployment of games to devices was cumbersome.

2.1.2 StarLogo TNG

StarLogo TNG is an extension of the previous StarLogo simulation and modeling

software. It utilizes 3D graphics and sound to allow users to easily build games

and simulations to help understand complex systems. Like TaleBlazer, StarLogo

TNG uses a block-based programming interface to simplify the programming of such

systems [8].

2.1.3 Previous AR Simulations/Games

The STEP lab previously hosted multiple relatively large scale augmented reality

simulations and games. Two of main games that the STEP lab ran are:

* Mystery at the Museum

" Outbreak 9 MIT

These two games would significantly help guide the development of TaleBlazer

multiplayer.

Mystery at the Museum

Mystery at the Museum was the first large-scale indoor augmented reality simu-

lation ran by the STEP lab [6]. It was hosted at the Museum of Science, and pairs

of players were given pocket PCs to play with. Upon entering a room, players were

shown what virtual characters and items were located in the room, and had the option

of interacting with them. Different players had different roles, and each role would

have access to different sets of information and actions. While the players were not in

a completely shared world, the game had multiplayer characteristics, as players could

interact with each other and send information via infrared data exchange. This was

a very early iteration of an augmented reality multiplayer game, and helped generate

18

ideas for multiplayer in TaleBlazer.

Outbreak L MIT

Outbreak 9 MIT was the first client-server based augmented reality game deployed

by the STEP lab [7]. It utilized Wi-Fi connectivity to a server in order to maintain a

shared world among all players. This meant that the actions that players took could

directly influence the game experience of other players in the game. For example,

resources in the O@MIT game world were shared between everyone and thus limited:

once a player picked up an item, no other player could access it. Players had to work

together in order to investigate and contain a potential outbreak on MIT campus.

Like previous AR games, O@MIT was played on pocket PCs. The multiplayer aspects

in this game heavily influenced multiplayer functionalities that were implemented in

TaleBlazer.

2.2 TaleBlazer Game Structure

While TaleBlazer games are played in the context of the real world, players interface

with the game by receiving information from their mobile phones. The mobile device

uses its real-time GPS location to track the player in the game world. If a player's

GPS location is close to an object's location, he or she will be able to interact with it.

Most information is presented through object dashboards, which display the name,

description, and other details about an object. There are many components that

define a TaleBlazer game. These are defined by the game designer during creation,

and fall into the following categories:

* Agents: Agents are the characters and items that the player encounters in game.

These are the main objects that players will interact with, and are accessible

on the map.

* Regions: Regions are the different maps that are available to the player. They

are locked to specific GPS coordinates.

19

" Roles: A role is a player's defining characteristic. Players can have role-specific

traits and actions and thus can have different game experiences. The player

chooses his or her role at the beginning of every game.

" Traits: Traits are variables that are specified for objects in the game. Visibility

and values of traits can be changed during the game.

" Actions: Actions appear as buttons on an object dashboard and allow players

to interact with the game. Action scripts are defined in the editor, but the

visibility of actions can be changed in game.

2.3 Current TaleBlazer Design

The TaleBlazer software is comprised of three main components: the web-based editor

interface, used to create games, the servers, which are used both to store and host

games, and the mobile application, used to play games. The next few sections provide

more detail on these three parts.

2.3.1 Editor

The game editor is a web-based interface used to create TaleBlazer games. The editor

provides a wide range of options that enrich the game experience. The user is able

to select a location at which the game will be played and set game mechanics that

will govern the gameplay. Mechanics used in the game can include the ability to

visit different regions or the ability to interact with agents that are scattered around

the game world. Game designers are also able to write different scripts that execute

depending on a player's actions. Designers utilize a block-based scripting language

to program game mechanics [91.

Block-Based Programming

The game designer uses a blocks-based programming language to specify the game

logic. The blocks are predefined and are easily understandable by a designer regardless

20

Figure 2-1: An example of a block script.

of programming experience. Each block has its own name and takes arguments.

Figure 2-1 is an example of a script that a game designer could create for his or her

game. This script will change the "number of crystals" trait of the player when the

player picks up the crystal.

2.3.2 Servers

TaleBlazer uses two servers to store and power its games. One of the servers is a

repository server. This server is what stores all the files necessary to play a game.

When a game designer saves a game in the editor, the required pictures, videos,

and resulting game file are stored in the repository server. When a player selects a

particular game to play, the mobile will query this server for the relevant game files.

The second server is the multiplayer server. This server facilitates all communi-

cations between different devices, and ensures that the game worlds between players

within the same game remain synced. The multiplayer server will be discussed in

detail in a later section.

2.3.3 Mobile

The third and last part of TaleBlazer is the mobile application that players use to

play TaleBlazer games. The mobile application is available on both Android and iOS

systems, and is built using Titanium Appcelerator. Using Titanium allows developers

to create the application for more than one platform. Upon installation of the mobile

application, the player uses the mobile application to select and play a game.

The software on the mobile side of TaleBlazer runs and displays the games that

are created in the editor. It downloads the predefined game file from the server and

translates the blocks used by the designer into functions that will properly display

21

Find that Treasure!

Figure 2-2: An example of tabs that can be shown on the mobile UI.

the game and its contents to the player.

The mobile interface contains a number of preset tabs, with which the player

interacts with the game. The interface of each game can look slightly different, as

the game designer selects the visible tabs during game creation. Two of the default

tabs are the "Game" tab and the "Map" tab. The "Game" tab contains information

about the game and allows the player to leave the game if necessary. The "Map"

tab is the player's portal into the game world; this tab depicts the location of the

player and various agents in the game world. There are a variety of tabs that can be

displayed as part of a game, as can be seen in figure 2-2.

22

Chapter 3

TaleBlazer Multiplayer

The idea behind multiplayer games is that players play and interact in a shared world.

In a single player TaleBlazer game, players are able to each experience their own

versions of the game world without digitally affecting another player's game world.

A multiplayer game, however, encourages players to communicate with one another,

making the TaleBlazer experience much more social and interactive. Multiplayer

functionality to enhance TaleBlazer games has long been in production.

3.1 Multiplayer Goals

TaleBlazer multiplayer should allow fluid player-to-player interaction. Players must

be able to have a seamless game experience, where the actions of other players logically

affect their own gameplay. This means that each player's game world should be

constantly synchronized, despite intermittent connectivity.

In addition to being in the same game world, interactions between players should

be meaningful and add an exciting element to the gameplay. Game designers should

be able to allow players to interact with each other in order to further their game

experiences. Ideally, a TaleBlazer multiplayer game should encourage players to be

social, using teamwork to work with or against other players to achieve game goals.

Though the multiplayer portion of TaleBlazer should add a significant number of

new functions, it should not deviate too much from the already familiar single player

23

interface. Those who are familiar with TaleBlazer in the single player universe should

easily be able to create or play a multiplayer game.

3.2 Possible TaleBlazer Multiplayer Game Types

There are an enormous variety of multiplayer game types, and each introduces many

functionalities. It was necessary to narrow TaleBlazer's focus and decide what types

of multiplayer interactions would best benefit TaleBlazer games. The development of

TaleBlazer multiplayer focuses on three main multiplayer game types:

" Player vs. World

* Single Cooperative Team Play

" Multiple Competitive Team Play

Each type of multiplayer game gives an opportunity for game designers to develop

different interactions between players.

3.2.1 Player vs. World

In a player vs. world type game, players interact with the game world simply to

achieve their own, separate goals. The agents in the game world are shared and

consistent across the worlds of all players, and player actions are capable of affecting

the overall game world. An example of such a game would be players racing to pick

up as many treasures as possible, where the player with the most treasures at the end

is the winner. Previously implemented TaleBlazer multiplayer mechanics enabled the

creation of simple versions of this type of game.

3.2.2 Single Cooperative Team

This type of game is completely cooperative. Players must help each other fulfill a

common goal, each one bringing a part of the solution. In such a game, it is possible

24

that players would each have a role, and as such would be able to affect the game

world and agents in different ways. An example of this type would be a game where

three players, a detective, a policeman, and a consultant, must work together to solve

a murder mystery and apprehend the culprit.

3.2.3 Multiple Competitive Teams

Competitive team play consists of teams competing with each other to fulfill their

own personal goals. Players are divided into teams, and work with the players in

their team to win the game. A player would be able to easily differentiate between

his or her teammates and other players and act accordingly. An example of such a

game would be one where the first team to collect a certain number of items wins.

3.3 Previous Work

The previous work on TaleBlazer multiplayer was dedicated to the client/server archi-

tecture necessary to maintain a consistent, shared game world [4]. A consistent game

world requires mediation by a central server. For the server to maintain a consistent

game world for all players, all mobile devices must be able to communicate reliably

with the server. This is a difficult task, as mobile devices by nature have intermittent

connectivity problems.

TaleBlazer is capable of creating very basic multiplayer games where all players

involved inhabit a shared game world despite connectivity problems. A shared game

world means that each player sees the same game state and affects the same set

of agents. Every game and its participating players are called "instances", and all

multiplayer game instances are overseen by the multiplayer server. There can be

multiple instances running at the same time, but players in a game instance can only

interact with other players in the same instance. Players in two different instances of

the same game will not be able to digitally affect the game worlds of other players.

Like a single player game, each player is able to pick a role for himself and could

explore the world on his own. Most importantly, game states of the players connected

25

to the server are consistent. One action taken by a player is reflected in the worlds of

all the others. For example, in a game where the goal is to pick up as many coins as

possible, all players that are connected to the server see the same number of coins on

their map. If one player picks up a particular coin, no other player can pick up that

same coin. The coin disappears from the map of all players, not just the player who

picked it up. If a player performs an action that reveals a number of new agents on

the map, these agents likewise appear on the maps of all the different players.

3.3.1 Multiplayer Server

It is the responsibility of the multiplayer server to ensure that the game state seen

by all players in a multiplayer game instance is consistent. The server maintains the

information of all multiplayer games instances that are being played. All game files

and changes to the game files are tracked by the server and propagated to the players'

mobile phones.

The multiplayer server is written in Node.js, and properly facilitates communica-

tion between the players of a game instance. The server keeps track of the players in

each game instance, differentiating between them using their TaleBlazer login ids and

player ids [3]. As a result, the user was required to be logged in to the TaleBlazer

app in order to play a multiplayer game. Because the TaleBlazer username was tied

to the player id, however, a player could only join an instance once; he or she could

not log in on multiple mobile devices and play the same game instance.

Because the player is walking around in the real world while playing a game, inter-

mittent connectivity can be assumed. While the server does need to mediate actions

between mobile devices to ensure synchronicity, it is detrimental to user experience

for the mobile to wait for feedback from the server for every single event. Thus, the

server need only mediate certain actions that would cause glaring inconsistencies in

the synchronicity of the game world if carried out in the wrong order or by more than

one player. Other actions can first be completed on the mobile and then updated in

the game file by the server. The pick up action is an event that must be mediated by

the server, as multiple players cannot pick up a single agent.

26

Advantages of Node.js

The implementation of the multiplayer server in node.js allows the server to handle

multiple concurrent requests. An event loop in Node.js is single-threaded, meaning

that other code cannot be executed in parallel [2]. At the same time, however, the

server can still be listening for communication requests from different mobiles, as the

backend of the server is still running even as an event loop is being executed. As a

result, the server does not miss any requests while fulfilling a previous request, and

there are not any concurrency issues while running an event loop. When the server

receives a message from a mobile device, the server opens a queue for that particular

game instance. Subsequent messages that are received will be stored in that queue,

where they will eventually be processed and deleted.

3.3.2 Server/Mobile Interaction

The server and mobile communicate with structured messages [3]. Each message

has a request number (or update number, in the case of the server). This number

helps the server keep track of each mobile's game state, and enables the detection of

asynchronous game states if a mobile's request number is not greater than the server's

most recent request number. There are several types of messages that help the server

and mobile figure out what actions need to be taken. It is through these messages

that updates to the game file are made. The most common types of messages are as

follows:

" Initialization Messages

" Update Messages

" Ping Messages

The Initialization Message

When the server first receives communication from a mobile device, it will receive

an initialization message. This message tells the server details about the player and

27

what game file and instance the player wishes to start or join. With the details from

this message, the multiplayer server downloads the game file from the repository

server and sends it to the mobile. The server then adds the player to that particular

game instance.

Initialization messages are also used to detect if a player is trying to reconnect

to the game. Thanks to the unique username associated with each player, the mul-

tiplayer server can determine if a player has lost connectivity and has already been

in the game instance, and can reconnect him or her instead of instantiating a new

instance.

Update Messages

Update messages are sent between the server and mobile when it is necessary to

update the game file. Generally, the mobile device completes the action itself before

sending the requested changes to the server for propagation. Certain actions, such

as pick up, require the server to mediate the action. In this case, the mobile devices

send requests to the server, and the server decides which device completes the action

first based on a first-come-first-serve basis.

Rather than sending a new game file every time the game state is updated, the

server sends the mobile the changes to the game state. These changes are first applied

to the server's game file, and then are propagated to all of the players in the game.

The mobile phone checks to see if the change was caused by itself so as to not repeat

the same action twice.

The server and mobile devices also use update messages to ensure that each mo-

bile device is up to date with all the changes. As previously stated, each message has

an update number. If the mobile receives an update message from the server with

an update number that is not consecutively after its most recent update number, it

will know to request whatever range of updates it is missing. The server honors those

requests and updates the mobile to the current game state.

Ping Messages

28

The purpose of ping messages is to ensure that each device is still properly con-

nected to the server. If the mobile device has not heard from the multiplayer server

within 15 seconds, it sends a ping message. If the mobile and server are still con-

nected, the mobile will receive an acknowledgement message back from the server.

Without a ping message, the mobile device would not be able to tell if inactivity

from the server is due to lack of player activity or a connection failure. If a mobile

device does not know that it is experiencing connection failure, it will continue to

send messages to the server and update the local player's game world. This will drive

the player's game world further out of sync from the global game world. The lack

of acknowledgement from the server alerts the mobile device that it must attempt to

reconnect to the multiplayer server as soon as possible.

29

30

Chapter 4

Multiplayer Game Mechanics

TaleBlazer's ability to support a variety of multiplayer games requires the design

and development of new multiplayer game mechanics. At the commencement of this

project, TaleBlazer only had the capability of making simple multiplayer games. In

order to take advantage of the established shared world, player interactions must be

extended, and new structures must be implemented. This thesis focuses on the ability

to support team play within multiplayer games, choosing to implement and develop

key components that would lead to a supporting infrastructure for the team object.

Motivations

The previous iteration of TaleBlazer multiplayer was sucessful on many fronts. It

enabled the inclusion of multiple players in a game instance, and ensured that the

game world remains consistent despite conflicting actions. It was, however, missing

any significant in-game player interaction. Game designers were able to create games

where players interacted by affecting the same set of agents, but players were unable

to directly affect other players. Key aspects of a multiplayer game were unavailable to

game designers; for example, players were unable to easily transfer items, and there

was no concept of group competitive or cooperative play. In addition, game designers

were only able to write scripts that affected the local mobile's player. In the editor,

game designers must first create an object before it can be referenced in the script

code. Because player objects are only created as players enter a game instance, they

31

are not present at time of game creation and thus are not accessible in the editor.

It is necessary to address these missing components in order to enable the creation

of more interactive games. The addition of more player-to-player interaction allows

designers to create games that focus more on teamwork.

To extend TaleBlazer multiplayer games in this manner, the following key func-

tions were installed and stabilized:

" initial connection to a multiplayer game instance

" the give function

" the editor and mobile implementation of the "for each" block

" teams

The following sections describe each piece of functionality in more detail.

4.1 Starting the Multiplayer Game

When a user wants to play a multiplayer game, the game selection on the mobile is

the same as a single player game. The player must input a game or instance code in

the game code box, and the mobile will search and find the linked game. Unlike single

player games, however, the mobile must communicate with the multiplayer server for

every subsequent step. The multiplayer server is what downloads and provides the

game file, and it is the multiplayer server that adds the player to the game instance.

Before the player can enter a multiplayer game, he or she is taken to the role selection

screen. In previous iterations of a TaleBlazer game, this is where the player would

select his or her role in the game before joining the instance. Once the player selects

his role, as can be seen in figure 4-1, he or she is entered into the game.

There were two main changes that had to be made to the initialization of multi-

player games in order to stabilize the addition of a player to a game instance. One

was to redefine the method by which the player is identified and is entered into the

32

Figure 4-1: This is the role selection screen.

game. The other was to prevent the premature evaluation of code. Both will be

further described in the next two subsections.

4.1.1 Server/In-Game Player Identification

Previously, it was necessary for the player to be signed in to his or her TaleBlazer

account in order to play a multiplayer game. The mobile phone kept track of the

current session, and uses the account username to add and identify the player within

the game file. Because all TaleBlazer account usernames are unique, this was an

effective way to keep track of the different players on mobile devices, as there could

never be a repeat username.

The major drawback to this form of identification was that everyone who wanted

to play a multiplayer game had to have a TaleBlazer account. The primary reason to

have a TaleBlazer account is to create games on the editor. The majority of people

who are just casually interested in playing a game or who are playing a game while

visiting a particular location do not have a TaleBlazer account. Thus, in order to

ensure that any user could play multiplayer games, it was necessary to come up with

33

a new form of identification.

Usage of Device ID

Instead of trying to assign a unique identifier to each user, the server utilizes the

installation-specific GUID (globally unique ID) as an identifier. Both Android and

iOS-based phones have a unique, randomly generated ID that is consistent over a

particular session. Android phones have a unique device ID that is tied to the device

and is only changed in the event of a factory reset. The ID on iOS phones is instead

tied to the particular installation of each application [1]. This ID is reset in the

event of an application reinstallation. For the likely duration of a multiplayer game,

however, the device ID would remain consistent.

When first connecting to the multiplayer server, the mobile phone uses its GUID

as its user ID and its username. The server then uses this user ID to ensure that

the player is not already in the specified game instance. Because this ID will always

be unique between different phones, every player in the game will have a different

identification.

In-Game Username

While the GUID of devices allows the server to keep track of the players in a

given instance, it is not a human readable format. Thus, on the role selection screen,

the player is asked to choose an in-game username. To prevent repetition, the user's

choice is compared against all the other usernames of the players already in the

instance before the player is allowed to join. This username identifies the player in

the interface of the game; the players never actually see the identifying device IDs.

The player is only asked to provide an in-game username on his or her first entry

into a game instance. When a player is attempting to join an instance, the server

first checks to see if the mobile's device ID is already present within the instance's

player list. If it is, it signifies that a player is trying to rejoin an instance he or she

was previously in, and already has declared an in-game username. As a result, the

player does not have to reselect a username and is instead taken directly to the game

34

Figure 4-2: The player must first select a username before entering the game.

UI.

4.1.2 Queuing Update Messages

A mobile device begins receiving update messages as soon as the mobile device has

established a connection. When receiving a message, the phone will parse the message

to determine what process needs to be run. If the update request is foreign, meaning

that the local player ID does not match the request player ID of the message, the

phone will locally run the code. This occurs regardless of the current mobile's status.

This proves problematic when the role selection page is taken into account. The

role selection page now contains multiple player-defined options that must be selected

before the player can be fully assimilated into the game. After the player selects his

or her player options, the mobile will fully launch the game, declaring and populating

lists necessary for the game in the "launchGame" function. However, because these

variables are only populated after the player leaves the role selection page and enters

the game, it is possible to get an update request before properly entering the game.

This will result in an error on the local mobile phone, as it will be unable to complete

35

the update without the necessary structures.

Establishing a Message Queue

To prevent update messages from executing prematurely, the mobile phone should

only run commands after the game has been launched. Any commands received from

the server beforehand should be saved in order of occurrence. When connecting to

the multiplayer server, the phone initializes a queue to store updates. If the mobile

has not yet launched its game, the phone will stash the update into the queue instead

of running the code. After the game is started, the phone will empty and run the

commands that have been stored in the queue. This ensures that the updates will

properly run in chronological order and that the local phone's game state will be

synced with the world when the player enters the game.

4.2 The Give Action

One of the key aspects of a multiplayer game is the ability to interact with other

players. The give action allows a player to exchange an agent with a different player

and introduces new strategies into multiplayer games. An example game where this

action is useful is a team versus team game where players on a team are each a

different role. If there exists an agent with an action that can only be performed by

a player of a certain role, the give action makes it possible for a random player to

pick it up without having to worry about his or her role. He or she could then give

the agent to the appropriate team member and the team would then have access to

its full functionality.

There were two main parts to the implementation of the give action: the com-

munication between server and mobile during the action and the presentation to the

players within the mobile interface.

36

4.2.1 Server Communication

In order to ensure that giving agents behaved like expected, it was necessary to de-

cide how much the server needed to moderate the action. The give action ideally

behaves similarly to the pick up action: the agent is moved from a location to a

player's inventory. Unlike the pick up action, however, there is no room for potential

conflict between the actions of different players. The agent is already located in one

particular player's inventory. Thus, only that player can affect the agent at any point

in time. Thus, there is no need for the multiplayer server to mediate the invocation

of the give action.

Checking Mobile Connectivity

Because of the intermittent connectivity of mobile devices, it is possible that either

the giver or the intended receiver will lose connection to the server in the middle of

the give process. It was necessary to decide how the server handles this situation.

One possible solution is for the server to determine the connection of both players

before it carries out the give action. Figure 4-3 demonstrates the workflow for this

option. After the giver selects to which player he or she wishes to transfer the agent,

the mobile attempts to contact the server to propagate the give action. There are

two points of failure here: either the giver's local mobile or the receiver's mobile is

disconnected from the server. In either case, the mobile would retry the connection

multiple times before declaring the action failure and informing the player. This

method prevents sending an agent to a disconnected player, but has the drawback

of a feedback wait time. While this organization does not detrimentally affect the

experience of a temporarily disconnected receiver, as he will not see any feedback

from the give action, it forces the giver to wait for feedback before he or she can

progress with the game.

Minimal Mediation

While it is necessary to ensure that the game world remains synced and that

agents are not spontaneously lost, it is also necessary to provide a seamless game

37

Too fmnyConcinfl
Agent seen Please rery Y Py Connection fall

diaconnected?

NO
NO

cieaction Seet9 Pic player to Send toon -YE Sending
In lnvenWoy YES-0 co YES---3 glviva istof -Select-YE selcetInetr? Shown action? plyr go Plye dialogue Sedt succeeds?

playrs payerplayer

no no Cancel no YES

return to"ouh e
No aon Stop action elecone genti"

No GUve* actin ale scrwn
shown for agent

Figure 4-3: This is the workflow for a connection check during the give action.

experience to the player. It is inadvisable for a player to be waiting for feedback from

the server before the game can progress. Thus, this iteration of the give action opts

for minimal mediation by the server. The agent that is being given always reaches

the inventory of the receiver regardless of the receiver's status. This makes the giver's

experience feel fluid and uninterrupted. When the giver selects the player that he or

she wishes to give the agent to, the local mobile will try to send the server a request

to move the agent to that player's inventory. The server will update the game file,

moving the agent. If both players are still connected to the game, then the give action

is immediately successful and they both receive a notification of agent transfer.

In the event of a temporary disconnection from the giver's mobile phone, the

request for a give action will be propagated to the server after reconnection. The

agent will no longer be available to the giver, but the receiver will not be able to see

the agent in his or her inventory. When the giving device reconnects and updates

the server, the server will propagate the give function's resulting location to the

other mobile phones, and the receiver will be notified of the agent transfer. While

the giver's local world will be temporarily out of sync from the game world, the

asynchronous time it takes for the mobile to reconnect will not negatively affect the

player's experience.

The temporary disconnection of the receiver's mobile phone is handled in a similar

manner. The giving device will send an update message to the server containing the

38

give command. The server will then propagate the message to all mobile devices with

the exception of the receiver's disconnected device. The receiving device will receive

the propagated update upon reconnecting with the server, and the player will then

receive a notification about the transfer.

The drawback to this current method is the case where a player has disconnected

and left the game for good. Because of the way multiplayer games are set up, players

are not removed from the player list when they disconnect or leave a game. Thus, the

server cannot determine whether a player is temporarily or permanently disconnected.

If a giver were to select a permanently disconnected player as the receiver, the agent

would be inaccessible for the rest of the game. This problem should be solved in

future iterations of the give action.

4.2.2 Mobile UI

The interface of the give action must allow the player to easily and intuitively select

another player to receive the agent. Because the give action is an action that is

attributed to an agent, it is treated the same way as other agent actions and is

displayed as a button on the agent dashboard. When the user taps the give button,

a player selection screen is presented to the user. As displayed in figure 4-4a, the

user sees the different selection options as radio buttons detailing the player in-game

usernames and roles. In the event that the multiplayer game has teams, the players'

teams will also show up in the selection options. The user can leave the player selection

screen at any time, canceling the give action. The agent is not given to the selected

player until the user clicks submit. The player options will only list players other

than the user, as it does not make sense to allow the user to self-give agents. There

are two other special cases that the player selection page has to take into account: if

a new player has joined the game but has not fully set player traits such as role or

team, and if there are currently no other players in the game.

If a player has joined the game, he will be added to the game file's player list. He

is then accessible as an object within the game file. However, he will not have any

defined traits until after he selects them on the role selection page. As a result, any

39

(a) Options to pick receiv- (b) No players are in game

ing player warning

Figure 4-4: Screenshots of the player selection screen

attempt to access his traits will cause an error. In addition, it does not make sense

for a player who is still deciding his username and role to receive notification that he

has received an agent. Thus, the radio options on the player selection screen will not

display any player that has not been fully defined within the game.

It is possible for the first player in a multiplayer game to have access to an agent

with the give action before any other players join the game. There will then be no

players to populate the player selection screen. In this case, the screen will notify the

user that there are no other players in the game instance, and will not allow the user

to proceed with the give action. An example of this case can be seen in figure 4-4b.

4.3 "For Each" Block on Editor

In the previous iterations of the TaleBlazer editor, there was no way for the game

designer to reference players. Unlike other objects, player objects are created dy-

namically during game runtime. Game designers can only reference objects that are

40

already created at design time. Thus, only the local player was an option for block

commands- all other players objects were created after game design and the designer

could not access them. For example, in the event that a gate agent required every

player to have an item type before a new agent could appear, there is no way for

one player to bump the gate and have the gate check the inventories of all players.

Instead, the gate agent would have to have a trait keeping track of how many players

meet the requirement. Each player in the game would have to bump the gate agent,

and each player's mobile would change the gate's trait. Only after the last player

bumped the gate and set the gate's trait to the desired amount could the new agent

show up. The "for each" block would enable a check of all players' inventories when

a single player bumps into the gate agent, as it allows the inventory check script to

walk through all players.

There was also no method that allowed the designer to affect multiple objects

with the same set of blocks; it was necessary to have the same set of block commands

attributed to every object that they were meant to affect. For multiplayer games,

it is useful to have the ability to act on multiple players with one action. With the

addition of a "for each" block in the editor, game designers can write a script to walk

through all of the players in a game. Inside this script, game designers could change

the traits of all players that matched a specific criteria. For example, if a player with

the pirate role scattered treasure from the pirate treasure chest, the game designer

could use the "for each" loop to walk through all players, and check if the player is a

pirate role. If so, then the game designer could increase the trait "treasure" by one

for those players. The "for each" loop allows one player's action to directly affect

another player's gameplay.This creates a game world where one player's actions has

significantly more effect on the rest of the game world.

4.3.1 Block Design

The idea behind the "for each" block is to allow the designer access to a list of objects

on which his or her commands can iterate over. To properly convey the purpose of

the block, there are two things that must be made clear to the game designer: the

41

Figure 4-5: This is an example of the "for each" block with the predefined variable

dropdown.

type of list that the block would be iterating over, and a reference back to the current

object that is being acted on.

Predefined Variable Dropdown

The predefined variable design, as depicted in figure 4-5, does not allow for any

customization by the user. There is only one dropdown containing the three different

types of objects that the player can iterate over (i.e. agent, player, team). This

dropdown selection also acts as the variable that represents the object being acted

on. The variable will populate the dropdowns of any blocks that are run within the

"for each" block. An example of this block usage is shown below.

As can be seen, the <player> selection in the "for each" block serves as a consistent

representation of the object being acted on by the subsequent blocks. The "for each"

block loops on a list of players, and each player object is referred to simply as "player"

in the subsequent blocks. The "if" block will check if the current player is of role Rolel,

and, if so, change its description to "I am Rolel" using the "set trait" block.

The main problem of this design is that it does not allow game designers to easily

differentiate between different "for each" block variables, as they are forced to choose

between three predefined variable names. With this design, nested "for each" blocks

that iterate over the same object type are no longer possible. For example, if a

designer wanted to compare all players with each other, he would need to nest a

"for each" block within another "for each" block. Both blocks would have <player>

as the argument. As shown in figure 4-6, it is confusing for the game designer to

42

Figure 4-6: In this example, both "for each" blocks have the variable "player". This

makes it impossible to tell which "player" variable in subsequent blocks refers to

which "for each" block.

differentiate between <player> variables.

Player-Defined Variable

To allow easy differentiation between variables, the "for each" block design used in

the editor has an input field that allows the designer to assign his or her own variable

to the block. The variable input field contains a default string to make it clear to

game designers that the field is a text field and not a slot for a block. The dropdown

that follows in the block depicts the three different types of lists that the player can

iterate through (i.e. all agents, all players, all teams). These two argument fields

enable the block to keep track of what type of object the variable is referencing.

Because the variables used in each "for each" block is different, nesting blocks is

no longer an issue. After the two variables are declared in the two "for each" blocks,

both variables will appear as options in the dropdowns of blocks that are nested inside

the "for each" blocks. Figure 4-7 is an example of nested "for each" blocks. Here, it

is simple to tell which variable belongs to which "for each" block.

4.3.2 Block Dropdown Population

When nested within "for each" blocks, certain children block types should have the

"for each" variable in their option dropdown lists. A list of all blocks able to have

the variable option in their dropdowns is located in the Appendix. To understand

how the "for each" block implements this behavior, it is necessary to have a basic

43

Figure 4-7: An example of the nested "for each" block.

set Owner of .1 me (Fabled flag)
1, world

layer

Figure 4-8: An example dropdown with both agent types and string types.

understanding of how TaleBlazer blocks populate their option dropdown menus.

Block Dropdown Structure

When defining a block for use in the editor, it is necessary to declare what types

of objects can populate that block's option dropdown list. Each option in the list is

composed of two parts: the name string, which is the string displayed in the dropdown,

and the value, which is hidden from the user. The value of the option is either the

name string itself or a numerical ID referring to a specific object in the game file.

Figure 4-8, for example, depicts a "set trait of entity" block. The options in this

block's dropdown consist of <me (Fabled flag)>, <world>, <player>, and <Fabled

flag>. The strings visible to the game designer (e.g. "player", "Fabled flag", etc.) are

the options' name strings. The values of these options are all different, and depend

on the type of the option. While the <player> option is referring to type player,

the value of the <player> option will be the string "player", as player is not yet an

object in the game file. The value of the <Fabled flag> option, however, will be a

number. This number is the object ID that is associated with the Fabled flag agent

in the game file. The Fabled flag agent has already been defined in the game file at

44

game creation, and thus has an object ID.

The dropdown is populated based on the types that are allowed to be included in

the block dropdown list. If, for example, one of the allowed types of a block were the

agent object, then the dropdown would be populated with all the agents in the game.

Each of the agents would have an option in the dropdown, where the option name

string was the name of the agent, and the option value was the ID associated with

the agent object. If the dropdown type were instead of type player, the option name

string would be "player", but the option value would be the string "player" rather

than an ID. Both cases are handled differently during block evaluation.

Variable Option Population

The "for each" block introduces a new option type that can be included in block

dropdown lists. The variable option type is used to display the appropriate "for each"

variable to the user and to keep track of which "for each" block's variable the current

block is referring to. The name string of the option will be the variable name that the

user inputted in the parent "for each" block. The value of the option is a string that

is composed of three parts: the term "var" to distinguish it as a variable, a letter to

distinguish the type of object the variable refers to, and the variable name.

Before the variable option can be created, it is necessary to see which parent "for

each" block the variable type is referring to. To do this, a block must look through its

parent blocks to find the "for each" block it is nested in. However, due to the structure

of TaleBlazer's scriptblocks, each block only records its direct ancestor. Thus, the

block must iterate up its parents until it sees a relevant "for each" block. Once it

finds this parent, the block will use the "for each" block's variable and type arguments

to determine the name and type of the variable. With this information, the block

will create the variable dropdown option. The process is repeated for any other "for

each"blocks that the block is nested in. An example of this can be seen in figure 4-9.

In this example, the parent "for each" block's variable name is <person>, and its

type is player. The "set trait" block is using both these arguments to create the

variable dropdown option. The variable option name string is "person" (the parent

45

Figure 4-9: An example of the dropdown option of a block nested within a "for each"
block.

"for each" block's variable name) and the option value is "var:p:person", where "p"

is the letter representing the player type.

4.3.3 Block Evaluation

Block evaluation is done on the mobile device. When the "for each" block is evaluated,

it first checks to see what type of object it is iterating. This is achieved by accessing

the type argument of the block, which stores agent, player, or team. Based on the

selected type of the block, the mobile will pull a list of all objects of that type in

the game file. For example, if a "for each" block has a type argument <player>, the

mobile will declare a list of all players within the game. This list is what the mobile

iterates over.

It will then determine the variable name using the "for each" block argument. The

device maintains a global dictionary of all of "for each" variables. Each dictionary

key is a variable string composed of three parts: the "var" string, a letter based on

variable type, and the variable name. This dictionary key definition is identical to

the previously mentioned dropdown option value, and serves as the link relating the

parent "for each" block to its children blocks.

Each time the mobile iterates through the object list, it will assign the current

object's ID to the "for each" block's variable key in the dictionary. This dynamic

key-value assignment is how the mobile tracks which object the code is acting on. The

mobile code will then evaluate the blocks that are nested within the "for each" block.

If any of the children blocks have the "for each" block's variable for an argument, the

block can simply look up the variable key in the dictionary to discover the current

46

object ID. It will then be able to run its code using the appropriate object ID. This

process will be repeated until the mobile is finished iterating through the object list.

4.3.4 Applications to Single Player Games

While the "for each" block was created out of multiplayer necessity, it is a useful

block for single player games as well. Because single player games do not have the

concept of multiple players or teams, those options are hidden from the block's type

dropdown when the game is single player. The only option that appears in the type

drop down of the single player version of the block is the "all agents" option. This

allows game designers to loop through all agents in the game.

4.4 Teams

Teams are an integral part of the multiplayer game world. With team-based gameplay,

players are more inclined to socialize and work together, whether for the purpose of

achieving a common goal or simply to beat the other players. The addition of teams

in TaleBlazer opens up the opportunity to create an entire new class of games that

benefit from collaborative and competitive aspects.

There are several components to the team implementation:

" team structure in the game model

" configuration of teams in the editor

* mobile user interface

The design and implementation of these team components will be discussed in the

following sections.

4.4.1 Team Structure

The team object has a variety of attributes. Like agent and player objects, teams

have traits and actions attributes. Another important team attribute is the various

47

members on the team. Teams will record the players that have joined the team us-

ing a list. This list stores numerical player IDs in order to keep track of team members.

Joining a Team

Players choose a team on the role and username selection screen when they join

a game instance. The team cannot be changed once the player has chosen. When a

player enters the game, his or her player ID is added to the chosen team's player list.

Similarly, the player object's team is set to the team's ID.

Propagation Across Mobiles

Being on a team means that multiple players will share and be able to view

information about the team. This information should be kept constant across all

devices. Thus, changes in traits should be propagated to all the players. For example,

a team score should always be constant across the devices of all team members,

regardless of who caused a change in score. If a team member picks up an agent, the

team inventory should be updated and all players should then see that agent within

the inventory.

4.4.2 Teams in the Editor UI

To have games with teams, the game designer must be able to declare and customize

teams on the editor. This process must be consistent with the rest of the editor so

that users already familiar with making TaleBlazer games do not have to learn some-

thing new. Thus, the editor must be able to handle two different states: a multiplayer

game with no teams, and a game with teams.

No Teams

A newly created multiplayer game defaults to having no teams. This is essentially

a player versus the world game, where players each act on their own to fulfill their

own goals. This type of game is akin to having an infinite amount of teams, each

with one player. Since having a large number of one-player teams in a game is both

48

impractical and unreasonable, the game will instead have no teams.

If a game has no teams, it is unnecessary to show the blocks and the editor space,

as there would be no teams to modify. Thus, as can be seen in figure 4-10a, the editor

will hide the detail view, and instead warn the user that there are no teams in the

game. This view will be shown anytime there are no games in the editor, including

the case where the user deletes all created teams.

Teams in Game

If there are teams in a game, then the team dashboard on the editor looks and

functions the same as the role dashboard. Here users will be able to customize their

teams, adding traits, actions, and scripts using the provided block drawers. Game

designers should be able to add teams to a game at anytime. If there are no teams

in the game, the rest of the editor dashboard will be loaded when a team is added.

Modifying Mobile Tabs

Logically, the team tab on the mobile should only be shown if a particular player

has been assigned to a team. This can only occur if the multiplayer game has teams.

Thus, whenever it is loaded, the mobile tab configuration widget checks to see if there

are teams in the game. If there are no teams in the game, the option to show the team

tab on the mobile will not be available to the game designer on the UI. The presence

of the team tab on the mobile will be marked false even if it was previously true.

This situation can occur if the designer had previously created teams and wanted to

show the team tab on the mobile, but later deleted all teams. The UI option to show

the team tab will appear when the designer adds teams to the game, but the team

tab will not automatically be included in the mobile. This mobile tab functionality is

consistent with the rest of the game, as most mobile tabs are not shown on default.

4.4.3 Team Blocks

With the inclusion of teams in the editor, it became necessary for there to be blocks

that utilize the team object. The "for each" block allows game designers to iterate

49

World Map Agents Player Teams Eff"'*he

New There are currently no teams in this game. Make a new team by dicking on the 'New Team' buttoti

(a) Team tab when there are no teams

Teams

Teamn Dashboard

/ZWNI
Scripts for MzardTeam

al t T of fe

WOf WIso ds that hme bnded toge 5r to cthe lt

Actions

On thedashboa,~ Sorty bA.

Traits

m On the lashboard sortby.
Name Value I Visible

(b) Team tab with team added

Figure 4-10: Screenshots of the team tab on the editor

50

Defeat the Dragon!

-o- n , 6TOshk

Trash

over team objects. Aside from the "for each" block, there are two blocks that deal

with teams:

o the "player on team" block

o the "is agent in specific inventory" block

Both blocks help game designers build games that effectively use teams.

"Player on Team" Block

Since players now have a team attribute, it is useful to be able to figure out the

team of a specific player. The "player on team" block has two dropdowns (figure 4-

1la). The first contains all possible player objects. Here, the only possible objects

are the local player and the potential player variable. The second dropdown contains

all team instances in the game, including the team variable. On evaluation, this block

will simply check if the selected player ID is stored within the player list of the select

team, returning true if so, and false if not.

"Agent in Specific Inventory" Block

While there already exists an "is agent in inventory" block, this block only checks

the local player's inventory. In previous iterations of TaleBlazer games, this block was

sufficient, as the local player was the only object with the concept of an inventory.

However, in multiplayer games, especially with the addition of teams, there are now

multiple objects that have an inventory. In a multiplayer game with teams, all player

objects and all team objects had an inventory. Thus, it was necessary to make a

block that allowed the user to specify which object inventory to look in. As can be

seen in figure 4-11b, this new block has two dropdowns. The first dropdown decides

what agent to check for, while the other lists all objects in the game that could

possibly have inventories to search through. The second dropdown is populated with

the player and various team arguments.

51

Splayer j on team fWizard Team)

(a) "Is player on team" block

Diamond Sword in Warrior m inventory?

(b) "Is agent in specific inventory" block

Figure 4-11: Examples of the new team blocks

4.4.4 Teams in the Mobile UI

Because there is a lot of information about teams that must be displayed for the

player, the mobile interface must be clear and easy to navigate. It is necessary to bal-

ance player convenience with current interface consistency. We evaluated two ways

to organize team information: integrating team information alongside the existing

similar player information or consolidating it to a single location.

Integrated Team Information

One method to display team information was to integrate it with the corresponding

player information. Since a player is a part of a team, team traits are equivalent to

player traits, and information about agents in the team inventory should be viewed

similarly to those in the player inventory. For example, on the player dashboard, the

table containing player traits would be followed by another table that contains team

traits. The inventory tab would no longer contain only the local player's items; it

would contain all the items picked up by the team by order of player.

Though this makes most bits of team information easy to locate, it is not consis-

tent with the rest of the application interface. In the current interface, information

that is located on a particular dashboard is only about that dashboard's object. In-

cluding information about the team object on a dashboard about the player breaks

consistency. In addition, the integration of team information into the player dash-

board would create large interface differences between games with teams and games

without. This could potentially be jarring for users who are used to player TaleBlazer

52

Figure 4-12: An example of the team mobile tab

games but are new to games with teams.

Isolated Team Tab

In the current iteration, team information is presented to the player in its own

tab. This team tab contains the team dashboard, and is based on the preexisting

player dashboard. As can be seen in figure 4-12, this dashboard displays all the infor-

mation pertinent to a team, such as traits and actions. The team information was all

consolidated into one tab in order to be consistent with the rest of the application.

Though it might be easier for the player to see team traits along with player traits or

the team inventory as along with the player inventory, it does not make logical sense

with regard to the rest of the application.

Team Representation on Map

On the "Map" tab, the location of the local player is represented by a yellow dot.

In previous multiplayer games, the other players in the game were represented by

a fuzzy blue dot. With the division of players by team, it is useful to be able to

53

Figure 4-13: An example of the icons depicting players in the game.

distinguish the locations of team members from all other players. Thus, members

of opposing teams have differently colored icons from members on the local player's

team. In the current iteration, these icons are magenta.

54

Chapter 5

Play Testing

This chapter details the many testing steps performed on the various functionalities

implemented for multiplayer. Testing was used to ensure the stability of the new

implementations as well as to gather feedback about design decisions made and how

they affected user experience. Both types of testing served to guide and refine the

development of the multiplayer functionalities.

5.1 Mobile Functionality Playtests

There were a number of tests ran throughout the development of the different func-

tionalities. The primary test method for each multiplayer function is detailed in the

following subsections.

5.1.1 TaleBlazer Team Give Test: Hot Potato

Hot Potato was a game created for the purpose of testing the newly implemented give

action. It was the first test to also be held on a larger scale, involving 8-9 people, each

with their own devices. The purpose of the hot potato game was simply to ensure

that the give action would work as players expected. There were several requirements

for the Hot Potato test to be successful:

o Neither the server nor any of the mobile devices should crash

55

9 Multiple, simultaneous give actions should be successful

" Receiving players should receive the correct agent

" The give action should behave as expected when players temporarily disconnect

from the server

* Notifications should appear when appropriate and display the correct informa-

tion

The Hot Potato test was run two different times. The first run unearthed several

errors.

In the first runthrough of the Hot Potato test, the biggest and most significant

error that occurred was that many of the mobile phones crashed right after connecting

to the multiplayer server. The error was caused when the mobile tried to handle

update messages before the game interface was initialized. This would occur while

the player was on the role selection page. This test was the driving factor behind

the implementation of the update queue discussed in Section 4.1.2, and helped solve

most of the connection errors regarding premature code evaluation.

After fixing the errors found in the first test run, the second run confirmed that

the give action indeed behaved as the players expected.

5.1.2 "For Each" Block Test: Defeat the Dragon!

Defeat the Dragon was a game designed specifically to test the functionality of the

"for each" editor block. It was necessary to see that each type of object list would

be correctly iterated over and that nested block actions would be correctly handled.

The test specifically looked for the "for each" block to cause these behaviors:

* Agents meeting a specific requirement should become visible on the map

* The location shift of all non-creature agents when a particular agent was bumped

" The setting of traits based on the traits of all players

56

* The movement of all players to the "end game" region when the game was

beaten

This test was run with multiple groups of 3 different players, each with his or

her own mobile device. While the "for loop" block worked as expected for most

requirements, it at first could not change the regions of all players. A later run of

the test game with multiple members of the TaleBlazer team demonstrated the fixed

ability to change the region of all players based on a single player's action.

5.1.3 Team Functionality Testing

There were two parts to the team functionality testing. It was necessary to ensure

that the editor interface behaved as expected by the game designers. It was also

necessary to ensure that the mobile implementation of teams behaved as expected.

Separate measures were required to test each.

Editor Interface Testing

The testing of the editor interface required making multiple different types of

multiplayer games. In testing the team functionality of the editor, proper behavior

under the following requirements was expected:

" The team tab would only appear for multiplayer games

* The team tab would properly handle the transition between no teams in game

and teams in game

" The mobile tab customization would only have the team option if there are

teams in the game

" The new team blocks showed the correct options in their dropdowns

Testing of the interface was done by a single person. The editor never showed any

significant problems with team functionality.

57

Mobile Functionality Testing

The mobile functionality testing involved the creation and running of many differ-

ent multiplayer games. These games primarily focused on ensuring that the propaga-

tion of trait changes was logical and consistent among different scripts programmed

into the editor. They also heavily tested the implementation of the new team blocks,

making sure that they returned true under the proper circumstances. Testing also

made sure that team information was properly and logically displayed for the user.

5.2 User Feedback Playtests

In addition to functionality testing, the multiplayer functionality on both the editor

and mobile-sides underwent testing for feedback from potential users. The purpose

of these tests was to ensure that the layout and implementation of the functionalities

were intuitive for the end user to understand and use. In the test, the tester was

shown an example game in the editor and was walked through how all the scripts

were used. He was then shown the same game on the mobile, and was able to play

around in the game world. The tester was then given the opportunity to create his

own game in the editor and the subsequently play it on the mobile. The focus was to

see how he felt about the layout of the editor and the presentation of the mechanics

on the mobile device.

A discussion with a local Massachusetts teacher produced significant and useful

feedback. Feedback regarding the current implementation was positive. A short ex-

planation of each of the features was enough for him to understand, and few questions

were required. Much of the other feedback received included recommendations for

new features that could be added to expand TaleBlazer multiplayer. These sugges-

tions for future work are covered in the next chapter.

58

Chapter 6

Future Work

The purpose of this thesis was to expand the functionality available for TaleBlazer

multiplayer games. Though a solid framework has been laid out, there are still a large

number of improvement and functionalities that can be implemented in the future

in order to create multiplayer games with more interesting mechanics and player

interaction.

6.1 Device Identification

While the usage of device ID is a useful way to recognized mobile devices, TaleBlazer

is not allowed to collect any data that can potentially identify a user. In the future,

this manner of identification should be modified.

6.2 Implementation of Idle Players

There is a possibility that players will disconnect from a game instance and not

return. Because of the way a multiplayer game instance is stored, players that have

disconnected are not removed from the player list. This can cause confusion, as

players still inside the game instance can perform actions that target a player (e.g.

the give action). A potential solution to this issue would be allowing the server to

track the most recent time that a player has been active in the game. Players that

59

have exceeded a reasonable time of inactivity could be labeled as idle. The other

players would then be able to tell which players were idle and could take action

accordingly.

6.3 Modifications to "For Each" Block

Though the "for each" block successfully allows game designers to walk through lists

of objects, there are some fixes that can be made to make the block more versatile.

6.3.1 Unique Variables

Due to the current way that variables are stored and tracked, it is essential that all

"for each" block variables are globally unique. In the future, there should either be

a warning when repeat variable names are used or a way to track identical variable

names. This will allow the game designer to use whatever variable names he or she

wishes instead of having to keep track of previously used variables.

6.3.2 Visibility Propagation

Future iterations of TaleBlazer should consider the implementation of a game de-

signer's ability to propagate the visibility of traits and actions. Blocks in the "Looks"

drawer of the editor should contain an argument that allows in game scripts to change

the visibility settings of other players. For example, a game designer should be able

to decide that one player's action shows a team action to all players in the team.

6.4 Location-Based Mechanics

While TaleBlazer is an AR location-based game, there are no location-based mechan-

ics that can be used to effectively extend multiplayer games. The following subsections

describe two mechanics that would enable the creation of more interactive games.

60

6.4.1 Location-Based Give Action

Currently in this implementation of TaleBlazer, the give action between two players

can be carried out despite player location. An interesting mechanic that could be

toggled by the game designer is to require close proximity between players before the

give action is allowed. This would force players to come together physically in order

to exchange items and adds the dimension of relative location into multiplayer games.

6.4.2 Team Zones

An interesting addition to team-based gameplay would be the concept of team zones.

These zones would simply be predefined subareas in the map, and would essentially

function as "home bases" for a team. In the team zone, team members could poten-

tially be allowed to access certain actions or could be immune from certain negative

effects, while other opposing players would be put at a disadvantage. The implemen-

tation of this mechanic would first require the ability to divide the map into various

subareas.

6.5 Direct Player-to-Player Interaction

While there are grounds for player interaction and ways for players to influence the

game worlds and experiences of other players, it would be interesting for there to be a

more direct method of player interaction. Such methods would allow for games that

force players to be more social.

6.5.1 Messaging

One way to make player-to-player interaction more interesting is to have players be

able to directly broadcast messages to each other. This would enable players to

communicate even if they are not physically next to each other. Such communication

would allow for new strategies and cooperation between players. For example, a

player that discovers the location of a clue code agent could message the location to

61

the player with access to the clue code. Instead of the player needing to take time and

physically deliver the desired message, the mobile phone could receive the message in

an instant.

6.5.2 Players Bumping Players

An interesting mechanic would be if players could bump into other players like how

players bump into agents. If the local player were to come into contact with a different

player in the game map, the player's dashboard would display on the local mobile,

and the local player would be able to see information about the other player. This

would enable the different players to interact with each other in the game world, and

players would be able to perform actions to directly influence other players.

An example game would be a "freeze tag" type of game. The game would consist

of two different teams. Once the local player bumped another player, he or she could

either freeze or unfreeze the player based on team membership and player traits.

6.6 Teams Modifications

Though the framework for team support in TaleBlazer multiplayer games has been

set, there are features that can be added to extend the team capability.

6.6.1 Team Tab Additions

In the future, the team tab should also display the members on the team as well as

the team inventory. The tab, however, should not grow to be cluttered, as the player

should be able to easily find this information. Since the player does not necessarily

need to see the members or inventory of his or her team every time he or she frequents

the team tab, it is possible to create buttons that would call up these lists in new

screens. This would serve to provide the necessary team information and to maintain

the uncluttered and orderly team dashboard.

62

6.6.2 Customization of Player Icons

In future iterations of TaleBlazer, icons representing different team members should

be customizable by the game designer. It should also be possible for game designers

to toggle the inclusion of distinguishing icons, as it is possible for a game designer to

want a game in which membership to a team is anonymous.

6.6.3 Methods of Choosing a Team

A game creator might want to vary the way that membership to a team is assigned.

For example, he or she might want the players randomly assigned to teams when

joining the game in order to vary the combinations of players. In the future, it should

be possible for the game creator to decide how players are assigned to teams. This

would be an interesting addition to the customizability of teams.

6.6.4 Dynamic Teams

Currently, the only way for a multiplayer game to have teams is for the game designer

to create and define them in the editor. Thus, the number of teams cannot be changed,

and players must choose a team from the predetermined set of teams. While this is

a fine design for small-scale games, it can potentially run into problems with a large-

scale game. If a game designer is not sure how large his or her game might be, he or

she might not want to set a fixed number of teams.

One way to combat this is to develop the ability to create dynamic teams that can

be defined and formed as more and more players join a game. Dynamic teams can

have requirements that, once fulfilled, mark the team as filled and open the creation

of a new team. Such requirements can include a maximum number of players or a

maximum number of each type of role that players could choose from. The formation

of new teams as players populate the game ensures that the game remains scalable

regardless of how many players enter the game world.

63

64

Chapter 7

Contributions and Conclusion

7.1 Contributions

With help and contributions from the TaleBlazer team, this thesis has helped create

new functionalities to expand TaleBlazer multiplayer games. It redefined the way

that players were identified within multiplayer games and introduced the give action

to increase player-to-player interaction and to make games more social. The imple-

mentation of the "for each" block gave game developers an easy way to affect multiple

objects and players at once. Lastly, it developed support for team functionality, al-

lowing for the creation of entirely new multiplayer games. These implementations

have become a foundation on which future work can build to further expand the

multiplayer experience.

7.2 Conclusion

The multiplayer functionality of TaleBlazer is a rapidly expanding area with a large

space in which to grow. The multiplayer mechanics introduced and implemented for

this thesis have helped introduce entirely new and different player interactions within

TaleBlazer multiplayer games. While basic multiplayer games with interesting player

interaction can now be created within TaleBlazer, it is the author's hope that the

functionality implemented in this thesis will lead to more complex mechanics that

65

allow for even more interactive and meaningful multiplayer TaleBlazer games.

66

Appendix

Tables

A

67

Table A.1: Blocks that can have an option of type variable in their dropdowns

Block Definition Valid Option Type
Game Drawer

Include Agent From World Agent
Exclude Agent From World Agent
If Agent in World Agent
If Player is a [Role] Player

Player
If Player is on Team Team

Looks Drawer
Agent

Show Action of Entity Team

Hide Action of Entity Agent
Team

Show Trait of Entity Tem

Hide Trait of Entity Tem

Movement Drawer

Move Entity to Region Agent
Player

If Entity in Region Agent
Player

Move Agent to Location Agent
Set X/Y of Agent Agent
Change X/Y of Agent Agent

X/Y of Entity Agent
Player
Agent

If Agent in Specific Inventory Player
Team

Traits Drawer
Agent

Set Trait of Entity Player
Team
Agent

Change Trait of Entity Player
Team
Agent

Trait of Entity Player
Team

68

Bibliography

[1] Appcelerator documentation.
api/Titanium.Platform.

[2] Adron Hall.

http://docs.appcelerator.com/titanium/3.0/

Understanding the node.js event loop.
http://strongloop.com/strongblog/node-js-event-loop/.

[31 Sarah E. Lehmann. Taleblazer: Implementing a multiplayer server for location-
based augmented reality games. Master's thesis, Massachusetts Institute of Tech-
nology, September 2013.

[4] Michael Paul Medlock-Walton. Taleblazer: A platform for creating multiplayer
location based games. Master's thesis, Massachusetts Institute of Technology,
June 2012.

[5] MIT Scheller Teacher Education Program. Mitar.
http://education.mit.edu/projects/mitar-games.

Scheller Teacher Education Program. Mystery
http://education.mit.edu/ar/matm.html.

[7] MIT Scheller Teacher Education Program.
http://education.mit.edu/ar/oatmit.html.

[8] MIT Scheller Teacher Education Program.
http://education.mit.edu/projects/starlogo-tng.

Outbreak @ mit.

Starlogo tng.

MIT Scheller Teacher Education Program. Taleblazer. http://taleblazer.org.

Scratch. scratch.mit.edu.

69

[6] MIT at the museum.

[9]

[10]

