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Abstract

Communities in social interaction networks or graphs are sets of well-connected,

and very often overlapping vertices. Formally, we view any maximal clique of the social

network graph as a community. The problem of finding maximal cliques is known to be

computationally hard. The goal of this work is to identify structural conditions in social

network graphs that lead to efficient identification of maximal cliques, i.e. overlapping

communities.

We propose an evolutionary model called sequential community graphs for commu-

nity formation in social networks. In a sequential community graph, each node enters

the graph by either joining an existing community, or creating its own. To discover

communities, i.e. maximal cliques, in such graphs, we present the non-parametric It-

erative Leader-Follower Algorithm (ILFA). We establish that the ILFA finds all the

communities/maximal cliques correctly in the sequential community graph model in

polynomial time in the number of vertices in the graph.

To scale to very large data sets, we propose a minor simplification of the ILFA,

called the fast leader-follower algorithm (FLFA) which effectively runs in linear time

in the input data size, and finds all communities correctly for sequential community

'In this paper, we shall use terms social network and graph interchangeably.
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graphs with an additional constraint. Empirically, the FLFA and IFLA perform nearly

the same in terms of accuracy, but the FLFA runs nearly three orders of magnitude

faster.

We find that the sequential community graph model is a good fit for a wide va-

riety of social networks where users can be modeled as entering the graph by joining

existing communities or creating their own. In such social networks, we demonstrate

that the FLFA and ILFA outperform other state of the art algorithms both in terms

of speed and accuracy. For example, in the Internet Movie Database (IMDB) graph

where communities naturally correspond to actors in the same movie, our algorithms

finds nearly all ground truth communities correctly while all other known community

detection algorithms do very poorly. Similar empirical results are found for various

other social data sets. This supports our hypothesis that we can model many social

graphs as sequential community graphs and accurately detect their communities using

the ILFA or FLFA.
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Chapter 1

Introduction

T H E understanding of community structure is an important problem in the anal-

ysis of social network graphs. Communities represent a latent structure that is

manifested through densely connected vertices. For example, a latent social group such

as people in the same college class may show up as a set of densely connected people in a

social network such as Facebook. Members of the same community should be connected

to each other. Therefore, the fundamental structure of a community in a graph is a

maximal clique. However, in many instances there may only be noisy observations of

the graph where certain edges are missing, forcing observed communities to no longer

be exact cliques. Therefore, we view community detection as equivalent to maximal

clique detection in the presence of noise.

In general graphs, the maximal clique enumeration problem is known to be compu-

tationally hard. The number of maximal cliques in a graph can be exponential in the

number of vertices [10]. Even finding the size of the largest maximal clique is known to

be NP-complete [7]. The question of interest in this paper is whether finding (nearly)

maximal cliques is more tractable in social network graphs that are generated through

simple, modellable, human interactions. We find that maximal cliques/communities in

social interaction networks can indeed be found efficiently and correctly for a class of

graphs where social interactions can be modeled by a Sequential Community Graph.

Our contributions. To answer this question, we start by hypothesizing a simple,

11



12 CHAPTER 1. INTRODUCTION

natural model for community formation in a social interaction network which we call

the sequential community graph model: starting from one vertex in the graph, vertices

are added sequentially; each vertex either joins one or more existing communities in the

graph, or forms a new community.

To detect communities or maximal cliques in such a model, we present iterative

leader-follower algorithm (ILFA) which finds communities in time polynomial in number

of vertices in the graph. Precisely, the running time is bounded by O(IV|EI(E +

lVi logI V)) for graph with vertex set V (see Theorem 4). We establish that ILFA finds

all communities in the sequential community graph model correctly (see Theorem 2).

For the algorithm to scale for very large data sets, we propose a minor simplification

of the ILFA, called the fast leader-follower algorithm (FLFA) which runs in time O(1 E +

VI log IV1) for graphs with edge set E and vertex set V, i.e. FLFA is effectively linear in

the input data size (see Theorem 3). We establish that the FLFA finds all communities

correctly for sequential community graphs with an additional constraint (see Theorem

1).

We do an extensive empirical evaluation of our algorithm for various social data

sets where ground truth communities are known so that we can verify the performance

of the algorithm. Concretely, we report the performance on three social interaction

networks in which communities are generated due to a shared activity. First, we study

the IMDB dataset where actors are vertices, edges between two actors indicate that

they have acted in one or more movies together, and a community corresponds to a

movie. Next, we look at the Les Miserable data set where characters in the novel Les

Miserbales are vertices, edges between two actors indicate that they were in the same

chapter of the novel, and a community corresponds to a chapter. Finally, we also use

the MIT cultural show dataset where show participants are vertices, edges between

two participants indicate that they were in one or more performances together, and a
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community corresponds to a performance.

For all of these datasets, we compare the performance of our algorithms (ILFA and

FLFA) with representative known algorithms. Namely, modularity optimization [11],

CESNA [19], and BigClam [18]. We compare with the classical spectral clustering (and

a few other algorithms), but we do not report the results here as for all of these datasets

they perform poorly compared to these other representative algorithms.

We find that, our algorithms (IFLA/FLFA) find all or nearly all communities cor-

rectly for all of the three social datasets. The ILFA algorithm performance is slightly

better than FLFA in terms of its accuracy in finding communities. However, the FLFA

algorithm, runs orders of magnitude faster than ILFA, as expected based on theoretical

bounds on their running times. In contrast, modularity optimization, BigClam and

CESNA perform poorly both in terms of accuracy, and in terms of speed (quantified

precisely in Section ??).

In summary, the ILFA and FLFA outperform other known algorithms for a class

of social interaction data sets that can be modeled as Sequential Community Graphs.

These graphs are generated when individuals join a social graph by either joining ex-

isting communities or creating their own. As we shall see, this is a fairly broad, and

applicable range of graphs. For such social data settings, the ILFA and FLFA perform

exceptionally well both in terms of speed and accuracy.

A few final remarks. First, structurally the sequential community graph model is

very similar to what we shall call the prime number graph. In this graph, the integers

from 2 to N > 2 are vertices, edges between two integers indicate that hey share a

prime number as a common factor (e.g. 14 and 21 have an edge since they have 7 as

a common factor), and a community corresponds to a prime number in the sense that

it is a collection of integers all of which have a given prime as their factor (e.g. all

integers that contain 7 as a factor). It can be easily established that the ILFA and
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FLFA will find all communities (prime numbers) correctly for such a graph. And in a

sense, this graph captures the essence of the sequential community graph for which it is

easy to identify the overlapping communities using the ILFA and FLFA in an entirely

non-parametric manner. Second, not all social interaction graphs need to arise through

mechanisms in the sequential community graph model. For such social datasets, the

ILFA and FLFA may not be good fits. Therefore, like any other community detection

algorithm, a degree of caution needs to be exercised in using the ILFA and FLFA by

carefully thinking about the reasons why a social interaction graph exists and what is

the underlying nature of the community structure.



Chapter 2

Prior Work

C OMMUNITY detection in a graph is a specific instance of the more general prob-

lem of clustering. The goal of a good clustering algorithm is to create clusters

of data points such that the points within each cluster are close to each other and

points in different clusters are far from each other in an appropriate metric. In commu-

nity detection, the data points are the vertices in a graph and the metric is the graph

distance.

One approach to community detection is to cut the graph into disjoint communities

of reasonably large size. This is done by minimizing functions such as RatioCut [6] and

the normalized cut [13], which are graph-cuts weighted by the size of the communities.

These functions are known to be NP-hard, but they can be approximately minimized

using spectral clustering [13], [6]1[15], [16],[9]. Spectral clustering maps the vertices

of a graph into points in a finite dimensional space and then uses common clustering

algorithms such as k-means to separate the vertices in this new space. In this way, it

groups together vertices that are located close to each other in the finite-dimensional

space.

Another approach to community detection is known as modularity optimization [11].

Modularity is a function which maps a partition of vertices in a graph to a number. The

intuition for modularity is that if two vertices are in a community, then they are more

likely to be connected than two vertices in a random graph. Optimizing modularity is

15
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known to be NP-hard. However, fast approximation algorithms for it do exist [2]. In

addition, it has been found that modularity has difficulty resolving small communities

[8].

Most of the above describes algorithms that produce communities or clusters as

disjoint sets. However, in social setting, one expects communities to be overlapping as a

single node may be part of multiple communities. To that end, modularity optimization

was modified by [2] to produce a hierarchy of overlapping communities.

When community is defined as a clique, as in this paper, a natural method that

comes up is the k-clique percolation [12] where the goal is to find overlapping cliques

using input parameter k and the output is produced by maximizing an appropriate

objective.

Multiple community membership can also be viewed as a 'mixture probabilistic

model' and this led to a statistical inference framework for finding overlapping com-

munities [1]. A model-based overlapping community detection algorithm is proposed

in [18] which only uses the graph structure. Vertex features and graph structure are

combined to find overlapping communities in [19]. Such methods can suffer in terms of

scaling with data size due to the inference task, but in [18] and [19] approximations are

made to scale up to larger datasets. In addition to computational issues, the validity

of the mixture model needs verification.

The algorithms in [2],[18],[19] are shown to scale to very large graphs, which is

a crucial requirement for any practical community detection algorithm. This is the

primary reason why we use them as candidate representative algorithms to compare

against.

It should be noted that another requirement is to learn the community structure

without any input parameters. The method of [2] is non-parametric and finds the

number of communities naturally from the graph structure. However, in [18], [19] the
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number of communities is an input parameter and different values are tried until a good

fit to the data is found.
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Chapter 3

Community Detection

M 3.1 Community Detection

The problem. We are given an undirected graph G = (V, E) where V {1,... ,n}

represents vertices and E C V x V represents edges between them. Any maximal clique

of G is defined as a community of G. The goal is to find all communities or maximal

cliques of G. Recall that a subset C of vertices V is called clique if {(i, j) : i j E

C} C E; it is a maximal clique if no C' C V such that C c C' is a clique as well.

The way to think of G is as observed interactions, represented by E, between vertices

in V due to an underlying latent or unobserved community structure in G. Precisely,

let 9 = (V, C, S) represent the latent community bipartite graph, where one partition

of vertices is V, the vertices we observe in G and the other partition of vertices is

C = {cl, ... , cm} that represents the m communities. The edges 9 C V x C are between

these two partition, i.e. 9 is bipartite. The edges of 9 represent membership of vertices

of V in communities of C: (i, c) E if vertex i belongs to community c.

Finally, the observation graph G = (V, E) is a projection of 9: (i, j) E E if and only

if vertices i, j E V share one or more community in 9, i.e. there exists c E C such that

(i, c), (j, c) E E. We illustrate these graphs in Figure 3.1.

It is well known that the problem of finding maximal cliques in any G is computa-

tionally hard, as noted earlier. Note that for any given G, it is feasible to find a g so

19
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that G becomes the corresponding projection of g. In that sense, the above view is not

restrictive and hence the problem of find communities in G even when G is projection

of a latent community bipartite graph is equally hard.

The question of interest: are there prevalent social phenomenon generating G for

which finding communities in G is easy? To answer this question, we shall present the

sequential community graph model next.

Few remarks are in order before we present the model. First, our problem formula-

tion as well as the latent community bipartite graph has been considered before, cf. [3],

[14], [4], [17]. Second, In practice there may be missing edges or noise in an observation

graph. In this case, communities would no longer be cliques. For instance, if an edge

is removed from a clique with n vertices, then it becomes the union of two overlapping

cliques each with n - 1 vertices. Therefore, noise or missing edges in an observation

graph will result in the creation of spurious community vertices in the corresponding

latent community bipartite graph. We illustrate this in Figure 3.1. For the purposes of

establishing theoretical results, we shall assume that G is perfectly observed. However,

as we shall see, our algorithms work for noisy data as well.

Sequential Community Graph Model. Here we present the sequential community

graph model for the evolution of a community bipartite graph g. This should be treated

as a social hypothesis applicable to a class of social scenarios. In particular, this model

is relevant to settings where individuals enter a social graph by either joining existing

communities or creating their own. We now present the model in detail.

Let Gn = (V, Cn, S) denote the community bipartite graph with n observed ver-

tices, i.e. VrJ = n. This is generated sequentially as follows. Initially, n = 1 and

Vi = {1}, C1 = {c1} and S1 = {(1, ci)}. Given gi, the gi+1 is generated by adding

vertex i+ 1 to V, i.e. Vi+1 = ViU{i+ 1}={1, ... ,i+1}. For Ci+ 1,Ei+ 1, one of the

two choices listed below is exercised arbitrarily:
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Choice 1. Choose a single community, c E Ci; add edge (i + 1, c) to Si to obtain

Ei+1.

Choice 2. Add a new community vertex c' to Ci to obtain Ci+1 and add a new

edge (i + 1, c') to Si to obtain Ei+1. Then select any one other community vertex

c E Ci. Let V = {v E V : (v, c) E Si} be the neighbors of c and let V' c V (V'

can also be the empty set). Add edges {(v, c') : v E Vc'} to i+1.

In a sequential community graph g there can be a maximum of n community

vertices because a new community vertex is added only if a new observation vertex is

added. Also note that the construction of a sequential community graph is not unique.

There can be multiple sequences of vertices that produce a given sequential community

graph. We illustrate this with an example in Figure 3.2.

Interpretation. The sequential community graph model corresponds to social phenom-

ena where new members join society by either joining a set of communities or creating

a new community. Thus, new communities are only created when new members join

the graph. This captures the idea is that each community in society is often created by

a single individual who brings together different people who were previously in different

communities.

Consider the following example where a sequential community graph might form in

real life. Imagine a college campus where communities are defined by clubs/organizations.

When new individuals arrive at the college, they either have the opportunity of joining

an existing club or creating their own club from scratch. When they create their own

club, they recruit existing students to join their club. Note that this directly corre-

sponds to our idea of a sequential community graph where each time a node enters the

graph, it must either join a subset of existing communities, or create its own community

using a subset of the vertices in the graph. There are many other such simple inter-

actions that can lead to a sequential community graph, and the main characteristic is
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that new members must enter a graph either through joining a set of communities or

by creating their own.

The sequential community graph model motivates us to divide the vertices in an

observation graph into two types: those that belong to a single community and those

that belong to multiple communities. We define these vertex types as follows.

Definition 1. A leader is a vertex which belongs to only one community. All other

vertices are followers.

We call vertices which belong to a single community leaders because they are the

individuals in our model who create communities from scratch and bring together dif-

ferent people. In the college campus example, they are the presidents or the founders

of the clubs. Everyone else in the graph is naturally deemed to be a follower.

The construction of a sequential community graph naturally incorporates our no-

tions of leaders and followers. A new community can only be generated by a leader.

Followers do not generate new communities when they join the graph. Instead they

simply join existing communities. Also, as a sequential community graph evolves, the

roles of vertices can change. In particular, leaders can become followers if they join

newly generated communities that other leaders have created.

Sequential community graphs are a subset of the more general latent community

bipartite graphs. They possess important properties, which have already been discussed

informally, which allow us to efficiently recover all of their communities. The properties

are stated formally below.

Proposition 3.1.1. In every sequential community graph, there is always at least one

leader.

Proof. The last community vertex added to a sequential community graph was gener-

ated by a leader. The leader will remain a leader because no further communities will

be generated.
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The following important property holds as well.

Proposition 3.1.2. Let G = (V, E) be the observation graph for a sequential com-

munity graph G = (V, C, S ). If we delete any leader node from G, we obtain another

graph G' = (V', E') that is the observation graph of a sequential community graph,

9' = (V', C', E').

Proof. We will show that we can construct another sequential community graph 9' for

which G' is the observation graph. Let 1 be the leader vertex we wish to delete from G

to create G'. There are three cases we need to consider:

1. 1 entered G by creating a new community cl and 1 is the only leader of cl.

2. 1 entered 9 by creating a new community cl but 1 is not the only leader of cl.

3. 1 entered 9 by joining an existing community cl.

Case 1

In the first case, 1 entered 9 at step i by creating it's own community cl and 1 is the

only leader in this community. Let 01 = {v E V\l I (v, cl) E 6}.Now if ] c E C\cl s.t.

Vv E 01, (v, c) E E, then we can construct G' as follows. Follow the exact same steps in

the construction of G except for the following change:

1. At step i, simply avoid adding 1 and cl to the graph and do nothing.

Since 3c E C\ci s.t. Vv E 01, (v, c) E E, every pair of member nodes in C correctly

share an edge in G' as required. It is easy to see therefore that G' is the observation

graph for g'.

Now if this condition does not hold and there is no such c, then we know immediately

that EvI, v2 E Q1 s.t. c E C\cl s.t. (Vi, c)(v2, c) E S. This implies that either vi or
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v2 entered the graph at a time step greater than i. Otherwise, if they both entered at

the earliest possible time i, then by the SCG construction rules, they would have had

to be a subset of the same community. Without loss of generality, say vi entered the

graph at time step j > i. Moreover, let Vi c 01 be the subset of O that entered g at

time step i. In order to construct 9', we now follow every step in the construction of 9

except for the following

1. At time step i, add v1 to g' and have vi create community node c1 . Moreover, for

each v E Vi, add (v, cl) to E'.

2. At time step j, when v1 was supposed to enter 9, do nothing.

This ensures all nodes in O still share a community, cl, and therefore all pairs of

nodes in O correctly share an edge in G'. It is therefore simple to verify that G' is the

exact observation graph for 9'.

Case 2

Now we look at the case where 1 is not the only leader in cl. Let 1' be another leader

of cl and let i' be the step at which it is added to 9. We can construct a valid sequential

community graph 9' as follows. Follow the exact same process in the creation of 9 with

the following changes. First, at time step i, instead of adding in nodes 1 and cl as we

did in the construction of 9, add nodes 1' and cl. Next, skip step i', when we were

supposed to add in 1'. Since all the steps used in the construction of 9 are valid steps

in the construction of a sequential community graph , and the two steps we introduced

are also valid steps in the construction of a sequential community graph , all steps used

to construct g' are valid steps and 9' is in fact a sequential community graph. It is

again apparent that G' is the observation graph for g' as the structure of 9' is identical

to that of g with the only difference being that 1 is no longer in the graph.

Case 3 Finally, we consider the case where 1 joined an existing community, cl upon
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entering the graph at time step i. In this case, we can create g' by following the exact

same steps used in the construction of g, with the only change being that we skip step

i and do not add 1 to the graph. It is clear that g' is a valid sequential community

graph and moreover that G' will be the observation graph for 9' for the same reasons

used in the earlier cases.

Hence, G' is indeed the observation graph for an SCG g', as desired.

U
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Figure 3.2. Illustration of two sequential community graph constructions (and the sequential con-
struction of the corresponding observation graph) resulting in the same observation graph. In each
construction the member vertices are listed in order of addition to the graph with the newest vertex at
the bottom.
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Chapter 4

Leader Follower Algorithms

W E use the notion of followers and leaders discussed in Section 3.1 to develop two

community detection algorithms: the fast leader-follower algorithm (FLFA)

and the iterative leader-follower algorithm (ILFA). The FLFA is a simple procedure

which can detect communities very quickly. The ILFA is an iterative procedure which

involves running the FLFA and then removing certain vertices from the observation

graph. The ILFA can find more communities than FLFA because it is applied itera-

tively to a transformed observation graph. However, we will see in practice that both

algorithms have very similar performance in terms of accuracy, even though the FLFA

has a strong advantage in terms of speed.

* 4.0.1 Fast Leader-Follower Algorithm

We first provide some intuition to how the FLFA works. FLFA uses that fact that each

community in an SCG can be identified by finding its leader, or the node whose only

community is the given one. Since this leader is only part of a single community, we

can just look at the neighbors of the leader to find all the nodes in a given community.

Thus, finding the leader associated with a community allows us to find all the members

of the community.

But how can we find these leaders? To answer this question, FLFA makes use of

the fact that the degree of a leader must be less than or equal to the degree of its

29
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Original Graph First community Second community Final communties

Vertex Degree Vertex Degree Vertex Degree Vertex Degree

b 2b 2
c 3
d 3 d 3 d 3
e 3 e 3 e 3
f 3 3
g 6

Seed Seed Seeds

Figure 4.1. Application of FLFA to a graph with three communities. (top) The figures show each new
community that is detected. (bottom) The list of degree ordered vertices has (multi)colored rectangles
showing the (possible multiple) community membership of the vertices as new communities are detected.
The seeds of each new community are indicated in the vertex lists.

neighbors, due to the fact that a leader only has connections to people within a single

community, whereas its neighbors can be connected to all members within potentially

many communities. Thus, to find leaders, FLFA simply attempts to find the nodes

of lowest degree within each community. Once it finds these leaders, it looks at their

neighbors to determine the underlying communities in the graph.

FLFA uses a heuristic of node degree to find leaders in a graph quickly. It uses a

degree ordered list to sort the nodes in its graph and since leaders have a lower degree

than followers, leaders will naturally appear earlier in the list. It then iterates through

the list and finds the first node that hasn't been marked visited yet and picks it to be

a leader. It marks the given leader, which we shall call a seed from here on out, and

all its neighbors as visited, and places them together into a community. Following this,

it continues through the list until all nodes have been visited. Note that not all the

seeds selected to create communities in this way are necessarily leaders. They instead

represent an approximation for what the leaders may be in the graph. As such, the

communities that we create in this way are not necessarily cliques.

Since it uses such approximations, FLFA is able to find communities in the graph
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extremely quickly using just a single pass. Moreover, it is also succinct and simple in its

description and implementation. Lastly, as we shall see in the results section, it still is

able to resolve communities with a relatively strong accuracy, despite taking a fraction

of the time of some of the other potential algorithms.

The steps of the FLFA are specified below.

procedure FLFA(G)

i <- O

communities []

rankedList <- list of vertices sorted by ascending degree

visited = {}

while i < length(rankedList) do

node +- rankedList[i

if node not in visited then

Ci <- node U Neighbors(node)

add Ci to communities

add each node in C to visited

end if

i +- i +

end while

return communities

end procedure

We illustrate the application of the FLFA to an example graph in Figure 4.1.
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Original Graph First iteration Final communties

Delete seeds Second iteration

Figure 4.2. Application of ILFA to a graph with four communities. The first iteration detects the
peripheral communities, while the second iteration detects the community at the core of the graph.

* 4.0.2 Iterative Leader-Follower Algorithm

For some graphs the FLFA is not able to find all the communities. For instance, in

the graph in Figure 4.2,the central three vertex community will not be found by the

FLFA, as this community has no leaders. Every vertex here is a member of another

community. If we could modify the graph in a way that transformed some vertices in

the undetectable community into leaders, then the community could be detected by the

FLFA. This motivates what we call the iterative leader-follower algorithm (ILFA) for

community detection. This algorithm is designed to detect communities which cannot

be found by simple application of the FLFA. The steps of the ILFA are specified below.

procedure ILFA(G)

communities = [

Gm <- G

while GM f 0 do

newCommunities <-

FLFA-M(Gm)
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if newCommunities = 0 then

break

else

for C in newCommunities do

Remove lowest degree nodes of C from GM

if C not subset of any comm in communities then

add C to communities

end if

end for

end if

end while

end procedure



procedure FLFA-M(G)

i +- O

communities =

rankedList +- vertices of G sorted by ascending degree

visited = {}

while i < length(rankedList) do

node +- rankedList[i]

if node not in visited and node U Neighbors(node) is clique then

Ci +- node U Neighbors(node)

add C to communities

add each node in Ci to visited

end if

i +- i+1

end while

return communities

end procedure

We illustrate the application of the ILFA to a sample graph in Figure 4.2. Essen-

tially, ILFA is an iterative algorithm that peels away the layers of the graph to reveal

all hidden communities that FLFA previously could not detect. At each iteration, ILFA

runs a modified version of FLFA on the graph, and then removes all leaders from the

graph to reveal previously undetectable communities. It then continues to repeat these

steps until the graph has no more nodes or there are no leaders in the given iteration.

To see an example of this, consider the graph in Figure 4.2. This graph has a core

community of three vertices, each of which is a member of a four vertex community.

The core community has no leaders, but the three peripheral communities do. The first
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pass of ILFA detects the three peripheral communities. However, it does not detect the

three vertex community at the core of the graph because it has no leaders. When we

delete the seeds, the resulting graph is a three-clique and all the vertices are leaders. A

second iteration of the ILFA detects this community.

The key here is that the reason FLFA wasn't able to detect some communities

earlier, is because they had no leaders. As we saw during the construction of the SCG,

this occurs when new leaders enter the graph and cause leaders of a given community

to become followers. So the key to discovering a leader for these hidden communities is

to remove the leaders that caused the leaders of the given community to convert from

leaders to followers. This is the underlying intuition behind ILFA.

One important point to note is that ILFA uses a modified version of FLFA, FLFA-

M, in its iterations. This modified version has a few key differences. First, it only

accepts communities that are actual cliques. Next, it only accepts communities that

are not sub cliques of previously detected cliques. In this way, FLFA-M ensures that we

only detect true maximal cliques. These precautions are necessary as there are cases

when FLFA picks a node to be a seed when it is a follower and not a leader. This can

occur when a community has no leaders at all and hence the first node FLFA finds in

it is a leader. By checking to see if the community produced is a clique or not, we

avoid adding communities from such cases. We also need to ensure that we don't add

sub cliques, as sometimes, in subsequent iterations of ILFA we may detect a subset of

a previously detected community again. This occurs when we remove the leaders of a

given community, but subsequently detect the set of leaders that haven't been removed

as an independent community.

With these steps, we obtain a robust algorithm that, as we will see, can exactly

discover all the communities in any Sequential Community Graph.



36 CHAPTER 4. LEADER FOLLOWER ALGORITHMS

* 4.0.3 Performance Guarantees

We will next establish theoretical performance guarantees for the ILFA and FLFA.

The main results presented here concern the performance of the algorithms in terms of

accuracy and speed.

Accuracy. Recall that in the observation graph for a latent community graph, the com-

munities are maximal cliques. This makes community detection equivalent to finding

all maximal cliques. The ILFA and FLFA were designed to find these types of commu-

nities and their performance is strongest in graphs where communities take this form.

In particular, they have very strong performance on sequential community graphs.

We first present our result for the FLFA. There are examples of sequential commu-

nity graphs where the FLFA cannot find all communities, such as that in Figure 4.2.

Therefore, FLFA cannot detect communities on all sequential community graphs. How-

ever, there is a subclass of sequential community graphs where the FLFA will detect all

communities. Our result is as follows.

Theorem 1. Let G = (V, E) be the observed graph of a sequential community graph.

If every maximal clique of G has a leader, the output of FLFA will be the exact set of

maximal cliques in G.

Proof. We will prove this using a loop invariant. First, let us define Ci as the set

of maximal cliques in G that have at least one leader at position i - 1 or earlier in

rankedList, the list of vertices of G sorted by ascending degree. Similarly, let Cl be the

set of communities identified by the FLFA by the end iteration i - 1 or earlier.

Invariant

At the beginning of iteration i,

1. Ci_ 1 = Ci_1

2. For any v E V, v E visited iff v E C where C E Ci_ 1 .
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Initialization

Before the algorithm starts, Ci_ 1 = 0 (as there are no leaders in the empty list), and

indeed C _1= 0 as well. Moreover, visited is empty, as required.

Maintenance

At iteration i, we are given that C>_1 = Ci_1. Let v be the node at rankedList[i.

If v E visited, then v E C for some C E Ci_ 1 and v is not a leader for any maximal

clique not in Ci_ 1 . Hence, Ci_ 1 = Ci. Moreover, since the FLFA does nothing when v is

in visited, Cj = C>_1. So Cj = Ci and the first part of the invariant is preserved in this

case. The second part of the invariant is also clearly preserved as we did not add v to

visited and Ci- 1 = Ci.

On the other hand, if v V visited, then it is not a part of any maximal clique in

Cr_ 1 . Let Cv be one maximal clique to which v belongs. We now show that v must

be a leader for this previously undetected maximal clique C'. Imagine that v were a

follower for Cv. Then the leader for Cv appears at position i - 1 or earlier as the leader

has a lower degree than v, and therefore Cv E Ci-1. But as v V visited, Cv ( C_.

Hence, C>_1 z Ci- 1 , which contradicts our invariant and is therefore not possible. Thus

v must be a leader for C .

We now set Cnew = v U Neighbors(v). Since v is a leader and belongs to a single

maximal clique, vUNeighbors(v) is a maximal clique in G. We then set Ci = C_1 UCnew.

Since Cnew has a leader at position i or earlier, we see that Cnew E Ci, and that

Ci = Ci_ 1 U Cnew. Thus, at the end of the iteration, Cj = Ci as required.

Finally, as we place all vertices of Cnew into visited, we see that the second part of

the invariant is also preserved.

Termination

Since i increases by 1 after each iteration, i will eventually equal the length of

rankedList and the algorithm will terminate. When it terminates, Ci will just be the
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set of maximal cliques in G as every maximal clique in G will have a leader at position

length(rankedList) or earlier. Thus, as Cj = Ci, Cl, the set of maximal detected by

FLFA, will be the exact set of maximal cliques in G.

U

FLFA has correct detection on the subclass of sequential community graphs where

each community has a leader, but in many sequential community graphs leaders become

followers as the graph evolves. To achieve correct detection for the general class of

sequential community graphs we require the ILFA. Our formal result is the following.

Theorem 2. Let G = (V, E) be the observed graph of a sequential community graph.

The output of ILFA will be the exact set of maximal cliques in G.

Proof. Before proving the theorem, we present a useful definition. Let Gi be the graph

GM, as defined in the pseudocode for the ILFA, at the beginning of iteration i. We now

present a useful proposition that will help us prove the theorem.

Proposition 4.0.3. At the end of iteration i, ILFA deletes exactly the set of leaders

in Gi to create Gi+ 1 .

Proof. Let the set of nodes that the ILFA deletes at iteration i be Li and let Vi be the

set of member nodes assigned to a community by the FLFA-M at iteration i. From the

ILFA procedure, Li is given by Li = {l E Vi 11 is a minimum degree node of C for some

C E CFLFA}, and CFLFA is the set of communities returned by the FLFA-M. We show

that Li is the exact set of leaders in Gi, and therefore the ILFA deletes the exact set of

leaders from Gi to obtain Gi+1.

First, we show that every node in Li represents a true leader in G. Choose any

1 E Li. Since 1 E Li, 1 is the lowest degree node of some community C returned by

FLFA-M. Since C was returned by FLFA-M, C must be a clique, and must moreover

possess a leader as FLFA-M only detects cliques that have a leader (the proof for this
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is identical to the proof for this statement in the FLFA). Since C possesses a leader (a

node that is only part of clique C), and 1 is the minimum degree node in C, 1 must be

a leader of C. Hence I is a leader in Gi.

Next, we show that every leader in Gi is in Li. Let 'true be a leader in Gi, and

let Ctrue be the single clique in Gi to which Itrue belongs. Using an almost identical

proof as that used for the FLFA, we see that FLFA-M will detect every community

that has a leader in the graph, and therefore Ctrue E CFLFA, where CFLFA is the set of

communities detected by FLFA-M. Since 'true is a leader of Ctrue, it follows that 1true is

the lowest degree node of Ctrue and hence 'true E {l E Vi, 1 1 is a minimum degree node

of C for some C E CFLFA}. Thus 'true E Li and the proof is complete.

U

We now prove the main theorem. We will need a few terms in this proof. First, for

any n E V, let the order of n be the iteration i where n is a leader in Gi. Note that n

is only a leader once (as it is deleted from the graph after it is found to be a leader),

and hence the order of a node is unique. Note that the all leaders in the original graph,

G, have order 0. Let the depth of a maximal clique be the order of the minimum order

node in the maximal clique. Let Ci be the set of all maximal cliques in G of depth i - 1

or lower. Finally, let Cj be the set of communities found by ILFA at the beginning of

iteration i. We now prove the main statement using a loop invariant.

Loop Invariant

At the beginning of iteration i, CO = Ci.

Initialization

When the algorithm initializes, C6 = 0, as no communities have been detected yet,

and Co = 0 as well as there are no maximal cliques of depth less than 0.

Maintenance

Given that Cj = Ci at the beginning of iteration i, we show that Cl+1= i+1 by
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the beginning of iteration i + 1. Let AMI be the set of communities detected by ILFA

during iteration i. Similarly, let mi be the set of maximal cliques in G with a depth of

i. We show that M' = Mi and hence Ci+1 = Ci+1-

Mi C M

Take any community m E Mi'. m is a clique as it is detected by ILFA and ILFA only

accepts cliques as seen in the pseudocode. m is also not a subset of an community in Cj

as ILFA explicity only accepts commmunities that are not subsets of already detected

communities. We show that m is a maximal clique of depth i.

Assume m is not maximal. Then it is a subclique of some maximal clique m*. Since

m was detected by ILFA, m = n U N(n), for some n E Gi, and where N(n) is the set of

neighbors of n in Gi. Since m * nm , 0, 3 1 E m* s.t 1 V Gi as otherwise 1 E N(n) and

hence 1 E m. Since 1 V Gi, and 1 E G, 1 must have been deleted at iteration j < i of

ILFA. As shown by Proposition 4.0.3, this implies 1 was a leader in G. So m* has depth

less than or equal to j, and hence m* E Ci. Since Cj = Ci, m* E Cf. But as m c m*,

m must then have been a subset of some community in Cf. This is a contradiction.

Thus m must be maximal.

We can also show m is of depth i. Since m = n U N(n) and n is a leader of Gi, the

depth of maximal clique m is less than or equal to i. If the depth were less than i, then

m E Ci and hence m E Cl, and so m would be a subset of a community in Cf. This is

once again a contradiction. So the depth of m must be i. Hence m E Mi, and since m

was arbitrary, M c M.

MA c Al'

Choose any maximal clique p E Mi. p has a depth of i. Since p is a maximal clique

with a leader in G, the FLFA - M call in IFLA will detect p, using a nearly identical

proof to the one shown in Theorem 1. Therefore, p will not be in M only if p is a
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subset of some community in C and is hence not added to Mi' by ILFA. p can't be

a proper subset of any community in Cj as every community in Cj is a clique, and p

is a maximal clique. So the only way p could be a subset is if p E C already. But as

Ci = C', every community in Cj has depth less than i and so p V Cf. Hence p cannot be

a subset of any community in Cj and so p E Mi'. As p was arbitrarily chosen, Ml c Mj'.

Hence, we have shown that Mi = liM and since CI+1 = C U M{j, and Ci+1 = Ci U Mi,

CI+1 = Ci+1 at the beginning of iteration i + 1. So the invariant is preserved.

Termination

At the end of every iteration i, ILFA deletes all leaders from Gi. As seen in

Proposition 3.1.1, Gi is an SCG at every iteration. Since any non empty SCG has at

least one leader, we delete at least one node of G at every iteration i. Since there are

finitely many nodes in G, after finitely many iterations, say k, we will have deleted all

nodes from G and Gk = 0. Hence, ILFA terminates.

Since every node is deleted by iteration k, every node has order less than k. This

means that every maximal clique in G has depth less than k. Thus, Ck represents the

exact set of maximal communities in G. Since we have, by our invariant, that Ck = Ck,

the set of communities ILFA detects by the time it terminates, C , is exactly the set

of all maximal cliques in G. Hence we have shown the correctness of ILFA.

U

Runtime. We now analyze the runtime of the FLFA and ILFA. Our first result concerns

the runtime of the FLFA.

Theorem 3. For an input graph G(V, E), the FLFA will terminate in O(IE|+IVI log(IV|))

time.

Proof. The first step of the FLFA is to calculate the degree of each vertex and sort

the vertices by degree. Calculating the degree involves counting every edge in the
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graph at most twice which takes O(JEI) time. Sorting the IVI vertices can be done

in O(IVI log(IVI) time. The second step is to go through the degree sorted list and

assign each unvisited vertex and its neighbors to a community. This can be done in

O(IE) time. Combining these steps, we find that the a total runtime of the FLFA is

O(IE + lVi log(jVj)).

We have the following result for the ILFA runtime.

Theorem 4. For an input graph G(V, E), the ILFA will terminate in O(IVI|E|(|E| +

VI log(IV1))) time.

The runtime of the ILFA is determined by the number of iterations it requires to

terminate. While the worst case bound in Theorem 4 can be potentially large, we will

see in Section ?? that in practice FLFA and ILFA have very similar runtimes on large

graphs because not many iterations of FLFA are needed.

Proof. Each iteration of the ILFA involves running the FLFA, checking if each commu-

nity is a clique, and then deleting seed vertices in the clique communities. Checking

if a community is a clique requires counting the edges in the subgraph induced by

the vertices in the community. Clearly, checking if a community is a clique will re-

quire at most |El operations. Using this, we find that each iteration of the ILFA will

require O(1EI(IEI + VI log(I V1))) steps. For a graph of IVI vertices, the maximum

number of iterations is lVi. Therefore, the worst case runtime of the ILFA will be

O(IVIIEI(lEI + VI log(lV|))). U
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Empirical Evaluation

W E now compare the performance of the ILFA and FLFA to other state of the

art community detection algorithms on several real graphs. We compare the

performance of the algorithms in terms of accuracy and speed on graphs with known

ground truth communities. The algorithms we compare against include the method for

fast modularity optimization [2], CESNA [19], and BigClam [18].

To assess the accuracy of the algorithms, we first define a score to compare sets of

communities. For any two sets of communities C and C' of an observation graph, we

define their score as

d(C, C') = (s(C, C') + s(C ', C)) (5.1)

where we have defined s(C, C') as

s(CC') = C L max 6(C,C')
CCc C'eC'

and 6(C, C') is a similarity measure between communities. There are a variety of

similarity measures we can choose, but we will follow the approach of [19] and use the

F1 score which is used commonly in binary classification to measure the accuracy of

43
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a test. For two communities C and C', we define the precision p = iC f C'l/IC' and

the recall r = CflC'J/jC|. The F1 score is given by the harmonic mean of p and r:

6(C, C') = 2pr/(p + r). For two identical community sets, the F1 score is one and the

minimum value of the F1 score is zero for two disjoint communities.

The quantity s(C, C') finds the best match in C' for every community in C. It then

calculates the average similarity score of this matching. Note that multiple communities

in C are allowed to match to the same community in C' to allow for the possibility that

communities in C are subsets of the same community in C'. The overall score, d(C, C')

is simply the average of s(C, C') and s(C', C). To see why our score needs both s(C, C')

and s(C', C), consider the case where C'= {a} and C = {a, b, c, d, e, f}. If our score only

accounted for s(C, C'), we would obtain a score of 1, even though the communities are

quite clearly different. The quantity s(C', C) = 1/5. Hence, we need to account for the

both s(C, C') and s(C', C) to obtain an informative score for two sets of communities.

To understand what constitutes a good value of this score, we consider the set of

communities which is the power set of the vertices P(V). This consists of every possible

subset of V. This is an extremely naive community set and provides no information

about community structure. We have the following result about our score and the

power set communities.

Lemma 5.0.1. Consider a graph with a ground-truth set of communities C and power

set P(V). Then we have that d(C,P(V)) > 0.5.

This shows that the most uninformative community set will score at least 0.5. We

will refer to this as the power set score. For a community detection algorithm to have

good accuracy, it should produce communities which score greater than this value.

Proof. Every set in C matches exactly with one set in P and will have an F1 score of

one. Therefore s(C, P(V)) = 1 which immediately leads to d(C, P(V)) > 0.5. U
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N 5.0.4 Data Description

Our dataset consist of several graphs for which we have accurate ground truth commu-

nities. We describe these graphs below. All properties of the graphs are shown in Table

5.1.

Graph |V| El C
Prime number graph 999 195,309 168
Culture show 2010 153 1802 13
Culture show 2011 138 3626 10
Les Miserables 71 244 80
IMDB 382,219 15,038,083 127,823

Table 5.1. Graph properties: Number of member vertices JVJ, number of edges JE, and number of
communities |C.

Prime Number Graph. The prime number graph was described earlier in Section

??. We use a prime number graph whose vertex set is the integers from 2 to 1, 000. The

number of ground truth communities is 168, which is the number of prime numbers less

than 1,000. There is great heterogeneity in the community sizes, with some communities

constituting half of the vertices, while others being isolated vertices.

Culture Show Graphs. The Culture show 2010 and 2011 graphs represent per-

formances from a college culture show at MIT in 2010 and 2011. The vertices are

performers and the edges indicate whether or not two performers were in the same

performance. Each performance is a separate ground truth community in this graph.

Les Miserables Graph. The Les Miserables graph captures the social interactions of

the characters in the novel Les Miserables. The vertices are characters from the novel

and an edge is placed between two characters if they appear in the same chapter of the

novel. Each chapter corresponds to a separate ground truth community in this graph.

Internet Movie Database (IMDB) Graph.

The IMDB graph consists of actors in movies [5]. Each vertex is an actor and an
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Figure 5.1. Plot of average F1 score versus the average runtime per edge of each algorithm. The
da.shed line indicates the 0.5 power set score.

edge is placed between two actors if they performed in the same movie. Each ground

truth community consists of actors who were all in the same movie. This graph is very

large, with 382,219 vertices (actors) and 127,823 communities (movies). We will use this

graph to demonstrate the our algorithms scale to larger graphs while also maintaining

high accuracy.

* 5.0.5 Experimental Results

We compare the performance of FLFA and ILFA to other algorithms on these graphs.

Tables 5.2 and 5.3 show the resulting F1 based score (equation (5.1)) and number of

communities found by each algorithm. Table 5.4 shows the runtimes of each algorithm.
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Prime Culture Culture
number show show

Algorithm graph 2010 2011 Les Miserables IMDB
Moduarity

optimization 0.732 0.730 0.63 0.47 0.48
BigClam 0.54 0.88 0.79 0.63 0.49
CESNA 0.51 0.57 0.67 0.42 0.46
ILFA 1.00 1.00 1.00 0.65 0.81
FLFA 1.00 1.00 1.00 0.65 0.81

Table 5.2. F1 based score of communities produced by different algorithms on our dataset and average
score of each algorithm. The best scoring algorithms for each graph are highlighted in bold.

Prime Culture Culture
number show show

Algorithm graph 2010 2011 Les Miserables IMDB
Ground-truth 168 13 10 80 127,823
Modularity

optimization 105 7 5 5 2198
BigClam 56 45 38 8 100
CESNA 2 2 2 2 2
ILFA 168 13 10 34 61,059
FLFA 168 13 10 30 60,876

Table 5.3. Number of communities produced by each algorithm. The most accurate algorithms in
terms of community number for each graph are highlighted in bold.

Accuracy

Table 5.2 shows that FLFA and ILFA perform well in terms of accuracy on these graphs,

consistently obtaining the highest scores. In the prime number graph, FLFA and ILFA

detect all communities exactly, obtaining a score of 1, outperforming the next highest

performing algorithm by 23%. Similarly, in the culture show graphs, FLFA and ILFA

again outperform the other algorithms. On both culture show graphs, FLFA and ILFA

both achieve a perfect score of 1. The next best algorithm achieves a score of 0.88 on

culture show 2010 and a score of 0.79 on culture show 2011.

In the Les Miserables graph, the ILFA and FLFA have the best score of 0.65. While

this is not the perfect score we had on the prime number and culture show graphs, it

is greater than the power set score. Finally, on the IMDB graph, FLFA and ILFA once



Prime Culture Culture
number show show

Algorithm graph 2010 2011 Les Miserables IMDB
Modularity

optimization 6.53 0.07 0.12 0.02 681
BigClam 464 2.04 2.61 1.31 3,107
CESNA 81.80 0.47 0.47 0.13 881
ILFA 1.46 0.47 0.47 0.33 558
FLFA 0.004 0.0004 0.0004 0.0003 0.81

Table 5.4. Runtime (in seconds) of different algorithms on our dataset. The fastest algorithm for each
graph is highlighted in bold.

again detect communities extremely well. As can be seen in the table, FLFA and ILFA

achieve a score of 0.81. The other algorithms are not able to even cross the power set

score.

In addition to having the best scores, the ILFA and FLFA also are the most accurate

in terms of number of communities found, as seen in Table 5.3. In some instances, such

as the IMDB graph, they are the only algorithms that come within the same order of

magnitude of the number of ground-truth communities.

Runtime

Not only are FLFA and ILFA the most accurate algorithms on these datasets, but they

are also the fastest. As shown in Table 5.4, FLFA and ILFA consistently perform orders

of magnitude faster than alternate methods. In particular, FLFA is able to run much

faster than the other algorithms. In some instances it is three orders of magnitude

faster than the next best algorithm. What is even more striking is the fact that it

achieves this incredible speed with without sacrificing much in accuracy. This is made

more clear in Figure 5.1 where we plot the average runtime (normalized by the number

of edges in the graph) of each algorithm versus the average F1 score. The ILFA has

high accuracy and runtime comparable to fast modularity optimization and CESNA.

However, the FLFA is the only algorithm which simultaneously has a very fast runtime

48 CHAPTER 5. EMPIRICAL EVALUATION



49

and high accuracy.

Robustness

Very often we will have missing data in an observation graph. We would like to know

how robust our community detection algorithms to this type of noisy observation. To

check robustness, we perform the following experiment. We randomly remove different

fractions of edges from the IMDB graph. This random deletion of edges is meant to

model missing data. We then apply the FLFA and look at how the edge deletion fraction

affects the accuracy in terms of score and number of communities found. The results

are shown in Figure 5.2. As more edges are deleted, the F1 score decreases, but not

substantially. With 25% of the edges removed, the score decreases by only 12.5%. This

shows that the FLFA's performance is not significantly degraded by missing data.

We saw earlier that missing data would result in spurious communities being found.

From Figure 5.2 we see that this is indeed the case. With full observation, 61,876

communities were found by the FLFA. At 25% edge deletion, this number grows by

50%. These spurious communities generally have strong overlap with the communities

found with no missing data, so even though they are numerous, their impact on the

score is not as strong.





Chapter 6

Conclusion

W E presented the iterative and fast leader-follower algorithms (ILFA and FLFA)

for community detection. The algorithms require no input parameters and

learn the number of communities naturally from the graph. We proved that the ILFA

and FLFA can exactly recover the community structure for a fairly broad class of graphs

which are natural models for social networks. Experiments on graphs with ground truth

communities showed that the ILFA and FLFA perform better than many state of the art

algorithms. The FLFA was found to be very fast and while maintaining high accuracy.

This suggests that it can be used to perform accurate, real-time community detection

on extremely large graphs.
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