
Latent Tree Structure Learning for

Cross-Document Coreference Resolution

by

Eric Shyu

B.S., Massachusetts Institute of Technology (2013)

A*>qV"
AS-A CHUSETTh1TS ITE

F TECHNOLOGY

JUL 15 2014

BRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

Massachusetts Institute of Technology 2014. All rights reserved.

Signature redactedt
A u th o r ..

Department of Electrical Engineering and Computer Science
May 23, 2014

Certified by................
Signature redacted

Leslie PLelbling
Panasonic Professor of Computer Science and Engineering

Thesis Supervisor

Signature redacted
A ccepted by

Albert J. Meyer
Chairman, Masters of Engineering Thesis Committee

2

Latent Tree Structure Learning for Cross-Document

Coreference Resolution

by

Eric Shyu

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2014, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

Cross Document Coreference Resolution (CDCR) is the problem of learning which
mentions, coming from several different documents, correspond to the same entity.
This thesis approaches the CDCR problem by first turning it into a structure learning
problem. A latent tree structure, in which leaves correspond to observed mentions
and internal nodes correspond to latent sub-entities, is learned. A greedy clustering
heuristic can then be used to select subtrees from the learned tree structure as entities.

As with other structure learning problems, it is prudent to envoke Occam's razor
and perform regularization to obtain the simplest hypothesis. When the state space
consists of tree structures, we can impose a bias on the possible structure. Different
aspects of tree structure (i.e. number of edges, depth of the leaves, etc.) can be
penalized in these models to improve the generalization of thes models.

This thesis draws upon these ideas to provide a new model for CDCR. To learn pa-
rameters, we implement a parameter estimation algorithm based on existing stochas-
tic gradient-descent based algorithms and show how to further tune regularization
parameters. The latent tree structure is then learned using MCMC inference. We
show how structural regularization plays a critical role in the inference procedure.
Finally, we empirically show that our model out-performs previous work, without
using a sophisticated set of features.

Thesis Supervisor: Leslie P. Kaelbling
Title: Panasonic Professor of Computer Science and Engineering

3

4

Acknowledgments

First and foremost I want to thank Professor Leslie Kaelbling. Before Leslie took

me as her student, she was an extremely influential figure in helping me build my

current interests, from teaching my first ever class in computer science (6.01) and

my very first exposure to machine learning (6.867). Whenever I had any questions

about anything, Leslie has always been prompt to answer. Under Leslie's guidance I

have learned how to dig really deep into a problem and not allow any questions go

unanswered. I am truly grateful to have had Leslie as my advisor.

Next I must thank the people at Diffeo. Through their guidance and support,

my work there as a summer intern was able to turn into a full thesis. Most of the

code I developed for this thesis was built off of the Diffeo code base. Everything

about this thesis would not be possible without them. I want to thank Jay Baxter

and Andrew Smith for being amazingly fun interns to code with and always being

there to bounce off ideas with me. Thanks go to Nilesh Tripuranei for the amazingly

insightful and fun lunch conversations and all the things he has shown me over the

past year. Many of the initial ideas behind this thesis (such as the Metropolis Hastings

proposal distribution and the greedy clustering heuristic used to select entities) were

first developed by Dan Roberts and Max Kleiman-Weiner. I want to thank Steve

Bauer for his always-helpful guidance around Diffeo's code base and advice about the

future. I want to thank John Frank for his support, having faith in me, and giving

me the opportunity to work at Diffeo and this thesis. Watching him lead and build

Diffeo team over the past year really has been inspirational.

Finally, I want to thank my mother and father. Thank you for your constant

support and love. I could not have made it this far without you.

5

6

Contents

1 Introduction 17

1.1 M otivation . 17

1.2 Cross-Document Coreference Resolution 18

1.3 Outline of Thesis . 19

2 Related Work 21

2.1 Pairwise Coreference Models . 21

2.2 Graphical Models Approaches . 22

2.3 Online Algorithms . 22

2.4 Hierarchical Models . 23

2.5 Evaluation Metrics . 23

2.5.1 Pairwise F: . 24

2.5.2 B-CUBED F: . 24

3 Background Material 27

3.1 Structure Learning . 27

3.2 Markov Chain Monte Carlo Inference 28

3.3 Stochastic Gradient Descent Estimation 29

3.3.1 Contrastive Divergence . 30

3.3.2 SampleRank . 31

4 Latent Tree Structure Learning for Coreference 33

4.1 M otivation . 33

7

4.1.1 Hierarchical Entity Trees . . .

4.2 The Model

4.2.1 Constraints

4.2.2 Factor Graph Formulation . .

4.2.3 Structural Regularization . . .

4.2.4 Entity Selection

4.3 Comparision with Other Work

5 Methodology

5.1 Inference Method

5.1.1 Proposal Distribution

5.1.2 Full Inference Algorithm

5.2 Entity Selection

5.3 Parameter Estimation

5.3.1 SampleRank Objectives

5.4 Structure Regularization Tuning

5.4.1 Generalizing Regularization Constants

5.5 Full Learning Algorithm

6 Results and Analysis

6.1 D atasets .

6.2 Parameter Estimation Comparisions

6.3 Local Maxima States During Inference

6.4 Structure Regularizers .

6.4.1 Relation with Regularization Constant

6.4.2 Relation with Corpus Sample Size

6.4.2.1 Phase Transitions for Leaf Depth Regularization

6.4.2.2 Size Correction Empirical Justification

6.4.3 Comparision of Regularization Statistics

6.5 Entity Hierarchy Evaluations .

6.6 Empirical Evaluation and Comparisions

8

. 33

. 35

. 35

. 36

. 38

. 39

. 40

41

. 41

42

. 44

44

46

47

. 47

. 48

. 50

51

51

52

53

55

56

57

58

60

61

62

65

7 Conclusions and Future Work 67

7.1 Conclusion . 67

7.2 Future W ork . 68

7.3 Sum m ary . 69

A Derivations of Likelihood Ratio for Metropolis Hastings Proposals 71

A.1 Subtree Creation/Deletion . 71

A.2 Subtree Move Up/Down . 73

B Online Algorithm to Update Pairwise F 75

9

10

List of Figures

1-1 Example mentions for a coreference problem. Mentions of the entities

are shown in bold. In this example, the correct coreferent partitioning

is {1, 3},{2}, {4},{5}. 18

2-1 Our implementation of the Pairwise F Score Algorithm 25

2-2 B-CUBED F Score Algorithm . 26

3-1 Metropolis Hastings Algorithm for Inference 29

3-2 SampleRank Algorithm . 32

4-1 A hierarchical tree to solve the corefrence problem posed by Figure 1-

1. Filled vertices indicate mentions, while unfilled vertices summarize

their descendants. 34

4-2 A second hierarchical tree to solve the coreference problem posed by

Figure 1-1. Now there exists a subtree containing both MJ the leg-

endary basketball player and MJ the legendary pop star. Both are

related by words indicating they are popular celebrities, which is rele-

vealed by the tree structure. 35

4-3 Factor graph representation of Figure 4-2. Shaded nodes correspond to

the observed mentions, while unshaded nodes correspond to the latent

sub-entity nodes. 36

5-1 Actions for our proposal distribution. 43

5-2 Full Inference Algorithm . 44

5-3 Greedy Clustering Heuristic . 45

11

5-4 Parameter Estimation Method . 46

5-5 Ternary Search for Regularization Constant Tuning 48

5-6 Full Learning Algorithm . 50

6-1 Performance of two MCMC runs for the exact same corpus and model

parameters. One ends up at a good local max and other at a bad local

max, as indicated by the F score. We can see that the structure of

the bad run explodes in complexity at the same time. 53

6-2 Comparision of Metropolis Hastings performance for the same "good"

and "bad" MCMC runs as in Figure 6-1. The number of accepted

proposals and change in the model log-posterior are shown. 54

6-3 JS corpus, F score of tree learned from MCMC inference as a function

of regularization constant. For both NC and LD structure statistics,

F1 as a function of the regularization constant seems to approximately

unim odal. 56

6-4 JS corpus, leaf depth as a function of node count for both regularization

both the LD and NC structural statistic. 57

6-5 Procedure for assessing effects of corpus size on the effectiveness of a

structural regularization constant. 58

6-6 Comparision of when particular structural statistics and corresponding

regularization constant work best during MCMC inference, tested on

both the JS and WLE corpus. The regularization penalty c is chosen

arbitrarily. The results indicate that while NC regularization seems

mostly invariant to corpus size, LD has sharp phase transitions in the

performance of MCMC inference, depending on the corpus sample size. 59

6-7 Comparision of MCMC proposal acceptances and corresponding change

in log-posterior using no regularization, LD regularization, and NC reg-

ularization on the JS corpus. 61

6-8 Comparision of MCMC inference using the three different regulariza-

tion regimes: how F score and structural statistics evolves over time. 63

12

6-9 Method for Evaluating Latent Hierarchy of Entities 64

6-10 Scatter plots of (LCA distance, pairwise simliarity) for all pairs of

entities in JS corpus, under NC and LD regularization. There does not

seem to be a strong correlation . 65

A-1 Subtree Creation proposal and its inverse 71

A-2 Subtree Move Up/Down proposal action and its inverse 73

B-i Online Algorithm to Update Pairwise F score 76

13

14

List of Tables

4.1 Select potential functions. Recall that all edges (i, j) are tree edges; we

assume implicitly that j is the parent of i. The notation i[bow] means

the bag-of-words corresponding to node i. 37

4.2 Select list of possible tree structure statistics. We observe that many

natural structure regularizers can be naturally be implemented as node

potentials. 39

5.1 Changes in the NC (number of nodes) and LD (sum of depth of the

leaves) structural statistics, for each of the four Metropolis Hastings

proposal actions. 49

6.1 Parameter Estimates, where the three available features are bag-of-

words (bow), bag-of-names (bon), and entity-type (etype). 52

6.2 Median of ideal corpus sample size ranges, for each of the three values

of the LD regularization constant. 60

6.3 Results of performing regression of LCA distance on pairwise similarity

for pairs of entities, using LD and NC regularization. 64

6.4 Comparision of B-CUBED F of previous work and our methods on

the John Smith corpus. 66

A.1 Node and pairwise potentials that need to be re-computed for the Sub-

tree Create/Subtree Delete actions. 72

A.2 Node and pairwise potentials that need to be re-computed for the Sub-

tree Move Up/Down actions. 73

15

16

Chapter 1

Introduction

1.1 Motivation

Much of today's digital information exists in the form of unstructured textual web

pages, news articles, reports, and documents. From such unstructured text, a common

task is to extract the mentioned entities (people, places, organizations, etc.) and

subsequently identify the relevant contextual mentions about them. This known as

the coreference resolution task, and it has many applications in question answering,

machine-translation [11], text summarization [26], and author disambiguation [18].

An entity can be any object, place, organization, or person, such as the basketball

player Michael Jordan. An entity mention is a textual string that refers to the entity.

The coreference task is to identify entities and mentions, and then group all mentions

of the same entity together. Figure 1-1 gives a simple example of the coreference

resolution problem.

Looking at Figure 1-1, a human can readily identify that: mentions 1 and 3 are the

same entity (Michael Jordan the basketball legend), mention 2 is a separate entitity

(Michael Jordan, the statistician and professor at Berkley), mention 4 is a spearate

entity (Michael Jackson, the late pop singer), and mention 5 is its own entity (the

president Barack Obama).

One strategy might be to first extract the entity names from each mention. It

seems pretty clear that "Barack Obama" is probably totally different than "Michael

17

1. " Michael Jordan played on two Olympic gold medal-winning American bas-
ketball teams"

2. " Michael Jordan published a paper about scalable statistical inference algo-
rithms."

3. " Legendary MJ appeared in the 2001 basketball movie Space Jam."

4. " MJ was the legendary king of pop."

5. " Barack Obama addressed the issue of Syria today"

Figure 1-1: Example mentions for a coreference problem. Mentions of the en-
tities are shown in bold. In this example, the correct coreferent partitioning is
{1, 3}, {2}, {4}, {5}.

Jordan" or "MJ". Then, one might use contextual words in the mention to disam-

bugate between similarly-named entities.

Our goal is to translate this human intuition into a systematic algorithm.

1.2 Cross-Document Coreference Resolution

Many successful approaches for coreferencing mentions obtained from a single doc-

ument (within-document coreference resolution) have been previously developed [11,

22]. Complications arise when allowing mentions to be drawn from several differ-

ent documents. For example, while it is reasonable to assume that each mention of

"Michael Jordan" in the same news article is likely to be about the same person, as

Figure 1-1 shows, across multiple documents this is no longer the case. This is known

as the cross-document coreference resolution (CDCR) problem. Much of the recent

work on coreference systems has been dedicated to creating scalable solutions for the

CDCR task [20, 22, 25, 3].

The first step is generally to start with within-document coreference resolution,

where all all the mentions are extracted from the same document. Named-entity

Recognition (NER) algorithms can easily identify the entity mentions within a doc-

ument, decide if these mentions are referring to the same individual, and create

18

coreference chains for each unique entity. Several publicly available systems exist for

the NER task: OpenNLP, Stanford NER, Lingpipe NER, and BBN SERIF [2].

After identifying the entities and linking mentions into coreference chains, the

cross-document coreference resolution (CDCR) problem is to determine which of these

chains are in fact referencing same entity. To accomplish this task, several features

such as the bag of contextual words and topics found using Latent Dirichlet Alloca-

tion [4], names, and biographical data can be used. More specialized features can be

introduced for more specific domains. For example, in the author coreference prob-

lem [18], possible features include headers, paper titles, topic keywords of the papers,

etc. Several different algorithms have been proposed to leverage these features in

performing CDCR.

In this thesis, we take inspiration from many of these existing approaches, to create

a new approach based on learning a single latent tree structure over mentions. Entities

can then be extracted by partitioning the tree into subtrees, each corresponding to an

entity. This approach allows us to view the coreference problem as a form of structure

learning, from which we borrow the idea of invoking Occam's razor to penalize more

complex structures. Although we will not focus on engineering better features for

CDCR, we develop a system for learning relative weights between features from the

data.

1.3 Outline of Thesis

The remainder of this thesis is structured as follows.

Chapter 2 discusses some of the previous work related to performing cross-document

coreference resolution. This chapter summaries some of the current start-of-the-art

and our evaluation metrics.

Chapter 3 is background material, not directly related to coreference, that is

necessary to motivate and understand our method. It will summarize the the ideas

we are using from structure learning, the Markov Chain Monte Carlo inference, and

the algorithms that we use for parameter estimation.

19

Chapter 4 introduces our new approach for expressing coreference as a tree struc-

ture learning problem. We describe the motivation, our factor graph formulation,

and how we invoke Occam's razor to penalize more complex structures.

Chapter 5 describes the specific implementations and methods used to train pa-

rameters and perform inference with our model.

Chapter 6 evalutes our method on real corpora. We provide some new analy-

sis techniques to study the role structural regularization plays to make our model

generalize well.

Chapter 7 wraps up the thesis, concluding with ideas for future work. In particular

it describes how our approach can be made massively parallel as well as adapted into

an online setting.

20

Chapter 2

Related Work

In this chapter we describe the common and previously most successful approaches

for tackling the CDCR task.

2.1 Pairwise Coreference Models

Coreference resolution is often framed as a pairwise classification task. Namely, given

all pairs of mentions, the question is to determine whether or not they belong to the

same entity. These methods often apply some sort of greedy clustering using some

pairwise simliarity function based on the mentions' contextual information in order

to make these pairwise decisions.

For example, Bagga and Baldwin [1] exprese mentions as vectors of contextual

features (such as TF/IDF-weighted bag-of-words) and applies greedy agglomerative

clustering with single linkage. Mayfield et. al [15] describe the pairwise coreference

decisions as edges in a graph. The authors start with a complete entity graph and

elimininate entity pair edges that have an SVM output weight less than 0.95; the

connected components are then taken as entities.

Because these algorithms require deciding if each mention-pair is about the same

entity, such approaches have complexity Q(n2) in the number of mentions. This is

too slow for a CDCR system running on thousands or millions of documents, which

can have orders of magnitude more mentions. Furthermore, because the pairwise

21

framework inherently only considers relationship between different mention pairs, it

does not consider the aggregate properties of each entity.

2.2 Graphical Models Approaches

Markov Random Fields and Conditional Random Fields are able to address some

of the problems with pairwise coreference models, because it is possible to encode

transitivity constraints (e.g. if mention m, is coreferent with m 2 and m 2 is coreferent

with M3 , then mi and M3 are coreferent) and functions over sets of mentions as graph

potentials. Recent work [23, 19, 25, 8] have shown that models that are able to express

these aggregrate properties can potentially perform better coreference.

These approaches thus embed the coreference decisions in a graphical model and

turn the task into performing inference on the graphical model. Because these graph-

ical models are large, exact inference is not possible but Markov Chain Monte Carlo

inference has been shown to often work well in practice [22, 25].

2.3 Online Algorithms

Most of the previously mentioned approaches are restricted to offline scenarios where

documents are provided in advance. However for a practical modern CDCR system,

it is reasonable to expect a high volume of streaming text, from which we wish to

extract the mentions and coreference them.

[20] develops a streaming algorithm in which each document is processed exactly

one time. This algorithm either adds points to existing clusters or creates new clusters

depending on a mention's similarity with the clusters. In order to avoid comparing

a mention with all the existing clusters, the algorithm implements a high-recall filter

to compare each mention with only k potentially similar clusters.

22

2.4 Hierarchical Models

Sameer et al. [22] first developed the hierarchical coreference framework most similar

to our approach. In their model, a two-tiered hierarchy is used in order in order

to organize proposals for Metropolis Hastings sampling. This hierarchy is fixed and

shallow.

Wick et al. [25] recursively decompose each entity is into an arbitrarily deep tree of

sub-entities. The leaves of each entity tree correspond to the observed mentions, while

the internal nodes correspond to latent sub-entities and the tree root corresponds to

the entity. Each sub-entity serves as a summary of all its children. While in principle,

the summary attributes of a node can be inferred from the summary attributes of

its children, the authors accomplish this by just aggregating vector (bag) features

of the children. Finally, the likelihood of an entity tree configuration is a function

pairwise compatability functions between each node and its parent, as well as unitary

functions measuring the diversity of a single node.

Wick et al. [25] then uses a Metropolis Hastings sampler to propose moving sub-

trees between entities, creating new entities, deleting sub-entities, etc. In order to

further encourage better proposals, the authors use "canopy" functions (which serve

as high-recall filters) so that two subtrees are sampled only if they contain mentions

of entities with similar first initial and last name. While the state space for inference

over the tree structure of an entity is much larger than the state space of mention-pair

decisions, the authors show that this model is often able to achieve similar F scores

as pairwise coreference several orders of magnitude faster, in number of samples and

computation time per sample.

In section 4.3, we will compare these works with our approach.

2.5 Evaluation Metrics

As with most information retrieval tasks, the primary concerns in the CDCR problem

are precision (the fraction of retrieved instances that are relevant) and recall (the

23

fraction of relevant instances that are retrieved). Given precision and recall, the

harmonic mean

2 - precision - recall

precision + recall

is generally used as the final metric.

Several different ways of computing these quantities have been proposed, such as

the ACE-values, CEAF, and MUC6 measures [2]. For this thesis we will be concerned

with the Pairwise and B-CUBED methods for computing F score.

2.5.1 Pairwise F1 :

Related work [25, 24] has often used the "pairwise F1 " score, which given a partition-

ing of the mentions, looks at the set of all mention pairs. A true-positive pair is such

that two mentions are in the same partition and of the same entity. A false-positive

pair is such that two mentions are in the same partition and of different entities.

Similarly, we can define true-negative and false-negative pairs. Using these statistics,

precision and recall statistics can be computed as usual.

Despite being a fairly widely-cited metric [24, 16, 14], we could not find the algo-

rithm for computing it in the literature. Because the pairwise F score is a little subtle

to compute, our implementation of the pairwise-F algorithm is shown in Figure 2-1.

Despite appearing fairly complicated, the pairwise F score can be computed quite

efficiently if each hypothesized entity Em is represented as a dictionary of counts for

each true entity it contains.

2.5.2 B-CUBED F1 :

In present literature, the most common evaluation metric in published research is

the B-CUBED scoring algorithm [1]. This works by computing a precision and recall

for each individual mention and taking the total precision and recall to be weighted

averages of these.

The B-CUBED algorithm is defined in Figure 2-2. For each mention B-CUBED

measures the presence or absence of other (falsely) coreferent mentions in the hypoth-

24

1. Let E(m) be the set of truly different entities in m. Define counrtm(ei) to be
the number of mentions of entity ej in Em

2. For each hypothesized entity Em:

(a) Compute true positives: the number of pairs of mentions in Em that belong
to the same entity

TP(E m>) E
etEE(Em)

count,m (ei)

2

(b) Compute false positives: the number of pairs mentions in Em that belong
to the different entities

1
F P (Em) = E

ei,ej EE($m)

3. For each pair of hypothesized entities Em, En:

(a) Compute the number of false negatives: the number of pairs of mentions
mi E Em and mj c En that are hypothesized to be in different entities
but, belong to the same entity

FN(nmk) = E1 countm(ei)countn(el)
eiE mUkn

4. Aggregate the number of pairs of true positives, false positives, and false nega-
tives:

TP= ETP(Em)
m

FP = FPm)

FN = E FN(Em, En)
m n

5. Compute F score as

Figure 2-1: Our implementation of the Pairwise F Score Algorithm

25

countm (e) count,,, (el)

TP

2TP + FN + FP

1. For each entity mention m:

(a) Let Em be its true entity cluster and m be its hypothesized entity cluster.
Note that each m belongs to only one Em and only one Em.

(b) Compute the precision and recall score for Em and Em as:

P_ _ JEm UEml
Em

ft_ _ IEm UEmI
Em

2. Compute overall precision and recall:

P
M

Pzz=~ >ZPm
m=1

M

R = E Rm
m=1

Taking the harmonic mean yields statistics such as B-CUBED F score.

Figure 2-2: B-CUBED F Score Algorithm

esized clustering. Intuitively, it is treating precision and recall as mention-weighted

averages of how well the hypothesized clusters capture other mentions of the same

entity.

26

Chapter 3

Background Material

In this chapter we review the background behind the paradigms and algorithms that

drive our model. The following are general methods that are not specific to the CDCR

task.

3.1 Structure Learning

A typical problem in bio-informatics and computer vision is to learn latent tree graph-

ical models over random variables. The three challenging goals in this domain are

determining:

1. The number of latent variables

2. The conditional dependencies between the variables

3. The parameters characterizing the relationships between the variables

The first two goals are often described in terms of graphical models, such as Markov

Random Fields or factor graphs. Using a graphical model representation, the second

goal is the same as determining the structure of the graphical model. If we have

determined that there are N latent variables, then we have 2 N(N-1)/2 different models

(corresponding to choosing to include each of the (N) edges in the graph) to choose.
2

One obvious way to select the best model is to pick the one that has the highest

likelihood corresponding to the data. However, this approach will almost always

27

choose more complicated models with more edges and more latent variables. In all

cases, structural regularization is important to prevent over-complexity and improve

generalization. To this end, one might use penalizations such as Bayes Information

Criterion or Akaike information criterion to select the simplest graphical models that

represent the data well.

There are methods that explicitly try to learn latent tree structures. The Chow-

Liu algorithm [7] is one such well-known method. To add some more structure to the

problem, hierarchical latent class (HLC) models require observed nodes to be leaves

and have learning algorithms based on introducing new hidden nodes or replacing

edges [6].

Phylogenetics researchers have also extensively studied different ways of learn-

ing latent tree structures to model evolutionary history of DNA sequences. Several

model have defined probability distributions over trees and used MCMC to perform

inference [13]. However, these models use very different data than the coreference

problem, hence the form of the models tend to be very different.

3.2 Markov Chain Monte Carlo Inference

Markov Chain Monte Carlo (MCMC) methods are commonly used to draw samples

X -. p(-; 0), where the distribution

P; f (-; 0)p(-; 0) = (.9
Z(0)

is only known up to f (-; 0) and the partition function Z(0) = f(x; 0) dx is in-

tractable to compute.

In particular, the Metropolis Hastings algorithm first draws samples from an er-

godic Markov chain q(-+-), which serves as a proposal distribution, and accept samples

in such a manner that results in the accepted samples following a new ergodic Markov

chain that has p(.; 0) as its stationary distribution. Specifically if the current state is

28

x and the proposed next state is x', we compute an acceptance ratio

- f(x;O) q(x'\x)

As the parameter T -+ 0, Metropolis Hastings accepts new proposals x' that increase

the likelihood. Thus, lowering the parameter T to zero allows us to use Metropolis

Hastings for performing MAP inference. The specific way that T is lowered to zero is

often called the cooling schedule. The Metropolis Hastings algorithm for performing

MAP inference is shown in Figure 3-1.

1. Initialize x

2. For i = 1, 2, ...

(a) Draw x' - q(-.x).

(b) Decrease T using cooling schedule

(c) Flip a coin with bias aT(x, X')

i. If heads, let the new state x = X'

ii. If tails, let new state x = x, the old state

Figure 3-1: Metropolis Hastings Algorithm for Inference

MCMC-based methods are able to quickly explore high-dimensional state spaces,

which make them very attractive for many modern problems.

3.3 Stochastic Gradient Descent Estimation

We now turn to the problem of estimating parameters for our models. In practice,

some of our mentions may be labeled (usually by hand annotation) with the identity

of its correct entity. Thus, for a particular corpus we can try to learn parameters

that, on average, produce the best coference decisions.

In this section we outline two different methods based on stochastic gradient

descent to learn parameters from data. Recall that basic stochastic gradient descent

29

update is

01 = Ot-1 +r ?f(t-1)

where f is our objective function, which depends on all of the data, and Vf is an

approximation of the gradient of f using a single random data point. In order for our

inference to be efficient we will turn to MCMC. Thus, we seek a parameter estimation

method that is compatible with such approximate inference. Constrastive Divergence

[9] and SamplerRank [24] both are designed to work well with MCMC inference.

Both approaches are very similar, but optimize different objective functions. As

we shall see, Constrastive Divergence computes biased gradients using the ground

truth configuration, while SampleRank uses an objective function rankings among

neighboring states.

3.3.1 Contrastive Divergence

The idea of Contrastive Divergence (CD) is to approximate the gradient of the likeli-

hood function with respect to the model parameters, by sampling in the neighborhood

of the ground-truth state.

Suppose our model is

p(y; 0) oc exp {-E(y, 0)}

where y is our current state and 0 is the parameter we are trying to optimize. CD

approximates the gradient of the log-likelihood as

6 log p(y;0) ~6E(y;0) 6E(y;0)
dO [60 , L 60 Jo

where the 1 subscript denotes a state y' that is one MCMC walk-step away from

y, and the 0 subscript denotes te state y. Because MCMC can approximate the

expectation of a function, this yields an algorithm for approximating the gradient.

With the gradient approximiation in hand, we can use basic gradient descent to

find the maximum likelihood parameters. If state y* is the ground truth state, then

contrastive divergence learns 0* so that the y* = arg maxy p(y; 0*) (hence that y* is

30

the maximum likelihood state of p(-; 0*).

Typically only one walk-step from the ground truth is needed to reach convergence.

However, since only one step from the optimum configuration, the gradient approx-

imation is biased. Despite using such a biased estimate of the gradient, contrastive

divergence using only one step emprically performs well [5].

3.3.2 SampleRank

SampleRank is designed for learning parameters of log-linear models

p(yx) oc exp {9 -(x,y)} =exp {ZOii(xY)

where y is the latent state, x is the observed inputs, #j are sufficient statistics com-

puted over different features from observed data x, and wi are the corresponding

log-linear weights.

Rather than approximating maximum likelihood, SampleRank [24] uses a user-

provided objective function. At a high level, SampleRank works by generating pairs

of neighboring samples using an MCMC chain and updates model parameters if their

model rankings disagrees with the objective function ranking (hence the name of

the algorithm). Such a disagreement between the model and the objective is called

a constraint violation. The implementation of SampleRank can be embedded within

the walk-step of an MCMC inference algorithm. The SampleRank algorithm is shown

in Algorithm 3-2.

The objective function does not need any special properties, such as convexity.

First, we require it to output a deterministic ranking between pairs of neighboring

states. Second, it should be possible to make a sequence of proposals towards the

ground truth state without decreasing the objective [24]. A smart objective function

can take advantage of domain-specific signals. For example, a coreference task could

use F score as the objective.

Using pairs of neighboring states (meaning that they are within one-step of each

other in the proposal distribution) can allow changes in the objective function and

31

1. Let:

(a) F(-) be an objective function

(b) q(-.-) be proposal distribution from Metropolis Hastings

(c) q be learning rate

2. Initialize state x, 0(0) = 0

3. For i = 1, 2, ...

(a) Attempt an Metropolis Hastings proposal by drawing x' q(- x)

(b) Define

X+ = arg max F(z)

x- = arg min F(z)
zE{x,x'}

V = O(X+) - O(X-)

(c) If 0 (W - V < F(x+) - F(x-):

i. Update 0(+1) = O(W + 77V

(d) If Metropolis Hastings accepts x'

i. Update x = x'

Figure 3-2: SampleRank Algorithm

likelihood function to be computed efficiently. Neighboring states will differ only by

small local changes, so it is possible to update the objective and likelihood efficiently,

without recomputing them from scratch.

Empirically it has been shown that SampleRank can be much faster than CD [24].

Additionally, SampleRank seems to have little trouble scaling to hundreds or even

thousands of features. However we use both Samplerank and CD in our tests for

benchmarking purposes.

32

Chapter 4

Latent Tree Structure Learning for

Coreference

4.1 Motivation

4.1.1 Hierarchical Entity Trees

An important observation made by Sameer, Wick, et al. [22, 25] was that it is possible

to reduce the time complexity inherent in the pairwise approach by changing the

underlying model. In their hierarchical coreference model, entities are recursively

structured into sub-entities. Each entity is realized as a hierarchical tree, where leaves

correspond to mentions and internal nodes correspond to latent sub-entitites. These

latent sub-entities summarize the the attributes of their children. Thus, conditioned

on observing a sub-entity ought to be sufficient to make statements about its contents.

For Sameer, Wick, et al. [22, 25], the sub-entity structures serve the purpose of

allowing block moves during MCMC inference. In our approach, the hierarchical sub-

entity structure is a crucial thing that we are trying to learn. So unlike these previous

works, the focus of our approach is to learn a tree structure that captures the hierarchy

in the mentions; obtaining entity clusters for coreference is then accomplished using

the tree structure.

Returning to the example of Figure 1-1, we might build the tree shown in Figure 4-

33

basketball, legend) stattl. inference) POPI

Name: {Michae! Jordan) Name:- {MJj
Word: (Olympic. Words' (Basketbll.
winr*ng. basketbe} legend}

Figure 4-1: A hierarchical tree to solve the corefrence problem posed by Figure 1-1.
Filled vertices indicate mentions, while unfilled vertices summarize their descendants.

1. Note we have combined the two Michael-Jordan-basketball-player mentions into

one subtree and summarized them with their common parent. Thus, instead of com-

paring the Barack Obama to both of the Michael-Jordan-basketball-player mentions,

we can compare it to only its summarizing internal vertex. Thus, in general, time

complexity of comparing the contents of two entities is no longer necessarily depen-

dent on the number of its mentions. This allows the coreference problem to become

computationally tractable and allows block moves, which is the goal of [22, 25].

However, a hierarchical tree potentially has other useful properties. Consider if

we instead made the tree in Figure 4-2. This tree has a subtree which contains both

the Michael-Jordan-basketball-player and Michael Jackson entities. The additional

hierchical structure over entities of this tree allows us to see that these two entities

might be related (the common use of "legend" indicates that both are celebrities).

In our model, we allow an unconstrained hierarchy over entities as well as sub-

entities, so the goal of the inference task is not to learn what the best entity partitions

are, but rather to learn what the best latent tree structure over observed mention

leaves is. While this seems like adding an unnecessary level of complication for the

CDCR task, we shall see that this approach performs comparably with previous work.

34

Name. (MJ, Miche
Jordan}

legendary, king, pop} tfs~a.lfene suSra

Name; MJ, Michael Jordan} NNaame(MJ
Wod jeypc w~nig od:fendevy popg

basketbll, skgnd) PO,

Word: {Olyplc, Words: (Basketball.
wvnnkig, baeketbelli legend)

Figure 4-2: A second hierarchical tree to solve the coreference problem posed by
Figure 1-1. Now there exists a subtree containing both MJ the legendary basketball

player and MJ the legendary pop star. Both are related by words indicating they are

popular celebrities, which is relevealed by the tree structure.

4.2 The Model

Our goal is to construct a hierarchical tree over the mentions from which the true

entities can be easily recovered. Notably different from [25], we explicitly are modeling

a potential hierarchy over entities as well as sub-entities. Thus with this approach,

it is not completely clear which internal nodes correspond to entities or sub-entities

during inference.

In our model, the state of each tree node consists of a set of the feature vectors,

such as bag-of-words or bag-of-names. Thus our model uses the same vector space

model used by most previous work [1, 20, 3, 22, 25]. The leaves of the tree are treated

as being observed, while the sub-entities nodes are treated as latent.

4.2.1 Constraints

While our approach formulates CDCR as a structure learning problem, we add two

constraints to the structure and states of our graphical model in order to make infer-

ence more tractable.

35

1. (Structural Constraint) Each internal node must have at least two chil-

dren. This prevents arbitrarily long linear chains of latent sub-entities that

correspond to the exact same entity.

2. (State Constraint) The state of each latent node is the sum of the states

of its children. This is a simple way of summarizing the states of all the

terminal mentions that are descended from a latent node. Previous work [22, 25]

have also used this constraint with success.

The second constraint relieves us from having to estimate the states of the latent

nodes, which would be necessary in normal structure learning problems. Thus our

model is purely concerned with learning a tree structure that fits the corpus well.

4.2.2 Factor Graph Formulation

Let M be the set of observed mentions. We use TM to denote the set of all trees with

M as mentions. We would like to find a tree y E M that captures the hierarchical

entity structure in the mentions the best. In order to characterize the "goodness" of

a tree, we treat it as a factor graph with two different types of potentials. Our factor

graph equivalent of Figure 4-2 is shown in Figure 4-3

Figure 4-3: Factor graph representation of Figure 4-2. Shaded nodes correspond to
the observed mentions, while unshaded nodes correspond to the latent sub-entity
nodes.

Node potentials ih : V - R measure the cohesiveness of a sub-entity. For exam-

ple, a node potential might measure the Shannon entropy of the sub-entity's bag-of-

36

words.

Pairwise potentials Oij : V x V -4 R measure the similarity of two different sub-

entities. For example, the potential Vij(vi, vj) might compute cosine similarity of the

bag-of-words of vi and vj. In our work, we only consider using pairwise potentials

between a sub-entity and its parent; implicitly this measures the similarity of a sub-

entity with its siblings sub-entities. However, other pairwise interactions, such as

between a node and one of its siblings, could similarly be defined.

Log-potential Description

log 1bOW(i, j) = o i[bow-(j[bow]-i[bowj) cosine similarity of bag-of-wordsIlilbowl III[bow] i[bowITI
*b ni (jibon-i)bon cosine similarity of bag-of-names

19O o(, 1'bIi[bon1_IIIli[bon -i[bon]lI _______________________
log ?bow(i) = -ObowH(i[bow]) entropy of bag-of-words

Table 4.1: Select potential functions. Recall that all edges (i, j) are tree edges; we
assume implicitly that j is the parent of i. The notation i[bow] means the bag-of-
words corresponding to node i.

Table 4.1 shows some sample pairwise and node potential functions. For pairwise

potentials between a node and its parent, we typically subtract the bags of the node

from the parent in order to model the similarity of the child with its aggregate siblings

(recall that we have constrained the state of each latent node to be the sum of its

children). Note also that each potential has a corresponding constant 0, which serves

to weigh one feature over others. For example, putting together the bag-of-words and

bag-of-names features used in Table 4.1 we have

log i (yi, yj) = log 'bow (i, j) + log .(i, j)

i[bow] - (j[bow] - i[bow]) i[bon] - (j[bon] - i[bon])
Obow t-[bow] [bow] - ib[bow] on[bon]Ij[bon] - Z[bon]I

Thus each potential consists of the log-linear sum of potentials for each feature. It

will be convenient to express this V$ij = exp {OE - f(i, j)} where

E Obow, Obonl

S i [bow] - (j[bow] - i[bow]) i [bon]. (j[bon] - i [bon]) T

(j i[bow]II j[bow] - i[bow]lI' ji[bon] |||j[bon] - i[bon]f|J

37

One might interpret the qi, (yi, yj) vector as being a vector of statistics summarizing

the pairwise similarities between the features vectors of node yj and node y3 in the

tree y.

We combined the factor potentials in a log-linear model. Thus the likelihood of

the latent tree structure y c TM is given as

P(yIM) oc 1 ib 1 j 3j = exp f i(yi) -v + > E(yi, yj) OE
iEV (ij)EE \iEV /(ij)CEE

(4.1)

where 4Os is a vector of statistics for single nodes, bjj is a vector of pairwise (usually

between a node and its parents) statistics, and 0V and OE represent the weights on

these statistics.

4.2.3 Structural Regularization

From the form of Equation 4.1, one might rightfully suspect that our model favors tree

structures with many edges (and therefore many sub-entity nodes, since IEl I= IV+1

for a tree). Just as in other structure learning problems, invoking Occam's razor

and selecting structures that are less complex might help in generalizing better. Our

approach is to penalize certain structural statistics that are too high. There are

several such structural statistics that we can consider. For example, we can penalize

the number of nodes appearing in the structure.

Adding regularization to our model is simple. Let S : TM -+ R' be a function

mapping a tree over the observed mentions to a vector of statistics about the tree

structure. Table 4.2 shows some simple structural statistics. To penalize the statistic

in our model, we can simply associate a regularization constant with each structural

statistic. For example, to penalize the number of nodes in the structure, we include

the term -SNC y Ey 1, where the SNC is a tuned regularization constant. We also

note that many structural penalizations can be naturally interpreted as another sort

of node potential (that is, the structural statistic can be computed by summing up

some statistic at each node).

38

Structural Statistic Description

SNC(y) = E 1 count number of tree nodes

yiEy

SLD(Y) Y3 rumleaves (yi) depth of mention leaves

Sc(y) = E I absolute difference from having k children per node
i .numchildren(yj) - kj

Sc(y) = E 6(a < numchildren(yj) < b) number of nodes with < a or > b children

Table 4.2: Select list of possible tree structure statistics. We observe that many
natural structure regularizers can be naturally be implemented as node potentials.

With this in mind, the regularized model becomes

P(yIM, S) oc j y i(Yi) -v + E Oij(yi, Yj) -OE + S(Y) ' OS (42)
\iEV / (ij)EE

where 0 s is the the vector of respective regularization constants for S(y).

While in theory, we can combine many structural statistics into the vector S(y), for

this thesis we will only choose to penalize one regularization statistic at a time. This

is to keep the model simple and make it easier to tune the regularization constants.

We will also note later that we will prefer structural statistics that are easily

updated when local changes are made to the tree structure.

4.2.4 Entity Selection

As noted earlier, our approach divides the CDCR task into two parts:

1. (Tree Structure Learning) Infer latent tree structure over mentions, with hidden

nodes representing some hierarchical notion of entities

2. (Entity Selection) Use the learned latent tree structure to select entities.

Most of the work of this thesis is dedicated to the first task. But once we have learned a

tree structure over the mentions, selecting entities is equivalent to partitioning the tree

into subtrees, such that each subtree root correspond to an entity. To accomplish this,

39

we can apply greedy clustering heuristic, similar to the methods used to find clusters

in Hierarchical Agglomerative Clustering models [17, 12]. For example, we can use

make use of simple compatability functions over nodes, measuring how cohesive its

attributes are or how similar its children are. If the number of entities is roughly

known in advance, then we can use this information too. In section 5.2, we describe

our specific algorithm in some more detail

4.3 Comparision with Other Work

The most similar models to ours are by Sameer, Wick, et al. [22, 25].

The approach of Wick et al. [25] recursively decomposes each entity into sub-entity

trees, in order to block Metropolis Hastings proposals. However, it does not model

an hierarhcy over entities themselves. Sameer at al. [22] use "super entities" in order

to efficiently distribute and parallelize inference with over similar entities. However

this is only a one-level of entity hierarchy, which again serves only to encourage more

successful Metropolis Hastings proposals. Wick et al. [25] does not model this "super

entity" hierarchy, in favor of high-recall "canopy" functions to filter entities that are

most likely to be corefererent.

Our work draws from these sub-entity concepts by allowing an arbitrary hierarchy

over the entities as well. By just learning a tree structure over entities, one might

expect entities that are more similar to be "closer" in the tree. In principle this will

allow proposals to be kept local in the tree. Furthermore, allowing a full hierarchy

may allow potentially interesting insights regarding the relationships between entities.

By expressing coreference explicitly in terms of structure learning, we are also

able to naturally also formalize our notion of penalizing complex structures. Wick

et al. [25] puts a -8 penalty on creating nodes in order to control tree depth. Our

formulation allows us to formally think about these penalities as regularizing against

trees with more complex structural statistics.

40

Chapter 5

Methodology

In this chapter we describe the implementations of the algorithms used to perform

learning and inference for our model. As we described earlier, we draw inspiration

from how a structure learning problem consists of determining three parts: the num-

ber of latent variables, the edges between the variables, the parameters describing the

relationships between variables. Our inference procedure learns both the number of

latent variables and the relationships (tree edges) between them, while our parameter

estimation method will take care of the third part.

We first will describe the inference procedure that we use to select the "best"

tree structure for a given model. Then, we describe how we use stochastic gradient

descent-based estimation to learn parameters for the model.

5.1 Inference Method

We leave it up to the inference procedure to determine how many latent variables and

which edges exist in the tree. This is not an easy problem; the number of partitions

of n items is given by the Bell number B(n) = O(n/ In n)") . Our hierarchical trees

allow further sub-partitioning within each partition, thus the number of possible trees

over n mentions is super-exponential in n, so it is intractable to consider all possible

tree structures. To deal with this, we'll use Metropolis Hastings inference to efficiently

explore the space of trees.

41

Let P(yj.M, S) correspond to the regularized likelihood (Equation 4.2). To use

Metropolis Hastings effictively, we must be able to efficiently compute the likelihood

ratio P(Y.M"S) If we define our proposals to only affect a very local region of the

whole tree, then many of the potentials will remain the same and cancel out in the

likelihood ratio.

Also, because are interested in using Metropolis Hastings to perform MAP infer-

ence, we will use a temperature T very close to zero, which means that computing

q(-.-) in the acceptance ratio ratio is negible compared to the likelihood ratio, hence

we ignore it. One might wonder if keeping T close to zero will cause inference to easily

get stuck in local maxima. As we shall see in section 6.4, structural regularization

helps inference stay away from these local maxima states.

5.1.1 Proposal Distribution

In this section we describe the proposal distribution that we use for Metropolis Hast-

ings inference. We require a proposal distribution q that is ergodic and as local as

possible.

Our proposal distribution first selects a random node and then randomly selects

one of four actions. These actions and more actions are described in the technical

report [21]. The actions correspond to: create/deleting sub-entity nodes and rais-

ing/lowering sub-entities.

1. A (Sub-entity Create): Take two sub-entity siblings and create a new sub-entity

with them as children.

2. A 1 (Sub-entity Delete): Destroy a sub-entity (if it has only two children) and

join its children with the parent sub-entity.

3. B (Sub-entity Up): Join a sub-entity with one of its siblings, pushing it down

a level.

4. B- (Sub-entity Down): Join a sub-entity with its grandparent, pulling it up a

level.

42

These proposals are visualized in Figure 5-la and Figure 5-1b. The A, A- 1 pair is

responsible for creating or destroying sub-entities, while the B, B- pair is responsible

for moving sub-entities without creating or destroying any nodes. Recall also that

after each proposal, we enforce that the bags of a node equal the aggregate bags of

its children.

Alnv on (0,1)
R R

V1 --- 5 A on (0,1)* S1 .. S

VO V1

(a) Action A and A- 1 : these moves create or destroy sub-entities by moving the sub-entities
labeled vo, v1. The node labeled X is the created/destroyed sub-entity.

Binv on (0,1)
R R

V1 S1 SS S1 5S
B on (0,)

VO VO

C1 C2 Cc V1 C1 C2 Cc

(b) Action B and B- 1 : these moves move sub-entities up or down a level in the tree by
moving the sub-entity labeled v1.

Figure 5-1: Actions for our proposal distribution.

In general, the number of potentials that each proposal has to consider is at

most linear in the number of the selected node's children. Appendix A shows the

computations needed to compute the likelihood ratio exactly. It is clear that the set

of actions we have defined is sufficient for exploring the full state space of trees with

the constraint that each non-leaf has at least one child.

43

5.1.2 Full Inference Algorithm

The full inference algorithm is described in Figure 5-2. We always begin with an

initial state where all the observed mention nodes are children of a root node. Thus

in this state, if we were to declare each child of the root as an entity, we would obtain

perfect precision (since each hypothesized entity contains exactly one mention) but

a poor recall. Thus the inference procedure will first combine mentions that seem

sufficiently similiar (via the model P(-.M, S)) into subtrees, and then be able to

combine/split and move these subtrees up/down.

1. Initialize with a tree y with no sub-entities, where each mention is a child of a
root node.

2. For i = 1, 2, .

(a) Select a tree node uniformly at random

(b) Attempt one of the local actions {A, A-', B, B- 1} uniformly at random,
conditioned on the proposal being legal with respect to the structure con-
staint (each non-leaf has at least one child) to get new tree y'

(c) If Metropolis Hastings accepts y'

i. Update y = y'

Figure 5-2: Full Inference Algorithm

Similar to other work using Metropolis Hastings for coreference [22, 25], the

MCMC sampling can be made massively parallel. The proposals in a subtree s

are not affected by proposals that occur outside the in the Markov blanket (treating

out factor graph like an undirected graphical model) of s. Although parallelization

strategies and related infrastructure are not the focus of this thesis, in section 7.2 we

will briefly discuss what is possible.

5.2 Entity Selection

As mentioned previously, we can use a variety of different greedy clustering heuristics

to partition the tree structure obtained from inference into subtrees corresponding to

44

entities. The approach we take is shown in Figure 5-3.

1. Initialize min priority queue with the root node

2. While termination criterion is not met:

(a) Pop node n from priority queue.

(b) For each of its children n.ci:

i. Compute a "goodness" score for n.ci and enqueue using the score as
priority

3. Return nodes in priority queue

Figure 5-3: Greedy Clustering Heuristic

There are several choices of "goodness" score. Other possible choices in include

a weighted Shannon entropy of features. For termination criterion, one might use a

tuned threshold or the number of entities, if known. For this thesis we use the average

log-potential I log 4(n, ci) and the correct number of entities
I childrei(r~i) cEchildren(n)

as the terminal condition. More details about the specific clustering heuristic we use

appear in [21].

One might be suspicious about us using the correct number of entities to perform

entity selection. Several other works [1, 22, 25] use tuned parameters in order for

their techniques to obtain the correct number of entities. We could very well do the

same and learn a termination criterion that generalizes well. However, we would like

to to point out that the exact entity selection heuristic we use is not central to this

thesis. We provide a method for entity selection in order to demonstrate that it is

possible to use the tree structure learned from our model to easily obtain potential

entities for CDCR. This demonstrates that the latent tree structure that we learn

from our approach is meaningful.

45

5.3 Parameter Estimation

We would like to learn parameters that allow the inference procedure to find tree

structure that captures the latent entity structure in the mentions. Given a labeled

sample of mentions, we can estimate parameters via stochastic gradient-based meth-

ods. Figure 5-4 shows the general approach. We note that the gradient V is computed

using the difference in statistic vectors # (as defined in Equation 4.1).

Note that for this parameter estimation step, we ignore the structural regulariza-

tions; we will discuss how to tune these in the next section.

1. Initialize 0(O) = 0

2. Create tree y such that there is exactly one sub-entity for each unique entity.

3. For i = 1, 2, ...

(a) Select entities el, e2 . Obtain new tree y' by proposing either:

i. Move entity el into e 2 (Sub-entity Move Down)

ii. Moving mention mi E el from el to e 2

(b) Compute the gradient

V = (#Ov, .. , VIy|,#e, .. - -eJE) 1Y ' (' i OVI 7 el.' ' 0 |E)Y)

from changing state from y to y'

(c) If certain conditions hold, update

0(i+1) = 0) +qVE

Figure 5-4: Parameter Estimation Method

In particular, we use the Contrastive Divergence approach of making a single

Metropolis Hastings step away from some ground truth state, which will give us

biased but low-variance estimates of parameters. The ground truth state is taken to

be a tree where all the mentions in a subtree belong to the same entity.

If we always update the parameters using the gradient in step 3(c), then the

approach is the same as Contrastive Divergence. The "certain condition" in step 3(c)

gives us the flexiblity to make smarter parameter updates.

46

For example, if we had an objective function F(-) and update parameters only if

0 - V < F(y+) - F(y-), as in Figure 3-2, then we obtain a variant of SampleRank

in which we obtain constraint violations by considering only pairs of adjacent states

that include the ground truth state. Such a methodology gives us a biased version of

the SampleRank algorithm, but in return we get low-variance parameter estimates.

5.3.1 SampleRank Objectives

As descibed in the previous section, we can use an objective function to get SampleRank-

like updates to our parameters. A natural choice of such an objective function is the

B-CUBED F1 measure (Figure 2-2), since this is the metric we will use to evaluate

our coreference results. However, computing the changes in the the B-CUBED F1

measure still requires us to maintain all of the hypothesized and true entity clusters.

So if there are K unique entities, we are going to need Q(K) extra space in order to

compute the B-CUBED F score for the new state, which maybe problematic if we

have, for example, a million entities.

On the other hand, the pairwise F measure (Figure 2-1) can be updated using

only 0(1) extra space. The full details behind how appear in Appendix B. While

scaling our approach is not the focus of the thesis, we will investigate how much

parameter estimation performance varies if we choose to use B-CUBED or pairwise

F1 score as the objective function.

5.4 Structure Regularization Tining

After computing the likelihood parameters 0, the next step is to tune structural

regularization constants. A simple grid search is hard to generalize, because the scale

of the regularization constants seems to very greatly depending on the particular

corpus and regularization statistic.

For this thesis, we only explore the effects of using one regularization statistic

during inference. If the B-CUBED F performance of a learned tree stucture is

approximately a unimodal function of the respective regularization constant, then we

47

can make use of standard search techniques, such as ternary search.

Figure 5-5, shows how we perform regularization constant tuning using ternary

search. Before running the ternary search, we first normalize the likelihood parame-

ters 0 so that >22 Oi = 1, so that we can be confident that the regularization constant

lies in the interval [0, 1].

1. Initialize 1 = 0, r = 1

2. While 11 - r > c

2i +r l +2r
(a) Compute it = , rt =3 3
(b) Run MCMC inference using it, rt as regularization constants to get respec-

tive F scores Ft, Frt.

. If Fit < Frt then assign 1 = it

ii. Else assign r = rt

i +r
3. Set S* 2 as regularization constant

2

Figure 5-5: Ternary Search for Regularization Constant Tuning

For a given tolerance c, the total number of calls to MCMC with this approach

is E(2 log 2/ 3 E). For example, if we require a tolerance of c = 10-3, then we need

2 log 2/ 3 10-3 = 34 calls to the MCMC procedure. Each MCMC procedure takes a non-

neglible amount of time, making this regularization tuning method slow compared to

the other methods. Since most of the tuning time is dominated by the time to perform

MCMC inference, it is possible to use smarter search techniques such as Fibonacci or

golden section search [10], which can reduce the number of calls to MCMC by 50%.

However for this thesis, we use stick with the naive ternary search.

5.4.1 Generalizing Regularization Constants

One final consideration has to be made when considering how to properly tune the

regularization constants. Suppose that the corpus used to tune the regularization

constants is size nT, but the corpus for validation (or new data) is of size nV. Fur-

48

thermore suppose that nT < nv or nT > nv. Then one might expect the magntiude

of the structural statistics for the best trees for the two corpora to be quite different.

Does this affect the regularization constants?

Proposal Action SNC(y') - SNC(y) SLD(y') - SLD(Y)
A +1 + (num leaves in both subtrees)
A- 1 -1 -(num leaves in both subtrees)
B 0 + (num leaves in subtree)
B-1 0 - (num leaves in subtree)

Table 5.1: Changes in the NC (number of nodes) and LD (sum of depth of the leaves)
structural statistics, for each of the four Metropolis Hastings proposal actions.

Table 5.1 shows that sometimes the size difference might be important. For each

of the the four proposal actions that can be made during MCMC inference, the

NC (number of nodes) structural statistic changes by a constant. However, the LD

(sum of depth of leaves) statistic changes in magnitude proportional to the size (in

number of leaves) of the sub-entities. Because this average size scales with the size of

the corpus, we expect that we will have to make a correction for this regularization

constant when we generalize to a differently-sized corpus. For example, if the training

corpus is of size nT = 100 and the validition corpus is of size ny = 300, we expect

on average for the subtrees of the validation corpus to be three times as large as in

the training corpus. If we were to use the same regularization constant SLD for both,

then proposals in the validation corpus would on average be penalized three times as

much.

To resolve this problem, we define the size correction factor to be the ratio !.

For the LD statistic, if SLD(nT) is the tuned regularization constant for the training

corpus, then for a corpus of size ny, we adjust

SLD nT L TS D (nV) =f 2 . SL(niT)
nV

For example, if nT = 300, nv = 100 then SLD(nv) = 3SLD(nT). This means for

smaller corpus the regularization constant should be larger, and for a larger corpus

the regularization constant should be smaller.

49

We note that not all structural statistics need a size correction to generalize (for

example, the node count statistic), and different statistics might need to be general-

ized differently. This section demonstrates that such considerations, although need

not be complex, must be taken into consideration.

5.5 Full Learning Algorithm

We will now summarize our complete learning algorithm, which is shown in Fig-

ure 5-6. We first use our stochastic gradient descent-based learning method to obtain

likelihood model parameters, which are appropriately normalized. Then a regular-

ization statistic is tuned using ternary search and possibly transformed in order to

generalize.

1. Likelihood Parameter Learning

(a) From labeled training set perform stochastic gradient descent-based learn-
ing (e.g. SampleRank or Contrastive Divergence) to obtain likelihood
model parameters 0

(b) Normalize 0 = 1.

2. Regularization Constant Tuning

(a) Pick structural statistic S,(-)

(b) Perform ternary search on regularization parameter S.

(c) Consider applying a size correction on S- or another transformation, de-
pending the particular regularization structural statistic chosen.

Figure 5-6: Full Learning Algorithm

Both the likelihood parameter learning and regularization constant tuning steps

are parallelizable. In section 7.2 we will discuss how to potentially scale these proce-

dures.

50

Chapter 6

Results and Analysis

6.1 Datasets

We use two corpora to evaluate our methods and compare them with previous ap-

proaches.

First, to compare with related work, we use the John Smith (JS) corpus, which

consists of 197 articles from the 1996 and 1997 editions of the New York Times,

labeled to obtain 35 true entities. The only criterion for including an article was

that the article included a string matching the regular expression John. *?Smith [1].

Because the data has practically no name variation, this is strictly a disambiguation

task.

Our second corpus is a sample from the Wikpiedia Links corpus (WL) [22]. The

WL corpus treats Wikipedia pages as entities and links to different pages as being

mentions of the respective entities. As the original WL corpus consists of over a

million mentions, we sample a subset of 243 documents that contain a mention of the

name 'Eric' (henceforce, the WLE corpus), with a total of 57 unique entities. Since

we only filtered by first name, unlike in the JS corpus, most of the entities have unique

last names. Thus, the WLE corpus can be thought of the opposite of the JS corpus.

Because names have strong predictive power, we look for our learning procedure to

be able to discover this.

51

6.2 Parameter Estimation Comparisions

To test our parameter estimation method, we use only three features: bag-of-names

(bon), bag-of-words (bow), and entity-type (type). These features were obtained

using the BBN SERIF [2] system. The bag-of-names feature is sufficient to deal with

name variation (which is helpful for the WLE corpus but not the JS corpus). The

bag-of-words feature is useful for name disambiguation. The final feature, entity-type,

is the same among all the mentions (person). The purpose of including this feature

is to add noise to the feature set (since the cosine similarity between two sub-entities

with this feature will always be 1). Thus, this helps us test how well our parameter

estimation method is able to distinguish signal from noise.

We first evaluate our parameter estimation framework by comparing the estimates

of Contrastive Divergence and SampleRank for the three features on the JS our WLE

corpus. Table 6.1 compares the parameter estimates. Note that we trained SampleR-

ank using both the Pairwise F and B-CUBED F metrics as objective functions.

Training Algorithm Obow Obon Oetype

Contrastive Divergence 0.4689 0.2796 0.2514
SampleRank w/ Pairwise F 0.9318 0.06350 0.004698
SampleRank w/ B-CUBED F1 0.8789 0.05494 0.06618

(a) John Smith corpus

Training Algorithm 0bow 0 bon 0 etype

Contrastive Divergence 0.3827 0.5011 0.1162

SampleRank w/ Pairwise F1 0.3909 0.6082 0.0008986
SampleRank w/ B-CUBED F1 0.3661 0.6117 0.02212

(b) Wikilinks Eric corpus

Table 6.1: Parameter Estimates, where the three available features are bag-of-words

(bow), bag-of-names (bon), and entity-type (etype).

We see that for both corpora, Contrastive Divergence does a poor job of realizing

that the entity-type feature is noise, giving it 25% of the weight in the JS corpus

and 11% of the weight in the WLE corpus. The estimates for SampleRank using the

Pairwise F1 measure and B-CUBED F are quite similar. For the JS corpus, both are

able to detect that the bag-of-words is the strongest feature, giving it roughly 90%

52

weight in both cases. For the WLE corpus, both give bag-of-names (the strongest

feature) about a 60% weighting. Thus, from these two corpora, it seems that we

might well be able touse Pairwise F (which can be updated more efficiently) as a

proxy for B-CUBED F1 .

6.3 Local Maxima States During Inference

In this section we describe the common class of local maxima that our model enters

during MCMC inference. To do this, we look at two runs of MCMC inference on the

exact same sample of 74 mentions from the WLE corpus. This corpus sample was

selected because the following results were easily reproducible using it.

Model parameters were learned using SampleRank with Pairwise F objective on

the whole WLE corpus (note that we do not need to worry about overfitting, since

we are just studying the behavior of the actual inference procedure).

F1 vs MCMC iteration Leaf depth vs MCMC iteration

Good Max Good Max
Bad Max Bad Max

CD

N CD

0

CD 00

0 2000 6000 0 2000 6000

Iterations Iterations

Figure 6-1: Performance of two MCMC runs for the exact same corpus and model

parameters. One ends up at a good local max and other at a bad local max, as

indicated by the F score. We can see that the structure of the bad run explodes in

complexity at the same time.

As the left plot in Figure 6-1 shows, in one run MCMC inference is able to find

53

a tree structure that has F score close to 1 (labeled: "Good Max"). In the other

run (labeled: "Bad Max"), after 2,000 Metropolis Hastings iterations, the inference

procedure begins entering a local maximum state as the F plummets from over 0.75

to 0.60 in the next 4000 iterations.

We can see what is happening structurally in the right plot of Figure 6-1. Af-

ter 2,000 iterations, the bad run starts to explode exponentially in the sum of leaf

depth, which corresponds to a deep chain being built during inference. Thus the local

maximum is a result of an extremely complicated structure being formed.

Accepted Proposals Model Posterior Change

0

o 0

2 ?9

Good Max- Good Max
Bad Max

0 2000 4000 6000 8000 0 2000 4000 6000 8000

Iterations Iterations

Figure 6-2: Comparision of Metropolis Hastings performance for the same "good"
and "bad" MCMC runs as in Figure 6-1. The number of accepted proposals and
change in the model log-posterior are shown.

To get another perspective, Figure 6-2 shows what is happening with the Metropo-

lis Hastings proposals themselves. The nature of the problem is clear: in the bad run,

Metropolis Hastings accepts several proposals which only increase the model score

slightly. A likely explanation is that just due to just random noise in the features, it's

possible for a small positive log-likelihood ratio to result from joining two non-similar

sub-entities.

Figures 6-1 and Figures 6-2 show that once bad proposals start to be accepted,

54

more are accepted and leaf depth grows exponentially as the deep branch gets deeper;

there seems to be a snowball effect. Qualitatively, we observed that this is because

when the number of children of the root is small, the average likelihood ratio for any

proposal increases slightly. Furthermore, once sub-entities of a particular entity are

absorbed into the long branch, its other sub-entities will have more inclination to join

it.

Since the problem stems from many proposals with very neglible likelihood ratio

being accepted, one way is fight against this is to bias the log acceptance ratio to be

log a = min (0 log (j)) - b)

However it seems hard to pick a good bias b and such a bias is not very interpretable.

Structural regularization is able to accomplish the exact same goal and can be be

interpreted. In the next section, we will discuss the effects structural regularization

has on inference.

6.4 Structure Regularizers

As we have seen, structural regularization seems to be a necessary feature in our

model, in order to generalize well.

In this thesis, we consider two natural regularization statistics: the tree node

count (NC) and the sum of the depth of the leaves (LD), as defined in Table 4.2. We

pick these two because they are natural measures of structural complexity. A tree

can only be complex if it has many nodes, and if the sum of the depth of leaves is

high, then a long branch in the tree is likely present. It is also clear that these two

structural statistics are correlated.

In this section we answer two question:

1. For a given corpus, how does changing the regularization statistic and corre-

sponding constant affect inference?

2. How well does a regularization constant generalize, when we increase the size of

55

the corpus? For example, if the regularization constant works well for a random

sample of the corpus, how well will it work well for the whole corpus?

For these experiments, we use the likelihood parameters that are learned using

SampleRank with Pairwise F on both the JS and WLE corpus. With these paramters

fixed, we now analyze the effects that structural regularization has on inference.

6.4.1 Relation with Regularization Constant

We first analyze the effects the regularization constant has on inference. There are

two cases we consider: JS with NC, JS with LD. For each case, we swept over reg-

ularization constant values in [0,11, running MCMC inference for at most 80,000

iterations.

Leaf Depth Regularization

I I

0.0015

S_LD

Node Count Regularization

LL 6

0O

0.0025 0.0 0.2 0.4
I I

0.6

S_NC

Figure 6-3: JS corpus, F score of tree learned from MCMC inference as a function
of regularization constant. For both NC and LD structure statistics, F as a function
of the regularization constant seems to approximately unimodal.

In Figure 6-3 we see that both the Leaf Depth (LD) regularization and Node

Count (NC) regularization regimes are approximately unimodal. This justifies the

use of a ternary search to tune the regularization constant.

56

U-

LO

00
0

000

0.0005

0
0 00

0

0

0 ooO)fCqO - an6 *, OM4'0

Q4
143,

0

0 O *,,a
0 (9

0 49 0
CPO

AOL

Node Count Regularization

0D 0 04

0 CD d

bo 5 the LDadN srcua sait

01 0 D

(1) M~ D cr)

We s

0) 6

260 300 340 380 260 300 340 380

Node Count Node Count

Figure 6-4: JS corpus, leaf depth as a function of node count for both regularization
both the LD and NC structural statistic.

We also observe that it appears that LD regularization seems to have less variance

than the NC regularization. One explanation is that forcing a tree to have a small

LD is stronger than forcing it to have a small NC; two trees with the same NC can

have very different LD. In Figure 6-4 we see that for the exact same data, under NC

regularization LD seems to grow linearly with NC. However under LD regularization,

the growth is sub-linear. So in this sense, LD penalization is stronger than NC

penalization.

6.4.2 Relation with Corpus Sample Size

We next investigate how well the regularization constants generalize, in the sense that

a structure regularization tuned on a sample works well with the original corpus. Our

strategy is to take different-sized samples from a corpus, and study how well inference

performs as a function of the size of the sample. The methodology for doing this is

summarized in Figure 6-5. The initial constant c is picked arbitrarily.

We repeated this experiment for four case: JS with LD, WLE with LD, JS with

NC, and WLE with NC. The results, shown in Figure 6-6, are very interesting. First,

57

Leaf Depth Regularization

1. Let N is the size of the original corpus, c be an arbtirary regularization constant

for the particular structural statistic

2. For structural regularization constant S E {1/2c, c, 2c}:

(a) For n = 2,..., N:

i. Sample the first n mentions from corpus

ii. Run MCMC inference, using S as the regularization constant

Figure 6-5: Procedure for assessing effects of corpus size on the effectiveness of a

structural regularization constant.

as we might expect, inference on the JS corpus is noisier than on the WLE corpus

(since the latter has bag-of-names as a high-signal feature), but the general trends are

similar. As we suspected, under LD regularization, particular regularization penalties

SLD are effective for different sample sizes. In fact, there seem to be sharp "phase

transitions" in the quality of inference, which can be seen in the right image of

Figure 6-6a. We will explain these phase transitions in the next section.

The right plot in Figure 6-6b seems to indicate that F score sometimes decreases

as we increase the corpus size, but this is not due to the regularization constant being

less effective for different sample sizes. For example, for the WLE corpus both of the

trees whe n = 75 and n = 150 appear to be random trees, so the decreasing F score

likely is just an asymptotic F1 score for random trees. Thus unlike LD regularization,

the NC regularization seems to be invariant to corpus sample size, which is what we

suspected.

6.4.2.1 Phase Transitions for Leaf Depth Regularization

We now explain the phase transitions that appear in the right plot of Figure 6-6a.

In particular, when penalizing the LD structure statistic, for a fixed regularization

constant SLD, there seems to be two critical values a- (SLD) and a+(SLD) of sizes of

corpuses n for which the F score changes dramatically. The corresponding regions

are:

58

JS F score vs Numn Mentions

-00

T - I ..I.. - - -

0 50 100 150 200

0

0

0

10

U,

WLE F score vs, Hum Mentions

6- +

+ 0 -
Iw

0 50 100 150 200

1o Small (1/c) penalty Medium (c) penalty + Large penalty (2c)

(a) Leaf Depth Regularization

JS F score vs Numn Mentions

to

+C

+~ 0+: +
I I
0 50

9-

W

WLE F score vs Num Mentions

0 50 100 150 200 250

1a Small (1/c) penalty Medium (c) penalty + Large penalty (2c)

(b) Node Count Regularization

Figure 6-6: Comparision of when particular structural statistics and corresponding

regularization constant work best during MCMC inference, tested on both the JS and

WLE corpus. The regularization penalty c is chosen arbitrarily. The results indicate

that while NC regularization seems mostly invariant to corpus size, LD has sharp

phase transitions in the performance of MCMC inference, depending on the corpus

sample size.

59

0

0

Co
0

0

Co
0

In
0

250

0

10 _

0

co~

100 150 200

1. n > a+(SLD) ("Right" region): Since all mentions are initialized as children of

the root (as described in Figure 5-2), if an entity with m = M + m 2 mentions

is split into subtrees of size m, and M 2 , the only way to combine them into one

entity is to increase the leaf depth by m by moving both under same subtree.

The sharp decline in F score occurs when the largest entities are not able to

be combined, hurting recall score dramatically.

2. n < a-(SLD): ("Left" region): MCMC inference is prone to entering a local

maxima state of creating extremely deep trees by arbitrarily combining subtrees,

hurting both precision and recall dramatically.

3. a-(SLD) < n < a+(SLD) ("Middle" region): Ideal corpus sample size for SLD.

MCMC is able to join sub-entities together (avoiding the "Right" region), and

there is sufficient regularization so that it is unlikely to enter local maxima state

("Left region")

6.4.2.2 Size Correction Empirical Justification

Previously we postulated that a size correction factor might be needed in order to

generalize the regularization constant learned when using LD as the structural statis-

tic. To empirically verify this correction, we compare at the median value of sample

size for which each penalty is best. In particular, for each corpus and penalization

contant, we filter for all trials where the F score is at least 90% of the maximum

achieved F1 score for the corpus, and then take the median sample size for these

points. The results are shown in Table 6.2. Note that as Figure 6-6a shows, the 1/2c

penalty does not have any trials greater than the threshold.

Corpus 1/2c penalty c penalty 2c penalty

JS NA 173 96
WLE 199 111 55

Table 6.2: Median of ideal corpus sample size ranges, for each of the three values of

the LD regularization constant.

Our size correction factor approximately matches Table 6.2. For example in the

60

JS corpus, we observe that 173/96 = 1.80 ~ 2. For the WLE corpus, we see that

199/111 = 1.79 ~ 2,111/55 = 2.02 - 2, and 199/55 = 3.62 ; 4.

6.4.3 Comparision of Regularization Statistics

We now compare MCMC inference across our three structural regularization regimes:

1. No structure regularization

2. Sum of Leaf Depth (LD) regularization

3. Node Count (NC) regularization

For these experiments, we use our parameter estimation and regularization tuning

method to train on half of the John Smith corpus. The behaviors of MCMC inference

on the held-out half are shown in the proceeding experiments.

Accepted Proposals

- No reg
-LD reg

NC reg

0 20000 60000

Iterations

0i

0
CL

CD

M

CDJ

Model Posterior Diff

- No reg
-LD reg

NC reg

0 20000 60000

Iterations

Figure 6-7: Comparision of MCMC proposal acceptances and corresponding change

in log-posterior using no regularization, LD regularization, and NC regularization on

the JS corpus.

First, we look at how many Metropolis Hastings proposals are accepted in each

of the three regimes, and the corresponding changes in log model score . Figure 6-7

shows that having no regularization accepts many proposals early in the inference

procedure and then gets stuck in local maximum, as described in section 6.3. Both

two regularization regimes accept proposals much more slowly. Between LD and NC

61

2)

0L

0C'J
0%

an

01

S

regularization, although LD and NC regularization, it seems that NC regularization

will accept more proposals than LD regularization that increase the model posterior

only slightly (as indicated by the right plot).

Figure 6-8 shows what is happening structurally during MCMC inference. First

without regularization, F1 score increases very quickly after a few thousand iterations

but reaches a local maximum around 0.45, whereas using NC and LD regularization,

the F1 score increase more slowly initially but reach arond 0.80 F score.

Both LD and NC regularization have slower growth and overall number of nodes

than the unregularized case. It seems that directly penalizing the number of nodes

results in substantially fewer nodes when we do NC regularization. Interestingly

in these runs of MCMC, LD regularization approaches a LD statistic similar to the

unregularized case, but without hurting the F1 score. Overall, it seems that structural

regularization is doing a good job of preventing bad proposals with small change in

model score from being accepted, while controlling the growth of complexity in the

tree structure.

6.5 Entity Hierarchy Evaluations

In this section, we analyze whether if the latent hierarchy over entities is meaningful.

In particular, one might might suspect that a potential advantange of allowing such

a hierarchy is that entities that are most similar will be close in the tree structure.

Proximity in the tree facilitates proposals between entities that are similar.

To quantify this, we consider a tree learned from MCMC inference, using model

parameters and regularization constants trained from our learning method in Figure 5-

6 and SampleRank w/ Pairwise F objective. A natural notion of proximity in a tree

is least-common ancestor (LCA) distance. Our hypothesis is that entities that have

high similarity have smaller LCA distance in the tree. Similarity is computed as the

weighted sum of cosine similarities of features, using the estimated model parameters.

Figure 6-9 shows our methodology for testing our hypothesis.

For each pair of entities that we identify in the tree, we consider their LCA distance

62

F1 vs MCMC iteration

(0

(0

C,,

20000 40000 600000 80000

Iterations

Figure 6-8: Comparision of MCMC inference using the three different regularization
regimes: how F score and structural statistics evolves over time.

63

--No reg
- -- D reg

- NC reg

0 20000 40000 60000 80000

Iterations

Node Count vs MCMC iteration

------- --------------------------------- -----------

No reg
LD reg
NC reg

0 20000 40000 60000 80000

Iterations

Leaf Depth vs MCMC iteration

----------------- ----------------

No reg
LD reg
NC reg

0

0
'3

a,
V

a,
-4

C3,

C,,

IA
C)J

0

0

Ln

0

0

0D
0*
Ln

1. Using model parameters and regularization constants trained from learning
method, perform MCMC inference.

2. Apply greedy clustering herurstic to obtain set of entities E.

3. For all unique pairs of entities ei, ej E . With Ej entities there are 191(1E1-1)/2
such pairs:

(a) Find the lowest common ancestor of ej and ej in the tree. Let dij be the
sum of the distance from ej to the LCA and the distance from ej to the
LCA.

(b) Let sij be the pairwise similarity between ej, ej computed using the model
parameters.

4. Finally run a regression of d on s.

Figure 6-9: Method for Evaluating Latent Hierarchy of Entities

and their simliarity (measured via the pairwise potentials in our likelihood model).

After obtaining these, we ran a regression of thee LCA distance on simlarity.

Regression Coefficient p-value

LD Regularization 89.5546 0.0109
NC Regularization 119.4714 0.00303

Table 6.3: Results of performing regression of LCA distance on pairwise similarity
for pairs of entities, using LD and NC regularization.

Table 6.3 shows the results of performing this methodology, using both LD and

NC regularizations for the JS corpus. While we were expecting a negative correlation

between LCA distance and pairwise similarity, the regression tells us that there seems

to be a signficant positive correlation. In Figure 6-10 we can visually observe that

there is not actually much of a correlation in both cases. So from these few results, it

is inconclusive if the latent entity hierarchy is doing something that is interpretable.

64

Experiment 1

0

I I I

0.005 0.010 0.015
I i I I

0.020 0.025 0.030 0.035

Pairwise similarity between entites

(b) Leaf Depth Regularization

Figure 6-10: Scatter plots of (LCA distance, pairwise simliarity) for all pairs of entities
in JS corpus, under NC and LD regularization. There does not seem to be a strong
correlation

6.6 Empirical Evaluation and Comparisions

Finally, we evaluate the performance of our method on the CDCR task. Unlike many

other previous works which use a hand-tuned set of weights or a single feature [1, 22,

65

o KmmmVem

cnmuii~ 0 00 0

cxo o o
-iovineo caoo

o eno sa o
00c00 00

o Zre o ooo

MG000 0 0 0 1

0.005 0.010 0.015 0.020 0.025 0.030 0.035

Pairwise similarity between entites

(a) Node Count Regularization

Experiment 2

o amm
0 0 3 0

o cwaR o 0

a) um o0 0 0

a00_ 0

to -CD-

U-

v-

20], our method explicitly trains parameters from the corpus, so we will report 4-fold

cross validation scores for our results. The comparision is shown in Table 6.4

B-CUBED F
Bagga and Baldwin (1998) [1] 0.780
Rao et al. (2010) [20] 0.664
Singh et al. (2011)[22] 0.618
Latent Tree + SampleRank, LD regularization 0.813
Latent Tree + SampleRank, NC regularization 0.802
Latent Tree + CD, LD regularization 0.787

Table 6.4: Comparision of B-CUBED F of previous work and our methods on the
John Smith corpus.

We note that Bagga and Baldwin (1998) [1] is able to obtain a 0.846 F measure

by using complex article summary features, so the score we presented is their result

using the full articles we do. Rao et al. (2010) [20] and Singh et al. (2011)[22] were

more concerned with scalability of their CDCR method, so the low F scores are likely

a result of lack of proper parameter tuning.

For our methods, we observe that learning with SampleRank seems significantly

better than Contrastive Divergence, which supports our observations in section 6.2

and makes sense because SampleRank has access to a domain-specific objection func-

tion. The difference between using LD and NC is small in this case, with LD doing

performing slightly better.

These results show that our approach is competitive with previous works, out-

performing them when we consider only the results using the same complexity of

features we are using (recall, our feature were only bag-of-words, bag-of-names, and

a useless entity-type feature). This probably the result of our method, first, learning

the features in a systematic way and, second, capturing some structural information

about the corpus in the form of structural regularization.

66

Chapter 7

Conclusions and Future Work

7.1 Conclusion

The main goal of this thesis was to develop a new method for cross-document coref-

erence, based on learning a latent tree structure over the mentions.

We augmented our model with a notion of regularizing complex tree structures.

We observed that there are trade-offs between using different regularizations. For

example, sum of leaf depth penalization seems to have lower variance than node count

penalization. However, leaf depth regularization requires a size correction factor,

which is only an approximate heuristic, while node count regularization needs no

such thing to generalize.

To train the model parameters, we implemented a parameter estimation algorithm

based on Contrastive Divergence and selectively deciding when to make parameter

updates. To tune regularization constants, we implemented a form of ternary search.

With these parameters, we used Metropolis Hastings inference to learn the latent tree

structure over entities.

We then explored the behavior of our model on two datasets. We identified weak-

nesses in the model that become apparent during inference and showed how structural

regularization helps overcome these problems. We analyzed additional effects struc-

tural regularization had on inference and attempted to quantify if the latent hierarchy

over entities was interpretable.

67

Our method is competitive with other work in the literature, out-performing them

if we consider using only a simple set of features. One explanation for this is that we

don't only learn model parameters from the corpus, but also something inherent about

the hierarchical structure of mentions, via the structural regularization constants.

7.2 Future Work

First, we were able to obtain very good results without using very sophisticated

features. An obvious next step would be to include several other state-of-the-art

features (such as LDA topic features) and seeing how our model performs. There

are additionally many other structural statistics that can be explored (such as the

number of children each node has) and characterized like we have done so in this

thesis.

With the data becoming bigger and bigger everyday, many recent CDCR ap-

proaches have been developed to scale to corpuses with millions of mentions [22, 25,

20]. While our current approach does not scale to that magnitude, there is a clear

path to make it scale. Because our main inference approach is based on Metropolis

Hastings inference, which computes likelihood ratios using a very local part of the

tree, we can follow the lead of [22, 25] and massively parallelize the inference pro-

cedure, because we can make proposals withining disjoint subtrees without affecting

each other. Similarly, the parameter learning framework can be be parallelized by

having several independent workers collecting gradient updates in parallel and sending

them to a central master that combines them.

Finally, we can also make our approach an online algorithm for CDCR. Recall

that our inference procedure starts with new mentions as children of the root of the

tree. We thus can intermittently stream new mentions and add them as children

of the root and continue performing inference. As long as the new mentions are

generated similarly to the current mentions, we would not need to re-estimate model

parameters. Furthermore, structural regularization constants can be size-corrected if

necessary.

68

7.3 Summary

We have developed new perspective of coreference as the problem of learning a latent

tree structure over the observed mentions. We show how to invoke Occam's razor

to select simpler structures during inferene and provide methodologies for learning

parameters for the model. By invoking on other fields, such structure learning, we see

that it is possible to gain new insights for problems like cross-document coreference.

69

70

Appendix A

Derivations of Likelihood Ratio for

Metropolis Hastings Proposals

Here we derive the form of the likelihood ratio for each of our Metropolis Hastings

proposals.

A.1 Subtree Creation/Deletion

Recall the A (Subtree Create) move is as follows.

R

V1 s1 ssvo ..

Alnv on (0,1)
R

X s1 s
A on (0, 1)

VO V1

Figure A-1: Subtree Creation proposal and its inverse

Suppose we have a root vertex R with children V, V and S1,..., S,. Thus R has

1+1 + s children. For ease of notation later, let us denote S = {Si, . .. S,}, so ISI = s.

71

Furthermore, we have that

R =Vo +V+ S1 +...S.

where the sum is over data.

The structural differences (e.g. edges and nodes whose states have changed) before

and after performing a Subtree Create action are summarized in Table A.1. We use

the notation R[A, B, C] to state that vertex R has children A, B, C and a ' indicates

that the node is different. To get the structural differences for the Subtree Delete

action, switch "Initial" and "Final". The node and edge potentials corresponding to

nodes and edges in the structural differences are the only potentials that need to be

re-computed for the likelihood ratio.

Initial state
node R[vo,v1, S]
edge (vo, R), (vi, R)

Table A.1: Node and pairwise potentials
Create/Subtree Delete actions.

Final state
X [vo, v1], R' [X, S]

(vo, X), (vi, X), (X, R')

that need to be re-computed for the Subtree

72

A.2 Subtree Move Up/Down

Blnv on (0,1)
R

B on (0,1)

VO

V1 C1 C2 c

RC

V1 S1 s

VO

C1 C2 c

Figure A-2: Subtree Move Up/Down proposal action and its inverse

Again, we have a root node R with V, V and S1,... , S,. Additionally, we consider

the node vo having children C1 ,...Cc. For ease of notation later, let us denote

C = {C1,.... C}. We thus additionally have

V = C1 + .. + Cc

where the sum, again, is over data.

In Table A.2 we show the corresponding node and edge structure differences before

and after performing the Subtree Move Down action. Simlarily, to get the structure

differences for the Subtree Move Up action, switch "Initial" and "Final" in the table.

node Initial R[vo,v1 ,S],vo[C]
Final R'[vo, S], V'[vi, C]

edge Initial (vo, R), (vi, R), {(ci, vo)Vcj E C}
Final (v', R), (vi, v'), {(ci, v6)Vci E C}

Table A.2: Node and pairwise potentials that need to be re-computed for the Subtree
Move Up/Down actions.

73

74

Appendix B

Online Algorithm to Update

Pairwise F1

Here we show how the Pairwise F score can be updated efficiently, when the updates

correspond to moving some subset of a cluster into another cluster. This algorithm

uses 0(1) extra space for the counts of true positives, false positives, and false nega-

tives. The full states of all the specific clusters do not need to be stored explicitly in

one place, which is helpful for massively distributed setups.

We use the same notation as defined in Figure 2-1 and additionally define counta\b(e)

to be the number of mentions of entity e in the cluster ca \ Cb.

75

1. Initialize TP, FP, FN to be the number pairs of true positives, false positives,
and false negatives in the initial clustering (see Figure 2-1)

2. For any two clusters ci, c3 and moving c, C ci from ci into cj, update the above
counts:

(a) Compute the number of pairs of mentions in the original ci that will go
from positive (coreferent) to negative (not coreferent)

newFalsePairs = count,8 (e)countj\,8 (e)
eEE(cjUcj)

(b) Compute the number of pairs of mentions in the original ci that will go
from negative to positive

newTruePairs = EZ count,(e)countj (e)
eEE(cjUcj)

(c) Update the counts of true positives, false positives, false negatives as

TP = TP + newTruePairs - newFalsePairs

FN = FN + newFalsePairs - new'ruePairs

FP = FP +cS - (Icj - Icil + c.) + newFalsePairs - newTruePairs

Figure B-1: Online Algorithm to Update Pairwise F score

76

Bibliography

[1] A. Bagga and B. Baldwin. Entity-based cross-document coreferencing using
the vector space model. In Proceedings of the 17th international conference on
Computational linguistics, pages 79-85, 1998.

[2] S. Beheshti, S. Venugopal, S. Ryu, B Benatallah, and W. Wang. Big data and
cross-document coreference resolution: Current state and future opportunities.
Technical report, University of New South Wales, 2013.

[3] Seyed-Mehdi-Reza Beheshti, Srikumar Venugopal, Seung Hwan Ryu, Boualem
Benatallah, and Wei Wang. Big data and cross-document coreference resolution:
Current state and future opportunities. CoRR, abs/1311.3987, 2013.

[4] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.
J. Mach. Learn. Res., 3:993-1022, March 2003.

[5] Miguel A. Carreira-Perpinan and Geoffrey E. Hinton. On contrastive divergence
learning. Artificial Intelligence and Statistics, 2005.

[6] Myung Jin Choi, Vincent Y. F. Tan, Animashree Anandkumar, and Alan S.
Willsky. Learning latent tree graphical models. Journal of Machine Learning
Research, 12:1771-1812, 2011.

[7] C. Chow and C. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Trans. Inf. Theor., 14(3):462-467, September 2006.

[8] Aron Culotta, Michael Wick, Robert Hall, and Andrew Mccallum. First-order
probabilistic models for coreference resolution. In In Proceedings of HLT-NAACL
2007, 2007.

[9] Geoffrey E. Hinton. Training products of experts by minimizing contrastive
divergence. Neural Computation, 14(8):1771-1800, 2002.

[10] J. Kiefer. Sequential minimax search for a maximum. Proceedings of the Amer-
ican Mathematical Society, 4(3):502-506, 1953.

[11] Nguy G. L. Machine learning approaches to coreference resolution, 2008.

[12] Peter Langfelder, Bin Zhang, and Steve Horvath. Defining clusters from a hier-
archical cluster tree. Bioinformatics, 24(5):719-720, March 2008.

77

[13] Shuying Li, Dennis K. Pearl, and Hani Doss. Phylogenetic tree construction
using Markov Chain Monte Carlo, 1999.

[14] Pavan Kumar Mallapragada, Rong Jin, and Anil K. Jain. Online visual vocab-

ulary pruning using pairwise constraints. In CVPR, pages 3073-3080. IEEE,
2010.

[15] James Mayfield, David Alexander, Bonnie J. Dorr, Jason Eisner, Tamer Elsayed,
Tim Finin, Clayton Fink, Marjorie Freedman, Nikesh Garera, Paul McNamee,
Saif Mohammad, Douglas W. Oard, Christine D. Piatko, Asad B. Sayeed, Zareen

Syed, Ralph M. Weischedel, Tan Xu, and David Yarowsky. Cross-document

coreference resolution: A key technology for learning by reading. In AAAI Spring

Symposium: Learning by Reading and Learning to Read, pages 65-70. AAAI,
2009.

[16] David Menestrina, Steven Euijong Whang, and Hector Garcia-Molina. Evalu-
ating entity resolution results. Proc. VLDB Endow., 3(1-2):208-219, September

2010.

[17] P. Murugavel. Improved hybrid clustering and distance-based technique for out-

lier removal. In International Journal on Computer Science and Engineering

(IJCSE), 2011.

[18] Chris Pal Pallika Kanani, Andrew McCallum. Improving author coreference by
resource-bounded information gathering from the web. In International Joint

Conference on Artificial Intelligence, 2007.

[19] Altaf Rahman and Vincent Ng. Supervised models for coreference resolution. In

Proceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing, pages 968-977, 2009.

[20] Delip Rao, Paul McNamee, and Mark Dredze. Streaming cross document entity

coreference resolution. In Proceedings of the 23rd International Conference on

Computational Linguistics: Posters, COLING '10, pages 1050-1058, Strouds-
burg, PA, USA, 2010. Association for Computational Linguistics.

[21] Eric Shyu, Jay N. Baxter, John R. Frank, Max Kleiman-Weiner, and Dan A.
Roberts. A tree-based approach to coreference. Technical report, Diffeo, Inc.,
2013.

[22] S. Singh, A. Subramanya, F. Pereira, and A. McCallum. Large-scale cross-

document coreference using distributed inference and hierarchical models. In

Proceedings of the 49th Annual Meeting of the Association for Computational,
pages 793-803, 2011.

[23] Sameer Singh, Michael L. Wick, and Andrew McCallum. Distantly labeling data

for large scale cross-document coreference. CoRR, abs/1005.4298, 2010.

78

[24] M. Wick, K. Rohanimanesh, A. Culotta, and A. McCallum. Samplerank: Learn-
ing preferences from atomic gradients. In Proceedings of NIPS Workshop on
Advances in Ranking, 2009.

[25] M. Wick Wick, S. Singh, and A. McCallum. A discriminative hierarchical model
for fast coreference at large scale. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics, pages 379-388, 2012.

[26] Ren6 Witte and Sabine Bergler. Fuzzy Coreference Resolution for Summariza-
tion. In Proceedings of 2003 International Symposium on Reference Resolution
and Its Applications to Question Answering and Summarization (ARQAS), pages
43-50. Universita Ca' Foscari, June 23-24 2003.

79

