
Automated Anonymous

Analytics of Mobile Users' Behavior

by

Fidel Sosa

S.B, Massachusetts Institute of Technology, (2011)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

@ Massachusetts Institute of Technology 2014. All rights reserved.

Signature redacted
Author ...

Department of Electrical Engineering and Computer Science
May 23, 2014

Signature redacted
C ertified by

Professor Eric Klopfer
Director, MIT Scheller Teacher Education Program

Thesis Supervisor

Signature redacted
A ccepted by

Prof. Albert R. Meyer
Chairman, Ma s of Engineering Thesis Committee

* ASZHSETTVS M E
OF TECHNOLOGY

JUL 51 5201

LIBRARIES

TaleBlazer Analytics:

2

TaleBlazer Analytics: Automated Anonymous Analytics of

Mobile Users' Behavior

by

Fidel Sosa

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2014, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

TaleBlazer is an augmented-reality platform that lets users create location-based
games for their mobile devices. In order to determine the efficacy and use cases
for TaleBlazer games, it is necessary to capture data about user behavior. This thesis
presents TaleBlazer Analytics, an automated system which collects and analyzes mo-
bile users' behavior in TaleBlazer games. It details the development of the TaleBlazer
Analytics system, comprised of the backend data collection service and the front-end
data analysis user interface.

Thesis Supervisor: Professor Eric Klopfer
Title: Director, MIT Scheller Teacher Education Program

3

4

Acknowledgments

I'd like to thank Eric Klopfer, Lisa Stump, and Judy Perry for giving me the oppor-

tunity to work on this project. It has been an eye-opening and rewarding experience

that would not be possible without them.

I'd like to thank Lisa Stump for being a guiding force and great help during the

project, as well as helping me determine a set of achievable goals for the project. I'd

also like to thank Judy Perry for all the guidance and management she provided.

This project would not have been as successful as it was without them.

I'd also like to thank the entire TaleBlazer Development team, including my fellow

M.Engs Tanya Liu, Cristina Lozano, and Stephanie Chang. They provided much help

in testing and making this project fun to work on.

I'd like to thank my academic supervisor, Boris Katz. Without his help during

my undergraduate and graduate years, I would not be where I currently am. A great

thanks to my friends, as well, who have supported me throughout the years.

Finally, I'd like to thank my family, whose sacrifices have allowed me to be where

I am today.

5

6

Contents

List of Figures 11

1 Introduction 15

1.1 Motivations for TaleBlazer Analytics 15

1.2 Chapter Summary . 16

2 Background 17

2.1 TaleBlazer . 17

2.1.1 Overview of a TaleBlazer Game 18

2.1.2 TaleBlazer Technology . 21

2.1.3 Past Projects . 23

2.2 Why Build TaleBlazer Analytics? . 23

2.2.1 Purpose of Data Collection . 24

2.2.2 Motivations . 26

3 Preliminary Work 29

3.1 Types of Analytics Data to Capture 29

3.1.1 Log Tab . 30

3.1.2 User Stories . 30

3.1.3 Analytics Data . 31

3.2 Choice of Server Technology . 34

3.2.1 Technical Requirements . 34

3.2.2 Node.js vs. PHP . 35

7

3.3 U I D esign .

3.3.1 Effect of Mockups on Project Requirements

3.3.2 Partner Feedback .

4 TaleBlazer Analytics

4.1 System Overview

4.2 Analytics Server

4.2.1 Technical Overview.....

4.2.2 Server Structure

4.2.3 REST API

4.2.4 Development Methodology .

4.2.5 Installation and Deployment

4.3 TaleBlazer Analytics Client .

4.3.1 Technical Overview

4.3.2 API Workflow

4.4 TaleBlazer Analytics Site

4.4.1 Technical Overview.....

4.4.2 Analytics Pages

4.4.3 Data Download .

5 Testing

5.1 Overview. .

5.2 Internal Alpha Tests .

5.2.1 Effects on Development. .

5.3 External Beta Test .

5.3.1 Effects on Development. .

5.4 Final User Interface Test .

5.4.1 Results. .

6 Future Work

6.1 Data Visualizations .

8

36

37

38

39

. 39

. 40

. 40

. 4 1

. 4 3

. 48

. 50

. 51

. 5 1

. 52

. 54

. 54

. 54

59

61

61

62

62

63

63

63

64

65

65

6.2 Authentication/Authorization . 66

6.3 Improved Statistic Calculation . 67

6.4 Code Improvements . 67

7 Contributions and Conclusion 69

7.1 Contributions . 69

7.2 Conclusion . 69

A Figures 71

Bibliography 75

9

10

List of Figures

2-1 TaleBlazer Game Editor

2-2 TaleBlazer Mobile Map UI

3-1 Early Analytics Site Mockup

Analytics Site:

Analytics Site:

Analytics Site:

Analytics Site:

Analytics Site:

Games Played

Side Navigation Menu . .

Filter Menu

Agent Bumps Data Table

Overview Dashboard . .

6-1 Example Data Visualization

Analytics Site:

Analytics Site:

Analytics Site:

Gameplay Duration . . .

Custom Events

Agent Bumps

11

20

22

37

4-1

4-2

4-3

4-4

4-5

. 55

. 56

. 57

. 58

. 58

A-1

A-2

A-3

66

. 71

. 72

. 73

12

Listings

4.1 Express URL Routing Example . 41

4.2 API Response Format Example . 44

4.3 Gameplay Duration API Response Example 47

4.4 Example API Test . 49

6.1 Typical Nested Code vs async library 68

13

14

Chapter 1

Introduction

The explosion of the mobile market has led to the proliferation of location-aware

mobile devices and a wide range of mobile applications that provide location-based

content. Augmented reality (AR) applications, for example, enhance the user's real-

life environment with location-specific information. The prevalence and affordability

of these mobile devices, such as smartphones and tablets, make them a natural choice

as tools to augment education and learning. TaleBlazer is an augmented reality

location-based game platform that allows users to create their own games that take

place in the real world and play them on their mobile devices. A goal of the TaleBlazer

project is to determine the educational impact of location-based games, such as how

these games motivate users to learn more. TaleBlazer Analytics is an automated

system that allows game designers and researchers to gather and analyze anonymous

data about users' behaviors during TaleBlazer games.

1.1 Motivations for TaleBlazer Analytics

The wide gamut of user-created TaleBlazer games requires a data collection system

that is both flexible and useful. TaleBlazer Analytics was developed to allow game

designers and researchers to get specific metrics about when and how their games are

played. For game designers, these metrics allow them to create more engaging and

effective game experiences. For researchers, these metrics provide crucial insight into

15

users' gameplay progress and decision making. Game designers and researchers also

need a way to quickly analyze data collected from game sessions.

Existing analytics solutions fail to provide data analytics relevant to TaleBlazer

specifically and often do not provide an adequate level of user privacy. Furthermore,

the unique nature of TaleBlazer games requires custom analysis of the generated data.

As a result, it was necessary to develop TaleBlazer Analytics to meet our needs.

Over the past year and a half, I have developed an automated data collection

system which seamlessly integrates with the existing TaleBlazer app and server archi-

tecture, working closely at each step with the TaleBlazer team. TaleBlazer Analytics

is comprised of a backend server, mobile client, and web application; these individ-

ual components are jointly responsible for the collection, storage, and analysis of

TaleBlazer gameplay data.

1.2 Chapter Summary

This thesis describes the background, design, and development of the TaleBlazer An-

alytics system. Chapter 2 details TaleBlazer in-depth and expands on the need for

TaleBlazer Analytics. Chapter 3 explains the design process and preliminary work

that was performed prior to the start of development. Chapter 4 details the Tale-

Blazer Analytics system and its component in depth. Chapter 5 goes into particular

tests that were performed on the system and their effects on the project. Chapter 6

proposes future work for the project and Chapter 7 details the overall contributions

of this thesis.

16

Chapter 2

Background

This chapter gives a background on the TaleBlazer project, including its separate

components and how they work together as a whole. The history of TaleBlazer and

past location-based projects are also detailed. Finally, the chapter expands on the

need for TaleBlazer Analytics.

2.1 TaleBlazer

TaleBlazer is an augmented reality location-based game platform developed at the

MIT Scheller Teacher Education Program (STEP). TaleBlazer is a platform in the

true sense in that it is composed of multiple technologies which all come together

to produce the TaleBlazer experience. At its core, TaleBlazer lets users create their

own games that take place in the real world, using a web-based game editor. Users

can then choose to publish their games to the world at large. Using the Android or

iOS TaleBlazer mobile application, players play TaleBlazer games by downloading the

game and physically walking around in the real-world location that the game takes

place in. Players interact with virtual game agents: user-scripted entities that are

placed by the game designer at specific GPS coordinates.

17

2.1.1 Overview of a TaleBlazer Game

A typical TaleBlazer game consists of the following parts:

" regions, which are the real-world locations where the game takes place

" roles, which encompass different sets of behaviors for the player(s) in the game

" scenarios, which encompass different versions of a game

" agents, which are in-game virtual entities that player(s) interact with

" traits, variables that belong to different in-game entities or the world

" scriptblocks, sets of programming instructions that define the behaviors for

game entities

Regions

Regions are real-world locations where TaleBlazer games take place. Using the game

editor, game designers define their game regions by selecting an area of a Google map.

Regions define the area where in-game virtual entities, called agents, can be placed.

Games can have one or more regions, each with their own name. The game designer

also has the option of moving the player or agents from one region to another during

the course of game using TaleBlazer's programming language. In order to play a

TaleBlazer game, a player goes to the real-world location with their mobile device

and moves around the region to activate or "bump" into the agents placed at nearby

locations.

Roles

Roles allow game designers to define different characters or types of interactions for

different sets of players. This allows designers to create role-playing game experiences.

A game can have one or more roles. If a single role is defined, then all players

experience the same game. Multiple roles let the game designer define different sets

of behaviors for different roles. Each role has a name and an optional description,

18

which players see when choosing between roles at the start of a TaleBlazer game. For

example, a game might have players choose between the roles of "Secret Agent" and

"Police Officer".

Scenarios

Scenarios allow game designers to create different versions of the same game that

players can choose between. For example, scenarios could be difficulty options, such

as "Easy", "Medium", and "Hard". Games can have one or more scenarios, each with

their own name. If a game has multiple scenarios, then the player is asked to choose

between them at the start of a game. The game designer can tailor the behaviors of

his game according to the choice of scenario.

Agents

Agents are the in-game virtual entities with which players interact during the course

of a TaleBlazer game. Agents have a name, description, set of behaviors, and an

optional real-world location. Agents could be anything from items like a treasure

chest to a non-player character (NPC) that gives a player quests. Users have multiple

methods by which they can interact with agents. Agents placed within a region have

corresponding GPS coordinates. Players interact with the agent by arriving at the

GPS coordinates of an agent. Some games allow the user to tap on an agent's icon on

the map of the game to interact with the agent, referred to as "tap-to-visit". Although

there are many different ways that a player could come to interact with an agent, an

agent interaction in general is referred to as an agent bump.

T'raits

Traits are variables that can be attached to agents, roles, or the game world in general.

Traits have names and values and can be modified during the course of a game based

on the behaviors defined by the game designer. Game designers can create their own

custom traits, each with a user-defined value. Traits can be used to represent game

mechanics, such as a score.

19

ScriptBlocks

ScriptBlocks is a block-based programming language that allows game designers to

define the behaviors for their game. ScriptBlocks is block-based because all program-

ming instructions come in the form of blocks that you connect together using a visual

game editor (see Figure 2-1). For example, conditional behaviors can be defined using

a conditional IF-ELSE block, which has sockets that allow you to insert other blocks

to define the conditional statement to evaluate. Game designers can write game be-

haviors by creating agent or role-specific scripts, or by writing scripts applicable to

the entire game world.

TaleBlazer contains a comprehensive set of programming blocks, encompassing

a variety of purposes from logical and mathematical functions to TaleBlazer-specific

commands. For example, a user can easily check the state of a game agent or move

an agent or player from one location to another.

Agentsndpded IS smWrt

AgTmtDashboarm..
..

Trash

ftkt"4 OW

100 i. ' ONo
ATc-sR.~

..............

Figure 2-1: The TaleBlazer Game Editor web application

20

2.1.2 TaleBlazer Technology

The TaleBlazer platform is comprised of four main parts:

" the game editor, which lets users create their own games

" the mobile application, on which TaleBlazer games are played

" the repository server, which stores and serves games

" and the multiplayer server, which enables multiplayer TaleBlazer games

Game Editor

The game editor is an online web application that lets users create their own Tale-

Blazer games through the use of ScriptBlocks. Using the editor, users add and config-

ure their game regions, create agents, roles and scenarios, and program the game by

composing scripts. Users can save their games, which are then stored on TaleBlazer

Server. The game editor also provides options for modifying the game interface that

players see when playing a game on their mobile device. The game editor is written

in JavaScript.

TaleBlazer Mobile

TaleBlazer Mobile is an Android and iOS mobile application that lets users play

TaleBlazer games. The app lets users download TaleBlazer games onto their device

and play them, utilizing the location-aware functionalities of the device. TaleBlazer

Mobile interprets the blocks in each game file and executes them during the course

of the game.

The TaleBlazer Mobile game interface consists primarily of a map of the current

game region and icons indicating the position of the player and active game agents

(see Figure 2-2). Tabs along the top of the screen provide different gameplay func-

tionalities. For example, a game can include the Inventory tab, which tracks currently

held items, or the Log tab, which contains a log of all the actions a player has taken

during the course of a game.

21

TaleBlazer Mobile is written using Appcelerator Titanium, an SDK that lets de-

veloper write native Android and iOS applications using JavaScript.

Figure 2-2: The TaleBlazer Mobile Main Map Interface

TaleBlazer Server

TaleBlazer Server is the main repository server, which handles user accounts, hosts

the game editor, and stores and serves TaleBlazer games and game-related files (e.g.

images, video). TaleBlazer Server is written in PHP using the CakePHP framework

and backed by a MySQL database.

TaleBlazer Multiplayer

TaleBlazer Multiplayer is a separate server that provides multiplayer functionality for

TaleBlazer games. It implements a separate protocol that synchronizes the state of

22

the world between all devices playing a multiplayer game. The server is written in

Node.js, using JavaScript.

2.1.3 Past Projects

TaleBlazer is the most recent iteration and study into AR games performed at the

STEP lab. Past projects, such as MITAR and StarLogo TNG, provided a basis on

which TaleBlazer was built, namely the emphasis on augmented reality and the use

of a block-based scripting language.

MITAR

MITAR (MIT Augmented Reality) was the immediate ancestor of TaleBlazer. Simi-

lar to TaleBlazer, MITAR sought to let users play location-based augmented reality

games on earlier mobile platforms, such as Windows Mobile. MITAR also focused

on the educational impact of augmented reality games on users. One game, called

"Environmental Detectives", put users into the roles of investigators searching for the

source of a toxic spill, taking measurements in order to determine the environmental

impact. [5]

StarLogo TNG

StarLogo TNG (The Next Generation) was a project in programmable simulation

modeling which allowed users to explore the workings of complex decentralized sys-

tems, such as ant colonies and traffic jams. [61 Similar to TaleBlazer, users could

program the simulation using a block-based scripting language.

2.2 Why Build TaleBlazer Analytics?

The educational focus of the TaleBlazer project requires that the impact of TaleBlazer

games on learning be measured. Game designers and educational researchers are

supremely interested in seeing exactly how players play their games in order to draw

conclusions as to their games' success and impact.

23

The rationale behind building TaleBlazer Analytics is two-fold. First, the public

release of TaleBlazer requires an automated way of gathering quantitative data about

all gameplay sessions. Previously, the only way to gather data was by observing

players as they played. Second, existing analytics solutions fail to provide analytics

relevant to TaleBlazer with a desirable level of privacy. To this end, it was necessary

to build TaleBlazer Analytics to meet our requirements.

2.2.1 Purpose of Data Collection

The overall purpose of collecting TaleBlazer gameplay metrics is to provide inter-

ested parties with information to make informed decisions regarding the effectiveness

of their game, across different aspects. Specifically, these parties are interested in

quantitative metrics, such as the number of players that completed a game and the

choices that were made during a gameplay session.

This type of data could be used to identify buggy game scripts or points of player

confusion. It could also be used to determine the appeal of specific narrative elements.

For example, a game designer would be able to determine if changing the name of a

role from "Police Officer" to "Officer Awesome" made the role more appealing.

There are four main parties that are interested in this type of data:

" Game designers

* Educational researchers

" TaleBlazer developers

" Institutions

Game designers

Game designers are primarily interested in seeing how players progress through the

game and the choices they make along the way. Using this information, a game de-

signer can quickly identify problematic spots. For example, players may stop playing

after a particular point in the game because the instructions to proceed aren't clear

24

or there is a bug in the game scripts. As a result, the game designer can improve the

game to make it a better experience for the players.

Educational researchers

Educational researchers are interested in seeing how a game's content affects a player

in the short or long-term. The choices that a player makes during a session can

inform the researcher as to the level of a player's knowledge or how the content

affected the player's understanding of the topic at hand. The gameplay metrics can

be paired with external data, such as post-gameplay questionnaires or interviews.

For example, a researcher studying a game about the environment might look at if a

player encountered an EPA agent in-game or how fast they completed the game to see

if a player missed crucial information or may not have been paying attention. Games

can also include in-game research questions, asking players' about their motivation

for future activities and their interest in certain educational topics.

TaleBlazer developers

TaleBlazer developers are interested in the technical aspects of games in order to

inform future technical decisions and feature roadmaps. For example, the kinds of

devices being used and the version of their operating systems (OS) are supremely

useful in determining possible technical issues related to specific devices and the

adoption rate of new OS versions. This information can then be applied to guide the

TaleBlazer development process and provide concrete data with which to prioritize

tasks.

Institutions

Analytics data may also be used for purposes outside of games. TaleBlazer is currently

in use at several institutions across the country, such as botanical gardens, zoos, and

historical sites. In these cases, quantitative metadata concerning when and how

long games are played can prove especially useful in determining the effectiveness

25

and impact of TaleBlazer games on visitors. Additionally, it can also help provide

information about the impact of exhibits and areas of an institution.

Institutions may be particularly interested in raw numbers, such as how many

visitors played a particular game and the game's popularity over time. This can

help institutions determine how funding gets spent to improve exhibits and areas.

Furthermore, it can also help them identify ways to reach particular hard-to-reach

audiences, such as "tweens".

2.2.2 Motivations

The user-generated nature of TaleBlazer games results in games that span a huge

range of possibilities. As a result, TaleBlazer requires an analytics solution that is

both comprehensive and useful: comprehensive in order to accommodate the range

of possibilities of TaleBlazer games, and useful in order to provide meaningful and

relevant analytics. In particular, an automated and non-interfering data collection

system was necessary in order to collect comprehensive data; a custom analytics

system was necessary in order to provide statistics custom and specific to TaleBlazer

games.

Automated Non-Interfering Data Collection

With the public release of TaleBlazer, it was necessary to automate the collection of

data from all gameplay sessions. Previously, all TaleBlazer games were played in a

moderated setting, in which adult facilitators would guide gameplay, troubleshoot,

and see how the game was being played in real-time. This approach is infeasible

when groups are unmoderated or large. As a result, it was necessary to develop an

automated system for collecting gameplay data for all sessions.

The previous method for collecting gameplay data involved observing players as

they played. Although this approach yielded (and continues to yield) important data

regarding players' dialogues and moods, it had two downsides. First, it resulted in an

incomplete picture of an entire group's gameplay sessions, as the number of players

26

that could be observed was limited to the number of facilitators present. Second, it

interfered with gameplay. Players tended to act completely differently when being

observed than when left to their own devices, resulting in skewed data. As such,

an automated system was necessary in order to gather quantitative data about all

gameplay sessions without interrupting players and to complement existing manual

observation methods.

Relevant Analytics and Privacy

Existing analytics services were investigated to see if they fit the needs of the Tale-

Blazer project. These services focus on providing a general data collection solution for

its users. Solutions provided by Flurry and Mixpanel, for example, focus on an event-

based method of analytics, which tracks unique events across every use of the app.

However, these services cannot generate data analytics that are useful and specific to

TaleBlazer because they focus on collecting data rather than providing application-

specific data analysis. As a result, it was necessary to develop an analytics system

built with TaleBlazer in mind. Specifically, this means that features such as data

collection, categorization, and statistics calculation can be customized to fit the use

cases of TaleBlazer Analytics users.

A separate concern arose when dealing with the nature of the TaleBlazer analytics

data and the question of privacy. Privacy is supremely important to the TaleBlazer

project, as games are often played by minors and students. As a result, it is a require-

ment that any collected data be completely anonymized and only used for educational

and research purposes. Existing solutions, such as Flurry, do not guarantee the abso-

lute privacy of the data provided to them and in fact may share that data with third

parties. [1] As such, it was necessary to build TaleBlazer Analytics to ensure that

data was anonymized and used only for the purposes of the TaleBlazer project.

27

28

Chapter 3

Preliminary Work

Prior to the start of the development of TaleBlazer Analytics, many decisions had

to be made in order to arrive at a feature specification for the system. In order to

develop a useful analytics system, the types of analytics data to capture had to be

determined. To meet the technical needs of the project, the technology used to build

the new system had to be benchmarked and chosen. Finally, the user interface for

the analytics site was mocked up and underwent an iterative design process.

3.1 Types of Analytics Data to Capture

The key purpose of TaleBlazer Analytics is to capture metrics about TaleBlazer

games. In order to achieve this, it was first necessary to determine exactly what

kinds of data would be useful to capture and if we could capture it. First, prelimi-

nary work was performed in TaleBlazer Mobile to identify the types of information

that the system was to collect through the development of an additional mobile tab

dedicated to logging information. Second, a collaborative process was undertaken to

arrive at user stories for TaleBlazer Analytics users. Finally, these user stories defined

the analytics data that was to be captured.

29

3.1.1 Log Tab

The Log Tab is a new tab in TaleBlazer Mobile that was developed specifically to lay

the foundation for the development of the TA system. This tab contains a chrono-

logically sorted list of game events that players can view in order to get a high-level

picture of the actions they have taken during a game. The Log Tab contains infor-

mation such as when a particular agent was bumped and whether a player picked up

certain items.

The purpose of the Log Tab was three-fold. First, it allowed players to review

their actions during a game, which was particularly useful for long games. Second, it

served as a way to identify game events that would be useful to collect as data. If a

particular event was deemed necessary to go in the log, then that type of data was

prioritized to collect. It also helped alert us to the kinds of data that were possible to

collect. This helped us reach a feasible and grounded feature specification later on.

Second, it served as a way to introduce players and game designers to the types of

game events that we would later go on to track in TaleBlazer Analytics.

3.1.2 User Stories

In order to determine the specific events that were to be captured, we worked back-

ward to determine what types of analytics data would be the most useful to users.

This came in the form of user stories: short sentences that describe at a high-level

what users will want from a product. The types of users that would be interested in

TaleBlazer Analytics were decided and short stories were written for each of them.

The three types of users that were determined were:

" occasional users

" power users (i.e. designers and researchers)

" TaleBlazer staff (i.e. developers and researchers)

Occasional users are people that have made and played a few TaleBlazer games and

are primarily interested in high level analytics data, such as how long people played

30

their game and how many people completed the game. Power users are game designers

and educational researchers and are interested in more detailed statistics, such as the

ability to categorize the data based on the roles and scenarios of players. These users

are also interested in generating their own custom analytics data. Finally, TaleBlazer

staff are developers and researchers that are interested in technical information such

as the models of devices being used and their screen resolutions. One of the user

stories we wrote, for example, was the following: "As an occasional user, I want to be

able to see what version of my game they played."

3.1.3 Analytics Data

With the user stories, we were able to determine exactly what kinds of data we

wanted to collect. TaleBlazer Analytics takes an event-based approach to data collec-

tion. All events record the time that they occurred in-game, as well as event-specific

information. The data that we were interested in capturing involved the following:

" devices

" sessions

" agent bump events

" region switch events

" game completion events

" custom events

Devices

Device information was critical to capture in order to gather technical metrics and to

be able to identify unique users. This information involved the OS and its version,

the model of the device, and the screen resolution. Additionally, each device has a

unique ID specific to TaleBlazer and cannot be traced back to the device or used to

identify it for non-TaleBlazer purposes.

31

For power users, device information can be used to analyze players' behaviors

throughout multiple games. For TaleBlazer developers, this information can help

prioritize development tasks and identify device-specific issues.

Sessions

Sessions represent all the information about a single gameplay session. All events that

take place within a game are tied to a particular session. Sessions consist of the time

that the game was started and the time of the last event that occurred. They also

contain information about the particular role and scenario chosen for that gameplay

session and whether the tap-to-visit setting was enabled. Finally, the session is tied

back to the particular version of the game being played and the device on which it

was played.

In general, sessions provide the basis for all analytics data, as they can be used to

determine information from the number of overall players to the sequence of actions

that a player took during a gameplay session.

Agent Bump Event

An agent bump event occurs when the player "bumps" into an agent, via a variety of

methods. An agent can be bumped by:

" walking within range of its GPS coordinates

" being tapped on when tap-to-visit is enabled

" being encountered via the augmented reality camera HUD

" unlocked by entering a password called a clue code

" being accessed from the inventory

Each agent bump event records the name and unique ID of the particular agent

that was bumped. It also details how the agent was bumped and the session that the

event took place in.

32

Agent bumps can be used to identify information such as the number of unique

times that an agent was bumped and how far a player made it into the game.

Region Switch Event

A region switch event occurs when the player moves from one game region to another,

triggered by a "Move To Region" block. Each region switch event records the name

and unique ID of the region, as well as its corresponding session. With this data,

region switch events can be used to determine information such as the number of

players that reached a certain point in a game.

Game Completion Event

Game completion events record when a particular game was completed. Prior to

TaleBlazer Analytics, TaleBlazer games did not have a fixed concept of the end of a

game. In order to track this data, a new block was added to the game editor called

the "End Game" block. The sole purpose of this block is to mark the end of a game

from an analytics standpoint. Game designers can use this block to mark a point after

which they do not want to continue tracking events for that session. For example,

a game might allow players to replay the game, which the game designer might not

wish to track events for. Each game completion is tied to a session.

Custom Events

Custom events allow game designers to track player choices or dynamic values custom

to their specific games. In order to accomplish this, a new block was developed called

the "Analytics Event" block. Users can create and name their own custom event and

track whichever values they would like. For example, a user might create an analytics

event called "Player score" and track the value of a trait representing the player's

score. The game designer then places the block where they would like the event to

be triggered. This gives game designers a flexible way of tracking data specific to

their games. For example, custom events could also be used to track the actions of a

player, such as whether a player picked up an anvil.

33

In terms of TaleBlazer Analytics, custom events record the name and unique ID

of the custom event, as well as the value the game designer wanted to track. Custom

events are tied to their corresponding session.

3.2 Choice of Server Technology

In order to build a robust system, it was necessary to determine the technical require-

ments of the project, driven by our goal to collect extensive analytics data. These

technical requirements led to the consideration of two different server technologies:

Node.js and PHP/Apache.

3.2.1 Technical Requirements

The main goal of TaleBlazer Analytics was to provide real-time data collection and

analysis for its users. Furthermore, a goal of the project was to provide a fine level

of detail and granularity in the analytics data. For example, users of the system

should be able to view the number of unique and total bumps for a particular agent,

categorized by data such as the role of the player and the date. This fine level of

detail required TaleBlazer Analytics to keep track of the unique events that occur

for the types of data that we wanted to capture. In order to accomplish this, each

individual event would have to be processed and stored. As a result, TaleBlazer Ana-

lytics required a server technology that could handle a massive amount of concurrent

requests.

Another requirement had to do with the existing technologies in use on the Tale-

Blazer project. In general, the choice of technology for a new project is driven largely

by the existing technologies already in use. This allows members of the team to

more easily transition and understand the multiple components in use on the project.

The majority of the TaleBlazer platform is written in JavaScript, with the sole ex-

ception being TaleBlazer Server, written in PHP. As a result, it was necessary to

pick a server technology that utilized either JavaScript or PHP in order to maintain

technical consistency throughout the TaleBlazer platform.

34

3.2.2 Node.js vs. PHP

The two server technologies that met our requirements were Node.js and PHP running

on Apache (referred to as PHP/Apache). These technologies were already being used

in the TaleBlazer platform: TaleBlazer Multiplayer runs on Node.js and TaleBlazer

Server runs on PHP/Apache.

Node.js

Node.js is an asynchronous, event-driven software platform for building highly scalable

network applications in JavaScript. Node utilizes the Google V8 JavaScript engine

for its runtime, which is also used in the Google Chrome browser.

Typical multi-threaded servers allocate a thread per request, which results in high

memory overhead. For example, at a typical 2MB per thread, a server with 6GB of

RAM would theoretically be able to handle 3000 requests, ignoring all other processes

and operations. Node's main benefit is that it runs all operations asynchronously on

a single thread, using non-blocking I/O operations. As Node runs on a single thread,

the memory overhead for a server running Node is significantly less than that of a

typical multi-threaded server. Node's asynchronous event-loop means that massive

amounts of concurrent requests can be handled. This is because all requests are

handled asynchronously with non-blocking I/O, so no request blocks another from

completing. [8]

PHP/Apache

The second choice for server technology was PHP running on Apache. The existing

TaleBlazer Server utilizes this stack, using CakePHP as its Model-View-Controller

(MVC) web application framework. Apache is one of the most widely used open

source servers on the Internet.

35

Benchmark Methodology

One of the main requirements for TaleBlazer Analytics was to be able to handle

large numbers of concurrent requests, generated by the TaleBlazer Mobile clients

sending back analytics data. In order to determine the best choice of technology,

it was necessary to create a benchmark for comparing the speeds of Node.js and

PHP/Apache. Two servers were written in Node.js and Apache, each exposing a

single API endpoint. Each server would insert a row filled with random information

into a MySQL database table on HTTP requests to the API. Each server was deployed

onto an Amazon EC2 ml.small instance with 1.7 GB of RAM.

The benchmark utilized Apache Bench to determine the number of requests per

second each server could handle at different numbers of concurrent requests. Each

server was tested 10 times at each level of concurrent requests. The levels of concur-

rent requests started at 100 and increased by 100 until 900 concurrent requests were

reached. The results were then averaged over 10 runs of the benchmark.

Benchmark Results

The benchmark showed that Node was able to achieve an average of 505 requests per

second, with a max of 762 req/s @ 100 concurrent requests and a min of 140 req/s

900 concurrent requests. PHP/Apache was able to achieve an average of 237 requests

per second with a max of 220 req/s A 100 concurrent requests and 80 req/s 900

concurrent requests.

The purpose of this benchmark was to get a sense for the difference in speeds

between the two server technologies. The results of this benchmark pushed the project

to decide on Node.js as the server technology.

3.3 UI Design

In order to get a better sense of how to present useful data analytics to TaleBlazer

Analytics users, it was necessary to mock up the user interface for the site component

of TaleBlazer Analytics. Existing analytics dashboards were investigated and several

36

mockups of increasing fidelity were then created. The mockups were presented to

TaleBlazer partner institutions who provided feedback on the designs. Figure 3-1

shows one of these early mockups.

ToanA"syo- AA~n oo Games Initiated I WnWla
*A-MFe law," In &4D.W

......

no t

IL
VWM4"d pop I My I

140

ISO

M

Am# 170

MW

UM

Figure 3-1: Early design for the Games Initiated page, which showed the number of

games that were started. This would eventually become the Games Played page in

the final site.

3.3.1 Effect of Mockups on Project Requirements

In designing the mockups, we were able to determine the set of pages that comprise the

TaleBlazer Analytics site. As a direct result, this informed the technical specifications

of the project as to the specific types of statistics that would need to be generated from

the collected data. For example, early mockups introduced the idea of categorizing

information. This feature would go on to become the categorization function, which

is an integral part of all statistic calculations in the final TaleBlazer Analytics system.

From investigating other existing analytics dashboards, features such as fast date

37

range filters were introduced, which live in the final system. The mockups that were

created also included features for the future of TaleBlazer Analytics, such as detailed

data visualizations.

3.3.2 Partner Feedback

One of the main goals of creating these mockups was to familiarize our partner in-

stitutions with the analytics interface and the functions that would be available to

them. In turn, this gave our partners the opportunity to give us feedback regarding

desired features, improvements, and changes.

To this end, annotated mockups were sent to our partner institutions along with a

short survey. The survey asked our partners to rank the site pages that they foresaw

themselves using the most, as well as the categorization options they would most

use. This information helped us prioritize development on the most requested pages.

Features such as the ability to download the full set of analytics data were a direct

result of partner feedback. This feedback also helped us determine how analytics

users would use the site. One respondent answered that during game development,

they would focus on how often agents were bumped and if the game was completed

to help them pinpoint trouble spots. Once the game was stable, they would focus

more on how often and when people were playing the game.

38

Chapter 4

TaleBlazer Analytics

This chapter provides a high-level overview of the three different components that

make up the TaleBlazer Analytics system: the analytics server, client, and website.

The TaleBlazer Analytics system is described in its entirety, including specifics about

each component and how the components work together to form the core of the

analytics functionality.

4.1 System Overview

TaleBlazer Analytics is composed of three different components that work together

to gather, analyze, and present gameplay metrics for TaleBlazer games. The three

components are the:

" analytics server

" analytics client

" analytics website

The analytics server is a Node.js application that is responsible for receiving,

processing, and analyzing gameplay metrics, as well as serving the analytics website.

It forms the backbone of the system.

39

The analytics client is a standalone JavaScript client which is integrated into

TaleBlazer Mobile. It is responsible for the actual collection of gameplay metrics and

handles all the interactions between TaleBlazer Mobile and the analytics server.

The analytics website allows users to view and download the calculated statistics

for their TaleBlazer games. The site receives its information via calls to an API

(Application Programming Interface) hosted by the analytics server. The site is

written in JavaScript with a focus on client-side page rendering, with light server-side

templating.

4.2 Analytics Server

This section provides an in-depth explanation of the technology and development

process behind the analytics server.

4.2.1 Technical Overview

The TaleBlazer Analytics server is a Node.js web application that is responsible for

collecting, processing, and analyzing all the gameplay metrics received from Tale-

Blazer Mobile via the analytics client. The analytics server is built using Express, a

web application framework that provides a robust library for building web services.

The server follows the MVC development pattern for structuring the application. The

server is a RESTful web service, which means that all external interactions with the

server occur via REST APIs. MySQL is used as the backing database for analytics

data, in order to integrate with the existing TaleBlazer Server database.

Strict development methodologies were adopted to ensure that the server is easily

modifiable, extensible, and maintainable. To this end, the analytics server is testable

and extensively documented. The server was built to be easily configurable and simple

to deploy in local, testing, and production environments. Deployment in production

environments alongside TaleBlazer Server is accomplished through the use of Nginx

as a proxy server.

40

4.2.2 Server Structure

A crucial step in developing the analytics server was deciding on the best way to

structure the server. The main goal was to reach an optimum level of component

decoupling, which would allow features to be easily implemented and modified without

affecting unrelated parts of the application. To this end, the Express web application

framework was used to provide the high-level web-oriented functionality, such as

routing and HTTP request handling. The application is split up into models, views,

and controller, which separate code according to their functionality.

Express

Express is a light Node framework for building web applications. It is built on top

of the low-level Node.js HTTP module and provides a high-level API for handling

all interactions having to do with HTTP requests. At its core, Express provides

simple ways of routing URLs, parsing HTTP requests, sending HTTP responses, and

defining paths for request processing via middleware. Defining what code to execute

based on a request to a URL (i.e. routing) is simple using Express.

1 //> R4pnst E eus t/hlool htetx Hy

2app~gt(>/heloorl', funcion *s, *q)

3 Ore-ed'y';

4}).

Listing 4.1: Example of Express' URL routing

Express handles incoming requests by passing a request along a defined path of

functions, each known as middleware. For the analytics server, this provided the

ability to implement robust error handling and logging functionality.

Model-View Controller

Code in the analytics server is organized according to the Model-View-Controller

(MVC) pattern, which allows us to separate code into logical components based on

their functionality. Models represent database objects and contain retrieval and mod-

41

ification methods. Controllers handle incoming requests by retrieving information

from specific models and sending back a response. Views contain the logic for the

user interface and request information from controllers.

Models Models in the analytics server correspond directly to their respective database

tables and allow us to easily perform queries on the database without having to write

SQL. This is accomplished via Sequelize, an object-relational mapping (ORM) library,

which connects to the database and abstracts SQL queries and relations between

tables by providing a high-level JavaScript API. Sequelize also provides migration

functionality, which lets us make incremental changes to the database schema. Addi-

tionally, it performs model validation prior to making any database calls for an extra

level of security. The models for TaleBlazer Server correspond directly to the types

of analytics data in Section 3.1.3.

Controllers Controllers for the analytics server handle, process, and respond to

requests. Each controller provides the functions that get executed when a URL is

requested. For example, requests to register or get information about a device will

always go through the device controller.

Views The analytics server also serves the analytics site and as such is responsible

for providing the HTML, JavaScript, and CSS resources required for each page of

the website. Dynamic page content for the analytics site is largely performed by

client-side JavaScript. However, a minimal amount of HTML template rendering is

performed on the server. Views correspond directly to these HTML templates, which

contain the markup for the page layout. The ECT JavaScript template engine powers

the template rendering and allows us to split up templates into logical components,

thereby making it easier to modify the pages of the analytics site.

42

4.2.3 REST API

All external interactions with the analytics server occur through a REST API. All

API endpoints return JSON (JavaScript Object Notation) and conform to a standard

response format. For consistency and standards-compliance, each endpoint enforces

that the correct HTTP headers be set and responds with the correct HTTP status

code for the state of the response. The analytics server API endpoints are divided

into two groups:

* the data collection API, used to collect data from TaleBlazer Mobile

* the data analysis API, used to provide statistics for the analytics site

What is REST?

REST, standing for Representational State Transfer, is a style for building HTTP

APIs, using the HTTP verbs (GET, POST, PUT, DELETE) as actions on resources.

[7] A resource can be thought of as a noun (e.g. the device resource). Basic creation,

modification and read operations can be performed by making a request to a resource

using a particular format. For example, a GET request to http://SITE/device/4

would return a device with id equal to 4.

API Format

Each API endpoint responds with JSON formatted according to the JSEND format.

[2] Each response object has a "status" key, which has a value of "success" or "error"

depending on the outcome of the request. Successful responses include a "data" key,

which contains data pertinent to the original request. Failure responses include a

"message" key, containing a human-readable string describing the error. Conforming

to a standard response format makes it simpler to parse responses to API requests

and maintains consistency throughout the project. Listing 4.2 gives an example of

the response body of a successful request to the device API.

43

2 status "success",

3 data:{

4 { i : Phon 5" .. }
tx '--Al~

5

6 }

Listing 4.2: Example API format, using JSEND

All API endpoints require correct HTTP headers for requests. For example, the

Content-Type header, which defines the format of parameters in the request body,

must be set to application/j son, if the request body is in JSON format. Similarly,

the Accepts header, which defines acceptable formats for the response, must be set to

application/j son in order for the response to return JSON. Again, this ensures that

API requests behave consistently and correctly as inconsistent or undefined behavior

often leads to bugs or exploits.

In addition to the status field in the JSON response, each endpoint also responds

with the correct HTTP status codes. For example, a status code of 500 represents an

internal server error. A status code of 201 represents that a resource was successfully

created. These status codes provide an additional way to check the status of an API

request.

Data Collection API

The data collection API consists of all API endpoints that are involved in the process

of gathering gameplay metrics from TaleBlazer Mobile. The data collection API

consists of three resources: devices, sessions, and events. With respect to the process

of data collection, the following endpoints are the most important:

" Device Registration API

* Session Request API

" Batch Event Processing API

44

Device Registration The device registration API provides a way to register mobile

devices with the analytics server. The endpoint takes a unique TaleBlazer Analytics

ID and information about the device (as defined in Section 3.1.3). If successful, the

API responds with a record of the newly registered device.

Session Request The session request API allows gameplay sessions to be recorded

on the analytics server. It takes the device's unique TaleBlazer Analytics ID and

information about the session (as defined in Section 3.1.3). If the device has not

already been registered with the analytics server, then the API sends back a failure

response. Otherwise, it responds with a record of the newly created session, including

the unique session ID used to tie events and sessions together.

Batch Event Processing The batch event processing API is the most complex

in the data collection group. The batch event API takes a list of event objects,

each corresponding to the types of events previously mentioned (e.g. agent bumps

or region switches) and saves each event to the database. If a single event in the list

of events is invalid or an error occurs while saving an event, then the entire request

fails and the API responds with a failure. This is accomplished through the use of

database transactions, which provide an "all-or-nothing" guarantee: either everything

is saved or nothing is. This is beneficial because it alerts the API user that an error

has occurred and that no data was saved. Otherwise, it would be difficult to tell

what was saved to the database and what wasn't. As a result, it provides consistent

"fail-fast" behavior for the API and avoids tracking possibly problematic data.

Data Analysis API

The data analysis API consists of the API endpoints that calculate and provide

analytics data for the analytics site. Currently, all statistics are calculated on-the-fly

when requested via the API.

45

The data analytics API consists of the following endpoints:

" Overview API

" Games Played API

" Gameplay Duration API

" Agent Bumps API

" Custom Events API

" Raw Data API

Each API takes a start and end date representing the date range of data to an-

alyze. Excluding the Overview API, they also take a categorization method, which

categorizes the data based on one of the following:

" Date (Excluding the Agent Bumps API)

" Role

" Scenario

" Game Version

" Agent (Only for the Agent Bumps API)

Overview The Overview API provides key statistics concerning the overall perfor-

mance of a game. The statistics that are calculated include the number of games

initiated, the number of games completed, the average time users took to complete a

game, and the lifetime number of downloads. This information is calculated purely

from information on the Session model (see Section 3.1.3).

46

Games Played The Games Played API responds with information about the total

number of games played. This is further broken down into non-overlapping groups:

" the number of games initiated (but not completed)

" the number of games completed

These statistics are calculated solely from information on the Session model, as in

the Overview API.

Gameplay Duration The Gameplay Duration API provides statistics on the amount

of time that people took to play a game. In particular, gameplay sessions are sep-

arated into buckets based on their gameplay time. Currently, sessions are bucketed

into time ranges of 15 minutes, starting at 0 minutes and going up to 120 minutes.

Listing 4.3 demonstrates a sample response.

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Listing 4.3: Gameplay Duration API response, showing the number of sessions that

fell within certain ranges of gameplay time, categorized by the Explorer role

47

As before, all information is directly calculated from information on the Session

model.

Agent Bumps The Agent Bumps API provides information about the number of

times all agents were bumped, divided into unique bumps and total bumps per agent.

Unique bumps are calculated by determining if a particular agent was bumped at all

during a session. Further bumps then contribute to the number of total bumps.

Custom Events The Custom Events API provides information about the number

of unique and overall times that a custom event was triggered. A unique custom event

is defined as whether a player triggered the custom event during gameplay. Further

triggers of the custom event then count towards the overall count. Due to the fact

that custom events can have any set of values, custom events are further grouped by

their particular value, in addition to the normal categorization options.

Raw Data The Raw Data API is the sole exception to the standard JSON format.

Instead of JSON, the Raw Data API responds with a CSV of all the raw event data

for a particular game over a given date range. The purpose of this endpoint is to allow

power users to work directly with the collected data to perform further analysis.

4.2.4 Development Methodology

In addition to the goal of collecting and analyzing gameplay data, a goal of the project

was to develop a maintainable server that was easily modifiable and extensible in

order to allow future developers to easily add features and continue building atop the

platform. To this end, a test-driven methodology of development was adopted and

stringent documentation standards were employed throughout development.

Test-Driven Development

The analytics server was developed according to the Test-Driven Development method-

ology. This methodology emphasizes that tests for logical chunks of functionality be

48

written first before starting development on the feature. As a result, the developer

is forced to consider in-depth the behavior of the feature and the success and failure

conditions. On completion of a feature, the tests are run and the feature deemed

complete if all the tests pass. This results in a codebase with extensive test coverage.

Furthermore, the overall test suite provides a way of verifying that changes to the

codebase do not accidentally break functionality.

For the analytics server, this methodology resulted in extensive test coverage for

the API. Tests were written using the Mocha testing framework and the SuperTest

HTTP assertion library. These libraries emphasize readable and self-documenting

tests. For example, Listing 4.4 shows how a test is written.

2 I

6o n

3~ 0 .dt'/eson)

7 });~

Listing 4.4: Example Mocha test, testing that the Session API responds in JSON

Documentation

Documentation for the analytics server was a continuous and simultaneous process

alongside development. The overall goal was to write clear and useful documentation.

The codebase was documented in two ways. First, the code was written to be as self-

documenting as possible, using clear and descriptive variable names. Code linters and

style formatters were employed consistently throughout the development process to

enhance readability and ensure style consistency throughout the various files. Second,

comments were added to pieces of code that required further explanation, detailing

specific processes or ideas further. For example, the ideas behind statistic calculations

were expanded on in comments.

In addition to the documentation inside the codebase, detailed step-by-step in-

49

structions were written explaining how to install and deploy the server. Documenta-

tion also included pre-built files for performing test API requests using an external

utility and a file giving an overview of the database schema.

This documentation standard was also employed for the development of the ana-

lytics client and site.

4.2.5 Installation and Deployment

Configuration and Installation

To simplify future development and deployment, the server was built to be easily

configurable and simple to deploy to any environment. Server configuration comes

in the form of external JSON files and JavaScript modules that contain server and

database configuration details. Example configuration files are provided to ease the

setup process.

Installation and deployment to any environment is similarly simple. Developers

simply checkout the project from a Git repository, fill in their configuration details,

and run a single command to start the server. As a result, getting started developing

for the analytics server is fast and easy.

Logging

Logging functionality was implemented into the server in order to simplify trou-

bleshooting in production environments. Logging is handled via Winston, an asyn-

chronous logging library for Node.js. To ease troubleshooting, error and request logs

are saved to a log directory, configurable by the developer. Error logs contain stack-

traces, server performance statistics, and additional error-related information.

Deployment alongside TaleBlazer Server

The TaleBlazer Analytics server was deployed on the same machines as the existing

TaleBlazer server. Early testing with our partners indicated that certain networks

would restrict access via HTTP to sites on ports other than port 80. As a result,

50

it was necessary to find a way to deploy TaleBlazer Server and the analytics server

alongside each other and have both servers respond to requests at port 80. Nginx was

deployed as a reverse proxy server to accomplish this.

Nginx is a high-performance HTTP server which is often used as a reverse proxy or

load-balancer in front of other servers. A reverse proxy server is a server that retrieves

information from other servers on behalf of a client making a request. In our particular

case, Nginx allows TaleBlazer Server and the analytics server to both respond to

requests on port 80. It accomplishes this by performing requests to the respective

server on behalf of the original client and then serving the request. Fitting with the

goals of the project, Nginx is also easily deployed and configured. To ease future

deployment, the configuration and deployment process was extensively documented.

4.3 TaleBlazer Analytics Client

This section provides the technical details of how the TaleBlazer Analytics is built

and how it interacts with the analytics server to collect gameplay data.

4.3.1 Technical Overview

The TaleBlazer Analytics client is a standalone JavaScript module that handles the

API workflow for collecting and sending data from TaleBlazer Mobile. TaleBlazer

Mobile implements the client's public API to track gameplay events. The client is

then responsible for storing gameplay data and sending it to the analytics server.

The TaleBlazer Analytics client is designed to function in both offline and online

capacities. TaleBlazer games can be played in offline situations, where internet con-

nectivity is not available. In order to track this data, the analytics client stores all

gameplay data locally until a data connection becomes available, at which point it

sends the data to the server for storage.

51

4.3.2 API Workflow

The main job of the analytics client is to interact with the Data Collection API of the

analytics server to track gameplay data gathered from TaleBlazer Mobile. To track

data, a specific workflow has to be followed in order to ensure that data is collected

from offline and online gameplay sessions. The general workflow is as follows:

First The mobile device is registered with the analytics server.

Second At the start of a new game, a session is requested from the analytics server.

Third Events are periodically sent to the analytics server in batches.

Each step in this workflow requires that the prior steps be successfully completed.

If a step fails, the client automatically retries the failed step periodically. For example,

if a device is not registered with the server and a new game is started, the client will

automatically attempt to register the device before requesting a session from the

analytics server. In the case of TaleBlazer games played offline or in low connectivity

situations, the client generates local sessions to be able to track events. The above

workflow is then performed once network connectivity is regained in order to record

data with the analytics server.

Device Registration

In order to determine unique events, it is necessary to register each mobile device with

the server. On launch of the app, the client automatically tries to register the device

with the analytics server. If the device is successfully registered or the server responds

that the device has already been registered, the client stores that information locally

so as to avoid further unnecessary registration requests.

In order to ensure that data is truly anonymous, a unique TaleBlazer Analytics ID

is generated from the device's ID. On iOS, this ID is installation specific and changes

if the user reinstalls the app. On Android, this could be the device's actual device ID,

depending on the version of the OS. To generate a unique ID for TaleBlazer Analytics,

52

the retrieved device ID is hashed with the SHA-256 cryptographic algorithm. SHA-

256 is a "one-way" cryptographic function - the generated text cannot be decrypted

back to the original text. This unique generated string is used by the analytics server

to uniquely identify devices.

Session Request

In order to track gameplay sessions, a session has to be requested from the server at

the start of a new game. On a successful request, the server responds with a unique

session ID, which the client stores locally. The session ID is used to tag events to

identify them as having taken place during a particular session. Sessions can only be

requested once the device has been registered, as each session is tied to the device

being used.

The TaleBlazer Analytics client also has to work in an offline capacity, ensuring

that events are tracked and correctly recorded with the analytics server when network

connectivity is reestablished. To this end, all sessions start off as "local sessions", each

with a session ID unique to the device. Once the network becomes available, a "net-

work session" is requested for each local session stored on the device. Local sessions

are then converted to network sessions and any events tagged with the corresponding

local session ID are updated to use the new network session ID.

Event Tracking

Once a session has been successfully established, events can be tracked and recorded

with the server. Each event is tagged with the session ID it occurred in and the

time the event took place, as well as event-specific information. Events are added to

a queue and sent up periodically to the server in batches of configurable size. This

minimizes the amount of network requests performed and the data sent.

Events are persisted locally in order to persist through application and device

restarts, as well as to ensure that data is not lost in the face of spotty network

connectivity. This allows event data from offline events to be kept and automatically

sent to the server when network connectivity becomes available.

53

4.4 TaleBlazer Analytics Site

This section details the structure of the analytics site and its features. It also provides

examples of the user interface.

4.4.1 Technical Overview

The TaleBlazer Analytics site allows users to view and download analytics data for

their games. The front-end layout is accomplished using Bootstrap, a styling frame-

work that provides a set of pre-styled elements, grid layout system, and extensible

CSS classes. JavaScript is used to provide the behavior of the site, including the

dynamic generation of UI elements, such as the tables for analytics data.

The site is built with a focus on client-side page rendering. All relevant analytics

data is retrieved via AJAX calls to the Data Analysis API of the analytics server. A

minimal amount of server-side HTML templating is performed to provide information

such as when the game was first created and a list of its custom events, for filtering

and navigation purposes. The site is also responsive - mobile and tablet devices can

easily view information with a UI (user interface) suited to their device. Additionally,

users can also download the raw set of analytics data.

4.4.2 Analytics Pages

Analytics pages are the pages of the site that provide the different types of analytics

data for each game. The analytics pages of the site correspond directly to each API

in the Data Analysis API group. In particular, these pages are the:

" Games Played Page

" Gameplay Duration Page

" Agent Bumps Page

* Custom Events Pages

54

All analytics pages share the same page loading behavior and common user interface

elements. A typical analytics pages looks like Figure 4-1, which shows the user inter-

face for the Games Played page. Appendix A contains additional figures of analytics

pages.

Analymc Beta Teat - Talelaer

GmMVW~iW

-ENA D -

P*W Pga

Uaew Baa

0.1* P*"

ALOeaid Gia

Games Played Sun, Februay 2,2014- Sat, May 3,2014

-AUdb.IDf FfwnM 02f2M4 3 TV_~ DOWW3d04

Fa~~te Tahty 1 owes 1 ma,4 3 morms AN

SWW- by Daws

MV 29 2014 4

MW 31 2014 6 2

Apr12014 20 6

Apr2 2014 21

Ap10 2014 2 .

SW~VI to 5of 5 et,.

Figure 4-1: Games Played Page

Page Rendering and Loading

The pages of the site all correspond directly to each API in the Data Analysis API

group. For example, the Agent Bumps Page gets its HTML and analytics information

from the Agent Bumps API.

HTML requests to each API return a rendered HTML page with no embedded

analytics data. On the server, the page is rendered by modularly composing a set

of ECT templates. This results in a modular site and accomplishes maximum code

reuse. The amount of server-side templating is minimal in order to ensure that the

page is rendered and served to the client as fast as possible for short page load times.

When the page is fully loaded, an AJAX (Asynchronous JavaScript and XML)

call is made to the same API, which responds with the corresponding analytics data.

55

e.r

14

.. .ii.

.................

The user interface of each page is then updated to reflect the new data.

The combination of fast page loads and AJAX calls for data ensures that the user

is not stuck looking at a loading page while the analytics data is being calculated. It

also eliminates page loads when filtering and categorization options are changed and

new data is requested - the page's existing UI elements are simply updated when new

data is received.

User Interface Elements

All analytics pages share common user interface elements, which not only maintain

consistency throughout the site, but allow maximum reuse of code. This is a result of

the modular construction of each page, as previously mentioned. The common user

interface elements are the site navigation menu, the filter and categorization menu,

and the data table.

Site Navigation Menu The Site Navigation Menu is a collapsible menu with

links to all pages containing analytics information for a particular game. Notably,

it includes a dynamic list of the custom events belonging to the game in question.

Figure 4-2 shows the user interface for the menu.

9Events

Games Played

Gaineplay Duration

Agent Bumps

ecustom Events

Player Points

Long Game

Data Plan

& Download Data

Figure 4-2: Side Navigation Menu

56

Filter Menu The Filter Menu provides all the options for filtering and categorizing

analytics data for all analytics pages. Users can choose from a pre-defined list of

categories to categorize their data by. They can also manually define the date range

of data they would like to look at. Additionally, they can choose from a set of pre-

defined date ranges, including the option to view all data for the lifetime of the game.

The list of categories can be modified or the option completely disabled on a page-

by-page basis, as it is on the Overview Dashboard (Figure 4-5). Figure 4-3 shows an

example of the filter menu.

catw*o&amb4.n f'Q Fromh 0~2/2214 TM 05=012014

F" tN Today 1 week 1 month 3 months AD

Figure 4-3: Filter Menu, with the categorization option enabled

Data Table Each analytics page displays its analytics data in the form of a data

table. This data table is implemented using the DataTable JavaScript library. Ana-

lytics data tables are column-sortable and searchable across the entire set of results.

Data tables paginate automatically based on the number of results. The user can op-

tionally choose the number of results to view per data table page. Figure 4-4 shows

what the data table for Agent Bump data, categorized by Agent looks like.

Overview Dashboard

The Overview Dashboard is a unique analytics page as it does not include a catego-

rization option or a data table. Instead, the Overview Dashboard provides a concise

set of statistics detailing the performance of the game in the form of a grid. As before,

users can choose the date range of data to get statistics for. Figure 4-5 shows the UI

for the Overview Dashboard.

57

M.

34 24

39

M4M i n

StaftfCS ft Ag"

-co,05 W page
.......... ;

Search

................. -

Ago* ID Agent name Unique burn" Total bismps V
...

2 4V

23
.. ? ...

26

Fr*,Oy T-Rex 29

5 Stagasamn 23
................... -........................ --

a 25

LV

16

Bronbeems

Apple
..
Happy Barmum

Key

.........................
22

.21
..........

23
..

......................... I

10

12
.............. ...

41

44
......................... I

56

80
..

Showing I to 10 of 10 entries

... ...

OMT magic

Connection OU8300n 22
..

2 3
..

inventory

Figure 4-4: Data table for the Agent Bumps page, categorized by Agents

Overview SunFebruary 2,2014 - Sat May 3,2014

.......
Fftm 02/0W0r14 W. OWOW2014

....

FlotStem Today I week I month 3.,mmid M i

Figure 4-5: Overview Dashboard

58

......................
P .re N ."

4.4.3 Data Download

The analytics site also allows users to perform their own data analysis on the collected

data. Users can download a CSV (Comma-Separated Value) file containing the set

of all events that occurred over a particular time period. In particular, this file

contains all Agent Bump, Region Switch, and Custom Events that occurred, as well

as information about the session that they occurred in and the version of the game

that was played.

This functionality allows users to not only perform data analysis on the events

of a particular game, but also gives them the ability to view user behavior across

separate games using the unique TaleBlazer Analytics device ID.

59

60

Chapter 5

Testing

This chapter details the testing that was performed on the TaleBlazer Analytics

system. It also gives the results of the tests and their consequences on the development

process.

5.1 Overview

The TaleBlazer Analytics system underwent a series of internal and external tests in

order to test the robustness and accuracy of the data collection system. Two types

of tests were performed: internal alpha tests and external beta tests.

Alpha tests were performed internally by the TaleBlazer team and focused on

testing the performance of the client under adverse network connectivity conditions.

They also focused on making sure that data was being collected properly. A beta

test was performed with our partner institutions to test the system in a production

capacity, as well as serving as an additional data collection test. Finally, a user

interface test was performed with our partner institutions to get their feedback on

the final analytics site.

61

5.2 Internal Alpha Tests

Multiple and extensive alpha tests were performed on the TaleBlazer Analytics system

primarily to identify bugs and issues with the interaction between the analytics server

and client. The main goal of these tests was to identify edge cases in the client's API

workflow and to ensure that data was being persisted and sent to the server correctly.

A test TaleBlazer game was created that included every different type of possible

interaction that could result in a trackable event. The game was tested by multiple

members of the TaleBlazer team in varying network conditions on Android and iOS

devices. The Android devices consisted of HTC Droid Incredible phones running

Android 2.3.3, with and without an SD card present. The iOS devices included

iPhone 4 and iPhone 5 phones, running iOS 6 and 7.

Each test lasted about 30 minutes. Testers were asked to play the test game

simultaneously as they would normally play a TaleBlazer game. Each tester was

asked to write down the time and order in which agents were bumped and actions

were taken. This information was then compared against the data analytics that were

captured.

5.2.1 Effects on Development

The alpha tests allowed us to identify multiple edge cases in the client's API workflow

that resulted in malformed data to be sent to the server. This allowed us to harden

the client's workflow to make it as robust as possible in the face of these unforeseen

edge cases.

Alpha testing also alerted us to the need to track local sessions and events. As

a result, the session request mechanism for the client was modified to implement the

concepts of local and network sessions (see 4.3.2). This change not only gave us the

ability to track local sessions, but it also made the client more reliable in the face of

network connectivity issues.

62

5.3 External Beta Test

After the alpha tests had been concluded, a beta test was performed primarily to test

the performance of the system in a production capacity. Partner institutions were

asked to participate and provide feedback on their experience. The test TaleBlazer

game from the internal tests was modified to not only serve as a test for data collection,

but also to introduce our partners to the way that the analytics system worked.

Partners were asked to provide written logs of their in-game actions to allow us to

verify the accuracy of the collected data.

5.3.1 Effects on Development

The beta test allowed us to verify that data was being collected correctly and that the

client was performing well on multiple types of Android and iOS devices. The most

important result of the beta test was that it alerted us to issues with the deployment

of the analytics server.

For the tests, the analytics server was deployed to a port that was not port 80,

typically used for HTTP connections. One tester ran into an issue where the server

was not receiving any data from the testing devices. The logs showed that no connec-

tions were being received from those devices. We were then able to determine that

the network in question restricted HTTP requests to port 80. As a result, this drove

the adoption and deployment of Nginx as a proxy server, in order to allow connections

to the analytics system from restrictive networks.

5.4 Final User Interface Test

After the external beta test had concluded, partners were directed to the final de-

ployed version of the analytics site. Partners were provided with minimal instruction

on how to use the site, in order to determine the site's usability and what elements

were unclear to new users. In addition to requesting general feedback, partners were

asked the following questions:

63

" Is there any data you are interested in that is not currently being collected?

" Is the graphical user interface (GUI) intuitive?

" Is the data displayed in a useful way?

" Are there additional views of the data that would be useful to you?

" Are there misleading labels or elements on the site?

" Is the downloaded raw analytics data in a file format useful to you?

5.4.1 Results

In terms of the data, partners felt that the data being collected was indeed useful

to their purposes, which was in line with their feedback on the original mockups.

Particularly, the partners were interested in the Overview page and the Games Played

page. They felt that this information provided them with useful statistics on the

popularity and status of their game. They also liked the ability to download the raw

analytics data, which allowed them to calculate their own statistics.

One of the most requested features was the addition of visualizations in order to

make the data simpler to understand. Additionally, partners felt that help or tutorial

elements be added in order to explain certain data labels and functions of the site.

Interestingly, some partners requested features that were implemented in the custom

events system, indicating that an FAQ or help section would be incredibly useful in

on-boarding new users. Overall, the test indicated that partners found the site useful

and that the user interface could use minor tweaks in order to make it simpler to use,

specifically emphasizing the creation of help or tutorial pages.

64

Chapter 6

Future Work

This chapter gives recommendations for the future of the TaleBlazer Analytics system,

including new features and technical improvements.

6.1 Data Visualizations

Currently, the analytics site only provides a tabular view for analytics data. Although

this data provides useful information for analytics users, it can be difficult to get a

high-level understanding of the statistics quickly. As a result, it would be useful to

implement visualizations of the analytics data.

Data visualizations would allow users to quickly interpret and draw conclusions

from analytics data. This feature would improve the usability of the site and allow

users to focus more on the overall results of the data, rather than having to interpret

the results from the tabular data. For example, Figure 6-1 shows a visualization

detailing how many players played specific versions of a game over a week.

The TaleBlazer Analytics system was built to accommodate visualizations from

the start of its development. The relevant data is already provided in JSON via the

same API call that allows pages to retrieve their relevant analytics data. Visualization

implementation is easily accomplished via D3.js, a popular JavaScript visualization

library.

65

50

45

40

35

30

Number of Players 25 - VI.
20

15 -
v.0

10

5

0

Jan 7 Jan a Ian 9 Jan 10 Jan 11 Jan 12 Jan13

Date

Figure 6-1: Distribution of Total Players by Game Version, over a week

6.2 Authentication/Authorization

In order to restrict users to view only data for their games, it is necessary to implement

an authentication and authorization system. Although a simple login and permission

system could be set up for TaleBlazer Analytics quickly, it is important to build a

system that allows users to use their same credentials from TaleBlazer Server. This

would avoid the problem of having multiple credentials for the two services. This

system was delayed in order to prioritize the data collection and analysis features of

TaleBlazer Analytics.

A way to implement this would be for the analytics server to utilize the same

session information currently used by TaleBlazer Server. A simple solution would be

for TaleBlazer Server to use database-backed sessions, which would allow the analytics

server to access the session data directly.

A more extensive solution would be to implement OAuth2, which is a protocol for

security authentication and authorization. This solution would involve implementing

OAuth into TaleBlazer Server or deploying a separate server solely responsible for

authentication and authorization. Plugins for CakePHP currently exist for enabling

this functionality.

66

6.3 Improved Statistic Calculation

Statistics are currently calculated every time that a request to an analytics page is

made. Although the statistic calculations are optimized to offload the majority of the

work to the database, the calculation times may take longer as more data is collected.

Two options for mitigating this issue are to perform progressive calculation and to

store the calculation results using an in-memory cache.

Progressive calculation means that statistics are calculated and stored separately

as the data is received from TaleBlazer Mobile. As a result, statistics are already

available when requested by a page and so the computational overhead per request

is significantly decreased.

An in-memory cache would solve the issue of unnecessary recalculation. In-

memory caches, such as Redis and Memcached, allow incredibly fast access to data

because the data is stored in RAM. Cached data can be expired and removed based

on conditions set by the developer, such as newly arrived data. Storing the results

of calculations in an in-memory cache would solve the issue of unnecessary recalcula-

tions. A typical request would consult with the cache first to see if the statistics are

already stored. If still valid, the request would return the statistics. Otherwise, the

server would perform the calculation as normal.

6.4 Code Improvements

Future technical improvements to the server codebase involve creating a Service layer

to consolidate common model-related functions and the use of the async JavaScript

library for improving the readability of asynchronous code.

Currently, the controllers for each API contain code to modify, retrieve, and save

models as required by the API. A Service layer would remove model-specific code

from controllers and place them into modules known as Services. Each service would

be responsible for handling common functions related to a model. For example, a

Device Service would handle common device registration tasks and duplicate device

67

checks. Ultimately, this would allow controllers to focus on validating inputs and

responding to requests. The majority of the work with models would then live in the

corresponding service.

The async JavaScript library provides a set of utility functions which handle

common asynchronous tasks. The asynchronous nature of JavaScript code results in

multiple levels of callback functions, which is often difficult to read and modify. The

async library solves this issue by providing a powerful set of utility functions that

improve the readability of the code. Compare the readability of the two functions in

Listing 6.1, which perform the same tasks.

1 // Nested caibacks

2 // Each function waits on the results of the previous one before

conti~nuing ~ ~
3 perf ormAction1 (function C) {

4 performAction2(function() {

5 performAction3(function()

6 //and so on...

8 })'~'

9 })~

10

11 // C backu aync ira

12 //R esult of each fuctin are passed to the other igh x

paramtr

13 // n a ar*e xeked, t k is eecute

14 async.wa fall([-00%

15 performActionl(next),

16 performAction2(next)- , M F

17 performAction3(ne

18 1, finalCallback)

19 });

Listing 6.1: Comparison between normal callback code and async code

68

Chapter 7

Contributions and Conclusion

7.1 Contributions

Working closely with the TaleBlazer developer team, the following contributions have

been made. First, key gameplay metrics were identified that would provide useful

information regarding the performance of TaleBlazer games. Second, the TaleBlazer

Analytics system was developed: a maintainable, scalable, and extensible system

for the collection of gameplay metrics and the analysis and presentation of useful

analytics data. Third, future improvements to TaleBlazer Analytics were identified

and the groundwork laid in preparation for future development.

7.2 Conclusion

TaleBlazer Analytics is an automated data collection system that seamlessly inte-

grates with the existing TaleBlazer platform. The system is composed of an analytics

server, client, and site. The analytics server is responsible for receiving, storing,

and analyzing gameplay data. The analytics client integrates with TaleBlazer mobile

to collect and send data to the analytics server. The analytics site provides use-

ful and comprehensive analytics data for TaleBlazer games. The system is built to

be maintainable, scalable, and extensible so as to accommodate future development

and expansion. TaleBlazer Analytics will help game designers and researchers gain

69

a better understanding of how players play TaleBlazer games and their educational

impact.

70

Appendix A

Figures

Gameplay Duration Wed, February 12,2014 - Tue, May 13,2014

Fro": 02/12/2014 in; To: 06/13/2014 l! -
Faetaera: Today 1 week 1 month 3 months AM

Sa0tsWe (by Ro*)

1 records Pe Pew Search,

Role I9) Role nmme 0 0-15 m n 1s-= min 30-45 min 0 45-0 min 0 GD-75 min 75-00 min W -105 min 4 105-120 min 120+ min

1 Explorer 24 1 1 0 0 0 0 0 0

026 Scienft 7 1

Showing 1 W 2 of 2 entries

0 0 0

Figure A-1: Gameplay Duration, categorized by Role

71

0 A

prfl Next

Data Plan Wed, February 12, 2014 - Tue, May 13, 2014

Fromt 02/12/2014 To 05/13/2014

FS3Snr Today 1 week 1 month 3 months M

St a (y jear

records per pago

Scenric ID

16

17

Is

16

20

ShoWeig I 5 of 5 entris

Sonato nm

Red Butte

Sen 0kg.

Cotnmbus Zoo

Misouri Botanical Gerdens

Vakes Uniqua Evens

6

2

2

Figure A-2: Custom Events page, categorized by scenario. A "Data Plan" event is

shown, which was captured if a user indicated in game if the device they were using

had a data plan.

72

Searcir

4 Total Event

6

..
P re V i ot a N &A

.........

Agent BurnpsWed, March 26,2014 - Tue, May 13,2014

.........
Caftort- by. Fk= 03128/2014 TZ OW1312014

......................... -
.............

Fast filers: Today I week 1 ff)" 1 3 monihs AN
...............

.................. -
.......................................

Search.

..........

Total bwnpa
............

7
............... -..........

... -

4

7

2
............

.... -................

.............

3 4 5 a 7

...............

................

.................

...............

.............

..........
..................

Staftica (by Garne Version)

- '- I
,10 * records per page

..........

0 Aqw* N) Ageat nwne 0 Unique bumps
................

.2 Friendly T-Aex 7
..

.5 Sleg- I
......................... I

Brofflosaunfe 4
.............................

Appis
..........

10 Happy Barmw 7

12 Key 2
........................

41 mrr magic
................... -

2 T44#x

5 Shw

c4nnection Queawn I
.. I

2

Cmwe Version ID
...

173
.

173
............

173

173
....

173

173
........................

173
................................

182
..

182

182

I Garne Version name
................ I

version 1.0
..
Version 1.0

................

version 1.D
......

version 1.0

version 1.0

version 1.0
..................

Version 1.0
.................. ...

version 1.5

Version Is

version 1.5

ShowkV I Io 10 of 67 at m

Figure A-3: Agent Bumps page, categorized by game version.

73

74

Bibliography

[1] Flurry Inc. Privacy Policy. http://www.flurry.com/legal-privacy/

privacy-policy.

[2] OmniTI Labs. JSend specification. http://labs.omniti. com/labs/j send.

[31 Sarah E Lehmann. Taleblazer: Implementing a Multiplayer Server for Location-
Based Augmented Reality Games. Master's thesis, Massachusetts Institute of

Technology, September 2013.

[4] Michael Paul Medlock-Walton. Taleblazer: A Platform for Creating Multiplayer

Location Based Games. Master's thesis, Massachusetts Institute of Technology,
June 2012.

[5] MIT Scheller Teacher Education Program. Environmental Detectives. http:

//education.mit. edu/ar/ed.html.

[6] MIT Scheller Teacher Education Program. Starlogo TNG. http: //education.

mit.edu/projects/starlogo-tng.

[7] Alex Rodriguez. RESTful Web services: The basics. https: //www. ibm. com/

developerworks/webservices/library/ws-restful, November 2008. Devel-

operWorks, IBM.

[8] Mikito Takada. Understanding the node.js event loop. http://blog.mixu.net/

2011/02/01/understanding-the-node-js-event-loop/, February 2011.

75

